ON A CONJECTURE OF J.S. FRAME

NOBORU ITO*

To Professor Kiyoshi Noshiro on His Sixtieth Birthday

Let \mathfrak{G} be a transitive group of degree n, and let \mathfrak{G}_1 be the stabilizer of a symbol in \mathfrak{G} . Then we owe to J.S. Frame the following remarkable relations between the lengths n_i of the orbits of \mathfrak{G}_1 and the degrees f_i of the absolutely irreducible components of the permutation matrix representation \mathfrak{G}^* of \mathfrak{G} :

(A) If the irreducible constituents of ** are all different, then the rational number

$$F = n^{k-2} \prod_{i=1}^k n_i / f_i$$

is an integer, where k is the number of the orbits of \mathfrak{G}_1 .

(C) If the irreducible constituents of \mathfrak{G}^* all have rational characters, then F is a square.

Further J.S. Frame made the following conjecture ([1]):

- (B) If the k numbers n_i are all different, then F is a square.
- (B) is true for $k \leq 3$ ([3], §30).

Now the purpose of this short note is to show that (B) is not true in general for k=4.

Let $LF_r(q)$ be the r-dimensional projective special linear group over the field of q elements such that $p = \frac{q^r - 1}{q - 1}$ is a prime and r is odd. Let $V_r(q)$ and $W_r(q)$ be the r-dimensional spaces of column and row vectors over the field of q elements, respectively. Let V and W be the set of one-dimensional subspaces of $V_r(q)$ and $W_r(q)$, respectively. $\begin{cases} x_1 \\ \vdots \\ x_r \end{cases} \in V$ and $(x_1, \dots, x_r) \in W$ defined the r-dimensional subspaces of $(x_1, \dots, x_r) \in W$ defined as $(x_1, \dots, x_r) \in W$ defined

note the one-dimensional subspaces generated by $\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} \in V_r(q)$ and $(y_1,, y_r)$

^{*} This research was partially supported by National Science Foundation Grand GP-5276

80 Noboru ito

 $\in W_r(q)$, respectively.

 $LF_{\tau}(q)$ can be considered in a natural manner as permutation groups on V and also on W. The number of elements in V and W are equal to $p=(q^r-1)/(q-1)$, and two conjugacy classes of subgroups of $LF_{\tau}(q)$ of index p correspond to the stabilizers of the symbols of V and W respectively. Let $\mathfrak A$ and $\mathfrak B$ be the stabilizers of $\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ and $<1,0,\ldots,0>$ in $LF_{\tau}(q)$ respectively. Let $\mathfrak B$

be a Sylow p-subgroup of $LF_r(q)$ and let P be a generating element of \mathfrak{P} . Then P^{-i} $\left\langle \begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array} \right\rangle$ (i=0,.....,p-1) and $<1,0,.....,0>P^j$ (j=0,.....,p-1) are all

different. Making P^{-i} $\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$ and $<1, 0,, 0>P^{j}$ correspond to $\mathfrak{A}P^{i}$ and $P^{-j}\mathfrak{B}$,

respectively, let us denote the permutation representations of $LF_r(q)$ over V and W by A and B respectively.

 $\mathfrak A$ consists of the matrices of the form $\begin{pmatrix} * & \vdots \\ 0 \\ \rho \end{pmatrix}$, $\rho \in GF(q)$, whose determinants

are equal to 1. $B(\mathfrak{A})$ has two orbits, namely, $D = \{<..., 0>\}$ and W - D, whose lengths are equal to $k = \frac{q^{r-1} - 1}{q-1}$ and p-k, respectively. Thus the conjugacy class of B in G is divided into two A-classes, each of which contain k and p-k subgroups, respectively.

 $LF_r(q)$ admits an involutory automorphism τ such that $X^{\tau} = (X^t)^{-1}$ for every element X of $LF_r(q)$, where t denotes the transpose operation.

It is easy to see that \mathfrak{A}^{τ} is conjugate to \mathfrak{B} . In fact, \mathfrak{A}^{τ} is the stabilizer of $<0, \ldots, 0, 1>$ in $LF_{\tau}(q)$. Let \mathfrak{B} be the split extension of $LF_{\tau}(q)$ by τ . We notice that $A_{\tau}X=AX^{\tau}\tau$ for every element X of $LF_{\tau}(q)$.

Let us consider the following permutation representation of \mathfrak{G} by the subgroup \mathfrak{A} :

$$X \to \begin{pmatrix} \mathfrak{A}, & \mathfrak{A}P, & \dots, \mathfrak{A}\tau, & \mathfrak{A}\tau P, & \dots \\ \mathfrak{A}X, & \mathfrak{A}PX, & \dots, \mathfrak{A}\tau X, & \mathfrak{A}\tau PX, & \dots \end{pmatrix}$$

Then it is easy to see that the lengths of the orbits of \mathfrak{A} are equal to 1, p-1, k and p-k. Thus the permutation representation decomposes into four absolutely irreducible components. Then it is quite easy to see that their

degrees are equal to 1, 1, p-1 and p-1. Now $F = (2p)^4(p-1)k(p-k)/(p-1)^2 = (2p)^4q^{r-2}$ is not a square, since q is a non-square and r is odd.

REFERENCES

- [1] J.S. Frame, The degrees of the irreducible components of simply transitive permutation groups, Duke Math. J. 3, 8–17 (1937).
- [2] J.S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc. 47, 458-467 (1941).
- [3] H. Wielandt, Finite Permutation Groups, Academic Press (1964).

Nagoya University and University of Illinois Chicago, Illinois