RESIDUE RINGS OF SEMI-PRIMARY HEREDITARY RINGS*

ABRAHAM ZAKS

Introduction: Throughout this paper we assume that all rings contain an identity. We say that R is a semi-primary ring if its (Jacobson) radical N is nilpotent, and R / N is an Artinian ring. We say that R admits a splitting, and we write $R=A+B$ if A is a subring of R, if B is a two-sided ideal in R, and if $A \cap B=0$.

It has been shown in [1] that for a semi-primary ring $R \quad l \cdot g l . \operatorname{dim} R$ $=r \cdot g l . \operatorname{dim} R=1+l$. proj. $\operatorname{dim} N$. This common value is denoted by $g l \cdot \operatorname{dim} R$.

It has been shown in [2] that if R is a semi-primary hereditary ring, and I is a two-sided ideal in R, then $g l \cdot \operatorname{dim} R / I<\infty$.

We prove that if R is a semi-primary ring and $g l \cdot \operatorname{dim} R / N^{2}<\infty$, then R is a residue ring of a semi-primary hereditary ring. This is a generalization of a similar result in [3]. The crucial step is a splitting theorem that we prove for a semi-primary ring R, for which $e N e=0$ for any primitive idempotent $e \in R$. This splitting theorem seems also useful in studying certain types of semiprimary subrings of a simple ring.

The author wishes to thank Professors M. Auslander, E.E. Lazerson, and M.I. Rosen for their helpful remarks and suggestions in the preparation of this paper.

§1. A Splitting Theorem.

For the rest of this section, let $R=\sum_{u=1}^{t} R e_{u}$ be a complete decomposition for the semi-primary ring R, i.e. $e_{1} \ldots \ldots . e_{t}$ are primitive orthogonal idempotents (e.g. [4, pp 53-57]). Furthermore, assume $e_{v} N e_{v}=0$ for $v=1, \ldots \ldots$. t. When writing $e_{i}, e_{j} \ldots \ldots$ we always assume $1 \leq i, j, \ldots \ldots \leq t$, unless otherwise stated.

Since for any $e_{i}, e_{i} N e_{i}$ is the radical of $e_{i} R e_{i}$, and $e_{i} R e_{i} / e_{i} N e_{i}$ is a division ring, we have:

[^0]Lemma 1: $e_{i} R e_{i}$ is a division ring for $i=1, \ldots \ldots, t$. Every element $e_{i} r e_{j} \in R$ induces a homomorphism (by right multiplication) of $R e_{i}$ into $R e_{j}$, and vice versa. In particular, if $R e_{i}$ is isomorphic to $R e_{j}$, then $e_{k} N e_{i} \neq 0$ iff $e_{k} N e_{j} \neq 0$ for any $k, 1 \leq k<t$. Thus:

Lemma 2: Let $R e_{i}$ be isomorphic to $R e_{j}$, then $e_{i} N e_{j}=0$.
One easily verifies that this is equivalent to:
Lemma 2*: Every non-zero homomorphism between isomorphic components is an isomorphism.

Let Γ_{0} be $\sum_{i, j} e_{i} R e_{j}$ where (i, j) ranges over all pairs such that $R e_{i}$ and $R e_{j}$ are isomorphic to $R e_{i_{0}}$ for some fixed i_{0}. Let $R_{0}=\operatorname{Hom}_{R}\left(\sum_{k} R e_{k}, \sum_{k} R e_{k}\right)$, where k ranges over all indices such that $R e_{k}$ is isomorphic to $R e_{i_{0}}$. Let $R_{1}=$ $\operatorname{Hom}_{R}\left(\sum_{i=1}^{s} B_{i}, \sum_{i=1}^{s} B_{i}\right)$, where $B_{i}=R e_{i_{0}}$ for $i=1, \ldots \ldots, s$, and s is the number of components in the complete decomposition for R which are isomorphic to $R e_{i_{0}}$. Finally, let $\Gamma_{1}=\left(e_{i_{0}} R e_{i_{0}}\right)_{s}$-the $s \times s$ matrix algebra over the division ring $e_{i_{0}} R e_{i_{0}}$. With these notations we have:

Lemma 3: The subring Γ_{0} of R is a simple ring.
Proof: It is clear that R_{1} and R_{0} are isomorphic. It is also clear that $\Gamma_{0}\left(\Gamma_{1}\right)$ is anti-isomorphic to $R_{0}\left(R_{1}\right)$. Thus Γ_{0} and Γ_{1} are isomorphic.

Let Γ be $\sum_{i, j} e_{i} R e_{j}$, where (i, j) ranges over all pairs such that $R e_{i}$ is isomorphic to $R e_{j}$. Since on Γ we have a natural splitting, into subsums taken over any fixed isomorphism class of components, it follows from Lemma 3 that:

Proposition 1: The subring Γ of R is a semi-simple ring.
The underlying additive group of R admits a decomposition $R=\sum_{i, j=1}^{t} e_{i} R e_{j}$. Let $R_{1}=\sum_{i, j} e_{i} R e_{j}$ where (i, j) ranges over all pairs such that $R e_{i}$ is not isomorphic to $R e_{j}$. We have $R=\Gamma+R_{1}$, and it is clear that $R_{1} \subset N$. Our next step is to show that $R_{1}=N$. We will be done once we show that R_{1} is a two-sided ideal in R. Since $r=\sum_{i, j=1}^{t} e_{i} r e_{j}$ for any $r \in R$, and since R_{1} is closed under addition, it suffices to show that $e_{i} r e_{j} \in R_{1}$, implies $e_{i} r e_{j} s e_{k} \in R_{1}$ and $e_{l} v e_{i} r e_{j} \in R_{1}$ for all $1 \leq i, j, k, l \leq t$ and $r, s, v \in R$. But $e_{i} r e_{j} s e_{k} \notin R_{1}$ only if $R e_{i}$ is isomorphic to $R e_{k}$, whence by Lemma 2* this element induces an isomorphism of $R e_{i}$ onto $R e_{k}$, and this is impossible since $e_{i} r e_{j} \in R_{1} \subset N$. A similar argument shows that $e_{l} v e_{i} r e_{j} \in R_{1}$.

This proves:
Theorem 1. The Splitting Theorem: Let R be a semi-primary ring, and let $R=\sum_{u=1}^{t} R e_{u}$ be a complete decomposition for R. If $e_{i} N e_{i}=0$ for $i=1, \ldots$ \ldots, t, then R admits a splitting $R=\Gamma+N . \Gamma=\sum_{i, j} e_{i} R e_{j}$ where (i, j) ranges over all pairs such that $R e_{i}$ is isomorphic to $R e_{j}$. $\quad N=\sum_{i, j} e_{i} R e_{j}$ where (i, j) ranges over all pairs such that $R e_{i}$ is not isomorphic to $R e_{j}$.

With the assumptions and notations of Theorem 1, using Lemma 1 one can easily prove that the center of R is a direct product of fields. The center of R is a field only if 0 and 1 are the unique central idempotents in R. One can also show that if $R=\Gamma_{1}+N$ is another splitting for R, then there exists an invertible element s in R such that the automorphism $r \rightarrow s r s^{-1}$ takes Γ onto Γ_{1}.

The splitting theorem enables us to view N as a $\Gamma-\Gamma$ bimodule. Define $\Omega(\Gamma, N)=\sum_{i=0}^{\infty} N^{(2)}$, where $N^{(0)}=\Gamma$ and $N^{(2)}=N^{(i-1)} \otimes N$. Letting $n_{1} \otimes \ldots \ldots \otimes n_{i} \otimes n^{1}$ $\otimes \ldots \ldots \otimes n^{j}=n_{1} \otimes \ldots \ldots \otimes n_{i} \otimes n^{1} \otimes \ldots \ldots \otimes n^{j}$ and extending \otimes distributively, $\Omega(\Gamma, N)$ becomes a ring (identifying $N^{(i)} \underset{\Gamma}{\otimes} \Gamma, \Gamma \otimes N^{(i)}$ and $N^{(i)}$ for $\left.i \geq 0\right)$. Letting $f\left(n_{1}\right.$ $\left.\otimes \ldots \ldots \otimes n_{k}\right)=n_{1} \ldots \ldots \cdot n_{k}$, and extending f linearly, f is a ring epimorphism from $\Omega(\Gamma, N)$ onto R. If for some $m, N^{(m)}=0$ then $M=\sum_{i=1}^{m-1} N^{(i)}$ is a nilpotent two-sided ideal and $\Omega(\Gamma, N) / M$ is semi-simple. Thus $\Omega(\Gamma, N)$ is a semi-primary ring with radical M. Furthermore, $M=\Omega(\Gamma, N) \otimes \underset{\Gamma}{\otimes} N$, and since N is Γ-projective, M is $\Omega(\Gamma, N)$-projective. By [1], this implies that $\Omega(\Gamma, N)$ is an hereditary ring.

If $E_{0}, \ldots \ldots, E_{k}$ are primitive idempotents in R, then $\left(E_{0}, \ldots \ldots, E_{k}\right)$ is an R connected sequence of length k if $E_{i} N E_{i+1} \neq 0$ for $i=0, \ldots \ldots, k-1$. It is obvious that $N^{(m)}=0$ if there are no R-connected sequences of length m.
2. Applications. We first deal with the case $g l \cdot \operatorname{dim} R / N^{2}<\infty$. Thus let R be a semi-primary ring and $g l \cdot \operatorname{dim} R / N^{2}<\infty$. Let $\tilde{R}=R / N^{2}, \tilde{N}=N / N^{2}$. With the notations of section 1 we have that $\tilde{R}=\sum_{u=1}^{t} \tilde{R} \tilde{e}_{u}$ is a complete decomposition for \tilde{R}, where \tilde{e}_{i} is the canonical image of e_{i} in \tilde{R} for $i=1, \ldots \ldots, t$. By a result in [3] concerning semi-primary rings for which the square of the radical is zero, we conclude that \tilde{R}-connected sequences are bounded in length. This implies:

Lemma 4: R-connected sequences are bounded in length.

Proof: We show that if $e_{i} N e_{j} \neq 0$ then there exists an \tilde{R}-connected sequence
of the form ($\tilde{e}_{i}, \ldots \ldots ., \tilde{e}_{j}$). If ($\tilde{e}_{i}, \tilde{e}_{j}$) is \tilde{R}-connected we are done. Otherwise, $e_{i} N e_{j} \in N^{2}$ and there readily follows the existence of a primitive idempotent e_{k} such that $e_{i} N e_{k} N e_{j} \neq 0$. If ($\tilde{e}_{i}, \tilde{e}_{k}, \tilde{e}_{j}$) is \tilde{R}-connected we are done. Otherwise, either $e_{i} N e_{k} \in N^{2}$ or $e_{k} N e_{j} \in N^{2}$. Let $e_{i} N e_{k} \in N^{2}$, then we can find a primitive idempotent e_{l} such that $0 \neq e_{i} N e_{l} N e_{k} N e_{j} \in N^{3}$. Since N is nilpotent, this procedure must end and the result follows.

In particular, we must have $e_{i} N e_{i}=0$ for $i=1, \ldots \ldots ., t$, thus by Theorem 1, $R=\Gamma+N$. The ring $\Omega(\Gamma, N)$ as constructed at the end of $\S 1$ is a semi-primary hereditary ring in this case. Combining this with the result in [2] concerning residue rings of semi-primary hereditary rings we have:

Theorem 2. Let R be a semi-primary ring, then the following are equivalent:
(a) R is a residue ring of a semi-primary hereditary ring.
(b) All residue rings of R have finite global dimension.
(c) $g l \cdot \operatorname{dim} R / N^{2}<\infty$.

Remark that under each of these equivalent conditions $e N e=0$ for any primitive idempotent $e \in R$.

In particular, if R is a semi-primary hereditary ring, its center is a direct product of fields. The center of R is a field only if 0 and 1 are the unique central idempotents in R.

For the rest, let D be a division ring and let D_{n} denote the $n \times n$ matrix algebra over D. Let R be a semi-primary subring of D_{n}, such that $R=\sum_{i=1}^{n} R e_{i}$ is a complete decomposition for R. Without loss of generality we may assume that e_{i} is the matrix whose $(\alpha, \beta)^{t h}$ component is $\left(e_{i}\right)_{\alpha \beta}=\delta_{i \alpha} \delta_{i \beta}$ for all $i, \alpha, \beta=1, \ldots$ \ldots, n. We can (naturally) identify $e_{i} D_{n} e_{i}$ with D, and $e_{i} R e_{i}$ with a subring of D, for $i=1, \ldots \ldots, n$. In particular $e_{i} N e_{i}=0$ for $i=1, \ldots \ldots, n$, and by Theorem 1 $R=\Gamma+N$. We want to show now that $\Omega(\Gamma, N)$ is a semi-primary hereditary ring. This follows from the fact that any element $e_{i} r e_{j} \in R$ induces an isomorphism from $D_{n} e_{i}$ onto $D_{n} e_{j}$. Thus in particular $e_{i} r e_{j} \neq 0$ and $e_{k} s e_{i} \neq 0$ imply $e_{k} s e_{i} r e_{j} \neq 0$, or $e_{i} N e_{j} \neq 0$ and $e_{j} N e_{k} \neq 0$ imply $e_{i} N e_{j} N e_{k} \neq 0$. Since N is nilpotent this implies that R-connected sequences are bounded in length. Thus we proved:

Theorem 3. Let R be a semi-primary subring of D_{n}, containing n orthogonal idempotents, then gl•dim $R / I<\infty$ for any two-sided ideal I in R.

Let R be a semi-primary subring of D_{n}. Let $C(R)$ be the subset of D_{n}
consisting of elements $V \in D_{n}$ for which $V r=r V$ for all $r \in R$. Set $C\left(D_{n}\right)$ to be the center of D_{n}. One can show that $C(R)=C\left(D_{n}\right)$ implies that (a) 0 and 1 are the unique central idempotents in R and (b) R contains n orthogonal idempotents. If D is a field one easily verifies that (a) and (b) imply $C(R)=C\left(D_{n}\right)$.

References

[1] M. Auslander-On the Dimension of Modules and Algebras III, Global Dimension, Nagoya Math, J., 9(1955), pp. 67-77.
[2] S. Eilenberg, H. Nagao and T. Nakoyama-On the Dimension of Modules and Algebras IV, Dimension of Residue Rings of Hereditary Rings, Nagoya Math. J., 10 (1956), pp 87-95
[3] J.P. Jans and T. Nakayama-On the Dimension of Modules and Algebras VIII, Algebras with Finite Dimensional Residue Algebras, Nagoya Math. J., 11 (1957), pp 67-76.
[4] N. Jacobson-Structure of Rings, Amer. Math. Soc. Col. Pub., vol. 37 (1956).

[^0]: Received July 8, 1966.
 This paper is based on a part of the author's doctoral dissertation written at Brandeis University under the direction of Professor Maurice Auslander.

