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ON SOLUTIONS OF VARIATIONAL INEQUALITIES

CONSTRAINED ON A SUBSET OF

POSITIVE CAPACITY

KAZUYA HAYASIDA AND HARUO NAGASE

1. Let Ω be a bounded domain of Rn with boundary 3Ω and let E

be a compact subset of Ω. We assume that both 3Ω and E have positive

capacity. The norm and the inner product in L\Ω) are simply denoted

by || || and (, ) respectively. We define \\u\\x — \\Vu\\. The completion of

C\{Ω) with respect to the norm \\u\\x is denoted by H\(Ω\ where C\(Ω) is

the set of all functions in C\Ω) with compact support in Ω. The inner

product of Hl(Ω) is written with ( , )1# We denote by H~\Ω) the dual

space of H\(Ω) and by || ||_i its norm.

Let K be a closed convex set in H\(Ω) such that each element of K

is constraind only on E, that is, if i; e H\(Ω) and υ = u on E for some

ueK, then veK^. It is known that for any given geH~ι(Ω), there is a

unique solution u e K of

(1.1) (u, v — u\ >̂ (#, v — u) for all v e K

and if g is besides in L2

loc(Ω — E), the weak second derivatives d2u also

are there, though d2u are distributions over Ω.

In particular, when g = 0 and if equals to

i ξ = {i; e flϊ(β); i; ̂  ψ on E in the sense of H\(Ω)}2)

for a given function ψ e C^β), H. Lewy and G. Stampacchia [11] showed

that the solution u of (1.1) is in C°(Ω) under certain assumptions on E

and dΩ, for instance, β is a disk and E is a segment. Their method is

potential-theoretic.

Received July 6, 1983.
Revised October 17, 1983.
1) More precisely, there are two approximating sequences {uj}, {Vj} c H\ (Ω) Π C°(Ω)

such that Uj —> u, Vj -* v in H\{Ω) and uj — vj on E. Thus v — u on E except for a set
of capacity zero.

2) The precise definition of Kλ is referred to [11].

51



52 KAZUYA HAYASIDA AND HARUO NAGASE

Our interest is to know the behavior of d2u in each neighborhood of

E and dΩ. For this purpose we will give a result in the present paper

(see Theorems 1 and 2 in this section), where it is stated for vector valued

solutions, since there are several literatures for systems of variational

inequalities (see e.g. [3]).

When X is a Sobolev space defined on Ω, [X]N denotes the space of

N-vector valued functions with components in X. Let U ~ (uu , uN)

and V = (vu , vN). Then we define

W = ΣII^II 2 > (U,V) = ̂

HϋΊlϊ = ΣII"*llϊ> (U,V\= N

and

l|f/||2-i = ΣII^II 2 -i.

We consider the bilinear form

a(U, V) = (a$dXJUi, dXkυ^) + (blfdXkuj9 Vi) + (CijUj,

where the coefficients are all Cereal valued in Ώ and the notation of each

sum is abbreviated. We assume that for each ί, {a$} is symmetric and

positive definite in Ω and there is a positive constant a satisfying

(1.2) α(ϋ;E7)^

for any 176 [Hl(Ω)]N. Obviously a(U, V) is a continuous bilinear form on

Let K be a closed convex set in [Hl(Ω)]N. For any given G e [H'\Ω)]N

9

there is a unique solution U e K of

(1.3) a(U, V-U)^(G,V-U) for all Ve K

(cf. Theorem 2.1, Chapter II in [9]). We assume that each element of K

is constrained only on E in the following sense: If Ve[Hl(Ω)]N and

V = W on E for some WeK, then VeK. We denote the coordinates of

Rn by (xl9 , xn). For example, £J lies on the hyperplane {xn = 0} and

[Hl(Ωψ; g
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It is generally seen that the weak second derivatives d2U are in [L2

l0C(Ω

- E)]N, if G is there. Indeed V + We K, if Ve K and We [C\{Ω - E)]N.

We write E U dΩ simply with F. Let Φ(x) be the distance from the

point x to F. The set F is said to satisfy (Cδ), if it holds that

(1.4) ί Φ(x)
J Ω-F

We shall prove the following

~δdx

THEOREM 1. Let F satisfy (Cδ) for a certain positive constant δ < 1 and

let ϊ = 23/(2 + δ). If ΦG is in [L2(Ω)]N, the solution U of (1.3) satisfies

(1.5) [IQ F \d2U\r dxγ
r £ C(\\ΦG\\ + UGH-, + C(K)) ,

where C and C(K) are independent of G and C does not depend on K.

The reason why we have imposed positive capacity on dΩ and E is

referred to Part I of [11].

Remark 1. If we do not impose (1.4) on F, it follows from the proof

of Theorem 1 that

||Φ92ι;|| £ the right-hand side of (1.5) .

Remark 2. Theorem 1 holds also for quasi-linear systems of varia-

tional inequalities (see Section 5).

Next we consider the case when E lies on a certain (n — ̂ -dimen-

sional hyperplane, which is taken to be {xn = 0} for simplicity. Let us

denote by BE the boundary of E in R71'1. In general, 3E is not equal to

dE. For any xeRn we denote by Φ(x) the distance from x to dE. We

shall say that E satisfies (Dd,), if we have

(1.6) f Φ(x)-δ'dx<oo .
J Ω

Let S be a given closed convex set in Rv. Let

Kz = {Ve [Hl(Ω)]N; V(x) e S for x e E except for a set of capacity zero} ,

which is a special case of K in Theorem 1. Under these assumptions we

shall prove also the following theorem for the solution U of (1.3):

THEOREM 2. Suppose that K = K3. Let E satisfy (Dδ) for a certain
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positive constant δ' with 1 <̂  δ' < 2 and let V = 237(2 + δr). V &G ίs i r ι

[L2(Ω)]N, we have for a neighborhood B of E

1 - C ( i l Φ G l 1 + I | G " - 1 + C(κ)) *

where C and C(K) are as described in Theorem 1. The integral domain

in (1.7) is interpreted as B — E, because d2U is a distribution over Ω.

In both theorems we note that ϊ(ΐ') approaches 2/3(1), if δ(δ;) tends

to 1(2), respectively. In the next section we shall give a few examples

of sets satisfying (Cδ) or (Dδ), where δ(δ') is taken as desired as close to

1(2).

We return to the variational inequalities (1.1) with a scalar unknown

function. When E is identical with Ω and K is given in a concrete form

such as Ku there are many papers concerned with regularity of solutions

as is well-known (see e.g. [2], [4] and [11]). J. Frehse [4] showed that d2u

is in L?0C(Ω) under a certain assumption. When E is a segment or an

(n — l)-dimensional smooth manifold, the regularity of solutions for (1.1)

was yielded by several authors (cf. e.g. [10], [1] and [5]). However, if E

is a proper subset of Ω and its figure is irregular, it seems to us that

there are few literatures with respect to the regularity of solutions except

for [11] and [15]. G. H. Williams [15] generalized the result of P. Hartman

and G. Stampacchia [8]. On the other hand, if Ω is convex and dΩ is

irregular, the unilateral problem imposed on dΩ was dealt by P. Grisvard

[7], where he proved that d2u e L\Ω).

Our method is to use a parallel translation of test functions with a

weight which do not change the set F. The simple translation parallel to

the boundary is found in the book of J. L. Lions (see p. 256 in [12]), where

Ω = {xn > 0}, K= K2 = {ve H\Ω); u ^ O o n dΩ} and the square integrability

of d2u is shown. He considered also the case when Ω is a cone (see

Remark 1.17 in [13]). The line of our proof follows that of Theorem 8.6

in the above book.

The proofs of our theorems will be given in Section 4. For this we

prepare several lemmas in Section 3. Section 5 is devoted to quasi-linear

variational inequalities.

2. In this section we give two examples of compact sets with positive

capacity, satisfying (1.4) or (1.6). We consider in R2 with coordinates (x, y)»
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EXAMPLE 1. Let 0 < δ < 1 and 0 < b < a < 1. We define Q = {(x, y);
\x\ < a, \y\ < 6}. By a proportional transformation we easily see that

(2.1) JJ [dis ((*, y), Q°)]-> dxdy ^ dab)1-',

where dis ((*, y), Qc) is the distance from the point (x, y) to Qc and the
constant C depends only on δ.

Next we set

A = {|*| < α/2, \y\ < α/2} f] [{\x\ < 6/2} U {\y\ < 6/2}] ,

A, = {\x\< 6/2, \y\< 6/2},

A2 = {|*|<6/2, 6/2<y<α/2},

A3 = {|Λ;| < 6/2, -α/2 < y < -6/2} ,

At = {-α/2 < * < -6/2, |y| < 6/2}

and

A, = {6/2 < x < α/2, |y\ < 6/2}.

Then A = Uf=i A4 and dis ((*, y), Ac) ^ dis ((*, y), A?). Hence we see that

ί ί [dis ((*, y), A')]"*d*φ ^ t f f [dis ((x,y), Af)Ysdxdy .
JjA i = lJjAi

Applying (2.1) to each integral on the right-hand side, we have

(2.2) J £ [dis ((x, y), Ac)Yδ dxdy £ C[b*^ + (b(a - b)y~δ] .

Let {a,j} be a monotone decreasing sequence such that

Σ 43af-δ) , f] 2J ( 1 + X -δ < co

and

0 < a3 < 2^^1 - Σ 2 ί" 1^) , ./ = 1, 2, , .

We eliminate from [0, 1] an open interval O[τ) with its length aγ and
with its center 1/2. The remained closed intervals are denoted respectively
by J{1} and I P in turn from the left. Secondly we eliminate from each
If an open interval Oψ with its length α2 whose center is identical with
that of IfK Then there are remained four closed intervals, which are
denoted by I[2\ I?\ If) and /?> in turn from the left, respectively. We
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repeat inductively this process, that is, Of+1) is eliminated from the center
of IJn) (j = 1, 2, , 2W). The lastly remained closed set is written by J.
And we set E = JxJ.

From (2.2) we have

if
JJ {[o,i]

[dis ((x,y),E)]-*dxdy

By our hypothesis, the right-hand side is finite. This implies immediately
that E satisfies (Cδ). Since the one-dimensional measure of J is positive,
the capacity of E is naturally so.

EXAMPLE 2. Let 1 < δ' < 2 and 0 < a <: 1. Then we see that

(2.3) Γ Γ (x2 + y2)-δ''2dxdy ^ Ca2~δ',
Jo Jo

where C is independent of α.
Indeed, the left-hand side equals

a2-8' Γ / α Γ
Jo Jo

By putting s = ts\ we see
/•l/α fl

Jo Jo
l/α

^ Γ ΐ-t'dt- Γ (s/2 + l)"δ / / 2 ds' + [ί/a t~δ'dt,
Jo Jo Ji

which implies (2.3).
Let {Ij}y=1 be a set of disjoint closed intervals contained in [0,1].

Setting E = the closure of Uy=i ̂ > we assume that the one-dimensional
measure of E — (JΓ=i ζf is zero. We put (0, 1) — E = U7=i Oiy where {Oό}
is a set of disjoint open intervals. Further we assume that 2]"«i l̂ /l2"*'
and Σ .JO,!2-*' are both finite. Then from (2.3) it follows that

Γ [X

J-i Jo
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Hence E satisfies (Dδ).

In this example Theorem 2 is available in the neighborhood of the

set E - U7-1 IJ>

3 For the time being let F be a general compact set in Rn. Let

Φ(x) be the function as in the first section. We denote by \x\ the norm

of the point x.

First we have

LEMMA 1. It holds that

\Φ(x) - Φ(y)\ ̂  \x - y\ for x,yeRn .

This lemma is well-known. So we omit the proof.

Let A be a non-zero vector in Rn with h = |A|, where h is assumed

to be sufficiently small.

LEMMA 2. We have for x$F

(1 + h)-1 ^ Φ(x)/Φ(x + Φ(x)h) ̂  (1 - h)-1 .

Proof. Let 2 be a point in F with Φ(#) = |x — z|. We see

^ |x + Φ(x)A - z\

<:\x-z\ + hΦ(x) .

Thus we have shown the left half of the required inequalities.

Secondly let z be a point in F with Φ(x + Φ(x)A) = |JC + Φ(x)h — z\.

Then we have

Φ(x) ^ |x - z\ ^ |Λ + Φ(x)A - «|

from which the lemma follows. Q.E.D.

By Lemma 1 the function Φ is totally diίferentiable almost every-

where in Rn and \dXtΦ\ ̂  1 (ί = 1, , ή). We consider the transformation

of coordinates

Φh y = x+ Φ(x)h .

We write A = (hu , Λn) and / = 9(^, , yn)ld(xu , *„). Then we see

.Φ, 1 + hjis%Φ, , Λ,S
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In virtue of Lemma 1 it follows that for x, ocf e Rn

Accordingly, the mapping Φh and its inverse Φj;1 are both one-to-one map-

pings from Rn onto itself. And they are totally differentiable almost

everywhere in Rn, whose first derivatives are essentially bounded.

If we set Ψ(y) = —Φ(x) (=-Φ(ΦΛy))\ it is written

Now we define

(Shu)(x) = u(x + Φ(x)h), (Thu)(y) = u(y + Ψ(y)h) ,

(PΛu)(x) = h-^SπuXx) - u(x)]

and

(Qhu)(y) = Λ^RΓ^Xy) - u(y)] .

Obviously, (Qhu)(y) = —(Phu)(x). These operators are similarly defined

also for vector-valued functions.

The above definition of the quotient of differentials is originated from

M. Marcus [14], where it was defined in a simple form:

h~ι[u{xu , tfi-i, Xi + hxj, xί+u , xn) - u(x)]

and it was used to the study of the Dirichlet problem with degenerate

boundaries.

Hereafter, let the direction of h be arbitrarily fixed and let us put

e = /r1*. We write Fx = (9^, .,3^) and Vy = (βVl9 , dyn).

The following lemma is trivial. So we omit the proof.

LEMMA 3. We have

Fx(Shύ) = ShVxu + (h ShFxύ)FxΦ ,

Fy{Thu) = ThFyu + (h ThFyu)FyΨ ,

Fx(Phu) = PhFxu + (e.ShFxιι)FxΦ

and

Vy{Qhu) = QhVyu + {e ThVvu)VvΨ .

We note that the function u in H\(Ω) is extended over Rn so that
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u = 0 in Ω\ We denoted by (, ) x and || \\x ((, ) y and || \\v) the L2-inner

product and the L2-norm of functions on Rχ(Rl), respectively. Let J be

the determinant of /, which is essentially positive in Rn.

LEMMA 4. Let u, ve L\Rn). Then we have

(Qhu, v)v = (Ju, Phv)x + h~ιl(Ju, v)x - (u, υ)x] .

If ueHl(Ω)9 there is a constant C independent of h and u such that

and

Proof. The first equality is trivial. By the completion we can assume

that u e Cl(Ω). We see

(Phu)(x) = h-1 f dθu(x + θΦh)dθ
Jo

= Φ Γ e (Pxu)(x + ΘΦh)dθ .
Jo

By Schwarz' inequality the first inequality is valid. The second inequality

is similarly proved. Q.E.D.

LEMMA 5. Let u be in H\{Ω). Then

\\Phu - Φe Fxu\\x ,

\\Qhu-Ψe P1fu\\v-+0 ( λ - 0 ) .

Proof If u is in C\(Ω\ we have

{Phu){x)-Φ(x)e-{Vxu){x)

= Φ Γ e-[(FxuXx + ΘΦH) - (Fxu)(x)]dθ .

Jo

This means that

\\Phu - Φe Pxu\\l£ C^\(Fxu)(x + θΦh) - (Fxύ)(x)f dxdθ ,

which is valid also for u e H\(Ω) by the completion. The right-hand side

tends obviously to zero as h -> 0. The later half is quite similar. Q.E.D.

Now let F be E U dΩ and K be the closed convex set as in Theorem L

Then we have
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LEMMA 6. // UeK, ShU and TJJeK.

Proof. The function ShU is in [H&Ω)]N. Indeed, by Lemma 3 and

the boundedness of J" 1 there is a constant C such that

WS^W^CWVW, for Ve[Cl(Ωψ ,

where C is independent of h and V. And we note that the support of

ShV is compact in Ω, if V is so. Thus taking an approximating sequence

of U, we see that ShUe [Hl(Ω)]N. Since ShU = U on E, ShUeK in view

of the definition of K. Similarly ThUeK. Q.E.D.

Next let Kz be the set as in Theorem 2. Setting F = BE U dΩ and

replacing h with h! = (hu , hn.u 0), we consider SΛ, and ϊ7^.

Then we have

LEMMA 6'. If UeK3, Sh>U and Th,UeK3.

Proof. From the proof of the previous lemma, SA/C7 and Th,U are in

[H\(Ω)]N. We easily see that it is necessary and sufficient to be x 6 E, in

order that x + VΦ e E. And it is obvious that if A is a set on {xn = 0}

with (n — l)-dimensional measure zero, the images Φh>(A) and Φ]?(A) have

also measure zero on {xn = 0}. Thus (Sh.U)(x) and (Th.U)(y) eS for x,yeE

except for a set of capacity zero, which completes the proof. Q.E.D.

4. In this section we prove our theorems. First Theorem 1 will be

shown.

Suppose that U (=(uu , uN)) is a solution of (1.3) and Uφ) is a

particular solution of (1.3) for G = (0, , 0). As well known, we have

that is,

(4.1) 11171k ^ α - 1 1

(cf. Theorem 2.1, Chapter II in [9]).

Let us denote by α( , ) x and α(, ) v the bilinear form α( , ) in Section

1 with respect to the variables x and y, respectively.

We note that ShU and ThUeK from Lemma 6. We have by Lemma 3

a(U, ShU)x = {afkdXjuu ShdXkut)x + (afkdXjuu (h ShVχUi)dXkΦ)x

+ (MfdXkujy ShUi)x + (CijUj, ShUί)x .

In general, it holds that for any function /, u and v
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(fdXju, ShdXkv)x = (J-Ύhf-ThdVju, dVkv)y

Hence we see

a(U, ShU)x = {J-ιThafk-dVjThUi, dykut)y

+ (j-ιτhcirτhUj, ut)v

(a%dXjUi,(h ShVxut)dXkΦ)x

, dVkut)y

We put J = 1 + hJi and J" 1 = 1 + /ιJ2. More precisely, dy = J(x)dx,

dx = J-X^)(iy, J(Λ;) - 1 + hJ^x), J-\y) = 1 + ΛJ,(y) and J(x)J-χ{y) = 1. It

is easy to see that Jt and J 2 are essentially bounded. We write Thf = f

+ hQhf. In this way, we arrive at the equality

a(ThU, U)y = a(U, ShU)x

+ ((Q* + Jύblf-d^uj, u4), + ((Q* + J2)ctrThu}, »,),]

(A ThFvut)dVjΨ, dykut)y

+ (THb'$-{h-ThVyu1)dykΨ,ut)y

+ h(J2Thblf-(h-ThFvUj)dyJF, Uι)v .

Moreover we see that

a(ThU, ThU)y = (a%Tjtpit ThdVku{)v

+ (blfThdVkUj, Thut)v + (ctjTkUj,\Thut)y

+ (afkThdVjUι, (h ThVvUι)dVkΨ)y

+ a^(h ThFvut)dyj¥, ThdVkUi)y

+ (Wj\h-TΛFyu])dykΨ,Thui)y

Similarly in deriving (4.2), we have

a(ThU, ThU)v = a(U, U)x

,,u«, dXkut)x
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% TJtJut, ThdVkUi)v

(QMf-ThdVkUj, Thuz)y + (QhcιrThUj, Thu()v]

(afkThdVίuu (h-ThVyUi)dykΨ)v

(a%(h-ThFyui)dVj¥,ThdVlcui)y

+ (Mf(h-ThFvui)dVk¥,Thui)y.

Combining (4.2) and this equality, we obtain

a(QhU, QJJ)y = h-\a{ThU, ThU)y - a(ThU, U)y + a(U, U - ThU)y]

= h-*[a(U, U - SΛU)X + a(U, U - ThU)y]

huu dykut)v]

j, ut)y]

-^JiCijUj, ut)x + (JzdjTkUj, ut)y]

d^uJy - (Qhafk ThdVjUi, ThdykUi)υ]

l, Ui)v - (QMf ThdytUj, Thut)y]

h-l[{QhcirThUj, Ui)y - (QhcirThu3, Thudv]

, dykUι)y

h-%afk{h ThFyιιt)dv]F, ThdVkUi)y

+ (a%{h ShVxui)dX]Φ.dXkuι)Λ

dVjUi, (h-ThFyUi)dyJ)v

, Thut)v

^d^udy + (JzQMf dy^Uj, ut)y

ThUj, Ui)y + (a%(e ThFyU{γdV)W,dVkΨ)y] .

Here we have used the fact that {a%} is symmetric for each ί. Denoting

each bracket by Is on the right-hand side, we have

(4.3) a(QhU, QhU)y = h~% + /r1 £l, + h~* £l, + I12.

We shall prove the following inequality

(4.4) a(QhU, QhU)y ^ C(\\ΦG\\ + \\G\U + || Ul) <\\ U\\t + \\QhU\U ,

where C is a constant independent of h, U, G and K. For this sake let
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us estimate each term on the right-hand side of (4.3). From now on we
denote simply by C the constant independent of h, U, G and K.

In virtue of (1.3) it follows that

a(U,U-SΛU)x^(G,U-ShU)x

= (ThG, ThU -U)v + h(J2ThG, ThU - U),

and

a{U,U-ThU)v^(G,U-ThU)y.

Hence we obtain from Lemmas 2 and 4 that

h-% ^ \(QhG, QhU)y\ + \(J2ThG, QhU)v\

^ c\\ΦGU\\Qhu\\uy + \\u\\d.

We use often Lemmas 3 and 4 without saying. Let us note that Ji
+ J2 = O(h) (h -»• 0), more precisely, J^x) + J2(y) = O(h) (h -»• 0), because

Λ-Vi + Jd = -JΛ
Secondly let us estimate /ι~'/2. Since

(JtafkThdVjuu dvtut)y = (JJ2(y)afk(y)dXjuu (βxtut)(y))x ,

we see

= {(J- μ
+ ((afk(y) - <$&&#.&, (dXhUι){y))x

Hence

W^ + \\U\\d .

On the other hand

J2 = (Mix) + J2(y))afkdXjUi, 3XkUi)x

+ [{J2afkTndyjuu dyku()y -

This leads to the estimate

(4.6) A-M/il ^ CII^IUIIQ^H,,, + ||17||,)

for j = 2.
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The term Is is written:

J5 = -h(Qhafk-ThdVjuu QhdykUi)y

Thus (4.5) is valid also for j — 5. We see more easily that (4.5) holds

for j = 3, 4, 6, 7 and 8.

Let us now consider the term J9. Obviously, VyΨ = — (Fa;Φ)(tJ)"1. And

we can write

(4.6)

where I is the unit matrix and each component of H is essentially

bounded. Hence it is easily seen that

Using the equality

VχUi) - afk{e ShVχUί)

= ( J - lW

we have

sudd^Φ, d,tut), - {afk{e-ShVχUι)dXjΦ,

QkUWuv

Accordingly it follows that

More easily we can estimate Λ~2|/10l, h-2\In\ and |I1 2 | from above by the

right-hand side of (4.5).

Therefore combining the above estimates and (4.3), we get (4.4). In

virtue of (4.1) and (1.2), we obtain finally

This implies that there are a subsequence {hv} and a vector function Ve

[H&Ω)]N such that \hv\ -» 0 {v -• oo) and {QhvU} converges weakly to V in

[Hl(Ω)]N as y->oo. On the other hand, from Lemma 5 {QhvU} converges

strongly to We-PvU in [L\Ω)]N as v-*oo. Thus V=Ψe-FvU. Writing

ψ(y) = Φ(y)-(—Φ(x)IΦ(y)), we have by Lemma 2
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(4.7) \\Φe rsU\\lt, ^ C(\\ΦG\\ + \\G\U + C(K)) .

This yields

Let T and δ be the numbers as in Theorem 1. Let p = δjϊ and q =

2/7\ Then p, g > 1 and p~ ι + g"1 = l Applying the Holder's inequality*

we conclude that

|9 2C7fd;c^( φ-sΛc) ( Φ*\d*Ufdx) .

Ω-F \J Ω-F / \J Ω /

With the aide of (1.4) this completes the proof of Theorem 1. Q.E.D.

Next we shall prove Theorem 2.

Taking Sh> and Tv as in Lemma 6' and replacing Sh(Th) with Sh(Th)

respectively, we proceed in parallel with the proof of Theorem 1. In

particular Lemma 6 is substituted for Lemma 6'. Then in place of (4.7)

it follows that

\\Φe'*ΨxU\\hx ^ C(\\ΦG\\ + \\G\U + C(JQ),

where e' — h'j\h'\ and Φ(x) is the distance from x to the set 3E U dΩ*

Thus we get

(4.8) \\ΦddXjU\\ ^ C(\\ΦG\\ + \\G\U + C(K3))

for j Φ n.

Let gi be the i-th component of G. Since —dXk(a{ l>dx.Ui) + b$dxtμf

+ djUj — gi in Ω — E for each i and α^ does not vanish in Ω, (4.8) i&

valid also for j = n. Therefore

α \l/2

Φ2\d2U\2dx) ^ the right-hand side of (4.8) .

In view of (1.6) the remained part is quite similar. Q.E.D.

Remark. If ||G||-i is small, Theorem 2 holds also for the set K2 defined

in the first section.

In fact, by putting V = (0, , 0) in (1.3), we see that

Hence we have by the trace imbedding theorem

1/2
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which means that Sh.U and Th,U are in K2 for sufficiently small |ft'|. Thus

Theorem 2 holds for K = K2.

5. In this section we remark that our theorems are valid also for

quasi-linear systems of variational inequalities. For brevity we consider

only single operators with simple form. In this direction there is a result

of G. H. Williams [15], which is concerned with the Lipschitz regularity

of the solutions in the case of K — Kt.

Let a(ξ) = (<*!(£), , an(ξ)) be a (^-mapping from Rn to itself. We

assume that there are two positive constants a and M such that for all

ξ, V e Rn

\a(ξ)\ ̂  M(l + |f I)

and

The vector field a(ξ) becomes strongly coercive monotone in the sense of

Definition 4.1, Chapter III in [9]. We define

a(u, v) = (a^Vu), dXiv) for u,ve H\ψ) .

Let K be a closed convex set in H\{Ω) and g be any given function in

H~\Ω). Then there exists a u e K of

(5.1) a ( u , υ — u) ^> (g, v — u) f o r a l l v e K

<cf. Theorem 1.4, Chapter III in [9]).

Let &(0) be a particular solution of (5.1) for g — 0. We have by (5.1)

(atfu), dxt(u«» - u)) > (g, u^ - u)

and

(α,(FM<°>), 3,4(M - u^)) ^ 0 .

Thus

(μtfu) - a,(FW^), 3βi(κ - u^)) ^(g,u- u™) .

The left-hand side equals

+ (1 - t)VuV>)-V{u - u^\ dXi(u - uF
Jo

^ αr||F(κ — w(0))||2 (by our assumption) .

Hence
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from which the following inequality holds in place of (4.1):

<5.2) Wul^a

In Theorem 1 we substitute g and u for G and U respectively. And

we impose the assumptions of Theorem 1. That is, Φg is in L\Ω) and

-each element of K is constrained only on E. Following the method of

S. Gerhardt [6], we shall show that Theorem 1 holds for the solution u

of (5.1). S. Gerhardt [6] proved that d2u is in Lzc(Ω) for the solution u

of (5.1) when K = Kx and ψ, g e C\Ω). Our proof is briefly sketched.

Setting

/ = a(u, u — Shu)x + a(u, u — Thu)y ,

we have from (5.1)

I ^ (g, u - Shu)x + {g,u- Thu)y ,

whence it follows that

<5.3) h'U£ C\\Φg\\,(ΆQhu\\i,v + Nli)

Since

α(u, u)x = {J~'alThVvu\ Thdyiu)v ,

a(u, Shύ)x = (J-'a^Tjfyu), dyiu)y + (α,(Fxu\ (h-ShVxu)dXiΦ)x

and

a(u, u - Thu)y = (μt(Fyu)9 dViu - Thdyiu)v - (atφvu), (h'ThVyu)dViΨ)v ,

we can write

I = (atiTJfyU) - atf.u), ThdViu - dyiu)y

+ h[(JMTfvu), ThdViu - dViu)v - (βi(Vxu\ (e-ShVxu)dXiΦ)x

-(ai(Fyύ)9(e'ThFvu)dyiΨ)y].

It is easily seen that

h-U ^ a || QhFvu\\l + (JMThFvu), Qhdvιu)y

X ] - Λ-1[(α,(Γ,u), {e-ShVxu)dXiΦ)x + (atfyii), (e-ThFvu)dViΨ)y] .

By writing H = (htj) in (4.6), we have
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(at(Pyu), (e-T^vu)dvt¥)v = -{Ja^Fxu\{e Pxu)dXiΦ)x

— h(Jai(ShPxύ), (e Pxu)

Hence

a^u), {e ShVxu)dXiΦ)x + (α4(F,u), (e ThFyu)dyiΨ)y]

= (at(r,u), (e PhFxu)dXiΦ)x + (h'\at(P» - aάSJT.u)), (e Fxu)dXiΦ)x

\ (e Fxu)dXiΦ)x - (Jaί(ShFxu), (e-Fxu)

By our assumption and (5.4) it follows that

Kll, + \\PhFxu\\x + \\u\\d .

Combining (5.2), (5.3) and this inequality, we proceed in parallel with

the previous section. Then we can deduce the conclusion of Theorem 1.

Similarly Theorem 2 is proved for the solution u of (5.1).
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