
ON A CLASS OF MARKOV PROCESSES TAKING

VALUES ON LINES AND THE CENTRAL

LIMIT THEOREM

MASATOSHI FUKUSHIMA and MASUYUKI HITSUDA

To Professor Kiyoshi Noshiro on the occasion of his 60-th birthday

§1. Introduction

We shall consider a class of Markov processes {n(t), x(t)) with the continuous

time parameter ίe [0, oo)5 whose state space is {1, 2,..., NyxR1. We shall

assume that the processes are spacially homogeneous with respect to

In detail, our assumption is that the transition function

x\n{0) = i,x{0) = 0), t > 0, I < i, j<

satisfies following conditions (1, 1) —(1,4).

(1.1) Fij(x, t) is non-negative, and, for fixed /, j and ί, it is monotone non-

decreasing and right continuous in x^R1.

(1.2) 7^(+oo,0=KmF < i fo*)^l,
a-»oo

Fij(—°°, t)=1im Fij(x9 0 = 0, 1 < i, j<N, t > 0,

Σ ί 1 « ( + « , ί ) = l , i = l,2,...,N, t>0,

(1 .3) FtJ(x,t)= ^RiFik(x-V,t)dFlcj(y,s) t,s>0,

(1, 4) limFij(x,t)=(δij,
n° 10, αe(—oo,0).

The central limit theorem for processes of this type, in case of the discrete

time parameter and in a special case of the continous time parameter, has

been obtained by Keilson and Wishart [3], In this paper, through introducing

a system of generators of the semi-groups related to the processes, we show that

the central limit theorem is valid for our cases of the continous time parameter.
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With the transition function Fij(xf t) satisfying (1, 1)~(1> 4) we associate its

Fourier transform:

eixzdFi5^ t\ t>0, l< i, j ^ N,

Then the matrix f(z9 t) = (fij(z, t)) satisfies the followings:

(1.5) Σ / ϋ ( 0 , 0 = l> l ^ ί ^ Λ Γ , ί > 0 ,

(1.6) f(z9t+s) = f(z,t)f(z9s) t,s>0,

(1.7) f(z, ί) converges, as t tends to zero, to the identity matrix E uniformly in

z^R1 in the wide sense, i.e. each element fij{z> t) of f(z91) converges to

δij uniformly on any compact z-set.

In §2, we shall determine the generator A(z), z<aR\ of the semigroups

f{z, t), z^R1, (Theorem 1). In particular, if N=l, our expression of A{z) is

no other than the so-called Levy-Khintchine formula. {_A{z), z^R1} in

Theorem 1 characterizes all the processes whose transition functions satisfy

§3 will be devoted to the proof of the central limit theorem for our processes

under some assumptions placed upon A(z) (Theorem 2). Our procedure in

this section is essentially due to Keilson and Wishart [3].

In §4, m and v which are defiend by the first and second derivatives

respectively of an eigen value λ(z) of A(z) will be expressed explicitly by

A(z) and its eigenvectors. We shall further solve affirmatively the Harris'

conjecture related to the expectation processes of the electron-photon cascade

(Harris [2], page 194).

§2. The generators of semigroups f(z, t).

Throughout §2, §3 and the first half of §4, we shall assume that we are given

a transition function FtJ(x, t) on{l, 2, ..., N}xRι satisfiying (1, 1)~(1, 4).

In this section, we shall show the existence of the generator

A{z)—\\m.—^g> 7 — (Lemma 1),
140 t

and determine all the possible types of the generator A(z) (Theorem 1).

LEMMA 1. The limit

lim f^t)~E =A(z)
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exists and the convergence is uniformly in z^R1 in the wide sence.

Proof. Let us fix α > 0 arbitrarily. From the property (1, 7), we can choose

v > 0 such that, for ze [—#, a], the matrix

has its inverse A^ι{z). Since

%f{z, s) f(z, t)ds = \tf{z, s+t)ds=\t f(z, s)ds,

we have

f(z,t)=A-1(z)\"t

+tf(z,s)ds.

Therefore we can obtain that

^ l i m A Λ z )
i h hio h

=Λ-\z) Km -LΓΓ+V(^ s)ds-\hf(z, s)ds~]
hio h LJ« Jo J

=A~1(z)[f(z,v)-E], z^[-a,a\.

The convergence in question is uniform since f(z, s) converges to f (z, v)

uniformly in z^[—a,a] as 5 tends to υ. The right side of the above equation

should be independent of v because the left does not depend on v.

Thus we have proved Lamma 1.

Remark. We can express f(z91) in the form exp{Λ(z)t}. In fact, f(z, t) is

the unique solution of the equation

with the initial condition

lim f(z,t) = E.

The following theorem gives us the possible types of A{z).

T H E O R E M 1. The elements aij(z)9i,j=l929....9 N9 of A(z) can be expressed in

the form,
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ai5{z) = j V "Γ4/rfa0 *>/, 1 < i, j < Ny

ί = l,2,..., N

where Γ^s, I ^ i =*r j <N, are finite measures on R1, v/s, i = 1, ...,N are real numbers,

σ/s, i = 1, ..., N are real and positive, and Π^s, i = 1,..., N are measures on R1 such

that \x2Πi(dx) <oo and Πi{u;\u\> ε) <oo for any ε> 0.

Proof. In case that z ̂ = , we can see by Lemma 1 that the convergence

a.jiz)=\im fΛ?>h)

is uniform in the wide sence in z^R1, and therefore a^iz) is a positive definite

function of z because -"^g> ^ has the same property. Then there exists a
h

finite measure Γυ such that

In case that i=j9 we note that

fu(z,h)-l _ ea»^h-ea^h , g^co)fe-l fii(z,h)—ee«&h

h h ^ h ^ h '

Then, ***&> '7~e tends to zero as & \. 0 by virtue of the remark after

Lemma 1. If we remark that ait(0) = — J\aiJ{0)= — J}ΓiJ{R1)9 r tends

to - 2 . A (^) as ^ ^ 0 . The limit of — ^ =^«(O)A.-

as /Ϊ 4- 0 is the Levy-Khintchίne formula:

iv &—ψ^
\u\>l

(see for example Gnedenko and Kolmogorov [1]).

Remark: From the above discussion, we can see that Γij9 vi9 σ{; and Π

are uniquely determined by the transition function Fij{x,t) satisfying (13 1)

(1,4).
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§3. The central limit theorem.
Let A(z) be the matrix defined in Lemma 1. We shall assume

Assumption 1.

Γ xΨijidx) < +00, i^j9 1 ̂  f, j < N,
j-00

Γ xzΠi{dx)< +00, l^i^N.

Assumption 2. .4(0) is irreducible.

The Assumption 1 is equivalent to the fact that

(*) j ~ x2dFtj{x, 1)< co for any i , i = l , ..., N.

In fact, Assumption 1 is equivalent to that

(**) A{z) is twice differentiable with respect to z.

And (**) is equivalent to the same property of eA^ = f(z, 1). This is no other

than (*) (see Feller [4] page 485).

By virtue of Assumption 2, f(0, 1)=^(°) is a positive stochastic matrix and

therefore, by Perron-Frobenius' theorem, it has the simple eigenvalue 1 and

the absolute values of the other N-l eigenvalues are less than 1. Therefore,

the equation

det{A(0)-λE)=π(0,λ) = 0

has a simple root λ = 0, and all the other roots have negative real parts. From

these facts we can derive the next Lemma.

LEMMA 2. There is a function λ(z) defined on some neighbourhood (—a, a) of

z = 0 which has the continuous first and second derivatives in (~a, a) and satisfies that

π(z,2(z)) = 0, z<s(—a,ά)

where π(z,λ) = det {A{z)—λE).

Further, λ'(ϋ) is purely imaginary and Λ"(0) is real and non-positive.

Proof As ^ = 0 is a simple root of the equation Π(0, ;0 = O, we know that

JΓ/O, 0)=-| j-(0, 0)^=0. If we put

π(z, λ) = π1(z, λ u 22) + iπ2(zy λ l y λ2)
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where π^z, λu λ2), i = 1, 2, are real valued functions and λ1=ίfttλ> λ2

 = <ϊsrnλ, then we

have

;r1(0,0,0)=0, π 2(0 50,0)=0.

On the otherhand, π(z, λ) is analytic in λ. Therefore we have by Cauchy-

Riemann's equation that

i£-(o, o, o) ^»-(o, o, o)

5 0 ? 0) dπ2

~dλ2

(O,O,O)

MO,O,O)

--ffL(0,0,.0) -^(0,0,0)
dλ1 dλx

Now the first part of Lemma 2 is the direct consequence of the implicit function

theorem.

Now, it is easy to see by the form of A(z) that πz(0, 0)=-J^-π(0, 0) is pure
όz

imaginary and πλ (0, 0) is real. Therefore λ' (0) = " " ^ π? is pure imaginary.

By the same method we can see that λ"(0) is real. Let us note that
N

7 = 1
\fij(z, 1)| < 1 where fiS{z,\) is (ί,;)-element of the matrix eA&=f(z,l).

This implies, applying Frobenius5 theorem again, all the eigenvalues of A{z)

have non-positive real parts. Especially, ίfttλ(z) < 0 and $ttλ(z) attains its

maximum 0 at 2 = 0. Thus

d2

dz
0.

Remark. We may assume without loss of generality that for ze(—a, a)

λ(z) is the eigenvalue of A(z) the real part of which is greater than the real

parts of any other eigenvalues, because the eigenvalues of A{z) are continuous

in z, and the eigenvalue Λ(0)=0 of -4(0) has the maximum real part. In the

following we assume the above property of λ(z) in 2G(-a, a).

Consider a probality measure μ = {μlf μ2, , μx) on{l, 2, , N}xR\ where
N

μ/s are measues on R1 such that Σ μi(R1)=l- Let us put
ί=l

Σ
£ = l

and
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F"(x, t)={Ff(x, t), F?(x, t), , FfRx, t)}.

Then Fμ(x, t) determines the distribution of a Markov process on {1, 2, , N}

at time t with the initial distribution μ. We further put

f(z, t) = l\ljixzdF?(x, t), ̂ JxzdF^{x, t), , \ljix°dF£(x, t)).

Then,

where fμ(z, 0+) is the Fourier transform of μ. Define m and υ by the formula

(3, 1) m=-iλ'{0), υ = -λ"(0).

THEOREM 2. For any initial distribution μ on {1, 2, ,
1 1 ~ 1 «ΛfΛ

(3, 2) lime-^^f^z, t) = e 2 e, z^{-a,a)
t->oo

holds, where e = (el9 e2, , eN) is the left eigenvector belonging to A(0) for the eigenvalue
N

0, and Σ ^ = l .

Proof There is a regulaer matrix T{z) for ze(—β, α) such that

A(z) = T~1{z)J{z)T{z)

where J(z) is a matrix of the Jordan's normal form whose (1, 1)-element isλ(z).

Here we can choose T(z) to be continuous in z&(—a,a). Now we have

(3, 3) fμ{t~h, t)e-iz™tl=fμ{fl~

In order to investigate the limit of the above expression, we first note the

following

(3, 4) \imfμ(t~h90)=limfμ(z,0) = fμ{0, 0).

Since the first column e(z) of T(z) is the left eigenvector and the first row

ί(z) of T(z) is the right eigenvector of A{z) belonging to the eigenvalue λ(z),

we may assume that β(0) and έ(0) are of the form

e(0)=e = {eu e2, , eN)

"'(I).
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By the continuity of each element of T(z)9 we have

(3, 5)

(3, 6) lim T-\t 2 z)=lim T'ι{z)=
ί->oo Z-+Q I

The absolute values of the (/, y)-elements of exp{tJ(z)} for /, j^2 and

;—/ = / ^ 0 are less than jγte~<z^, where —α(s) denotes the maximum real

part of the eigenvalues of A(z) except λ(z).

On the other hand the (/, /)-elements of exp {tJ(z)} for j—i < 0 or for i-1,

j =V i are equal to 0. Since sup £-<*(*)< 15 the (/, y)-elements of exp{tJ{z)}
^re(—a, a)

for (/. j) =Sf (1, 1) converge to 0 as t -+co. For the (1, 1)-element, we get

with m and z> defined by (3, 1) Therefore

(3, 7) l i m ^ ~ ^ ^ e x p O J ( / ^ ) } = ^ " T " z t ;

/ 1 0 0
0

0

\ o

holds. Consequently we get (3, 1) by (3, 3)~(3, 7) and the proof is complete.

COROLLARY. In case v = —λ/f(0) > 0, we have
2/2

limFfl(xί*+ttn,t) = [Ό e, dye

for any initial distribution μ.

§4. The expression of m and v, and the expectation process of the

eletron-photon cascade.

Let e{z) and i(z) be the left and right eigenvector of A(z) belonging to

λ{z) respectively, as in the proof of Theorem 2. We can assume that they

are twice differentiable in the neighbourhood of the origin and e(0) =e, ί(0) = 1.

Since Λ(0)=0, taking dreivatives of the equations
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(4,

(4,

1)

2)

we have

(4,

(4,

3)

4)

By (4, 3), we have

(4, 5)

Differentiating (4,

(4, 6)

e(z)A(z)=λ(z)e(z) and
A(z)i(z)=λ(z)i(z)

e'(O)A(O)+eA>(O)=λ'(O)e and

A(O)i'(O)+A>(O)l=λ'(O)l.

m=-mθ) = -eA'(O)l

1) twice and noting (4, 4), we have

v = —λ"{0) = —eA"{0)l + 2e'(0)A(0)ί'

The following Lemma 3 will illustrate the probalibistic measning of m and v.

Let -[n(t), x{t)} be the Markov process on {1, 2, , N}xRx whose transition

function are governed by F^x, t) and whose initial distrivution is δQ{dx)e,

where δQ is the ^-measure concentrated at the origin.

LEMMA 3. m = -ieA'(O)l= E(χW , for any t > 0

v = -eA"(0)l + 2e'(0)A(0)i'(0) = li

Proof. We can see that

^f(zJ))l=ie(4
dz / \ oz

2=0 2=0

and

= -teA"(0)l-2 Σ 2 -jjreA'(0)A*-*(0)A'(0)l+λ'(0)*t2.

While, the second term of the last expression is, by virtue of (4, 3) and (4, 4),

equal to -λ'(0)H2-2e'(0)(exp{tA{0))-E-tA(0))Γ(0). Thus, we see that the

second equation of Lemma 3 is valid.

In the remainder of this section, let us discuss the case where iV=2. In this

case, -4(0) can be written in the form A{0) = /—a a\ and by the assumption

\ b-b'

that .4(0) is irreducible, a > 0 and b > 0 hold. Therefore
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and, by (4, 3), (4,4) and (4, 6), we have

(4, 7) v = - e A ^

The expectation process introduced by Harris ([2] Chap. VII) related to
the electron-photon cascade can be dealt with as a special case of our discussion
with N=2.
Harris has conjectured that the central limit theorem holds for the expectation
process, with m and v given by the right hand sides of the equations (4, 5) and
(4, 7) respectively ([2] page 198). Theorem 2 and the above discussions show
the validity of his conjecture.
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