
H. Tamura
Nagoya Math. J.
Vol. 60 (1976), 7-33

THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

OF THE LAPLACE OPERATOR IN AN

UNBOUNDED DOMAIN
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§ l Introduction.

This paper is devoted to the study of the asymptotic distribution of
eigenvalues of the Laplace operator with zero boundary conditions in a
quasi-bounded domain contained in Euclidean space R2. Let us consider
the following eigenvalue problem:

(1.1) - (^- + ^λu = λu, ue Hl(Ω) ,
\dxl dx\)

where

(1.2) Ω = {(xί9 x2) I -oo < χ1 < oo, 0 < x2 < q(xj} ,

and q(x) is a smooth positive function defined on (—00,00) satisfying
lim q(x) = 0.

I a ? I - 0 0

It has been shown in [1] that the problem (1.1) has an infinite se-
quence of discrete eigenvalues approaching to 00. We denote by N(h)
the number of eigenvalues less than h of the problem (1.1). We are
concerned with the asymptotic behavior of N(h) as h—> 00.

The asymptotic distribution of eigenvalues of the Laplace operator
with zero boundary conditions in a quasi-bounded domain has been
studied by Clark [1], Hewgill [4], and Glazman and Skacek [2]. It seems
to the author that any true asymptotic formula for N(h) even in the
case of such a simple domain as (1.2) has not been known.

We shall study the problem (1.1) under the formulation as an eigen-
value problem of a differential operator with operator-valued coefficients.
On the other hand, Kostjuchenko and Levitan [5] studied the eigenvalue prob-
lem for the operator — (d2/dt2) + Q(t) under the assumption that Q(t) is
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a semi-bounded self-ad joint operator for each fixed teR1 with the com-
mon domain of definition @(Q(t)) = % and other restrictions. Our method
is different from that in [5] in some ways.

DEFINITION 1.1. We denote by Kim) (0 < m < 1) the set of smooth
functions qix) defined on R1 satisfying the following conditions: There
exist positive constants C19C2 and C independent of x and y such that

( i ) d ( l + \x\)~m < q{x) < C2(l + |a?|)-~,
(ii) for \x-y\< 1, \q(x) - q(y)\ < Cq{x) \x - y\,

(iϋ) = \QU)(x)\ < Cq(x) ij =

Now we shall state our main theorem which will be proved in §4.

THEOREM 1.1. Let {ζj > 0}7=1 be eigenvalues of the operator Ao

= — — ) with the domain of definition @iA0) = HUO, 1) Π H2(0,1). Sup-

dy2/
pose that q(x) belongs to Kim) (0 < m < 1). Then, as h —• oo

N(h) ^ -

where Ωj(h) = {# 6 i?11 hq{x)2 > ζj}9 while f(h)) — g{h) means that

Remark. {ζjq(x)~2}y=1 are regarded as eigenvalues of the operator

—?!_ with the domain of definition Hl(0, q(x)) Π H2(0, qix)).
dy2

EXAMPLE. If lim \x\m q{x) = a (> 0), then
Ul-oo

C(a)h-ι/2+1/2m (0 < m < 1) ,

log fe (m = 1) .

Throughout this paper, we confine ourselves to such a simple prob-
lem as (1.1), but some generalizations will be discussed without proofs
in §7. Finally we note that in this paper we use one and the same
symbol C in order to denote positive constants which may differ from
each other. When we specify the dependence of such a constant on a
parameter, say m, we denote it by C(m) or Cm.
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§ 2. Preliminaries.

Let us introduce some function spaces.

Hj(091) and HJ

0(0,1) (j = 1,2, •) denote the usual Sobolev spaces on

the interval (0,1). For any real s, the Sobolev space Hs(0,1) can be

defined by interpolation methods ([6]). We denote by X the Hubert

space L2(0,1) with the usual scalar product (u, v\ = u(x)v(x)dx, and the
Jo

norm \\u\\0 = \u\2 dx. L\—oo,oo;X) denotes the Hubert space of X-
Jo

valued square integrable functions with the scalar product <(/, gy —

Let q(x) be a function belonging to K(m) and let Ω be an open do-

main defined by Ω = {(#i, #2)l — o o < # 1 < o o , 0 < # 2 < <?(#i)} and G be a

cylinder domain defined by G = {(a?,2/)| — o o < ^ < o o , 0 < τ / < l } . Then

we define the unitary operator C7 from L\Ω) onto L2(G) by

(2.1) (U uXx, y) = g(a;)1/2^(x, g(a;)2/) , w e L2(β) .

Similary we define the unitary operator y(=Z7*) from L2(G) onto L\Ω)

by

(2.2) (7 v)(x19 x2) = g ^ O " 1 ^ ^ ! , g(^!)-^2) , v e L2(G) .

Now consider the following eigenvalue problem in L\Ω)\

(1.1) Hu = - ( A + -^-)w = ta , w e Hl(Ω) .

Here the operator if is a positive self-ad joint operator associated with

the symmetric bilinear form

(2.3) adu, v) = f ( J - t t J _ 3 + _l_^J_^)dα;1d^2 , u,v e flj(fl) ., v) = f (J-ttJ_

By using the operators U and V, we shall transform the above problem

(1.1) into the problem in L\G).

Let U and V be the operators defined by (2.1) and (2.2) respectively.

Then, we have

(2.4) u-^-v = 4-- QW-wΰv-H- - isfeO'V1^) = 4-
3a?! dx dy 2 dx
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(2.5) ϋJLv = qix)-1^- = Q(x) ,
dx2 dy

where for each fixed teR\P(t) and Q(t) are regarded as operators act-
ing on X with the domain of definition S(P(0) = 0(Q(*)) = #ί(0,1).
Here we remark that the coefficients of the operator P(t) are uniformly
bounded. By using (2.4) and (2.5), the symmetric bilinear form a(u,v)
is transformed into a bilinear form

b(u,v) = [ J ^ + p&»u> ( ^ + Pixήvjdx

+ Γ (Q(x)u, Q(x)v\dx ,
J - o o

where b(u,v) is defined on the set @(b) = lueL2(— oo, oo X)\—ueL2

I dx
- (— oo, oo X), Q(x)u e L\—oo, oo X) \. The symmetric bilinear form

b(u,v) induces a unique positive self-adjoint operator T in the sense of
Friedrichs. T has the following expression:

T = - — - -?-P(.x) + P*(a>)— + P*(x)P(x) + Q*(x)Q(x) ,
\dx/ dx dx

dx dx

where for each fixed teR\P^(t) and Q*(t) denote the adjoint operators
in X and A(t) (t fixed) is a self-adjoint operator with the domain of
definition @(A(t)) = #J(0,1) Π H2(0,1). Thus we have transformed the
eigenvalue problem (1.1) in L\Ω) into the following equivalent problem
(2.8) in L2(-oo,oo;X):

.8) Tu = -(—Yu - —P(χ)u + P*(χ)A-U + A(x)u = In .
\ dx J dx dx

(2

We denote by {#/}"» i and {uj}J=1 eigenvalues of the problem (2.8)
and the normalized eigenfunctions corresponding to {μj}J=ι respectively.

d2

Let Ao be the positive self-adjoint operator —— with the domain
dy2

of definition S(A^ = #i(0,1) Π ί?2(0,1). Then, we have with a constant
C independent of ίeif1,
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IIA(f)u\\Q < Cq(t)~21| Ao^Ho , for any u e ®(AQ) ,

and

l|Aα)1/2^||o > Cq(t)-ι \\Al'2v\\0 , for any v e ®{Aψ) .

Hence, with the aid of the Heinz interpolation inequality, we have

LEMMA 2.1.

(2.9) \\A(tyu\\0 < Cq(t)-2« \\A°ou\\o , for u e 9(Aζ), (0 < a < 1) ,

(2.10) \\A(tyu\\Q > Cq(t)-* \\Aβ

ou\\o , for us®(Aβ

0), (0 < β < 1/2) ,

where C is a constant independent of teR1 and u.

The following lemma is obvious from the definitions of the opera-

tors P(t) and A(t).

LEMMA 2.2. For any t and s such that \t — s\ < 1, we have

(2.11) | | ( P ( t ) - P(s))u\\Q <C\t- s\\\A(jby*u\\0 ,

(2.110 | | (P*(t) - P*(s))u\\0 <C\t-

(2.12) | |(A(t) - A(s))ι;||o < C \t -

where C is a constant independent of t,s,ue S(A(ί)1 / 2) = iϊJ(0,1) and

v e ®{A{t)).

By Lemma 2.2, we see that the operators A(0~1/2(P(Q - P(s)), A(t)~1/2

.(P*(0 - P*(s)) and A(t)-\A(t) - A(s)) can be extended to bounded opera-

tors in X and satisfy

(2.13) | | |A(ί)-^(P(ί) - P(β))Wo < C \t - s\ ,

(2.130 HIA(t)-1/2(P*(t) - P*(s))|||o < C \t - s\ ,

(2.14) \\\A(t)-\A(t) - A(s)) | | | 0 < C\t - s\ , (|ί -

where 111 11 lo stands for the usual operator norm for bounded operators

in X.

LEMMA 2.3. Let b(u,v) be the symmetric bilinear form defined by

(2.6). Then, we have for a constant C independent of ue

b(u,u) >cΓ UAJU,-!LU\ + \x\2m (Al/2u,A]/2u)0}dx .
J-~ l\dx dx /o J
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Proof. We note that there exist constants C and β independent of

x and ve@(Al/2) such that \\P(x)v\\l < β\\Q(x)v\\l and \\Q(x)v\\l> C\x\2Ίϊl

\\Al/2v\\l. For any ε > 0, we have

b(u, u)

(2.15)

Γ
J- - 2 ^ \dx Ho

" £ β l ( 1 ~

Hence, by choosing e in (2.15) so that ε(l + β) < 1, we obtain the

proof. Q.E.D.

Let us consider the following eigenvalue problem in L2(—oo, oo Z ) :

(2.16) - — u + \x\2m Aou = λu .
dx2

We denote by {ζj}J=i eigenvalues of the operator Ao and by {Λfc}λ=i eigen-

d2

values of the operator — — + \x\2m considered in L2(—oo, oo). Then
dx2

with the aid of separation of variables, we easily see that the eigenvalues

{vj}yml of the problem (2.16) are given by {Cy(1+m)^}y,*_i.

LEMMA 2.4. Let {VJ}°?=I be eigenvalues of the problem (2.16). Then,

for any p > 1/2 + l/2m and h > 2, we have

Σ
. 7 = 1

+ h)~v < C(p)h1/2+ι/2m-*

< C(pW~p log h

(0 < m < 1)

(m = 1) .

Proof. It is known that there exists a constant C independent of

k such that λk > Ck2m/{m+υ and it is clear that ζj > Cj2. ([7])

Hence, it follows that

Σ + h)~p < C Σ (j2/(m+1)k2m/{m+1) + h)~p .

Furthermore, by using the estimate with a constant C independet of h

we have

/,*-!
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This gives the proof in the case of 0 < m < 1. When m = 1, it is easy

to see that £]7,*«i O'fc + h)~p < Chι~v log h> which completes the proof.

Q.E.D.

PROPOSITION 2.1. Let {̂ }7=i be eigenvalues of the problem (2.8).

Then, for any p > 1/2 + l/2ra and h > 2, we have with a constant C

independent of h,

Σ (μj + h)~p < Ch1/2+1/2m~v (0 < m < 1 ,

< Ch1-? log h (m = 1) .

Proof. By virture of Lemma 2.3, we see that there exists a constant

C independent of j such that μs > Cvj. Hence, by combining this fact

with Lemma 2.4, we get our assertion. Q.E.D.

§ 3 Propositions.

In this section, we shall state fundamental propositions which will

be used later.

Let us fix some notations.

Let Y be a separable Hubert space with the scalar product (, ) γ and

the norm || | | r . B(Y) stands for the Banach space of all bounded oper-

ators acting on Y with the operator norm ||| |||0, and Ba(Y) denotes the

subspace of B(Y) consisting of compact operators such that | | |Z | | | α =

(Σ7=ιβ<j)1/a < °°> where {βj > 0};=1 denote eigenvalues of (K*K)1/2.

PROPOSITION 3.1. Let K(x) (—oo < x < oo) be a family of operators

belonging to B2(Y) such that K(x) is continuous under the norm ||| |Ho
poo

with respect to x and that \\\K(x)\\\ldx < +oo. Let {fj(x}J=ι be a
J -oo

complete orthonormal system in L2(—oo, oo Y). // we define βό =

Γ K(x)ψj(x)dx, then Σ\\βj\\2

¥= Γ \\\K(x)\\\ldx.
J -co j = l J-oo

Proof. Let {θj}J=1 be a complete orthonormal system in Y. Then,

we set kjί(x) = (K(x)θj9θi)γ and t^x) = (ψj(x),θi)γ. We note that

{tj(x) = (ίji(aj))Γ»i}"»i forms a complete orthonormal system in L\— oo, oo β2),

where i2 denotes the usual Hubert space consisting of all complex-valued

square summable series. By the above definitions of kjί(x) and tji(x)9

we have
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f;
itl

(3.1) K(x)ψj(x) =

By (3.1), we obtain

= Σ ( Γ K(x)ψj(x)dx9Γ K(x)ψj(x)dx)

= έ ( Σ Γ tJi(x)kiί(x)dxθ{, Σ Γ tjn(x)k™(x)dxθm)

Σ
.7 = 1

= Σ Σ Γ \m.x)\*dx
i l ^ 1 J

Γ
J -oo

= Γ
J -o

where we have used the fact that {tjix)}^ forms a complete orthonormal
system in L2(— oo,oo; £2). This completes the proof.

Let Jfr(γ: positive real number) be the Hubert space with the scalar
product (u, v)r = (Alu,Ar

ov)o and the norm \\u\\* = ||A5w||J. Let ^f_r(^ > 0)
be the dual space of Jfr The norm in Jf_r is defined by

\\V\\r

It has been shown in [3] that the space Jfr is characterized as follows:

ί= flj(o, l) n £pr(o, l ) , (i/2 < r < l)
(3.2) ^ J =: £Rτ(0,1) , (1/4 < r < 1/2)

[ = ^ ( 0 , 1 ) . (-1/4 < r < 1/4) .

Let B(a,β) be the Banach space of all bounded operators from J^a

to f̂7^ with the usual operator norm ||| IH ,̂̂ . When B belongs to B(a,a),
in particuler, we write ||| |ll« instead of ||| |||(βfβ).

The following proposition is well-known.

PROPOSITION 3.2. (Interpolation theorem) ([6]). Let B be a bound-
ed operator belonging to B(a,0) Π B(β,0) (a<β). Then, B is the bounded
operator belonging to B(γ, 0) (a < γ < β) and satisfies the following esti-
mate

U < C(«r, , s , ^ ) in J^ 111 ̂ ^r > / c ^ -Λ>! 11 ̂ ^ 111 ̂ TΌT^ / c^ ~Λ>.

where a constant C(a,β,γ) is independent of B.

LEMMA 3.1. // -1/4 < γ < 0, then the operators A(t)~1/2P(t) and
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A(t)~1/2P*(t) can be extended to bounded operators belonging to B(γ, γ)

with the operator norm independent of teR1.

Proof. We shall give the proof only for A(t)~1/2P(t). Since C0~(0,1)

is dense in Jfr under the norm || ||r, it is sufficient to show that for

any u e C?(0,1),

(3.3) \\A(t)-ι'Ψ(t)u\\r<C\\u\\r.

Let u e Cj°(0,1). Then, by the definition of Jfr, we have

\\A(ty>mt)u\\r = sup m
ve*-r \\v\\_r

(3.4) = sup \(u,P
\\v\\_r

< M r sup WP
\\v\\_r

We note that P*(ί) it a bounded operator from ^1/2_r = £TJ(0,1) Π

ff-^O, 1) to jf_r = if~2r(0,1) with the operator norm independent of t.

Hence, we have

(3.5) \\P*(t)A(t)-1/2v\\_r < C || A(t)-1/2v||1/2_r < C \

which together with (3.4) implies our assertion (3.3). Q.E.D.

§ 4. Main theorem*

In this section, our main theorem stated in § 1 will be proved by a

series of lemmas.

Let teR1 be fixed. Then, we consider the following differential

equation for given /eL2(—oo, oo; X) and any h > 0:

(4.1) (Γ(t) + h)u = - — u - —P(t)u + P*(t)—u + A(t)u + hu = / .
dx2 dx dx

The solution u(x) is given by

u(x) = (T(t) + h)-χf = Rt(h)f = Γ Zίία; - s; h)f(s)ds ,
J - 0 0

where

(4.2) Kt(x-8 ,h) =
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(4.3) E(t,ξ) = -iξPit) + iξP*(jt) + A(jt) .

We denote by R^Qΐ) ( = 0,1,2, •••) the operator ( — Y JB{Λ(Λ), which is
\dh/

defined by

(4.4) RlHh)f = Γ Kγ\x - 8)f(8)ds ,
J - o o

where

(4.5) KiHx -s;h) = (-l)^0'!)(2τr)-1 Γ e«*-™(ξ2 + h + # ( t , £ ) ) - ( ' + 1 ) # .
J -oo

We often write RfKh) and Kf\x fe) instead of Rt(h) and ^(a? fe) respectively.

Let us introduce real-valued C0-functions φ(x),ψ(x) and χ(x) defined

on R1 such that φ(x), ψ(x) and χ(x) = 1 if |# | < 1, = 0 if \x\ > 2, and that

<p(x)ψ(x) = φ(x) and ψ(x)χ(x) = ψ(x). For each fixed teR1 and ε > 0 (ε < 1),

we denote by <pttt(x) the function φt,e(x) = ^((ΛJ — 0/ε). Similarly we de-

fine the functions ψt.£
χ) a n d Zί, (^) Then, putting R(h) = (Γ + ft)"1 and

using the resolvent equation, we have

+ ψtfSRt(h)((T(t) + h)Ψttt - P ί f .(Γ + h))XtteR(h) .

(We have used that φtf£T + h)χt>e = ^..(Γ + ft).)

Let {^(x)}7=1 be the normalized eigenfunctions corresponding to the

eigenvalues {μj}J=i of the operator T. Then, by letting (4.6) operate on

each Uj(x), we have

+ ( + h)-ιψRQ)B(t, s, ε)uά ,

where we have set

ί,S,e) = (T(t)φt>e(s) - φt.X8)T)χttXs) = (Γ(%t..(β) - ?>*..(*)Γ)

(4#g)
4~PW + P(t)4~
ds ds

ds2 ds ds

By differentiating (4.7) n-times with respect to ft in the sense of

L\—oo, oo Z), we have
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( 4 < 9 ) ψR™(h) + t C{ + h)-t*->+»+βy>(h)B{t, S,

Furthermore, by rewriting (4.9) in the form of the integral equation,

= φt,Xx) f Kt\x - s; h)φt,.(s)uj(s)ds
J -co

(4.10) n Γ oo

+ Σ Cp(μj + hr<"-*+»ψt,Ax) W\v - s h)B(fi, s, ε)uj(s)ds
P = 0 J -oo

= aft, X, ε) + 2 Cpbj,p(t, X, ε) .
p=0

We remark that by the regularity theorem for elliptic operators, the
eigenf unction Uj(x) belongs to C°°(— oo, oo X) (the set of smooth functions
with values in X). Hence, the equality (4.10) is well-defined for all x.
By this fact, we can put x = t in (4.10). Then, we have

(4.11)
= αi(ί,e) + ΣCp& i fP(ί,e),

ί>=0

where we have set dj(t,ε) = aj(t,t,e) and 6/ί,e) = bj>p(t,t,ε).
By taking the scalar products in X of both sides of (4.11) and the
summation with respect to j , and integrating over (—00,00), we have

(niy Σ (μj + fe)"2(w+1) = Σ Γ \\aj(t,ε)\\ldt

(4.12) + 2 Σ Γ R e (aj(t>ε^ Σ Cpδy.pίί, e)) dt
j=*l J -00 \ p = 0 /O

+ Σ r
j - ,yt,6

112

This is our basic equality in proving the main theorem.
From now on, we fix n (integer) such that

(4.13) n > 1/2 + l/2m - 1 .

Let {aj(t9 £)}"•! be eigenvalues of the operator E(t,ξ). Then, we have

LEMMA 4.1. For any r > 1/2 + l/2m, there exist positive constants
Ci(r) and C2(r) independent of h > 2 such that
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< C2(r)h1/2+1/2m-r .

' < (oo ΛOO ΛOO (0 < m < 1)

h <C U=i J -°° J -«C,(r)Λ,1-' log h <

LEMMA 4.2.

log h .

Σ Γ d ί Γ (ξ2 + h + <*j(t> ξ))~2{n+l)dξ
y = lj_oo J-oo

oo Λoo poo

~ Σ dt\ (ξ2 + h + ζjq(t)~2)~2{n+1)dξ , as h —> oo .
jTl J-oo J-oo

The proofs of the above lemmas will be given in this section after

the proof of Theorem 1.1. In what follows, we shall state two lemmas
oo Λoo Λoo oo

concerning the estimates for Σ l|βj(M)||o(Zί a n ( i Σ \\bj,p(t,e)\\ldt.
j—l J -oo J -oo y=i

These lemmas will be proved in the following two sections.

LEMMA 4.3. For any ε > 0 and any sufficiently large r, there exists

a constant C(r,ε) such that

dt Γ (f2 + h + α/t,
J-oo

LEMMA 4.4. For any sufficiently small δ > 0, we can take ε(δ) small

enough and h(δ) large enough so that for any h > h(δ),

J Γ II bjtP(t, ε(δ)) \\l dt < δhί/2+1/2m~2(n+1) (0 < m < 1) .

( < δhι~2{n+l) log h (m = 1).) (0 < p < n) .

Now we shall prove Theorem 1.1.

Proof of Theorem 1.1:

From (4.12) it follows that for any sufficiently small δ > 0, there

exists a constant C(δ) such that

(μj + ft)-2(n+1) - Σ Γ H^(^ ε )Ho d t

= 1 j = l J - o o

< § Σ Γ ii ̂ ( t . *) ιe ̂  + c(5) ± Γ Σ ii &Λ2»(ί- e) us d ί .
y=:l J _oo y=i J _oo p=o

Hence, by virtue of Lemmas 4.1,4.3 and 4.4, we can first choose
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small enough and next h(δ) large enough so that for any h > h(δ)

Σ (μj + /0"2(*+1) - Σ (2T)-1 Γ dt Γ (ξ2 + h + aj(t9ξ))-2in+1)dξ
y=l j = ι J-oo J-oo

(4.13) ^ î/2+i/2m-2(n+D (0 < m < 1) .

< δh}-2{n+λ) log h (m = 1) .

Furthermore, by using Lemmas 4.1 and 4.2, we have

(4.14) ± (μj + /0"2(w+1) - (27Γ)"1 Γ dί Γ (f2 + h + ζjq(t)-y^+»dξ
J=l J-oo J-oo

as h —> oo .

Now we are in a position to apply the Tauberian theorem due to Keldysh

(see [5]) to (4.14). Then, we have

N(h) ~ (TΓ)"1 Σ ί ih - ζjq(x)-2)1/2dx as h -> oo ,
.7=1 J ^./(/l)

which completes the proof. Q.E.D.

Next we shall prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1:

An argument similar to the proof of Lemma 2.3 shows that for any

u e

C((ξ2u,u)0 + (1 + \t\2m)(Aouyu)o)

<(ξ2u,u)0 + (E(t,ξ)u,u\

< C((ξ2u,u)0 + (1 + \t\2m)(A0u,u)0) .

Hence, we have

(4.15) C(ξ2 + ζj(l + \t\2m)) < ξ2 + aj(t,ξ) < C(ξ2 + ζj(l + \t\2m)) .

By using (4.15), we have

< CΣ ζjι/2m(ζj + hy/2+l/2m~r < Chί/2+1/2m~r (0 < m < 1) .
. 7 = 1

(< Ch}-r\ogh (m = 1).)

Thus we have obtained the estimate from above. Similarly we can get

the estimate from below. Q.E.D.

Proof of Lemma 4.2:
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We shall give only an outline. As was remarked in § 2, coefficients
of P(t) are uniformly bounded. Hence, for any sufficiently small ε > 0,
there exists R(ε) such that for \t\ > R(ε) and ue@(Al/2),

(4.16)

From (4.16) it readily follows that for \t\ > R(ε),

(1 - Cε)(ξ2 + h + ζjq(t)-2) <ξ2 + h + aj(t, ξ)

< (1 + C)(f2 + h

On the other hand, for any bounded interval /, we have

(4.18) Σ ί dt Γ (ξ2 + h + aj(t,ξ)y2<n+1)dξ < CiDh1-2'71^ .

By combining (4.17) and (4.18), we obtain the proof. Q.E.D.

§5. Proof of Lemma 4.3.

Lemma 4.3 is proved with the aid of the following lemma.

LEMMA 5.1. Let a be any non-negative integer and let n be the

fixed integer by (4.13). Then, the operator (—)\ξ2 + h + E(t,ξ))-{n+1)

\dξ/
belongs to B2(X) and satisfies the following estimate:

< C(a,ri)(ξ2 + h)-

The proof of this lemma will be given at the end of this section

Proof of Lemma 4.3:
By virtue of Proposition 3.1, we have

Σ \\aj(t,ε)\\l = Γ \\\Kf\t - s; h)ψttXs)\\\lds
3=1 J-°°

Λoo

(5.1) ""J-co f

+ Γ Hlί^t - s; h)\\\l (φUs)2 - Vds ,
J —oo

- //(ί).
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We first investigate the term I(t). By means of the Parseval equality
we see that

(5.2)
lit) = (nlY&π)-1 Γ |||(f2 + h + E(t,ζ))-2^\\\t dξ

J — OO

+ h + «j(t,ζ)
j l J

oo Λoo

Σl
y-i J -

Next we shall deal with the term II(t). We note that
(ί - s)°K™(t - s; h) = C Γ e i ( ί- s ) ί(—)\ξ* + h

dξ.

By using Lemma 5.1 and this equality, we calculate as follows:

\\\Kln\t — s;h)\\\2

(5.3) < C\t - s\-«Γ (ξ2 + /0~α/2(J](?2 + fe + α/ί,f))-2(w+]

( oo Λ \ 1/2

Σ (f2 + h + aj(t,ξ))-2(n+1)dξ) .
3=1 J I

(Schwarz' inequality)

Furthermore, by virtue of Lemma 4.1 and (5.3), we have
Γ \Π(t)\ dt < C(ε)h-a+1/2Σ Γ dt Γ (ξ2 + h + ocjit,ξ))-2'n+X)dξ

J - O O J=lJ-OO J - O O

(5.4) < C(ε)h-a+1+1/2m-2(n+1) (0 < m < 1) .

( < C(ε)h-a+2-2in+1) log h (m=: 1).)

We have used the inequality \t — s\~2a \<pt,e(s)2 — l\ds < C(ε).)

By combining (5.2) and (5.4), we get the proof since a is arbitrary.
In order to prove Lemma 5.1, we have to prepare the following two

lemmas

LEMMA 5.2. For any non-negative integer a, the following estimates
hold:

(5.5)

(5.6)

Replacing P(t) by P*(t) in (5.6), we have the same estimate as (5.6).
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Proof. We shall make induction on a. It is clear that (5.5) and
(5.6) hold when a= 0. Assuming that (5.5) and (5.6) are valid for a <k,
we shall prove (5.5) when a = k + 1. For the sake of simplity, we set
(ζ2 + h + Eityξ))'1 = F(t,ξ). then, a direct calculation yields

( ή ί d \k

, ξ) = - y L j {f(f, f)(2f - iP(ί) + iP*(t))F(t,
(*-P)

(5-7)

( i ) F<ί θ-i
By the assumption of induction, (5.7) implies (5.5) with a = k + 1. By
multipying (5.7) by P(t) from the left, we obtain (5.6) with a = k + 1.

Q.E.D.

LEMMA 5.3. For any non-negative integer a, ( — I ($2 + h +

belongs to Br(X) (γ > 2) ^iίfc the estimate

Proof. As in the proof of the above lemma, we shall give the proof
by induction on a. It is clear that (5.8) is valid for a = 0. Under the
assumption that (5.8) is true for a < fc, we shall show that (5.8) holds
also when a = k + 1. Noting that if A e βr(Z) and B e β(Z), then A B
belongs to Br(X) with the estimate |||A B|||r < |||A|||r | | |S|| |0, we have, by
means of Lemma 5.2 and (5.7), the desired result. Q.E.D.

Now we shall prove Lemma 5.1.

Proof of Lemma 5.1. As in the proof of Lemma 5.2, we set F(t, ξ) =
(ζ2 + h + E(t, f))"1. Then, a simple calculation gives
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= Σ C(β,,-.;P,JJ-)hF(t,&...(±)'-F(t,().

Since each ί—YkF(t, ξ) (k = 1,2, . . . , n + 1) belongs to B2(W+1)(X), we have,

by means of Lemma 5.3,

(n +

(We have used the well-known fact that if A 6 BV(X) and B e Bq(X)y then
A.BeBr(X)a/P + l/q = l/r) and satisfies |||A.J?|||r^C(p,g)|||A|||p | | |B|||β.)

Q.E.D.

§ 6. Proof of Lemma 4.4.

In this section we shall prove Lemma 4.4. For this purpose, re-
calling the definition of the operator B(t,s,ε) given by (4.8), we rewrite
B(t, s, ε) as follows:

(6.1)

B(t, 8, ε) = Bλ(t, 8, ε) - A
ds

as

P(s))φt,ε(s)

>.(8) + (A(ί) -

where

([, ] stands for a commutator between two operators.)
Then, bj>p(t,ε) is rewritten as follows:

bj.p(t,ε) = Γ Ki'Kt - s;
J - 0 0
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(6.2) + (μ} + A)-<-i>+» Γ K?>(t - s ; h ) t Hk(t, s,
J - o o fc = 0

= djtP(t, ε) + ejtP(t, ε) + fJtP(t, ε) + gjtP(t, ε) .

We note that for v(s) e Cj°(—oo, oo X) (the set of all X-valued smooth

functions with compact support) and p > 1,

(6.3) Γ K?Kt - s; h)—v(8)d8 = Γ F^ίt - β;
J_oo ds J-~

where

(6.4) F<*>(t - s; h) = C Γ βί(ί"s>^(f2 + Λ + # α , £

The relation (6.3) is easily obtained with the aid of the vector-valued

Fourier transform. The integral (6.4) is valid also for p = 0. In this

case, the integration must be taken in the weak sense. But we don't

use this fact below. By virtue of (6.3), we can rewrite ejtP(t,ε) (p > 1)

as follows:

ej,P(t,ε) = (μj + h)-'n-^ Γ F?Kt - s; h)(P(s) - P(t))φt,£s)Uj(s)ds .
J -oo

The following lemma plays an important role in the proof of

Lemma 4.4.

LEMMA 6.1. Let K(

t

p)(t — s h) and F(

t

p)(t — s h) be operators defined

by (4.5) and (6.4) respectively. Then, K?\t - s h)A(t), K?\t - s h)A(t)1/2

and F{

t

p)(t — s; h)A(t)1/2 can be extended to bounded operators in X (t ̂  s)

and satisfy the following estimates:

(6.5) \\\K?Kt - s; h)A(t)\\\0 < C(p,a)h,-* \t ~ s\- ,

\\\K?>(t - s ft)A(ί)^|||0 < C(p, a)h~^2 \t - β |- ,

<C{p,β)h-»\t-s\-t .

(6.7) | | |^>(ί - s; h)A(tr2\\\Q < C(p,ά)h-* \t - s\- , (p > 1)

where constants C(p,a) and C(p,β) are independent of t, s and h, and

a and β are some constants satisfying 0 < a < 2 and 0 < β < 1 respec-

tively.

Proof. We shall give the proof only for (6.5) with p = 0, because

(6.5) with general p, (6.6), (6.60 and (6.7) can be proved in the same
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manner. Let ^ be a fixed number such that 0 < 3 < 1/8. Then, we

shall establish the following two assertions:

(6.8) \\K?Kt - s; h)A(t)u\\0 < C(ί)g(ί)" ( I + M ) \\u\\1/2+δ ,

(6.9) \\K?Kt - s h)A(t)u\\o < C(δ)q(t)2δ \t - s\~2 \\u\\_δ , for u e

All constants C appearing throughout the proof of this lemma may

depend only on <5. If we can prove (6.8) and (6.9), the operator

Kf\t — s; h)A(t) can be extended to a bounded operator from Jfί/2+9 to

X and from Jf_δ to X since @(A0) is dense in both spaces J>fι/2+δ and

^ _ δ . Hence, the application of the well-known interpolation theorem

(Proposition 3.2) shows that

|||Xί°>(ί - s; h)A(t)\\\0 < C\t - s\~" , (0 < a < 2) .

Proof of (6.8): Since \\A(t)1/2+δu\\Q< Cq(tya+2δ) ||AJ/2+^||0 for ue3(A0)

by (2.9), it is sufficient to prove that

(6.10) \\Kf\t - s h)A(ty/2-δv\\» < C \\v\\0 , for v e 9 (A1*-8).

By t h e definition of Kf\t — s h), we have

(6.11) Kl°Kt - s; h)A(t)1/2'δ = C Γ eut~s)ζ(ξ2 + h + E(t,ξ))
j -00

On the other hand, we easily see that

(6.12) II(f2 + h + E(fi, ξ))δ-1/2A(ty/2-δv\\0 < C \\v\\0 ,

(6.13) |||(f2 + h

Hence, in view of (6.11), (6.12) and (6.13), we have (6.10).

Proof of (6.9): Since ||A(t)"*^llo < Cq(tyδ\\Aόδu\\0 by (2.10), it suffices

to show that for w e @(A(t)1+δ),

(6.14) \\K?Kt - s; h)A(ty+δw\\0 < C \t - s|~2

The operator Kf\t — s; h)A(ty+δ is represented as

KίO)(t- s;h)A(t)ί+δ

(6.15)

For brevity, we again put F{t, ξ) = (ξ2 + h + E(t, ξ))~ι.

By the resolvent equation, we have
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(6.16) + i(jLJ{F(t, ?)?P(ί)(?2 + h + A(ί))-1}

+ h + Ait))-1}

By inserting (6.16) into (6.15), we have

Kί°Kt- s;h)A(t)1+}

(6.17) = C(t - s)-2 Γ e<«-"(I (ί, f) + i II (ί, f)) - t III (ί,

= C(t - s)-2 Σ Kί%(t - s;

It is easy to see that for w e S>(A(ty+i),

| |I (t,ξ)A(ty+sw\\ί) < C(ξ* + l

This implies that

(6.18) \\K%(t - s; h)A(ty+!w\\0

Next we shall investigate the term II (ί, ξ)A(ί)1+{. A simple calcula-

tion yields

π (ΐ, ξ)= Σ (-4-)V(*. ξ)}ξP(t)(4ϊY^2 + h

β1+β,=Λdξ/ \dξJ

We shall consider only the term (—\{Fityξ)}Pit)iξ2 + h + Ait))~\ be-

\dξ /

cause the other terms can be dealt with in the same way. Putting

2ξ - iPit) + iP*if) = Tit, £), we have,

(4-){Fit9ξ)}Pit)iξ2 + h + Ait))'1
\ dξ /

= -Fit, ξ)Tit, ξ)Fit, ξ)Pit)iξ2 + h + Ait))'1 .

We shall show that for w e $iAit)1+δ),

(6.20) \\Fit,ξ)Pit)iξ2 + h + Ait))-ιAit)1+δw\\, < dξ2 + ΐ)-δ \\w\\0 .
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If we have proved (6.20), then we have

(6.21) h

since \\\F(t,ξ)T(t,ξ)\\\o < C(ξ2 + 1)"1/2.
Since the other terms in (6.19) obey the estimate of the same type as

(6.21), we see that for w e @(A(t)1+δ).

IIπ (t,ς)A(ty+'w\\0 < C(?2 + l)-1'2-* \\w\\0.

This implies that

(6.22) \\Kl%t - s; h)A(ty+δw\\0 < C \\w\\0 .

Similarly we have

(6.23) \\Ki%(jt - s; h)A(ty+°w\\0 < C \\w\\0 .

Hence, by combining (6.18), (6.22) and (6.23), we have (6.14).

Now we shall prove (6.20). To this end, we rewrite F(t,ζ)P(t)

(ξ2 + h + A(t)YιA{ty+δ as follows:

= [F(t,ξ)A(t)][A(tyψ(t)A(t)
2S
][(ξ

2
 + h

= Π
1
(ί,f)Π

2
(ί)Π

s
(t,f).

The operators IIX (t, ξ) and II 3 (t, ξ) can be extended to bounded operators

in X and satisfy the estimates HII^ (ί, f)| | |0 < C and | | | I I 3 (ί, f)| | |0 < C(ξ2 + l)~δ

respectively. Hence, in order to prove (6.20), it is sufficient to show

that II2 (ί) can be extended to a bounded operator in X and that

| | |Π 2 (O| | | 0 < C. But this fact readily follows from Lemma 3.1. In fact,

we have for w e @(A(t)2δ),

\\A(t)-ψ(t)A(tyδw\\0

< C \\A(t)-2δA(tyv2P(t)A(tyδw\\0

< Cq(t)2δ \\A(t)-vψ(t)A(tyδw\\_2δ

<Cq(tr\\A(t)2δw\\_2δ<C\\w\\0,

which implies that | | |Π 2 ( ί) | | | 0 < C since @(A(t)2δ) is dense in X. Q.E.D.

LEMMA 6.2. Let gj>p(t, ε) 0' = 1,2, , p = 0,1, , n) be the func-

tions defined in (6.2). Then, for any sufficiently small δ>0, there exists

ε(δ) such that for ε < ε(δ),
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Σ Γ \\9j.p(ί,«)ll2o dt < 3fc>/«+ifl«-«»+i) (0 < m < 1) .
j=l J - 0 0

(<^- 2 ( w + 1 ) logfe (m = 1).)

Here we should note that ε(d) is taken independently of h > 2.

Proof. We shall consider only the case of 0 < m < 1. Two different

methods of estimates will be employed in proving this lemma.

Case 1, 0 <p <n + 1 — 1/4 — l/4m: By the definition of gj,p(t,ε),

we have

,7=1 J - o o

< Σ (μj + h)-^-v+» ^ d i ( J _ | | ^ ( ί - β Λ)H,(ί, s, ε)

Set l(t,s,j) = \\K?Kt - s; h)H2(t, s, ε)w/s) ||0. Then, by virtue of Lemma

6.1 and (2.14) in Lemma 2.2, I (ί, s, j) is estimated as follows:

- s; h)A(t)][A(t)-KA(t) -

< Ch-» \t - s\1-" \\Uj(s)\\0, for \t - s\ < 2ε .

(= 0 for \t - s] > 2e)

Hence, it follows that

Γ dt(Γ I (t, s, j)dsY < Ch-2? Γ dt({ \t - s|-« ||iί/β)||β dsY
J -oo \J-oo / J -oo \J|ί-S|^2ε /

<Ch-^[ |βΓ«dβf \r[-"dr
J|S|S2« J|r|S2«

• Γ ||MJ(ί + β)||β||MJ(t + r)||,dt
J -oo

< Ch~2pεA-2a .

(ψe have used that 0 < α < 2 and Γ | | ^ (ί + 8)||0||tt,(t + r)||odί < 1

(Schwarz's inequality).) On the other hand, we have proved in Proposi-

tion 2.1 that if 2(n - p + 1) > 1/2 + l/2m,

(6.25) Σ ( ^ + h)-2(n-*+1) < Ch1/2+1/2m-2<n-v+1) .

Hence, by combining (6.24) and (6.25), we have the desired estimate.
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Case 2, n > p > n + 1 - 1/4 - l/4m > (1/4 + I/Am): (m < l / 3 υ

It is easily seen that the operator K[p\t — s h)H2(t, s, ε) belongs to

B2(X) since (ξ2 + h + E(t, ξ))~ιA(t) can be extended to a bounded operator

in X. Therefore, by virtue of Proposition 3.1, we have

Σ II 9j.p<t, ξ) \\l < h-^-*+» Σ Γ Kip)tt ~ s >
(6.26) '- 1 ^ 1 J"°°

= h-2^-P+1) Γ \\\K^(t - s; h)H2(t,s,ε)\\\lds .
J —oo

Furthermore, it follows from (2.14) in Lemma 2.2 that

(6.27) = |||[Xί«(t - s h)A{t)-\{A{t)-\A{t) -

^ Ce|||Xf*>(i — s; Λ)A(ί)|||a .

On the other hand, with the aid of the Parseval equality we have

Γ \\\Ky\t-s;h)A(t)\\\ldt
J - o o

= C [" |||(f2 + h + E(t,ξ))-^A(t)\\\t dξ
(6.28) J " "

oo Λoo

3=1 J-°o

Hence, by combinig (6.27) and (6.28) with (6.26), we have

Σ ll0j.p(M)llo < Cεh-2^-*+l) Σ Γ (ί2 + ^ + «/ί,f))"
i=i .7=1 J - ~

which together with Lemma 4.1 implies that

oo Λoo

V ' I II /Ύ I "/• f I | | 2 /Ί f ^** / ' Λ , M 1/2 +l/2?7l--2(7Z + 1)Λ

J=lJ-oo

This completes the proof. Q.E.D.

LEMMA 6.3. Lei eJtP(.t,ε) be the function defined in (6.2). Then, for

any sufficiently small δ > 0, tfeere exist ε(<5) and h(δ) such that for h > h(δ),

\\eJtP(tf ε(δ))\\2

0dt < δh1/2+1/2m~2'n+1) (0 < m < 1) ,

( < δhι~2{n+l) log fe (m = 1.)

1) If m>l/3, it is enough to consider only the case 1.
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Proof.

Case 1, n > p > 1:

By using (6.7) instead of (6.5), the proof is obtained exactly in the

same way as in the proof of Lemma 6.2.

Case 2, p = 0:

Recalling the definition of H0(t, s, ε) given by (6.1), we rewrite HQ(t, s, ε)

as follows:

H0(t,S,e) = - 4
as

= Ix (t, S, ε) + I2 (t, S, ε) + I3 it, S, ε) ,

where we put P'(s) = — P ( s ) and p{ .(s) = — ^ β(s). Then, e i 0(t,e) is
ds ds '

rewritten as follows:

eJfβ(ί, ε) = (μj + h Γ JSΓ<«(ί - s λ) Σ I»(ί, s,
J - o o fc = l

(1) Case 2-1, estimate of Σ Γ ll^oi(ί,ε)||2oc?ί :

We note that there exists a constant C independent of j such that

(6.29)
ds

ds

Put Hi (t, s, j) = \\KlO)(t — s h) Ix (t, s, ε)Uj(s)||0. Then, an argument similar

to the proof of the case 1 in Lemma 6.2 shows that

ds o

( = 0 , for \t - 8\ > 2ε,)

Furthermore, by using (6.29) and this estimate, we obtain

Λoo /poo \2

dtt H (t, s, ;)ds i < Ch~ιε^~2aμ5 .
J-oo \J-oo /

Hence, by virtue of Proposition 2.1, it readily follows that

oo Λoo

I IIβ* o lit, ε)||o dt < Ch~ιεA~Σ Γ +
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Choosing ε(δ) in the above estimate so that Cε4~2αr < δ, we can get

the desired estimate for the term Σ llej.o,i(ί>β)llo dt.
j = l J _oo

(2) Case 2-2, estimate of Σ ί°° || βj 0 2(t, ε) ||J dt:
y=ij-oo

Set II2 (t, s, j) = \\Kl°Kt - s;h)I2(t,s,ε)Uj(s)\\0. Then, by virtue of

(6.6) in Lemma 6.1, we have

(6.30) II2 it, s, j) < C(e)h-ι<2 \t - s p - \\Uj(s)\\o , for \t - s\ < 2ε .

(= 0 for \t - s\ > 2ε.)

Hence, as in the proof of the above case 2-1, we have

Σ Γ \\ej,o,2(t,ε)\\ldt < C(ε).fc-W/2+1/2-2(-+1> .
y=i J -oo

Choosing h such that C(ε)h~ι < δ, we have have the desired estimate for

the term Σ Γ \\ejtOt2(t,ε)\\ldt.
y=i J-oo

Similarly we can see that Y. \\ej03(t,ε)\\ldt is estimated as in
J=l J-oo

Σ Γ Wej.oΛt.eWodt.
j = l J - o o

Combining the results of the cases 2-1 and 2-2, the proof is com-

pleted. Q.E.D.

A method similar to those given in the proofs of Lemmas 6.2 and

6.3 can be applied also to djtP(t,ε) and fj,v(t,ε). Thus the proof of

Lemma 4.4 is completed.

7. Generalizations.

The method developed in the preceding sections can be applied to

more general problems.

7.1. Multi-dimensional case.

Let us consider the following problem:

(7.1) ~ Σ — u - Δyu = λu , u e H\{Ω) ,
i=i dx)

Here we impose the following assumptions on a domain Ω in Rn+k.
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(A-l) Ω is a domain of the form Ω = {(x,y)\xeRk,yeΩ(x) c Λn},
where β(α ) is a bounded domain for each fixed x e Rk.

(A-2) There exists a family of differentiable mappings of class C°°,
{&(%> y) = (̂ iί̂ ? V))imi}9 from β(α ) onto β(0) satisfying the following as-
sumptions :

Let m be a positive constant such that 0 < m < k/n and let (7 be
a positive constant independent of x,yeΩ(x) and £ el?\

(1) For the Jacobian J(x,y) = det (—£

\x\

(2) For gυ(x, y) =
32/i

(3) For any multi-index a with lαl < 2, ( ) gt(x, y)
Wdx /

fc-M

If a domain β satisfies the above assumptions (A-l) and (A-2), we
say that Ω belongs to Dim).

THEOREM 7.1. LetΩ bea domain belonging toD(m) with 0<m<k/n.
Let {aj(x)}"=1 be eigenvalues of the operator —Δv with the domain of
definition Θ(Ay) = H\{Ω{x)) Π H2{Ω(x)). N(h) denotes the number of
eigenvalues less than h of the problem (7.1). Then,

N(h) ~ C Σ f (Λ - oc3{x))k/2dx as h -> oo ,
j = l J Ωj(h)

where C = ((2Vί)fcΓ(l + fc/2))"1 and Ωj(h) = {xeRκ\aj(x) > h}.

7.2. Case of domains with a finite number of holes:
Consider the following eigenvalue problem:

(7.2) —?-u - — u = λu9 ue H&Ω) .
dx2 dy2

Here we assume that an open domain Ω = {(x, y)\— oo <x<oo,y e Ω(x)}
with the smooth boundary is decomposed into

(-oo, ~i2) x (0, q(x)) U Ωo U (Λ, oo) x (0,
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where R is some constant and q(x) is a smooth function belonging to

K(m), while Ωo is not necessarily a simply connected domain but may have

a finite number of holes.

THEOREM 7.2. Let Ω be an open domain satisfying the above as-

d2

sumptions. Let {aj(x)}J=1 be eigenvalues of the operator — — with the
dy2

domain of definition H\(Ω(x)) Π H\Ω(x)). Then,

N(h) ~ (TΓ)"1 ί (h - aj(x))1/2dx as h -* oo .
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