THE CENTERS OF SEMI-SIMPLE ALGEBRAS OVER A COMMUTATIVE RING

SHIZUO ENDO and YUTAKA WATANABE

Recently A. Hattori introduced in [7], [8], [9] the notion of simple algebras over a commutative ring. Especially, in [9], he examined, as a fundamental problem on simple algebras, whether a directly indecomposable semi-simple algebra is simple or not and gave affirmative answers to this in some particular cases. In this note we shall first prove, as a complete answer to this, that any directly indecomposable semi-simple algebra over a Noetherian ring is simple.

Hattori proposed in [8] several problems on semi-simple algebras. Secondly we shall give some informations on the problem ([8], Problem 4) whether a central semi-simple algebra is separable or not. Furthermore we shall show a class of p-trivial simple algebras which is different from that in [11] ([8], Problem 11), and finally we shall give the commutor theory of simple subalgebras in a central separable algebra in the complete form.

Throughout this note we denote by R a commutative ring and by Λ a not always commutative ring.

A semi-simple R-algebra Λ is said to be a *simple R-algebra* (cf. [9], [11]), if there exists a left Λ -module E satisfying the following conditions:

- i) E is a finitely generated projective Λ -module.
- ii) E is Λ -indecomposable.
- iii) E is Λ -completely faithful.

By [5], (6. 1), if Λ is finitely generated over its center, we can replace iii) by the following

iii') E is Λ -faithful.

1. Decomposability of a semi-simple algebra to simple algebras.

We begin with

Received August 18, 1966.

This work was supported by the Matsunaga Science Foundation.

LEMMA 1.1. Let Λ be an R-algebra which is a finitely generated R-module and P a finitely generated projective left (right) Λ -module, Then

- (1) $\mathfrak{T}_{\Lambda}(P)$ is a finitely generated R-module. (*)
- (2) For any multiplicative system $S (\ni 0)$ of R, we have

$$\mathfrak{T}_{\Lambda}(P_s) = {\mathfrak{T}_{\Lambda}(P)}_s$$
.

Proof. As it is easy, we omit it.

PROPOSITION 1.2. Let Λ be a ring with center C. Suppose that Λ is a finitely generated C-module and that, for any maximal ideal \mathfrak{m} of C, $\Lambda/\mathfrak{m}\Lambda$ is a primary ring. Then the following statements are equivalent:

- (1) C is directly indecomposable.
- (2) Any finitely generated projective non-zero left (right) Λ -module is Λ -completely faithful.
- (3) There exists a finitely generated, projective, completely faithful, indecomposable left (right) Λ -module.

Proof. The implication $(3) \Longrightarrow (1)$ is obvious. Suppose that C is directly indecomposable. Let P be a finitely generated projective non-zero left (right) Λ -module. By (1.1) and [5], (1.2), $\mathfrak{T}_{\Lambda}(P)$ is an idempotent two-sided ideal of Λ which is a finitely generated C-module. Let \mathfrak{M} be a maximal two-sided ideal of Λ , and put $\mathfrak{m} = \mathfrak{M} \cap C$. Then \mathfrak{m} is a maximal ideal of C and we have $\mathfrak{M}^l \subseteq \mathfrak{m}\Lambda$ for some positive integer l. If $\mathfrak{T}_{\Lambda}(P) \subset \mathfrak{M}$, then we have $\mathfrak{T}_{\Lambda}(P) \subseteq \mathfrak{m}\Lambda$ (since $\mathfrak{T}_{\Lambda}(P)$ is an idempotent ideal of Λ). According to (1.1), we have $\mathfrak{T}_{\Lambda_{\mathfrak{m}}}(P_{\mathfrak{m}}) = \{\mathfrak{T}_{\Lambda}(P)\}_{\mathfrak{m}} \subseteq \mathfrak{m}\Lambda_{\mathfrak{m}}$. Hence we have $\mathfrak{m}P_{\mathfrak{m}} = P_{\mathfrak{m}}$ and so we obtain $P_{\mathfrak{m}} = 0$. As $\mathfrak{T}_{\Lambda}(P)$ is C-finitely generated, we have $s\mathfrak{T}_{\Lambda}(P)=0$ for some s in $C-\mathfrak{m}$. Now we put $\mathfrak{c} = \operatorname{Ann}_{\mathfrak{C}} \mathfrak{T}_{A}(P)$. Then, if $\mathfrak{T}_{A}(P) \subseteq \mathfrak{m}A$, we have $\mathfrak{c} \subseteq \mathfrak{m}A$. Hence a twosided ideal $cA + \mathfrak{T}_A(P)$ is not contained in any maximal two-sided ideal of A. Therefore we have $\Lambda = \mathfrak{c}\Lambda + \mathfrak{T}_{\Lambda}(P)$. As $\mathfrak{cT}_{\Lambda}(P) = 0$, Λ is the direct sum of twosided ideals $\mathfrak{C}\Lambda$ and $\mathfrak{T}_{\Lambda}(P)$. Since C is directly indecomposable and $\mathfrak{T}_A(P) \neq 0$, we have $\mathfrak{T}_{\Lambda}(P) = \Lambda$. This proves $(1) \Longrightarrow (2)$.

Suppose (2), and let e be a non-trivial idempotent of Λ . Then Λe is Λ -completely faithful and therefore we have $\Lambda e \Lambda = \Lambda$. Hence e is not contained in any $\mathfrak{m}\Lambda$. Therefore the image of e in $\Lambda/\mathfrak{m}\Lambda$ is also a non-trivial idempotent of $\Lambda/\mathfrak{m}\Lambda$. Since $\Lambda/\mathfrak{m}\Lambda$ is an Artinian primary ring, there are a finite number of

^(*) $\mathfrak{T}_A(P)$ denotes the trace ideal of P (cf. [1]).

orthogonal primitive idempotents in $\Lambda/\mathfrak{m}\Lambda$. Then there are also only a finite number of orthogonal primitive idempotents in Λ . This implies $(2) \Longrightarrow (3)$.

The implications $(1) \iff (3)$ in the following theorem were proved in [9], Theorem 4 in case C is Noetherian.

THEOREM 1. 3. Let Λ be a separable R-algebra and C the center of Λ . Then the following conditions are equivalent:

- (1) C is directly indecomposable
- (2) Any finitely generated projective non-zero left (right) Λ -module is Λ -completely faithful.
 - (3) A is a simple algebra.

Proof. It suffices to show that Λ satisfies the assumptions in (1.2). However, as Λ is a separable R-algebra, Λ is a finitely generated C-module by [2], (1.2) and $\Lambda/m\Lambda$ is a central separable C/mC-algebra for any maximal ideal m of C by [2], (1.4). This completes our proof.

LEMMA 1. 4. Let R be a complete local ring with a maximal ideal m and Λ be an R-algebra which is a finitely generated R-module. Then Λ is directly indecomposable if and only if $\Lambda/m\Lambda$ is so.

Proof. We have only to prove the only if part. Let \bar{e} be a central idempotent of $\Lambda/\mathfrak{m}\Lambda$. As R is complete, there exists an idempotent e of Λ whose image in $\Lambda/\mathfrak{m}\Lambda$ coincides with \bar{e} . Now it suffices to show that e is central. Since e is central in $\Lambda/\mathfrak{m}\Lambda$, we have $\lambda e - e\lambda \in \mathfrak{m}\Lambda$ for any λ of Λ . Then we have $e\lambda e - e\lambda$, $\lambda e - e\lambda e \in \mathfrak{m}\Lambda$. If we put $e\lambda e - e\lambda = \sum_{i=1}^t m_i \lambda_i$, $m_i \in \mathfrak{m}$, $\lambda_i \in \Lambda$, then we have $e\lambda e - e\lambda = e(e\lambda e - e\lambda) - (e\lambda e - e\lambda)e = \sum_{i=1}^t m_i(e\lambda_i - \lambda_i e) \in \mathfrak{m}^2\Lambda$. By repeating the same procedure, we see $e\lambda e - e\lambda \in \mathfrak{m}^t\Lambda$, for any l > 0. As $\bigcap_{l=1}^\infty \mathfrak{m}^l\Lambda = 0$, we obtain $e\lambda e = e\lambda$. Similarly we can show $e\lambda e = \lambda e$. So $\lambda e = e\lambda$ for any λ of Λ , which completes our proof.

LEMMA 1.5. Let Λ be a central R-algebra which is a finitely generated R-module, and S be a commutative R-algebra which is a flat R-module. Then $S \underset{R}{\otimes} \Lambda$ is a central S-algebra.

Proof. See [6], Chap. V, 6, Lemma 3. Now we give, as our main result, the following Theorem 1. 6. Let R be a Noetherian ring and Λ a semi-simple R-algebra which is a finitely generated R-module. Let C be the center of Λ .

Then the following conditions are equivalent:

- (1) C is directly indecomposable.
- (2) Any finitely generated projective non-zero left (right) Λ -module is Λ -completely faithful.
 - (3) A is a simple algebra.

So, a semi-simple algebra over a Noetherian ring R, which is a finitely generated R-module, is expressible as the direct sum of a finite number of simple R-algebras.

Proof. It suffices to show that Λ satisfies the assumptions in (1.2). As Λ is a central semi-simple C-algebra, $\Lambda_{\mathbb{m}}$ is also a central semi-simple $C_{\mathbb{m}}$ -algebra for any maximal ideal \mathbb{m} of C by (1.5). Let $\hat{C}_{\mathbb{m}}$ be the completion of $C_{\mathbb{m}}$. and put $\hat{\Lambda}_{\mathbb{m}} = \hat{C}_{\mathbb{m}} \otimes \Lambda$. Then, again by (1.5), $\hat{\Lambda}_{\mathbb{m}}$ has no non-trivial central idempotent, and then, by (1.4), $\hat{\Lambda}_{\mathbb{m}}/\mathbb{m}\hat{\Lambda}_{\mathbb{m}}$ also has no non-trivial central idempotent.

Since $\Lambda/\mathfrak{m}\Lambda$ is semi-simple and we have $\Lambda/\mathfrak{m}\Lambda \cong \widehat{\Lambda}_{\mathfrak{m}}/\widehat{\Lambda}_{\mathfrak{m}} \cong \Lambda_{\mathfrak{m}}/\mathfrak{m}\Lambda_{\mathfrak{m}}$, $\Lambda/\mathfrak{m}\Lambda$ must be simple. This completes our proof.

2. Separability of a central semi-simple algebra.

We first give

PROPOSITION 2. 1. Let R be an Artinian ring and Λ be a central semi-simple algebra over R which is a finitely generated R-module. Then the following conditions are equivalent:

- (1) A is a separable algebra.
- (2) A is a projective R-module.
- (3) Λ is a completely faithful R-module.

Proof. The implications $(1) \Longrightarrow (2) \Longrightarrow (3)$ of our theorem follow from [2], (1.2) and [1], (A.3). Hence we have only to prove $(3) \Longrightarrow (1)$. Without loss of generality we may assume, according to (1.6), that R is a local ring with a maximal ideal \mathfrak{m} and that Λ is a central simple R-algebra with a unique maximal two-sided ideal $\mathfrak{m}\Lambda$. Suppose that Λ is a completely faithful R-module. Then we have $\Lambda = R \oplus M$ for an R-module M. Let $\bar{\alpha}$ be an element of the center of $\Lambda/\mathfrak{m}\Lambda$ and α a representative of $\bar{\alpha}$ in Λ . Then we have $\alpha \lambda - \lambda \alpha \in \mathfrak{m}\Lambda$ for any λ of Λ . Let l be a non-negative integer such that $\mathfrak{m}^l \neq 0$

but $m^{l+1} = 0$.

Then we have $\mathfrak{m}^{l}(\alpha\lambda-\lambda\alpha)=0$ for any λ of Λ . As R is the center of Λ , we have $\mathfrak{m}^{l}\alpha\subseteq R$. Now put $\alpha=r+u$, $r\in R$, $u\in M$. Then, as $\Lambda=R\oplus M$ as R-modules, we have $\mathfrak{m}^{l}u=0$. Since $\mathfrak{m}\Lambda$ is a unique maximal two-sided ideal of Λ , we have $u=\alpha-r\in \mathfrak{m}\Lambda$, and so we have $\bar{\alpha}=\bar{r}\in R/\mathfrak{m}\subseteq \Lambda/\mathfrak{m}\Lambda$. This proves that $\Lambda/\mathfrak{m}\Lambda$ is a central simple R/\mathfrak{m} -algebra. By virtue of the classical result, $\Lambda/\mathfrak{m}\Lambda$ is a separable R/\mathfrak{m} -algebra. According to [2], (4.7), Λ is also a separable R-algebra. This proves the implication (3) \Longrightarrow (1).

COROLLARY 2. 2. Let R be a (quasi-) Frobenius ring and Λ a central semi-simple R-algebra which is a finitely generated R-module. Then Λ is a separable R-algebra and Λ is also a Frobenius ring.

Proof. As R is Frobenius, Λ is R-completely faithful, as is well known. By (2. 1) Λ is a separable R-algebra, and is a projective R-module. Then, according to [5], (3. 6), Λ is a Frobenius R-algebra, and so Λ is a Frobenius ring.

This corollary is an affirmative answer, in case R is Frobenius, to the following

PROBREM H. Is any central semi-simple R-algebra (which is a finitely generated R-module) a separable R-algebra?

THEOREM 2. 3. If the answer to Problem H is affirmative for any Artinian ring R, then it is also affirmative for any Noetherian ring R.

Proof. Let R be a Noetherian ring and Λ a central semi-simple R-algebra. Now it suffices, by [2], (4.7), to show that, for any maximal ideal \mathfrak{m} of R, $\Lambda/\mathfrak{m}\Lambda$ is a central simple R/\mathfrak{m} -algebra. Hence, by (1.6) we may suppose that R is a complete local ring with a maximal ideal \mathfrak{m} and that Λ is a central simple R-algebra with a unique maximal two-sided ideal $\mathfrak{m}\Lambda$. Therefore we have only to prove that $\Lambda/\mathfrak{m}\Lambda$ is a central R/\mathfrak{m} -algebra.

Let \bar{C}_l be the center of $\Lambda/\mathfrak{m}^l\Lambda$ for any positive integer l. Since $\Lambda/\mathfrak{m}^l\Lambda$ is a simple R/\mathfrak{m}^l -algebra, $\Lambda/\mathfrak{m}^l\Lambda$ is a central simple \bar{C}_l -algebra. As R/\mathfrak{m}^l is Artinian, \bar{C}_l is also an Artinian local ring. If the answer to Problem H is affirmative for Artinian rings, then $\Lambda/\mathfrak{m}^l\Lambda$ is a central separable \bar{C}_l -algebra. Then $\mathfrak{m}\bar{C}_l$ is a maximal ideal of \bar{C}_l and we have $\mathfrak{m}^l\bar{C}_{l+1} = \mathfrak{m}^l(\Lambda/\mathfrak{m}^{l+1}\Lambda) \cap \bar{C}_{l+1}$. By [2], (1. 4), we have $\bar{C}_l = \bar{C}_{l+1}/\mathfrak{m}^l\bar{C}_{l+1}$. If we put $C = \lim_{l \to \infty} \bar{C}_l$, we have $C \subseteq \Lambda$ as R is complete. Let α be an element of C. Then, for any positive integer l we have $\alpha \lambda - \lambda \alpha \in$

 \mathfrak{m}^lC for any λ of Λ , and so we have $\alpha\lambda-\lambda\alpha=0$ as $\bigcap_{l=1}^\infty\mathfrak{m}^l\Lambda=0$. Hence we have $\alpha\in R$, which proves $C\subseteq R$. Since for any $l,C\to \bar C_l$ is an epimorphism induced by $\Lambda\to \Lambda/\mathfrak{m}^l\Lambda$, we have $\bar C_l=C/\mathfrak{m}^l\Lambda\cap C$, and, especially we have $\bar C_l=C/\mathfrak{m}\Lambda\cap C$ $\subseteq R/\mathfrak{m}\Lambda\cap R=R/\mathfrak{m}$. Thus we see $\bar C_l=R/\mathfrak{m}$. This shows that $\Lambda/\mathfrak{m}\Lambda$ has R/\mathfrak{m} as its center, which completes our proof.

3. p-trivial simple algebras.

We see that a simple algebra Λ over a Noetherian ring R is p-trivial ([4]) if and only if there is only one division algebra to which Λ belongs. In [11] it was shown that any simple algebra over a complete local ring is p-trivial (In [11], p-trivial algebras are called 'strongly simple' algebras). However, this can not be generalized to simple algebras over a non-complete local ring without further assumptions. In this section we shall give another class of p-trivial simple algebras.

PROPOSITION 3. 1. Let R be a Noetherian integrally closed integral domain and Λ a simple R-algebra which is a finitely generated projective R-module. Then the center of Λ is also a Noetherian integrally closed integral domain.

Proof. Let C be the center of Λ . Then C is an indecomposable Noetherian ring. Let K be the quotient field of R and put $\Sigma = K \underset{R}{\otimes} \Lambda$. Then Σ is a semi-simple K-algebra. Let e be a central idempotent of Σ . As Λ is a simple R-algebra, $\Lambda_{\mathfrak{p}}$ is a semi-simple $R_{\mathfrak{p}}$ -algebra for any prime ideal \mathfrak{p} of height 1 in R. Since $R_{\mathfrak{p}}$ is a discrete valuation ring, $\Lambda_{\mathfrak{p}}$ is a maximal $R_{\mathfrak{p}}$ -order in Σ and $C_{\mathfrak{p}}$ is a hereditary ring (cf. [7], [9]). Therefore we have $e \in C_{\mathfrak{p}}$. As Λ is a finitely generated projective R-module, we have $\Lambda = \bigcap_{ht\mathfrak{p}=1} \Lambda_{\mathfrak{p}}$, and, from this we obtain $C = \bigcap_{ht\mathfrak{p}=1} C_{\mathfrak{p}}$. Hence we must have $e \in C$. Since C is directly indecomposable, this shows that Σ is a simple K-algebra. Consequently C must be an integral domain. Since each $C_{\mathfrak{p}}$ is hereditary, C is also integrally closed.

Lemma 3. 2. Let R be a Noetherian local integral domain and K the quotient field of R. Let Λ be a simple R-algebra which is a finitely generated projective R-module such that $K \underset{R}{\otimes} \Lambda$ is a division K-algebra. Then any finitely generated projective Λ -module is free.

Proof. This follows immediately from [3], Theorem 2, since $\Lambda/\mathfrak{m}\Lambda$ is a semi-simple R/\mathfrak{m} -algebra for a maximal ideal \mathfrak{m} of R.

THEOREM 3. 3. Let R be a semi-local regular domain with Krull dimension ≤ 2 . Then any simple R-algebra Λ , which is a finitely generated projective R-module, is p-trivial.

Proof. Let K be the quotient field of R. Then, by (3.1), $K \underset{R}{\otimes} \Lambda$ is a simple K-algebra. Let e be a primitive idempotent of $K \otimes \Lambda$ and put $\mathfrak{l} = (K \underset{R}{\otimes} \Lambda)e \cap \Lambda$. Then Λ/\mathfrak{l} is a torsion-free R-module and we have $K \underset{R}{\otimes} \mathfrak{l} = (K \underset{R}{\otimes} \Lambda)e$. Since gl. dim $\Lambda \leq gl$. dim $R \leq 2$, we have $dh_{\Lambda}\Lambda/\mathfrak{l} \leq 1$, and so \mathfrak{l} is projective. \mathfrak{l} is obviously Λ -faithful, so it is also Λ -completely faithful. Now put $\Omega = \operatorname{End}_{\Lambda}(\mathfrak{l})$. Then $K \underset{R}{\otimes} \Omega$ is a division K-algebra and Ω is a simple (division) K-algebra which is Morita-equivalent to Λ . According to (3.2), any finitely generated projective $\Omega_{\mathfrak{m}}$ -module is free for any maximal ideal \mathfrak{m} of K. As K is semi-local, any finitely generated projective Ω -module is free (cf. K is also K-trivial (K is also K-trivial (

Remark. There exists a simple algebra over a non-semi-local principal ideal domain which is not p-trivial. Accordingly, Theorem 3.3 can not be generalized to a non-semi-local principal ideal domain.

4. Tensor products and Commutor theory.

This section is concerned with the commutor theory of a central separable algebra and its simple subalgebras.

First we give

PROPOSITION 4. 1. Let Γ be an R-algebra which is a finitely generated projective R-module and Λ be a semi-simple R-subalgebra of Γ . Then Λ is a Λ -direct summand of Γ .

Proof. By the semi-simplicity of Λ and R-projectivity of Γ , Γ is a Λ -projective and (clearly) Λ -faithful Λ -module, so a completely faithful Λ -module by [5], (6. 1). Then Λ is a Λ -direct summand of Γ .

A semi-simple subalgebras of a central separable algebra splits by the above proposition. So, the coherent condition of the Hattori's commutor theory ([7]) is always satisfied. Then we can give, as a supplement to a Hattori's theorem, the following

Theorem 4.2 ([7]). Let Γ be a central separable algebra over a commutative ring R, and Λ be a semi-simple R-subalgebra. Then:

- (1) $V_{\Gamma}(\Lambda)$ is semi-simple. (*)
- (2) $V_{\Gamma}(V_{\Gamma}(\Lambda)) = \Lambda$.
- (3) $V_{\Gamma}(\Lambda)$ is Morita-equivalent to $\Gamma \underset{\mathcal{B}}{\otimes} \Lambda^{\circ}$ where Λ° denotes the opposite algebra of Λ .

Lemma 4. 3. Let Γ be a central R-algebra having R as an R-direct summand, and Λ be an R-projective algebra. Then the center of $\Lambda \otimes \Gamma$ coincides with the center of Λ .

Proof. At first, we assume that R is a local ring. Since Λ is free, any element of $\Lambda \underset{R}{\otimes} \Gamma$ is uniquely expressed by the form $\sum u_i \otimes \gamma_i$, where $\{u_i\}$ is a basis of Λ and $\gamma_i \in \Gamma$. If $z = \sum u_i \otimes \gamma_i$ lies in the center of $\Lambda \underset{R}{\otimes} \Gamma$, z commutes with all $1 \otimes \gamma$, so $\sum u_i \otimes (\gamma_i \gamma - \gamma \gamma_i) = 0$. Then we get $\gamma_i \in$ the center of $\Gamma = R$ (i.e. $z = \sum \gamma_i u_i \otimes 1$). Therefore we get $\sum ((\gamma_i u_i)\lambda - \lambda(\gamma_i u_i)) \otimes 1 = 0$ for any $\lambda \in \Lambda$, so $\sum \gamma_i u_i \lambda = \lambda \sum \gamma_i u_i$ by the assumption of Lemma. Hence z is in the center of Λ . The converse inclusion is trivial.

In the case that R is global, for any maximal ideal \mathfrak{m} of R, $\Lambda_{\mathfrak{m}}$ is $R_{\mathfrak{m}}$ -projective. $\Gamma_{\mathfrak{m}}$ is a central $R_{\mathfrak{m}}$ -algebra and $R_{\mathfrak{m}}$ is an $R_{\mathfrak{m}}$ -direct summand of $\Gamma_{\mathfrak{m}}$.

Let z be in the center of $\Lambda \otimes_R \Gamma$. Then Z is in the center of Λ_m . So there exists $s \notin m$ (depending on λ , m) such that sz is contained in the center of Λ . Put $\mathfrak{c} = \{r \in R \mid rz \text{ is contained in the center of } \Lambda \}$. Then \mathfrak{c} is an ideal of R which is not contained in any maximal ideal. So $1 \in \mathfrak{c}$. Hence z is in the center of Λ .

PROPOSITION 4. 4. Let R be a commutative Noetherian ring. If Γ is a central separable R-algebra and Λ is a simple R-algebra which is a finitely generated R-projective module, then $\Lambda \underset{R}{\otimes} \Gamma$ is a simple R-algebra.

Proof. $\Lambda \underset{R}{\otimes} \Gamma$ is semi-simple by [7], (2.4). Since R is Noetherian, by virtue of (1.6), we have only to show the indecomposability of the center of $\Lambda \underset{R}{\otimes} \Gamma$. But it is an immediate consequence of (4.3).

Let Λ be a simple subalgebra of a central separable algebra over a commutative Noetherian ring R. Since Λ is a Λ -direct summand of Γ , $V_{\Gamma}(\Lambda)$ is Morita-equivalent to $\Lambda^0 \underset{R}{\otimes} \Gamma$. An algebra which is Morita-equivalent to a simple algebra is also simple ([11]), so we get the following

Theorem 4.5. Let Γ be a central separable algebra over a commutative Noetherian ring R, and Λ be a simple subalgebra of Γ .

^(*) $V_{\Gamma}(\Lambda) = \{ \gamma \in \Gamma | \gamma \lambda = \lambda \gamma, \text{ for any } \lambda \in \Lambda \}.$

Then,

- (1) $V_{\Gamma}(\Lambda)$ is a simple algebra.
- (2) $V_{\Gamma}(V_{\Gamma}(\Lambda)) = \Lambda$.
- (3) $\Lambda^{0} \underset{\mathcal{D}}{\otimes} \Gamma$ is simple and is Morita-equivalent to $V_{\Gamma}(\Lambda)$.

Remark. In Theorem 4. 5, the simplicity of $V_{\Gamma}(\Lambda)$ can be proved by a more simple argument. That is: the center of $V_{\Gamma}(\Lambda)$ contains the center of Λ , and the center of $V_{\Gamma}(\Lambda)(=\Lambda)$ contains the center of $V_{\Gamma}(\Lambda)$, then the center of $V_{\Gamma}(\Lambda)$ coincides with the center of Λ . Hence $V_{\Gamma}(\Lambda)$ is simple whenever Λ is so.

By virtue of this remark, Proposition 4.4 in the case that Λ is a simple subalgebra of Γ is proved without help of Lemma 4.3.

REFERENCES

- [1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
- [2] ———, The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367-409.
- [3] H. Bass, Projective modules over algebras, Ann. of Math., 73 (1963), 532-542.
- [4] P.M. Cohn, A remark on matrix rings over free ideal rings, Proc. Camb. Phil. Soc., 62 (1966), 1-4.
- [5] S. Endo, Completely faithful modules and quasi-Frobenius algebras, To appear.
- [6] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323-428.
- [7] A. Hattori, Semisimple algebras over a commutative ring, J. Math. Soc. Japan, 15(1963), 404–419.
- [8] ———, Semisimple algebras over a commutative ring, Proc. Symp. Algebra. Math. Soc. Japan, 6 (1965), 37–40 (In Japanese).
- [9] ———, Simple algebras over a commutative ring, To appear.
- [10] T. Kanzaki, On commutor rings and Galois theory of separable algebras, Osaka Math. J., 1 (1964), 103-115.
- [11] Y. Watanabe, Simple algebras over a complete local ring, Osaka Math. J., 3 (1966), 13-20.

Added in proof. Lemma 1.4 holds for a Henselian local ring R. So we can prove the first part of Theorem 1.6 without the assumption that R is Noetherian, by using the Henselization instead of the completion, Then Theorem 1.3 is a special case of Theorem 1.6. Also we can omit this assumption from Proposition 4.4 and Theorem 4.5. (For Henselian rings see M. Nagata, 'Local rings', Interscience, 1962).