FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS OF DEGREE TWO

YOSHIYUKI KITAOKA

Our purpose is to prove the following
Theorem. Let k be an even integer ≥ 6. Let

$$
f(Z)=\sum a(T) e(\operatorname{tr} T Z)
$$

be a Siegel cusp form of degree two, weight k. Then we have

$$
a(T)=O\left(|T|^{k / 2-1 / 4+\varepsilon}\right) \quad \text { for any } \varepsilon>0
$$

This was announced in [3] where we put an assumption on estimates of generalized Kloosterman sums. Here, we give a complete proof with a proof of that assumption.

Every cusp form of degree two, weight $k \geq 6(k \equiv 0 \bmod 2)$ is a linear combination of Poincaré series [1,4]. Using their rather formal Fourier expansion given in [1], we prove our theorem.

Notation. By $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} we denote the ring of rational integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, repsectively. H denotes the upper half-plane of genus two:

$$
H=\left\{Z=X+\left.i Y \in M_{2}(C)\right|^{\mid} Z=Z, \operatorname{Im} Z=Y>0\right\}
$$

We set $\Gamma=S p_{2}(Z)=\left\{\left.M \in M_{4}(Z)\right|^{t} M J M=J\right\}$ where $J=\left(\begin{array}{cc}1_{2} \\ -1_{2} & \end{array}\right), \Lambda=$ $\left\{\left.S \in M_{2}(Z)\right|^{t} S=S\right\}$, and $\Lambda^{*}=\left\{S=\left(s_{i j}\right) \in M_{2}(\boldsymbol{Q}) \mid s_{i i} \in \boldsymbol{Z}, 2 s_{12}=2 s_{21} \in \boldsymbol{Z}\right\} . \quad e(Z)$ means $\exp (2 \pi i z)$ for a complex number z.
§ 1.
In this section we prepare two arithmetic lemmas.
Let $C \in M_{2}(Z),|C| \neq 0$. For $P, T \in \Lambda^{*}$, we set

$$
K(P, T ; C)=\sum_{D} e\left(\operatorname{tr}\left(A C^{-1} P+C^{-1} D T\right)\right)
$$

where D runs over $\left\{D \in M_{2}(Z) \bmod C \Lambda \left\lvert\,\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma\right.\right\}$ and $A \in M_{2}(Z)$ is any matrix such that $\left(\begin{array}{ll}A & * \\ C & D\end{array}\right) \in \Gamma$. If $D^{\prime} \equiv D \bmod C A$, and $\left(\begin{array}{ll}A^{\prime} & * \\ C & D^{\prime}\end{array}\right) \in \Gamma$, then we have $A^{\prime} \equiv A \bmod \Lambda C$. Hence a generalized Kloosterman sum $K(P, T ; C)$ is well-defined. One of our aims in this section is to prove

Proposition 1. Let $C \in M_{2}(Z),|C| \neq 0$ and $C=U^{-1}\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right) V^{-1}, U, V \in$ $G L(2, Z), 0<c_{1} \mid c_{2}$. Then we have

$$
K(P, T ; C)=O\left(c_{1}^{2} c_{2}^{1 / 2+\varepsilon}\left(c_{2}, t\right)^{1 / 2}\right) \quad \text { for } P, T \in \Lambda^{*},
$$

where ε is any positive number and t is the (2,2)-entry of $T[V]$. Moreover $K(P, T ; C)=K\left(T, P ;{ }^{t} C\right)$ holds.

Lemma 1. Let $C=\left(\begin{array}{cc}c_{1} & \\ c_{2}\end{array}\right), c_{1} \mid c_{2}, c_{i}>0$ and $C=F H$ where $F=\left(\begin{array}{ll}f_{1} & \\ & f_{2}\end{array}\right)$, $H=\left(\begin{array}{ll}h_{1} & \\ & h_{2}\end{array}\right), f_{1}\left|f_{2}, h_{1}\right| h_{2}, f_{i}, h_{i}>0,\left(f_{2}, h_{2}\right)=1$, For integers s, t with $s f_{2}$ $+t h_{2}=1$, we set $X_{1}=s f_{2} F^{-1}, X_{2}=t h_{2} H^{-1}$. Then $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma$ if and only if $\left(\begin{array}{cc}H A & H B-X_{1}^{t} A D \\ F & X_{2} D\end{array}\right),\left(\begin{array}{cc}F A & F B-X_{2}{ }^{t} A D \\ H & X_{1} D\end{array}\right) \in \Gamma$.

Proof. We note that $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in M_{4}(Z)$ is in Γ if and only if ${ }^{t} A D-{ }^{t} C B$ $=1_{2}$, and ${ }^{t} A C,{ }^{t} B D$ are symmetric. The "only if"'-part is proved directly. The "if"-part follows immediately from

$$
\begin{aligned}
& A=X_{2}(H A)+X_{1}(F A), D=H\left(X_{2} D\right)+F\left(X_{1} D\right) \text { and } \\
& B=2 X_{1} X_{2}^{t} A D+X_{1}\left(F B-X_{2}^{t} A D\right)+X_{2}\left(H B-X_{1}^{t} A D\right) .
\end{aligned}
$$

Lemma 2. Let C, F, H, X_{1} and X_{2} be those in Lemma 1. The mapping $D \bmod C \Lambda \mapsto\left(X_{2} D \bmod F \Lambda, X_{1} D \bmod H A\right)$ from $\left\{D \bmod C \Lambda \left\lvert\,\left(\begin{array}{ll}* \\ C & { }_{D}\end{array}\right) \in \Gamma\right.\right\}$ to $\left\{D \bmod F \Lambda \left\lvert\,\left(\begin{array}{cc}* & * \\ F & D\end{array}\right) \in \Gamma\right.\right\} \times\left\{D \bmod H \Lambda \left\lvert\,\left(\begin{array}{cc}* & * \\ H & D\end{array}\right) \in \Gamma\right.\right\}$ is bijective.

Proof. The mapping is obviously well-defined. Suppose that $X_{2} D_{1} \equiv$ $X_{2} D_{2} \bmod F \Lambda, X_{1} D_{1} \equiv X_{1} D_{2} \bmod H \Lambda$, then we have $X_{2} D \in F \Lambda, X_{1} D \in H \Lambda$ where $D=D_{1}-D_{2}$. Hence $D=H\left(X_{2} D\right)+F\left(X_{1} D\right) \in C \Lambda$ follows from $F H=H F$ =C. Conversely suppose $\left(\begin{array}{cc}* & * \\ F & D_{1}\end{array}\right),\left(\begin{array}{cc}* & * \\ H & D_{2}\end{array}\right) \in \Gamma$. We set $D=H D_{1}+F D_{2}$. Then $X_{2} D-D_{1}=F\left(t h_{2} H^{-1} D_{2}-s f_{2} F^{-1} D_{1}\right) \in F \Lambda$ and $X_{1} D-D_{2}=H\left(s f_{2} F^{-1} D_{1}\right.$ $\left.-t h_{2} H^{-1} D_{2}\right) \in H \Lambda$ imply the surjectiveness of the mapping if $\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma$. To show $\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma$ we have only to prove that $C^{-1} D$ is symmetric and $(C, D) \in M_{2,4}(Z)$ is primitive. The first follows from $C^{-1} D=F^{-1} D_{1}+H^{-1} D_{2}$.

If a prime p does not divide $c_{2}=f_{2} h_{2}$, then C is in $G L_{2}\left(Z_{p}\right)$. If $p \mid h_{2}$, then $\operatorname{rk}((C, D) \bmod p)=\operatorname{rk}\left(\left(\left(\begin{array}{ll}f_{1} h_{1} & \\ & 0\end{array}\right),\left(\begin{array}{ll}h_{1} & \\ & 0\end{array}\right) D_{1}+F D_{2}\right) \bmod p\right)=\operatorname{rk}\left(\left(\left(\begin{array}{ll}h_{1} & \\ & 0\end{array}\right), F D_{2}\right)\right.$ $\bmod p)=\operatorname{rk}\left(\left(H, D_{2}\right) \bmod p\right)=2$. Similarly for $p \mid f_{2}$, we have $\operatorname{rk}((C, D) \bmod p)$ $=2$. Thus (C, D) is locally and hence globally primitive.

Lemma 3. Let C, F, H, X_{1} and X_{2} be those in Lemma 1. Then $K(P, T ; C)=K\left(P\left[X_{2}\right], T ; F\right) K\left(P\left[X_{1}\right], T ; H\right)$ holds.

Proof. Suppose $\left(\begin{array}{ll}A & * \\ C & D\end{array}\right) \in \Gamma$. Then we have

$$
\begin{aligned}
& \operatorname{tr}\left(A C^{-1} P+C^{-1} D T\right) \\
& \quad=\operatorname{tr}\left(\left(X_{2} H A+X_{1} F A\right) F^{-1} H^{-1} P+F^{-1} H^{-1}\left(H X_{2} D+F X_{1} D\right) T\right) \\
& =\operatorname{tr}\left(X_{2} H A F^{-1} H^{-1} P+F^{-1} X_{2} D T\right)+\operatorname{tr}\left(X_{1} F A F^{-1} H^{-1} P+H^{-1} X_{1} D T\right) \\
& =\operatorname{tr}\left(X_{2} H A F^{-1}\left(X_{1} F+X_{2} H\right) H^{-1} P+F^{-1} X_{2} D T\right) \\
& \quad \quad+\operatorname{tr}\left(X_{1} F A F^{-1}\left(X_{1} F+X_{2} H\right) H^{-1} P+H^{-1} X_{1} D T\right) \\
& =\operatorname{tr}\left(H A F^{-1} P\left[X_{2}\right]+F^{-1} X_{2} D T\right)+\operatorname{tr}\left(F A H^{-1} P\left[X_{1}\right]+H^{-1} X_{1} D T\right) \\
& \quad \quad+\operatorname{tr}\left(X_{2} H A X_{1} H^{-1} P+X_{1} F A F^{-1} X_{2} P\right) .
\end{aligned}
$$

Moreover we have $X_{2} H A X_{1} H^{-1}=t h_{2} A X_{1} H^{-1}=A X_{1} X_{2}=s f_{2} t h_{2} A C^{-1} \in \Lambda$ and

$$
X_{1} F A F^{-1} X_{2}=s f_{2} A F^{-1} X_{2}=A X_{1} X_{2} \in \Lambda .
$$

Thus $\operatorname{tr}\left(A C^{-1} P+C^{-1} D T\right) \equiv \operatorname{tr}\left(H A F^{-1} P\left[X_{2}\right]+F^{-1} X_{2} D T\right)+\operatorname{tr}\left(F A H^{-1} P\left[X_{1}\right]\right.$ $\left.+H^{-1} X_{1} D T\right)$ mod 1 follows for $P, T \in \Lambda^{*}$, and then Lemmas 1,2 complete the proof.

Lemma 4. Let p be a prime and $0 \leq e_{1} \leq e_{2}$. Then we have

$$
K\left(P, T ;\left(\begin{array}{ll}
p^{e_{1}} & \\
& p^{e_{2}}
\end{array}\right)\right)=O\left(p^{2 e_{1}+e_{2} / 2}\left(p^{e_{2}}, t\right)^{1 / 2}\right)
$$

where t is the (2,2)-entry of T.
Proof.*) Put $C=\left(\begin{array}{cc}p^{e_{1}} & \\ & p^{e_{2}}\end{array}\right), D=\left(\begin{array}{ll}d_{1} & d_{2} \\ d_{3} & d_{4}\end{array}\right) . \quad$ Since $\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma$ if and only if $C^{-1} D$ is symmetric and (C, D) is primitive, $\left(\begin{array}{cc}* & { }^{*} \\ C\end{array}\right) \in \Gamma$ if and only if $d_{3}=p^{e_{2}-e_{1}} d_{2}$ and (i) $e_{1}=e_{2}=0$, (ii) $e_{1}=0, e_{2}>0, p \nmid d_{4}$, (iii) $0<e_{1}<e_{2}$, $p \nmid d_{1} d_{4}$ or (iv) $0<e_{1}=e_{2}, p \nmid\left(d_{1} d_{4}-d_{2}^{2}\right)$.
$D \bmod C \Lambda$ is equivalent to $d_{1}, d_{2} \bmod p^{e_{1}}, d_{4} \bmod p^{e_{2}}$. Suppose that

[^0]$\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma$ and ${ }^{t} A C$ is symmetric, $\left(A^{t} D-1\right) C^{-1} \in M_{2}(Z)$ for $A \in M_{2}(Z)$. Then we have $\left(\begin{array}{cc}A \\ C & \left(A^{t} D-1\right) C^{-1}\end{array}\right) \in \Gamma$ since $A^{t} D-\left\{\left(A^{t} D-1\right) C^{-1}\right\}^{t} C=1_{2}$, $A^{t}\left\{\left(A^{t} D-1\right) C^{-1}\right\}$ and $C^{t} D$ are symmetric. \quad Set $P=\left(\begin{array}{cc}p_{1} & p_{2} / 2 \\ p_{2} / 2 & p_{4}\end{array}\right), \quad T=$ $\left(\begin{array}{cc}t_{1} & t_{2} / 2 \\ t_{2} / 2 & t_{4}\end{array}\right) \in \Lambda^{*}$. When $e_{1}=e_{2}=0$, the lemma is obvious. Suppose $e_{1}=0$ $\stackrel{t_{2} / 2}{<e_{2}}$. Then we may suppose $D=\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right)\left(d \bmod p^{e_{2}}, p \nmid d\right)$. Denoting by \bar{d} an integer n which satisfies $n d \equiv 1 \bmod p^{e_{2}}$, we can take $\left(\begin{array}{ll}0 & 0 \\ 0 & \frac{d}{d}\end{array}\right)$ as A. Thus $K(P, T ; C)=\sum_{\substack{i \text { mod } \\ p \nmid d \\ d}} e\left(\left(\bar{d} p_{4}+d t_{4}\right) p^{-e_{2}}\right)$ is an ordinary Kloosterman sum and the lemma holds ${ }^{p, 1}$ in this case. Suppose $0<e_{1}<e_{2}$. Let d be an integer such that $d\left(d_{1} d_{4}-p^{e_{2}-e_{1}} d_{2}^{2}\right) \equiv 1 \bmod p^{e_{2}}$ and set $A=d\left(\begin{array}{c}d_{4} \\ -d_{2}\end{array} d_{1}^{e_{2}-e_{1}} d_{2}\right)$. Then ${ }^{t} A C$ is symmetric and $\left(A^{t} D-1\right) C^{-1} \in M_{2}(Z)$. Hence we have

$$
\begin{aligned}
K(P, T ; C)= & \sum_{\substack{d_{1} d_{\text {mod }} \text { mod } p^{e_{1}} \\
\alpha_{2} \\
\text { phd } \nless d_{1} d_{4}}} e\left(d\left(d_{4} p_{1} p^{-e_{1}}-d_{2} p_{2} p^{-e_{1}}+d_{1} p_{4} p^{-e_{2}}\right)\right. \\
& \left.+d_{1} t_{1} p^{-e_{1}}+d_{2} t_{2} p^{-e_{1}}+d_{4} t_{4} p^{-e_{2}}\right) .
\end{aligned}
$$

Set $\delta=d_{1} d_{4}-p^{e_{2}-e_{1}} d_{2}^{2}$, then $d \delta \equiv 1 \bmod p^{e_{2}}$ and $d_{4} \equiv \bar{d}_{1} \delta+p^{e_{2}-e_{1}} \bar{d}_{1} d_{2}^{2} \bmod p^{e_{2}}$ where $d_{1} \bar{d}_{1} \equiv 1 \bmod p^{e_{2}}$. Then $K(P, T ; C)$ equals

$$
\begin{aligned}
& \sum_{\substack{d_{1}, d_{\bmod }^{2 \neq d_{p} p_{1}}}} e\left(d_{1} t_{1} p^{-e_{1}}+d_{2} t_{2} p^{-e_{1}}+\bar{d}_{1} p_{1} p^{-e_{1}}+\bar{d}_{1} d_{2}^{2} t_{4} p^{-e_{1}}\right) . \\
& \sum_{\substack{\delta \sum_{1} \bmod _{j} p^{e_{2}} \\
p \nmid \gamma}} e\left(\left\{\left(d_{1} p_{4}-p^{\epsilon_{2}-e_{1}} d_{2} p_{2}+p^{2 e_{2}-2 e_{1}} \bar{d}_{1} d_{2}^{2} p_{1}\right) d+\bar{d}_{1} t_{4} \delta\right\} p^{-e_{2}}\right) \\
& \quad=O\left(p^{2 e_{1}+e_{2} / 2}\left(t_{4}, p^{e_{2}}\right)^{1 / 2}\right),
\end{aligned}
$$

since the last sum on δ is an ordinary Kloosterman sum.
Suppose $0<e_{1}=e_{2}=e$. Set $\delta=d_{1} d_{4}-d_{2}^{2}$ and let d be an integer such that $d \delta \equiv 1 \bmod p^{e}$. Then we can take $d\left(\begin{array}{rr}d_{4} & -d_{2} \\ -d_{2} & d_{1}\end{array}\right)$ as A. Thus $K(P, T ; C)$ equals

$$
\sum_{\substack{d_{1}, d_{2}, d_{2}\left(p^{e}\right) \\ p \nmid p^{e}}} e\left(\left\{d\left(d_{4} p_{1}-d_{2} p_{2}+d_{1} p_{4}\right)+d_{1} t_{1}+d_{2} t_{2}+d_{4} t_{4}\right\} p^{-\epsilon}\right)=\Sigma_{1}+\Sigma_{2}
$$

where d_{2} in Σ_{1} is supposed to be $p \mid d_{2}$ and d_{2} in Σ_{2} is supposed to be $p \nmid d_{2}$. We have $\Sigma_{1}=O\left(p^{2 e-1+e / 2}\left(t_{4}, p^{e}\right)^{1 / 2}\right)$ quite similarly to the case (iii). Now we estimate Σ_{2}. We define integers $\delta_{1}, \delta_{4}, \bar{\delta}$ by $d_{1} \equiv d_{2} \delta_{1}, d_{4} \equiv d_{2} \delta_{4}, \bar{\delta}\left(\delta_{1} \delta_{4}-1\right)$ $\equiv 1 \bmod p^{e} ;$ then $\bar{\delta} \equiv d_{2}^{2} d \bmod p^{e}$, and Σ_{2} equals
where \bar{d}_{2} is an integer such that $d_{2} \bar{d}_{2} \equiv 1 \bmod p^{e}$. Hence we have

$$
\begin{aligned}
\Sigma_{2} & =O\left(\sum_{\substack{\delta_{1} \delta_{0}\left(\frac{1}{e} e \\
\text { px, }\left(\delta_{1}-1\right)\right.}} p^{e / 2}\left(\delta_{1} t_{1}+t_{2}+\delta_{4} t_{4}, p^{e}\right)^{1 / 2}\right) \\
& =O\left(p ^ { p ^ { e / 2 } } \sum _ { x (p ^ { e }) } (x , p ^ { e }) ^ { 1 / 2 } \# \left\{\left\{\delta_{1}, \delta_{4}\left(p^{e}\right) \left\lvert\, \begin{array}{l}
\delta_{1} \delta_{4} \not \equiv 1 \bmod p^{e} \\
\left.x \equiv \delta_{1} t_{1}+t_{2}+\delta_{4} t_{4} \bmod p^{e}\right\}
\end{array}\right.\right\} .\right.\right.
\end{aligned}
$$

Set $p^{s}=\left(t_{4}, p^{e}\right)$. If $s=e$, then the lemma holds trivially. Hence we assume $s<e$. Set $t_{4}=u p^{s}, \quad(u, p)=1$. Since $x \equiv \delta_{1} t_{1}+t_{2}+\delta_{4} t_{4} \bmod p^{e}$ implies $x \equiv \delta_{1} t_{1}+t_{2} \bmod p^{s}$, we have

$$
\begin{aligned}
\Sigma_{2} & =O\left(p^{e / 2} \sum_{x\left(p^{e}\right)}\left(x, p^{e}\right)^{1 / 2} \#\left\{\delta_{1}, \delta_{4}\left(p^{e}\right) \left\lvert\, \begin{array}{l}
x \equiv \delta_{1} t_{1}+t_{2} \bmod p^{s} \\
u \delta_{4} \equiv\left(x-\delta_{1} t_{1}-t_{2}\right) p^{-s} \bmod p^{e-s}
\end{array}\right.\right\}\right) \\
& =O\left(p^{e / 2} \sum_{0 \leq i \leq e} p^{(e-i) / 2} \sum_{\substack{v\left(p p^{i}\right) \\
p}} p^{s} \#\left\{\delta_{1} \bmod p^{e} \mid \delta_{1} t_{1}+t_{2} \equiv v p^{e-i} \bmod p^{s}\right\}\right) \\
& =O\left(p^{e+s} \sum_{0 \leq i \leq e} p^{-i / 2} \#\left\{\delta_{1} \bmod p^{e}, v \bmod p^{i} \mid p \nmid v, \delta_{1} t_{1}+t_{2} \equiv v p^{e-i} \bmod p^{s}\right\}\right) .
\end{aligned}
$$

If $\operatorname{ord}_{p} t_{1}, \operatorname{ord}_{p} t_{2} \geq s$, then we have

$$
\Sigma_{2}=O\left(p^{e+s} \sum_{\substack{0 \leq i \leq e \\ e-i \geq s}} p^{-i / 2+e+i}\right)=O\left(p^{5 / 2+s / 2}\right)
$$

If $\operatorname{ord}_{p} t_{1} \geq s, a_{2}=\operatorname{ord}_{p} t_{2}<s$, then $\delta_{1} t_{1}+t_{2} \equiv v p^{e-i} \bmod p^{s}$ implies $a_{2}=e-i$ and $v \equiv t_{2} p^{-a_{2}} \bmod p^{s-a_{2}}$, and hence

$$
\begin{aligned}
\Sigma_{2} & =O\left(p^{e+s-\left(e-a_{2}\right) / 2+e+\left(e-a_{2}\right)-\left(s-a_{2}\right)}\right) \\
& =O\left(p^{5 e / 2+a_{2} / 2}\right)=O\left(p^{5 e / 2+s / 2}\right)
\end{aligned}
$$

If $a_{1}=\operatorname{ord}_{p} t_{1}<s, a_{2}=\operatorname{ord}_{p} t_{2}<a_{1}$, then $\delta_{1} t_{1}+t_{2} \equiv v p^{e-i} \bmod p^{s}$ implies a_{2} $=e-i$ and $t_{2} p^{-a_{2}} \equiv v \bmod p^{a_{1}-a_{2}}$, and hence

$$
\begin{aligned}
\Sigma_{2} & =O\left(p^{e+s-\left(e-a_{2}\right) / 2+e-a_{2}-\left(a_{1}-a_{2}\right)+e-\left(s-a_{1}\right)}\right) \\
& =O\left(p^{5 e / 2+a_{2} / 2}\right)=O\left(p^{5 e / 2+s / 2}\right) .
\end{aligned}
$$

Suppose $a_{1}<s, a_{2} \geq a_{1}$, then $\delta_{1} t_{1}+t_{2} \equiv v p^{e-i} \bmod p^{s}, p \nmid v$ imply $e-i \geq a_{1}$ and $\delta_{1}\left(t_{1} p^{-a_{1}}\right) \equiv\left(v p^{e-i}-t_{2}\right) p^{-a_{1}} \bmod p^{s-a_{1}}$. Hence we have

$$
\begin{aligned}
\Sigma_{2} & =O\left(p^{e+s} \sum_{0 \leq i \leq e-a_{1}} p^{-i / 2+i+e-\left(s-a_{1}\right)}\right) \\
& =O\left(p^{e+s+\left(e-a_{1}\right) / 2+e-s+a_{1}}\right)=O\left(p^{5 / 2+a_{1} / 2}\right)=O\left(p^{5 e / 2+s / 2}\right) .
\end{aligned}
$$

Thus we have completed a proof of Lemma 4.
The former of Proposition 1 follows easily from Lemmas 3, 4 and $K\left(P, T ; U^{-1} C V^{-1}\right)=K\left(P\left[{ }^{t} U\right], T[V] ; C\right)$.

The latter is proved as follows:

$$
\begin{aligned}
K(P, T ; J C) & =\sum_{D \bmod C A} e\left(\operatorname{tr}\left(A C^{-1} P+C^{-1} D T\right)\right) \\
& =\sum_{D \bmod C A} e\left(\operatorname{tr}\left(D^{t} C^{-1} T+{ }^{t} C^{-1} A P\right)\right),
\end{aligned}
$$

and $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma$ if and only if $\left(\begin{array}{cc}t^{t} D & t \\ { }^{t} C & B \\ t\end{array}\right) \in \Gamma$. Suppose $\left(\begin{array}{ll}A_{i} & B_{i} \\ C & D_{i}\end{array}\right) \in \Gamma \quad(i=1,2)$ and $D_{1} \equiv D_{2} \bmod C \Lambda$, then we set $D_{1}=D_{2}+C S, S \in \Lambda . \quad\left(\begin{array}{ll}A_{2} & * \\ C & D_{2}\end{array}\right)\left(\begin{array}{ll}1 & S \\ 0 & 1\end{array}\right)=$ $\left(\begin{array}{ll}A_{2} & * \\ C & D_{1}\end{array}\right)$ implies $A_{2}=A_{1}+\bar{S} C$ for some $\bar{S} \in \Lambda$. Thus $D_{1} \equiv D_{2} \bmod C \Lambda$ implies ${ }^{t} A_{1} \equiv{ }^{t} A_{2} \bmod { }^{t} C A$. Hence we have

$$
\begin{aligned}
K(P, T ; C) & =\sum_{t_{A \text { mod }} t C A} e\left(\operatorname{tr}\left({ }^{t} D^{t} C^{-1} T+{ }^{t} C^{-1} t A P\right)\right) \\
& =K\left(T, P ;{ }^{t} C\right)
\end{aligned}
$$

For $G=\left(g_{i j}\right) \in \Lambda^{*}$ we set $e(G)=\left(g_{11}, g_{22}, 2 g_{12}\right)$. Set

$$
S=\left\{\left.\binom{b}{d} \right\rvert\, b, d \in Z,(b, d)=1\right\}
$$

For a fixed natural number n we define an equivalence relation \sim in S by the following:

$$
\binom{b}{d} \sim\binom{b^{\prime}}{d^{\prime}} \text { iff }\binom{b}{d} \equiv w\binom{b^{\prime}}{d^{\prime}} \bmod n
$$

for an integer w prime to n. Set $S(n)=S / \sim$, then another aim in this section is to prove

Proposition 2. For $P \in \Lambda^{*}$ we have

$$
\sum_{x \in S(n)}(P[x], n)^{1 / 2}=O\left(n^{1+\varepsilon}(e(P), n)^{1 / 2}\right) \quad \text { for any } \varepsilon>0
$$

Lemma 5. Let m, n be relatively prime natural numbers and $P \in \Lambda^{*}$. Then we have

$$
\sum_{x \in S(m n)}(P[x], m n)^{1 / 2} \leq\left(\sum_{x \in S(m)}(P[x], m)^{1 / 2}\right)\left(\sum_{y \in S(n)}(P[y], n)^{1 / 2}\right) .
$$

Proof. The mapping $x \in S(m n) \mapsto(x \in S(m), x \in S(n))$ is injective. From $(P[x], m n)=(P[x], m)(P[x], n)$ follows the lemma.

Hence we have only to prove Proposition 2 when n is a power of a prime p.

Lemma 6. Let p be a prime and e a natural number.
Put $S^{\prime}=\left\{\left.\binom{b}{d} \right\rvert\, b, d \in Z,(b, d, p)=1\right\}$ and

$$
\binom{b}{d} \approx\binom{b^{\prime}}{d^{\prime}} \text { iff }\binom{b}{d} \equiv w\binom{b^{\prime}}{d^{\prime}} \bmod p^{e}
$$

for an integer $w(\not \equiv 0 \bmod p)$. Then we have

$$
\sum_{x \in S\left(p^{e}\right)}\left(P[x], p^{e}\right)^{1 / 2}=\sum_{x \in S^{\prime} / \approx}\left(P[x], p^{e}\right)^{1 / 2}
$$

Proof. The lemma follows immediately from the following fact: if $(b, d, p)=1$, then there exist $B, D \in Z$ such that $B \equiv b \bmod p^{e}, D \equiv d$ $\bmod p^{e}$ and $(B, D)=1$.

If $V \in M_{2}(Z), p \nmid|V|$, then we have $V\left(S^{\prime} \mid \approx\right)=S^{\prime} \mid \approx$. Hence we may assume
(i) $P=\left(\begin{array}{ll}u p^{a_{1}} & \\ & u v p^{a_{2}}\end{array}\right), 0 \leq a_{1} \leq a_{2}, p \nmid u v$,
(ii) $P=2^{a}\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right), a \geq 0(p=2)$, or
(iii) $P=2^{a}\left(\begin{array}{cc}0 & 1 / 2 \\ 1 / 2 & 0\end{array}\right), a \geq 0(p=2)$.

It is easy to see that we can take as S^{\prime} / \approx

$$
\binom{n}{1}\left(n \bmod p^{e}\right),\binom{n}{p^{t}}\left(p \nmid n, n \bmod p^{e-t}, t=1,2, \cdots, e\right) .
$$

Set $\Theta\left(P, p^{e}\right)=\sum_{x \in S\left(p^{e}\right)}\left(P[x], p^{e}\right)^{1 / 2}$ and $P=\left(\begin{array}{cc}p_{1} & p_{2} / 2 \\ p_{2} / 2 & p_{4}\end{array}\right)$. Now we prove Proposition 2.
(1) Suppose that P is of type (i) and $a_{1} \geq e$.

In this case $\subseteq\left(P, p^{e}\right) \leq p^{e / 2}\left(p^{e}+\varphi\left(p^{e-1}\right)+\cdots+\varphi(1)\right)=O\left(p^{3 e / 2}\right)$.
(2) Suppose that P is of type (i) and $a_{1}<e$.

$$
\begin{aligned}
& \Im\left(P, p^{e}\right)= p^{a_{1} / 2} \sum_{\substack{\left(x_{1}\right) \\
x_{2}}} \in S\left(p^{e}\right) \\
&= p^{a_{1} / 2} \sum_{\substack{\left.n p^{e}\right) \\
p \nmid n}}\left(n^{2}+v x_{2}^{2} p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} \\
&\left.+p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} \\
&+p^{a_{1} / 2} \sum_{1 \leq t \leq \operatorname{pe-1)}}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} \\
& \sum_{\substack{e, t \\
p \nmid n}}\left(n^{2}+v p^{a_{2}-a_{1}+2 t}, p^{e-a_{1}}\right)^{1 / 2} .
\end{aligned}
$$

If $a_{1}=a_{2}$, then

$$
\begin{aligned}
\widetilde{S}\left(P, p^{e}\right) & =p^{a_{1} / 2} \sum_{\substack{n\left(p^{e}\right) \\
p \not n}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}+p^{a_{1} / 2+e-1}+p^{a_{1} / 2} \sum_{1 \leq t \leq e} \varphi\left(p^{e-t}\right) \\
& =p^{a_{1} / 2} \sum_{\substack{n\left(p p^{e}\right) \\
p \nmid}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}+2 p^{a_{1} / 2+e-1}
\end{aligned}
$$

If $a_{1}<a_{2}$, then

$$
\Im\left(P, p^{e}\right)=p^{a_{1} / 2} \varphi\left(p^{e}\right)+p^{a_{1} / 2} \sum_{n\left(p^{e-1}\right)}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2}+p^{a_{1} / 2+e-1}
$$

Hence we have only to prove the following lemmas.
Lemma 7. $\sum_{\substack{n p e e \\ p p n}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}=O\left(e p^{e}\right)=O\left(p^{e(1+\varepsilon)}\right)$ if $a_{1}<e$.
Lemma 8. $\sum_{n\left(p^{e=-1}\right)}^{p p n}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2}=O\left(p^{e(1+\varepsilon)}\right)$ if $a_{1}<a_{2}, a_{1}<e$.
Proof of Lemma 7. If p is odd and $(-v / p)=-1$, then Lemma 7 is trivial. Suppose that p is odd and $(-v / p)=1$, then there exists an integer $g \in Z_{p}$ such that $g^{2}+v=0$. If $n^{2}+v \equiv 0 \bmod p$, then there exist $m \in Z_{p}^{\times}$, $s \geq 1$ such that $n= \pm g+m p^{s}$. Then we have $p^{s} \|\left(n^{2}+v\right)$ since $n^{2}+v$ $=p^{s}\left(\pm 2 g m+m^{2} p^{s}\right)$. Thus we have

$$
\begin{aligned}
& \sum_{\substack{n, p e) \\
p \nmid n}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}=\sum_{\substack{\left.n \\
p \nmid n, p^{e}\right) \\
p+v=O(p)}}\left(n^{2}+v, p^{e-a_{1}}\right)^{1 / 2}+\sum_{\substack{n(p e) \\
p \nmid n, n^{2}+v \neq O(p)}} 1 \\
& \leq 2 \sum_{1 \leq s \leq e} \sum_{\substack{m o d \\
p \nmid m}}\left(p^{s}, p^{e-a_{1}}\right)^{1 / 2}+p^{e} \\
& =2 \sum_{1 \leq s \leq e-a_{1}} p^{s / 2} \varphi\left(p^{e-s}\right)+2 \sum_{e-a_{1}<s \leq e} p^{\left(e-a_{1}\right) / 2} \varphi\left(p^{e-s}\right)+p^{e} \\
& =O\left(e p^{e}\right) \text {. }
\end{aligned}
$$

Suppose $p=2$. If $v \not \equiv 7 \bmod 8, n^{2}+v \not \equiv 0 \bmod 8$ for odd n, and so Lemma 7 is obvious. Assume $v \equiv 7 \bmod 8$ and take an integer $g \in \boldsymbol{Z}_{2}^{\times}$such that $g^{2}+v=0$. Let n be an odd integer and $n=g+2^{r} m(r \geq 1,2 \nmid m)$. Since $n^{2}+v=2^{r+1}\left(g m+2^{r-1} m^{2}\right)$, we have

$$
\begin{aligned}
\sum_{\substack{n(2 e) \\
2 \nmid n}}\left(n^{2}+v, 2^{e-a_{1}}\right)^{1 / 2} & =\sum_{\substack{m(2 e-1) \\
2 \nmid m}}\left(2^{2}\left(g m+m^{2}\right), 2^{e-a_{1}}\right)^{1 / 2}+\sum_{2 \leq r \leq e} \sum_{m}\left(2^{2 e-r)}\right. \\
& \left(2^{r+1}, 2^{e-a_{1}}\right)^{1 / 2} \\
& =\sum_{n\left(\sum_{2}^{2 e-1}\right)}\left(2^{2} n, 2^{e-a_{1}}\right)^{1 / 2}+\sum_{2 \leq r \leq e} 2^{e-r-1}\left(2^{r+1}, 2^{e-a_{1}}\right)^{1 / 2} \\
& =\sum_{1 \leq r \leq e-1} 2^{e-2-r}\left(2^{2+r}, 2^{e-a_{1}}\right)^{1 / 2}+\sum_{2 \leq r \leq e} 2^{e-r-1}\left(2^{r+1}, 2^{e-a_{1}}\right)^{1 / 2} \\
& =O\left(e 2^{e}\right) .
\end{aligned}
$$

Proof of Lemma 8. Suppose $a_{2} \geq e$, then we have

$$
\begin{aligned}
\sum_{n\left(p^{e-1}\right)}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} & =\sum_{n\left(p^{e-1)}\right.}\left(p^{2} n^{2}, p^{e-a_{1}}\right)^{1 / 2} \\
& =\sum_{0 \leq r \leq e-1} \varphi\left(p^{e-1-r}\right)\left(p^{2+2 r}, p^{e-a_{1}}\right)^{1 / 2} \\
& =O\left(e p^{e}\right) .
\end{aligned}
$$

Suppose $a_{2}<e$, then

$$
\begin{aligned}
& \sum_{n\left(p^{e-1}\right)}\left(p^{2} n^{2}+v p^{a_{2}-a_{1}}, p^{e-a_{1}}\right)^{1 / 2} \\
& =\sum_{0 \leq r<\left(a_{2}-a_{1}-2\right) / 2} \varphi\left(p^{e-1-r}\right) p^{1+r}+\sum_{\substack{r=\left(a_{2}-a_{1}-2\right) / 2 \\
m\left(p_{2}-r\right) \\
p \nmid m}} p^{\left(a_{2}-a_{1}\right) / 2} . \\
& \left(m^{2}+v, p^{e-a_{2}}\right)^{1 / 2}+\sum_{\left(a_{2}-a_{1}-2\right) / 2<r \leq e-1} \varphi\left(p^{e-1-r}\right) p^{\left(a_{2}-a_{1}\right) / 2} \\
& =O\left(e p^{e}\right)+\sum_{\substack{r=\left(a_{2} 2 \\
m\left(p_{1}-a_{1}-2 r\right) / 2 \\
p_{p} \neq m\right.}} p^{\left(a_{2}-a_{1}\right) / 2}\left(m^{2}+v, p^{e-a_{2}}\right)^{1 / 2} \\
& =O\left(e p^{e}\right)+p^{\left(a_{2}-a_{1}\right) / 2} O\left(e p^{e-1-r}\right) \text { by Lemma } 7\left(e-1-r>e-a_{2}\right) \\
& =O\left(e p^{e}\right)=O\left(p^{e(1+\varepsilon)}\right) \text {. }
\end{aligned}
$$

(3) Suppose that P is of type (ii).

If $a \geq e$, then $\subseteq\left(P, 2^{e}\right)=O\left(2^{3 / 2}\right)$ follows as in case of (1).
Suppose $a<e$. Then we have

$$
\begin{aligned}
\Im\left(P, 2^{e}\right) & =\sum_{x \in S\left(2^{e}\right)}\left(2^{a}\left(\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right)[x], 2^{e}\right)^{1 / 2} \\
& =2^{a / 2} \sum_{\substack{x_{1} x_{2} \\
x_{2} \in S\left(2^{e}\right)}}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}, 2^{e-a}\right)^{1 / 2} \\
& =2^{a / 2} \# S\left(2^{e}\right)=O\left(2^{a / 2+e}\right) .
\end{aligned}
$$

(4) Suppose that P is of type (iii).

Similarly to the above we may suppose $a<e$, then we have

$$
\begin{aligned}
\varsigma\left(P, 2^{e}\right) & =\sum_{\left(\begin{array}{c}
x_{1}, \\
\left.x_{2}\right) \in S\left(2^{e}\right) \\
\end{array}\right.}\left(2^{a} x_{1} x_{2}, 2^{e}\right)^{1 / 2} \\
& =\sum_{n\left(2^{e}\right)}\left(2^{a} n, 2^{e}\right)^{1 / 2}+\sum_{1 \leq t \leq e} \sum_{n\left(2_{2}=t\right)}\left(2^{a+t} n, 2^{e}\right)^{1 / 2} \\
& -\sum_{0 \leq t \leq e} \varphi\left(2^{e-t}\right)\left(2^{a+t}, 2^{e}\right)^{1 / 2}+\sum_{1 \leq t \leq e-1} 2^{e-t-1}\left(2^{a+t}, 2^{e}\right)^{1 / 2}+\left(2^{a+e}, 2^{e}\right)^{1 / 2} \\
& =O\left(e 2^{a / 2+e}\right) .
\end{aligned}
$$

Thus we have completed a proof of Proposition 2.
§ 2.
In this section we give a formal Fourier expansion of Poincaré series
[1]. Let k be an even integer ≥ 6, and $Q \in \Lambda^{*}, Q>0$. We set

$$
j(M, Z)=|C Z+D| \text { for } M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma=S p_{2}(Z), Z \in H
$$

and

$$
\Gamma_{1}(\infty)=\left\{\left.\left(\begin{array}{cc}
1_{2} & S \\
0 & 1_{2}
\end{array}\right) \right\rvert\, S \in \Lambda\right\} \subset \Gamma
$$

We define Poincaré series $g(Z, Q)$ by

$$
\sum_{M \in r_{1(\infty)} \mid \Gamma} e(\operatorname{tr} Q M\langle Z\rangle) j\left((M, Z)^{-k}, \quad Z \in H .\right.
$$

It is known ([1], [4]) that any cusp form is a linear combination of Poincaré series. Hence we have only to prove our theorem for Poincaré series. Let \mathfrak{G} be a complete system of representatives of $\Gamma_{1}(\infty) \backslash \Gamma / \Gamma_{1}(\infty), \theta(M)=$ $\left\{S \in \Lambda \left\lvert\, M\left(\begin{array}{ll}1_{2} & S \\ & 1_{2}\end{array}\right) M^{-1} \in \Gamma_{1}(\infty)\right.\right\}$ for $M \in \Gamma$.

Lemma 1. $\quad \Gamma_{1}(\infty) M \Gamma_{1}(\infty)=\underset{s \in \Lambda / \theta(M)}{\bigcup} \Gamma_{1}(\infty) M\left(\begin{array}{cc}1_{2} & S \\ & 1_{2}\end{array}\right)$ (disjoint $)$.
Proof. It is obvious.
Thus we have

$$
g(Z, Q)=\sum_{M \in \mapsto} \sum_{S \in A / \mathcal{O} M} e(\operatorname{tr} Q \cdot M\langle Z+S\rangle) j(M, Z+S)^{-k} .
$$

Setting

$$
\begin{aligned}
H(M, Z) & =\sum_{S \in \Lambda / \theta(M)} e(\operatorname{tr} Q \cdot M\langle Z+S\rangle) j(M, Z+S)^{-k} \\
& =\sum_{A \in \ni \geq \geq 0} h(M, T) e(\operatorname{tr} T Z),
\end{aligned}
$$

we have

$$
h(M, T)=\int_{X_{\bmod 1}} H(M, Z) e(-\operatorname{tr} T Z) d X,
$$

where $X=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{2} & x_{4}\end{array}\right)$ is the real part of Z and $d X=d x_{1} d x_{2} d x_{4}$. If we set $g(Z, Q)=\sum_{1 \in P T>0} a(T) e(\operatorname{tr} T Z)$, then we have

$$
a(T)=\sum_{x \in \in \mathfrak{H}} h(M, T) \quad \text { for } 0<T \in \Lambda^{*} .
$$

Now we determine $\mathfrak{h}, \theta(M)$ explicitly.
Lemma 2. $\quad M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathfrak{G}$ is parametrized by C and $D \bmod C A$.
Proof. For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ and $S_{1}, S_{2} \in \Lambda$, we have

$$
\left(\begin{array}{ll}
1_{2} & S_{1} \\
& 1_{2}
\end{array}\right) M\left(\begin{array}{cc}
1_{2} & S_{2} \\
& 1_{2}
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
C & C S_{2}+D
\end{array}\right) .
$$

This implies immediately Lemma 2.
Lemma 3. As $\left\{\left.M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathfrak{G} \right\rvert\, C=0\right\}$ we can choose $\left\{\left.\left(\begin{array}{cc}{ }^{t} U & \\ & U^{-1}\end{array}\right) \right\rvert\, U \in\right.$ $G L(2, Z)\}$ and $\theta(M)=\Lambda$.

Proof. It is trivial.
Lemma 4. As $\left\{\left.M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathfrak{G} \right\rvert\,\right.$ rk $\left.C=1\right\}$ we can choose

$$
\left\{\begin{aligned}
M= & \left(\begin{array}{cc}
* \\
U^{-1}\left(\begin{array}{cc}
c_{1} & 0 \\
0 & 0
\end{array}\right)^{t} V & U^{-1}\left(\begin{array}{cc}
d_{1} & d_{2} \\
0 & d_{4}
\end{array}\right) V^{-1}
\end{array}\right) \in \Gamma \\
& \left.\begin{array}{l}
U \in\left\{\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \in G L(2, Z)\right\} \backslash G L(2, Z), \quad V \in G L(2, Z) /\left\{\left(\begin{array}{cc}
1 & * \\
0 & *
\end{array}\right) \in G L(2, Z)\right\} \\
c_{1} \geq 1, d_{4}= \pm 1,\left(c_{1}, d_{1}\right)=1, \quad d_{1}, d_{2} \bmod c_{1}
\end{array}\right\}
\end{aligned}\right.
$$

and $\theta(M)=\left\{S \in \Lambda \left\lvert\, S[V]=\left(\begin{array}{cc}0 & 0 \\ 0 & *\end{array}\right)\right.\right\}$ for the above specialized M.
Proof. Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with $\mathrm{rk} C=1$. Set $C=U^{-1}\left(\begin{array}{ll}c_{1} & 0 \\ 0 & 0\end{array}\right)^{t} V, U, V \in$ $G L(2, Z), c_{1} \geq 1$. We can take $U \in\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \in G L(2, Z)\right\} \backslash G L(2, Z)$ and $V \in$ $G L(2, Z) /\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right) \in G L(2, Z)\right\} \operatorname{since}\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)\left(\begin{array}{ll}c_{1} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ * & *\end{array}\right)= \pm\left(\begin{array}{cc}c_{1} & 0 \\ 0 & 0\end{array}\right)$. Set $D=$ $U^{-1}\left(\begin{array}{ll}d_{1} & d_{2} \\ d_{3} & d_{4}\end{array}\right) V^{-1}$. Since $C^{t} D$ is symmetric, we have $d_{3}=0$. The primitiveness of (C, D) implies that $\left(\begin{array}{cccc}c_{1} & 0 & d_{1} & d_{2} \\ 0 & 0 & 0 & d_{4}\end{array}\right)$ is primitive. Hence $d_{4}= \pm 1$, and $\left(c_{1}, d_{1}\right)=1$ hold. $D \bmod C A$ is equivalent to $d_{1}, d_{2} \bmod c_{1}$ since

$$
C \Lambda=U^{-1}\left(\begin{array}{cc}
c_{1} & 0 \\
0 & 0
\end{array}\right)^{\iota} V \Lambda=U^{-1}\left(\begin{array}{cc}
c_{1} & 0 \\
0 & 0
\end{array}\right) \Lambda V^{-1}=U^{-1}\left\{\left(\begin{array}{cc}
c_{1} s_{1} & c_{1} s_{2} \\
0 & 0
\end{array}\right) s_{i} \in Z\right\} V^{-1}
$$

From $M^{-1}=\left(\begin{array}{rr}{ }^{t} D & -{ }^{t} B \\ -{ }^{t} C & { }^{t} A\end{array}\right)$ follows $M\left(\begin{array}{ll}1_{2} S \\ 0 & 1_{2}\end{array}\right) M^{-1}=\left(\begin{array}{c}* \\ -C S^{t} C \\ 1+{ }^{*} S^{t} A\end{array}\right)$. Thus $\theta(M) \ni S$ is equivalent to $C S\left(-{ }^{t} C,{ }^{t} A\right)=0$ and so $C S=0$. Since $C S=0$ means $\left(\begin{array}{cc}c_{1} & 0 \\ 0 & 0\end{array}\right) S[V]=0$, we have completed a proof of Lemma 4 except the uniqueness of U, V, c_{1}, d_{i}.
Suppose $C=U_{1}^{-1}\left(\begin{array}{cc}c_{1} & 0 \\ 0 & 0\end{array}\right)^{t} V_{1}=U_{2}^{-1}\left(\begin{array}{cc}c_{1}^{\prime} & 0 \\ 0 & 0\end{array}\right)^{t} V_{2}, D=U_{1}^{-1}\left(\begin{array}{cc}d_{1} & d_{2} \\ & d_{4}\end{array}\right) V_{1}^{-1}=U_{2}^{-1}\left(\begin{array}{ll}d_{1}^{\prime} & d_{2}^{\prime} \\ & d_{4}^{\prime}\end{array}\right) V_{2}^{-1}$ where U_{i}, V_{i}, \cdots are supposed to be representatives. Comparing elementary divisors of C, we have $c_{1}=c_{1}^{\prime}$. Set $U=U_{2} U_{1}^{-1},{ }^{t} V={ }^{t} V_{2}{ }^{t} V_{1}^{-1}$, then $U\left(\begin{array}{ll}c_{1} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}c_{1} & 0 \\ 0 & 0\end{array}\right)^{t} V$ holds and this implies $U=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$ and hence $U_{1}=U_{2}$, $U=1_{2} . \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)^{t} V$ implies $V=\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)$ and then $V_{1}=V_{2}$. Thus $d_{i}=d_{i}^{\prime}$ holds.

Lemma 5. As $\left\{\left.M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathfrak{h} \| C \right\rvert\, \neq 0\right\}$ we can choose

$$
\left\{\left.\left(\begin{array}{ll}
* & * \\
C & D
\end{array}\right) \in \Gamma \| C \right\rvert\, \neq 0, D \bmod C \Lambda\right\}
$$

and $\theta(M)=\{0\}$.
Proof. The former follows from Lemma 2. The latter follows from

$$
M\left(\begin{array}{ll}
1_{2} & S \\
& 1_{2}
\end{array}\right) M^{-1}=\left(\begin{array}{cc}
* & * \\
-C S^{t} C & *
\end{array}\right) \text { for } M=\left(\begin{array}{ll}
* & * \\
C & *
\end{array}\right)
$$

§ 3.
Hereafter we fix $0<Q, T \in \Lambda^{*}$, and we assume that T is Minkowskireduced without loss of generality since $a(T)=a(T[U])$ for $U \in G L(2, Z)$ $(a(T)$ is a Fourier coefficient of $g(Z, Q))$. In this section we estimate

First, suppose $M=\left(\begin{array}{cc}{ }^{t} U & \\ & U^{-1}\end{array}\right), U \in G L(2, Z)$, then we have

$$
H(M, Z)=e(\operatorname{tr} Q \cdot M\langle Z\rangle)=e\left(\operatorname{tr} Q\left[{ }^{t} U\right] Z\right)
$$

by Lemma 3 in Section 2. This yields $\sum_{\substack{\left.\sum_{*}^{*} \begin{array}{c}* \\ 0\end{array}\right) \in \xi}} h(M, T)=O(1)$. Next we consider the case of $\mathrm{rk} C=1$.

Lemma 1. Let $M=\left(\begin{array}{cc}* & * \\ U^{-1}\left(\begin{array}{cc}c_{1} & 0 \\ 0 & 0\end{array}\right)^{t} V & U^{-1}\left(\begin{array}{cc}d_{1} & d_{2} \\ 0 & d_{4}\end{array}\right) V^{-1}\end{array}\right) \in \Gamma$, where $U, V \in$ $G L(2, Z), d_{4}= \pm 1, c_{1}>0$.

Set $P=\left(\begin{array}{cc}p_{1} & p_{2} / 2 \\ p_{2} / 2 & p_{4}\end{array}\right)=Q\left[{ }^{t} U\right], S=\left(\begin{array}{cc}s_{1} & s_{2} / 2 \\ s_{2} / 2 & s_{4}\end{array}\right)=T\left[^{t} V^{-1}\right]$ and a_{1} denotes an integer such that $a_{1} d_{1} \equiv 1 \bmod c_{1}$. Then we have

$$
\begin{aligned}
h(M, T)= & \left.(-1)^{k / 2} \sqrt{2} \pi\left|Q Q^{3 / 4-k / 2} \delta_{p_{4}, s}\right| T\right|^{k / 2-3 / 4} s_{4}^{-1 / 2} c_{1}^{-3 / 2} \\
& \times e\left(\left\{a_{1} s_{4} d_{2}^{2}-\left(a_{1} d_{4} p_{2}-s_{2}\right) d_{2}\right\} / c_{1}+\left(a_{1} p_{1}+d_{1} s_{1}\right) / c_{1}-d_{4} p_{2} s_{2} /\left(2 c_{1} s_{4}\right)\right) \\
& \times J_{k-3 / 2}\left(4 \pi \sqrt{\left.|T \| Q| / c_{1} s_{4}\right),}\right.
\end{aligned}
$$

where δ is the Kronecker's delta function and J is the ordinary Bessel function.

Proof. At first, we suppose $M=\left(\begin{array}{ll}{ }^{t} U & \\ & U^{-1}\end{array}\right) M_{0}\left(\begin{array}{ll} & \\ & \\ & V^{-1}\end{array}\right)$, where $M_{0}=$ $\left(\begin{array}{llll}a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, ad $-b c=1, c>0$. Then $h(M, T)$ equals

$$
\begin{array}{rl}
\int_{X \bmod 1} & H(M, Z) e(-\operatorname{tr} T Z) d X \\
= & \int_{X \bmod 1} \sum_{S \in A / \theta(M)} e(\operatorname{tr} Q \cdot M\langle Z+S\rangle) j(M, Z+S)^{-k} e(-\operatorname{tr} T Z) d X \\
= & \int_{X \bmod 1} \sum_{S \in A / \theta(M)} e\left(\operatorname{tr} Q\left[{ }^{t} U\right] \cdot M_{0}\langle Z[V]+S[V]\rangle\right) j\left(M_{0}, Z[V]+S[V]\right)^{-k} \\
& \quad \times e(-\operatorname{tr} T Z) d X .
\end{array}
$$

Setting $W=X+i \operatorname{Im} Z[V], X=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{2} & x_{4}\end{array}\right)$, we have by virtue of Lemma 4 in Section 2,

$$
h(M, T)=\int_{\substack{x_{1}, x_{2} \in R \\ x_{4} \bmod 1}} e\left(\operatorname{tr} Q\left[{ }^{t} U\right] \cdot M_{0}\langle W\rangle\right) j\left(M_{0}, W\right)^{-k} e\left(-\operatorname{tr} T\left[{ }^{t} V^{-1}\right] W\right) d X
$$

Since $M_{0}\langle W\rangle=\left(\begin{array}{cc}\left(a w_{1}+b\right)\left(c w_{1}+d\right)^{-1} & * \\ w_{2}\left(c w_{1}+d\right)^{-1} & -\left(c w_{1}+d\right)^{-1} c w_{2}^{2}+w_{4}\end{array}\right), j\left(M_{0}, W\right)$ $=c w_{1}+d$ where $W=\left(\begin{array}{ll}w_{1} & w_{2} \\ w_{2} & w_{4}\end{array}\right)$, we have

$$
\begin{aligned}
h(M, T)= & \int_{\substack{x_{1}, x_{0} \in R \\
x_{\mathrm{m} \text { od } 1}}} e\left(p_{1}\left\{a / c-c^{-2}\left(w_{1}+c^{-1} d\right)^{-1}\right\}+p_{2} w_{2} c^{-1}\left(w_{1}+c^{-1} d\right)^{-1}+p_{4} w_{4}\right. \\
& \left.-p_{4}\left(w_{1}+c^{-1} d\right)^{-1} w_{2}^{2}-s_{1} w_{1}-s_{2} w_{2}-s_{2} w_{4}\right)\left(c w_{1}+d\right)^{-k} d x_{1} d x_{2} d x_{4} \\
= & \delta_{p_{4}, s_{4}} e\left(p_{1} a / c\right) \int_{x_{1} \in R} e\left(-p_{1} c^{-2}\left(w_{1}+c^{-1} d\right)^{-1}-s_{1} w_{1}\right)\left(c w_{1}+d\right)^{-k} d x_{1} \\
& \times \int_{x_{2} \in R} e\left(-p_{4}\left(w_{1}+c^{-1} d\right)^{-1} w_{2}^{2}+\left\{p_{2} c^{-1}\left(w_{1}+c^{-1} d\right)^{-1}-s_{2}\right\} w_{2}\right) d x_{2} .
\end{aligned}
$$

Since we know

$$
\int_{x_{2} \in R} e\left(\alpha w_{2}^{2}+\beta w_{2}\right) d x_{2}=e\left(-\beta^{2} / 4 \alpha\right) \sqrt{2}^{-1} \sqrt{i / \alpha} \text { for } \alpha, \beta \in \boldsymbol{C}(\operatorname{Im} \alpha>0)
$$

setting $\alpha=-p_{4}\left(w_{1}+c^{-1} d\right)^{-1}, \beta=p_{2} c^{-1}\left(w_{1}+c^{-1} d\right)^{-1}-s_{2}$, we have

$$
\begin{aligned}
h(M, T)= & \sqrt{2}^{-1} \delta_{p_{4}, s_{4}} s_{4}^{-1 / 2} c^{-k} e\left(-s_{2} p_{2} /\left(2 c s_{4}\right)\right) e\left(\left(p_{1} a+s_{1} d\right) / c\right)(-1)^{k / 2} \\
& \times \int_{x_{1} \in R} e\left(-s_{4}^{-1}|T| w_{1}-s_{4}^{-1} c^{-2}|Q| w_{1}^{-1}\right)\left(w_{1} / i\right)^{-k+1 / 2} d x_{1} .
\end{aligned}
$$

It is easy to see

$$
\begin{array}{r}
\int_{x_{1} \in \boldsymbol{R}} e\left(-a w_{1}-b w_{1}^{-1}\right)\left(w_{1} / i\right)^{-k+1 / 2} d x_{1}=2 \pi(b / a)^{3 / 4-k / 2} J_{k-3 / 2}(4 \pi \sqrt{a b}) \\
\text { for } a, b>0 .
\end{array}
$$

Thus we have

$$
\begin{aligned}
h(M, T)= & \sqrt{2} \pi|Q|^{3 / 4-k / 2} \delta_{p_{4}, s_{4}}|T|^{k / 2-3 / 4} s_{4}^{-1 / 2} c^{-3 / 2} e\left(-p_{2} s_{2} /\left(2 c s_{4}\right)\right)(-1)^{k / 2} \\
& \times e\left(\left(p_{1} a+s_{1} d\right) / c\right) J_{k-3 / 2}\left(4 \pi \sqrt{\mid T \| Q} / / c s_{4}\right) .
\end{aligned}
$$

Now we come back to the general case.
Let $C=U^{-1}\left(\begin{array}{ll}c_{1} & 0 \\ 0 & 0\end{array}\right)^{t} V, D=U^{-1}\left(\begin{array}{ll}d_{1} & d_{2} \\ & d_{4}\end{array}\right) V^{-1} . \quad$ Then $C=\left(\left(\begin{array}{cc}1 & -d_{2} d_{4} \\ & d_{4}\end{array}\right) U\right)^{-1}$ $\times\left(\begin{array}{cc}c_{1} & 0 \\ 0 & 0\end{array}\right)^{t} V, D=\left(\left(\begin{array}{cc}1 & -d_{2} d_{4} \\ & d_{4}\end{array}\right) U\right)^{-1}\left(\begin{array}{cc}d_{1} & 0 \\ 0 & 1\end{array}\right) V^{-1}$ hold. If we set $P=\left(\begin{array}{cc}p_{1} & p_{2} / 2 \\ p_{2} / 2 & p_{4}\end{array}\right)$ $=Q\left[{ }^{t} U\right], S=\left(\begin{array}{cc}s_{1} & s_{2} / 2 \\ s_{2} / 2 & s_{4}\end{array}\right)=T\left[{ }^{t} V^{-1}\right]$ as in the statement of Lemma 1 , then we have $Q\left[\left(\left(\begin{array}{cc}1 & -d_{2} d_{4} \\ & d_{4}\end{array}\right) U\right)\right]=\left(\begin{array}{cc}p_{1}-p_{2} d_{2} d_{4}+p_{4} d_{2}^{2} & * \\ p_{2} d_{4} / 2-p_{4} d_{2} & p_{4}\end{array}\right)$.

Applying the former, we have

$$
\begin{aligned}
h(M, T)= & \sqrt{2} \pi|Q|^{3 / 4-k / 2} \delta_{p_{4}, s_{4}}|T|^{\mid / 2-3 / 4} s_{4}^{-1 / 2} c_{1}^{-3 / 2}(-1)^{k / 2} \\
& \left.\times e\left(-\left(p_{2} d_{4}-2 p_{4} d_{2}\right) s_{2} / 2 c_{1} s_{4}\right) e\left(\left(p_{1}-p_{2} d_{2} d_{4}+p_{4} d_{2}^{2}\right) a_{1}+s_{1} d_{1}\right) / c_{1}\right) \\
& \times J_{k-3 / 2}\left(4 \pi \sqrt{\left.|T||Q| / c_{1} s_{4}\right)}\right. \\
= & (-1)^{k / 2} \sqrt{2} \pi|Q|^{3 / 4-k / 2} \delta_{p_{4}, s_{4}}|T|^{\mid k / 2-3 / 4} s_{4}^{-1 / 2} c_{1}^{-3 / 2} \\
& \times\left\{e\left(\left\{a_{1} s_{4} d_{2}^{2}-\left(a_{1} d_{4} p_{2}-s_{2}\right) d_{2}\right\} / c_{1}+\left(a_{1} p_{1}+d_{1} s_{1}\right) / c_{1}-d_{4} p_{2} s_{2} / 2 c_{1} s_{4}\right)\right. \\
& \times J_{k-3 / 2}\left(4 \pi \sqrt{|T \| Q|} / c_{1} s_{4}\right) .
\end{aligned}
$$

Hereafter $M \in \mathfrak{h}$ is supposed to be parametrized by $U, V, c_{1}, d_{1}, d_{2}, d_{4}$ as in Lemma 4 of Section 2. From Lemma 1 follows

$$
\left|\sum_{d_{2} \bmod c_{1}} h(M, T)\right| \ll \delta_{p_{4}, s_{4}}|T|^{\mid / 2-3 / 4} s_{4}^{-1 / 2}\left(s_{4}, c_{1}\right)^{1 / 2} c_{1}^{-1} \mid J_{k-3 / 2}\left(4 \pi \sqrt{\left.|T||Q| / c_{1} s_{4}\right) \mid, ~}\right.
$$

since $\sum_{n \bmod c} e\left(\left(a n^{2}+b n\right) / c\right)=O\left((a, c)^{1 / 2} c^{1 / 2}\right)$.
Since U is parametrized by the second row up to sign, we have

$$
\begin{aligned}
& \sum_{\substack { U \\
\begin{subarray}{c}{d_{1}, d_{1}, c_{1}, c_{1} \\
\text { and } \\
d_{4}= \pm 1{ U \\
\begin{subarray} { c } { d _ { 1 } , d _ { 1 } , c _ { 1 } , c _ { 1 } \\
\text { and } \\
d _ { 4 } = \pm 1 } }\end{subarray}}\left|\sum_{d_{2} \text { mod } c_{1}} h(M, T)\right| \ll \sum_{u=\left(\begin{array}{l}
u_{4}^{3}
\end{array}\right)} \delta_{Q[u], s_{4}}|T|^{k / 2-3 / 4} s_{4}^{-1 / 2}\left(s_{4}, c_{1}\right)^{1 / 2} \\
& \quad \times \mid J_{k-3 / 2}\left(4 \pi \sqrt{\left.|T||Q| / c_{1} s_{4}\right) \mid,}\right.
\end{aligned}
$$

where we set $U=\left(\begin{array}{cc}* & * \\ u_{3} & u_{4}\end{array}\right)$,

$$
\ll|T|^{k / 2-3 / 4} s_{4}^{-1 / 2+8}\left(s_{4}, c_{1}\right)^{1 / 2} \mid J_{k-3 / 2}\left(4 \pi \sqrt{\left.|T||Q| / c_{1} s_{4}\right) \mid, ~}\right.
$$

since the number of solutions u to $Q[u]=s_{4}$ is $O\left(s_{4}^{\varepsilon}\right) . \quad V$ is parametrized by the first column and $s_{4}=T\left[\begin{array}{c}-v_{3} \\ v_{1}\end{array}\right]$ for $V=\left(\begin{array}{ll}v_{1} & v_{2} \\ v_{3} & v_{4}\end{array}\right)$. Thus we have

$$
\begin{aligned}
& \sum_{U, V} \sum_{\substack{d_{1} \bmod c_{1} \\
d_{1}, c_{1}=1 \\
d_{4}= \pm 1}}\left|\sum_{d_{2} \bmod c_{1}} h(M, T)\right| \\
& \ll|T|^{k / 2-3 / 4} \sum_{m=1}^{\infty} A(m, T) m^{-1 / 2+\varepsilon}\left(m, c_{1}\right)^{1 / 2}\left|J_{k-3 / 2}\left(4 \pi \sqrt{|T \| Q|} / c_{1} m\right)\right|,
\end{aligned}
$$

where $A(m, T)=\#\left\{\left.\binom{v_{1}}{v_{2}} \right\rvert\,\left(v_{1}, v_{2}\right)=1, T\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=m\right\}$.
We prepare the following
Lemma 2. Let t, m be natural numbers. Then

$$
\begin{aligned}
& \sum_{1 \leq c \leq t / m}(m, c)^{1 / 2} c^{1 / 2}=O\left(t^{3 / 2} m^{-3 / 2+\varepsilon}\right) \\
& \sum_{c>t / m}(m, c)^{1 / 2} c^{3 / 2-k}=O\left(t^{5 / 2-k} m^{k-5 / 2+\varepsilon}\right)
\end{aligned}
$$

and $J_{k-3 / 2}(x)=O\left(\min \left(x^{k-3 / 2}, 1 / \sqrt{x}\right)\right)$ for $x>0$.
Proof.

$$
\begin{aligned}
& \sum_{1 \leq c \leq t / m}(m, c)^{1 / 2} c^{1 / 2} \ll \sum_{r \mid m} \sum_{s \leq t / m r} r^{1 / 2}(s r)^{1 / 2} \\
& \quad=\sum_{r \mid m} r \sum_{s \leq t / m r} s^{1 / 2} \ll \sum_{r \mid m} r(t / m r)^{3 / 2} \ll(t / m)^{3 / 2} \sum_{r \mid m} r^{-1 / 2}=O\left((t / m)^{3 / 2} m^{\varepsilon}\right) . \\
& \sum_{c>t / m}(m, c)^{1 / 2} c^{3 / 2-k} \ll \sum_{r \mid m} \sum_{s>t / m r} r^{1 / 2}(r s)^{3 / 2-k} \\
& \quad=\sum_{r \mid m} r^{2-k} \sum_{s>t / m r} s^{3 / 2-k} \ll \sum_{r \mid m} r^{2-k}(t / m r)^{5 / 2-k} \ll(t / m)^{5 / 2-k} \sum_{r \mid m} r^{-1 / 2} \\
& \quad=O\left((t / m)^{5 / 2-k} m^{\varepsilon}\right) .
\end{aligned}
$$

The estimates for the Bessel function is well known.
From Lemma 2 follows

$$
\begin{aligned}
\sum_{c_{1} \geqq 1} & \left(m, c_{1}\right)^{1 / 2}\left|J_{k-3 / 2}\left(4 \pi \sqrt{|T||Q|} / c_{1} m\right)\right| \\
& \ll \sum_{c_{1}<\sqrt{|T| / m}}\left(m, c_{1}\right)^{1 / 2}\left(c_{1} m / \sqrt{|T|}\right)^{1 / 2}+\sum_{c_{1}>\sqrt{|T| / m}}\left(m, c_{1}\right)^{1 / 2}\left(\sqrt{\left.|T| \mid c c_{1} m\right)^{k-3 / 2}}\right. \\
& \ll\left(m / \sqrt{|T|^{1 / 2}|T|^{3 / 4}} m^{-3 / 2+\varepsilon}+(\sqrt{|T| / m})^{k-3 / 2}|T|^{\mid / 4-k / 2} m^{k-5 / 2+\varepsilon}\right. \\
& <|T|^{1 / 2} m^{-1+\varepsilon} .
\end{aligned}
$$

Thus we have $\left.\sum_{\substack{M \in \underline{G} \\ \mathrm{rk} C=1}} h(M, T)|\ll| T\right|^{k / 2-1 / 4} \sum_{m=1}^{\infty} A(m, T) m^{-3 / 2+2 \varepsilon}$. We assumed that T is Minkowski-reduced, then $T \gg m(T) 1_{2}$ holds where $m(T)=$ $\min _{0 \neq u \in Z^{2}} T[u]$. Hence we have

$$
\begin{aligned}
\sum_{m=1}^{\infty} A(m, T) m^{-3 / 2+2 \varepsilon} & \leqq \sum_{\substack{0 \neq u \in \mathbb{Z}^{2}}} T[u]^{-3 / 2+2 \varepsilon} \ll m(T)^{-3 / 2+2 \varepsilon} \sum_{\substack{\left(u_{1}, u_{2}\right) \in \mathbb{Z} \\
\left(u_{1}, u_{2}\right) \neq(0,0)}}\left(u_{1}^{2}+u_{2}^{2}\right)^{-3 / 2+2 \varepsilon} \\
& \ll m(T)^{-3 / 2+2 \varepsilon}=O(1) .
\end{aligned}
$$

Hence we have

$$
\left|\sum_{\substack{M \in জ \\ \mathrm{rk} G=1}} h(M, T)\right|=O\left(|T|^{\mid / 2-1 / 4}\right) .
$$

$\S 4$.

In this section we estimate $\sum_{\substack{M \in 9 \\|C| \neq 0}} h(M, T)$.
Lemma 1. Set $P(n)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, Z) \right\rvert\, b \equiv 0 \bmod n\right\}$. Then

$$
\left\{C \in M_{2}(Z) \| C \mid \neq 0\right\}= \begin{cases}\left.U^{-1}\left(\begin{array}{cc}
c_{1} & \\
& c_{2}
\end{array}\right) V^{-1} \left\lvert\, \begin{array}{l}
U \in G L(2, Z), V \in G L(2, Z) / P\left(c_{2} / c_{1}\right), \\
0<c_{1} \mid c_{2}
\end{array}\right.\right\}, ~ .\end{cases}
$$

and $G L(2, Z) / P\left(c_{2} / c_{1}\right)$ corresponds bijectively to $S\left(c_{2} / c_{1}\right)$ in Section 1 , by the mapping $V \mapsto$ the second column of V.

Proof. Set $V=\left(\begin{array}{ll}v_{1} & v_{2} \\ v_{3} & v_{4}\end{array}\right) \in G L(2, Z)$. Then

$$
\left(\begin{array}{cc}
c_{1} & \\
& c_{2}
\end{array}\right) V^{-1}=|V|\left(\begin{array}{cc}
v_{4} & -v_{2} c_{1} / c_{2} \\
-v_{3} c_{2} / c_{1} & v_{1}
\end{array}\right)\left(\begin{array}{cc}
c_{1} & \\
& c_{2}
\end{array}\right)
$$

holds, and so $\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right) V^{-1} \in G L(2, Z)\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right)$ if and only if $V \in P\left(c_{2} / c_{1}\right)$. Suppose that $C=U_{1}^{-1}\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right) V_{1}^{-1}=U_{2}^{-1}\left(\begin{array}{cc}c_{1}^{\prime} & c_{2}^{\prime}\end{array}\right) V_{2}^{-1}, U_{i}, V_{i} \in G L(2, Z), 0<c_{1} \mid c_{2}$, $0<c_{1}^{\prime} \mid c_{2}^{\prime}$ and that V_{1}, V_{2} are representatives in $G L(2, Z) / P\left(c_{2} / c_{1}\right)$. Comparing elementrary divisors, we have

$$
c_{i}=c_{i}^{\prime}(i=1,2) \quad \text { and } \quad U_{2} U_{1}^{-1}\left(\begin{array}{ll}
1 & \\
& c_{2} / c_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & \\
& c_{2} / c_{1}
\end{array}\right) V_{2}^{-1} V_{1} .
$$

This implies $V_{2}^{-1} V_{1} \in P\left(C_{2} / C_{1}\right)$. Hence $V_{1}=V_{2}$ and so $U_{1}=U_{2}$ hold. The second assertion is obvious.

Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right),|C| \neq 0$. By Lemma 5 in Section 2 we have

$$
\begin{aligned}
h(M, T)= & \int_{X \bmod 1} H(M, Z) e(-\operatorname{tr} T Z) d X \\
= & \int_{X \bmod 1} \sum_{S \in A} e(\operatorname{tr} Q \cdot M\langle Z+S\rangle) j(M, Z+S)^{-k} e(-\operatorname{tr} T Z) d X \\
= & |C|^{-k} e\left(\operatorname{tr}\left(Q A C^{-1}+T C^{-1} D\right)\right) \\
& \times \int_{X \bmod 1} \sum_{S \in A} e\left(-\operatorname{tr}\left\{Q^{t} C^{-1}\left(Z+S+C^{-1} D\right)^{-1} C^{-1}\right.\right. \\
& \left.\left.+T\left(Z+C^{-1} D\right)\right\}\right)\left|Z+S+C^{-1} D\right|^{-k} d X
\end{aligned}
$$

$$
\text { (since } \begin{aligned}
M\langle Z\rangle= & \left.A C^{-1}-{ }^{t} C^{-1}\left(Z+C^{-1} D\right)^{-1} C^{-1}\right) \\
= & |C|^{-k} e\left(\operatorname{tr}\left(Q A C^{-1}+T C^{-1} D\right)\right) \\
& \times \int_{X} e\left(-\operatorname{tr}\left(Q\left[^{t} C^{-1}\right] Z^{-1}+T Z\right)\right)|Z|^{-k} d X
\end{aligned}
$$

For positive definite matrices $P, S \in G L(2, R)$ we set

$$
J(P, S)=\int_{X} e\left(-\operatorname{tr}\left(P Z^{-1}+S Z\right)\right)|Z|^{-k} d X
$$

Then it is known ([1]) that

$$
\begin{aligned}
& J(P, S) \text { does not depend on } \operatorname{Im} Z, \text { and } \\
& J(P, S)=\|R\|^{3-2 k} J\left(P\left[R^{-1}\right], S\left[{ }^{t} R\right]\right) \text { for } R \in G L(2, R) .
\end{aligned}
$$

For a positive definite matrix P, we denote by \sqrt{P} a matrix A such that $A^{2}=P, A>0$. Then we have, for $P, S>0$,

$$
\begin{aligned}
J(P, S) & =|P|^{3 / 2-k} J\left(1_{2}, S[\sqrt{P}]\right) \\
& \left.\left.=|P|^{3 / 2-k}|S[\sqrt{P}]|^{k / 2-3 / 4} J(\sqrt{S[\sqrt{P}}], \sqrt{S[\sqrt{P}}\right]\right) \\
& =|P|^{3 / 4-k / 2}|S|^{k / 2 / 2 / 4} \tilde{J}(\sqrt{S[\sqrt{P}]})
\end{aligned}
$$

where we set $\tilde{J}(P)=J(P, P)$ for $0<P \in G L(2, R)$.
Since $\tilde{J}(P[F])=\tilde{J}(P)$ for every orthogonal matrix $F \in G L(2, R), \tilde{J}(P)$ is determined by eigen-values of P.

It is easy to see that for $0<S \in G L(2, R)$

$$
\tilde{J}\left((4 \pi)^{-1} S\right)=2(2 \pi)^{-3}\left|2^{-1} S\right|^{k-3 / 2} A_{k-3 / 2}\left(4^{-1} S^{2}\right),
$$

where $A_{\delta}(M)$ is a generalized Bessel function defined in [2], and it is known

$$
A_{k-3 / 2}\left(4^{-1} S^{2}\right)\left|2^{-1} S\right|^{k-3 / 2}=\frac{2}{\pi} \int_{0}^{1} J_{k-3 / 2}\left(s_{1} t\right) J_{k-3 / 2}\left(s_{2} t\right) t\left(1-t^{2}\right)^{-1 / 2} d t
$$

for $S=\left(\begin{array}{ll}s_{1} & \\ & s_{2}\end{array}\right)>0$.
Thus we have, for $s_{1}, s_{2}>0$,

$$
\tilde{J}\left(\left(\begin{array}{ll}
s_{1} & \\
& s_{2}
\end{array}\right)\right)=2^{-1} \pi^{-4} \int_{0}^{1} \prod_{i=1,2} J_{k-3 / 2}\left(4 \pi s_{i} t\right) t\left(1-t^{2}\right)^{-1 / 2} d t
$$

Hence we have, for $M=\left(\begin{array}{ll}* & * \\ C & D\end{array}\right) \in \Gamma,|C| \neq 0$,

$$
\begin{aligned}
h(M, T)= & 2^{-1} \pi^{-4}|Q|^{3 / 4-k / 2}|T|^{k / 2-3 / 4}\|C\|^{-3 / 2} e\left(\operatorname{tr}\left(A C^{-1} Q+C^{-1} D T\right)\right) \\
& \times \int_{0}^{1} \prod_{i=1,2} J_{k-3 / 2}\left(4 \pi s_{i} t\right) t\left(1-t^{2}\right)^{-1 / 2} d t
\end{aligned}
$$

where s_{1}, s_{2} are eigen-values of $\sqrt{T\left[\sqrt{Q\left[{ }^{[} C^{-1}\right]}\right]}$, and so

$$
\begin{aligned}
\sum_{D \bmod C A} h(M, T)= & \kappa|T|^{k / 2-3 / 4}\|C\|^{-3 / 2} K(Q, T ; C) \\
& \times \int_{0}^{1} \prod_{i=1,2} J_{k-3 / 2}\left(4 \pi s_{i} t\right) t\left(1-t^{2}\right)^{-1 / 2} d t
\end{aligned}
$$

where $\kappa=2^{-1} \pi^{-4}|Q|^{3 / 4-k / 2}$ and $K(Q, T ; C)$ is a generalized Kloosterman sum defined in Section 1 and s_{1}, s_{2} are positive numbers such that s_{1}^{2}, s_{2}^{2} are eigen-values of $T \cdot Q\left[{ }^{t} C^{-1}\right]$. Since $T=\left(\begin{array}{cc}t_{1} & * \\ * & t_{2}\end{array}\right)$ is supposed to be Minkowskireduced, we have $T \asymp\binom{t_{1}}{t_{2}}$, that is, there are constants, κ_{1}, κ_{2} such that $T>\kappa_{1}\left(\begin{array}{cc}t_{1} & t_{2}\end{array}\right), T<\kappa_{2}\left(\begin{array}{cc}t_{1} & \\ t_{2}\end{array}\right)$. If $A>0, B \geqq B_{1}>0$, then $\operatorname{tr} A B=\operatorname{tr} \sqrt{A} B \sqrt{A}$ $\geqq \operatorname{tr} \sqrt{A} B_{1} \sqrt{A}=\operatorname{tr} A B_{1}$ holds. Hence we have $\operatorname{tr} T \cdot Q\left[{ }^{t} C^{-1}\right]=\operatorname{tr} T\left[C^{-1}\right] \cdot Q$ $\asymp \operatorname{tr} T\left[C^{-1}\right] \frown \operatorname{tr}\left(\begin{array}{cc}t_{1} & \\ & t_{2}\end{array}\right)\left[C^{-1}\right]$ and $\left|T \cdot Q\left[{ }^{t} C^{-1}\right]\right| \frown\left|\left(\begin{array}{cc}t_{1} & \\ & t_{2}\end{array}\right)\left[C^{-1}\right]\right|$. From these follow $s_{1}^{2} \asymp s_{1}^{\prime}, s_{2}^{2} \asymp s_{2}^{\prime}$ where s_{1}^{\prime}, s_{2}^{\prime} are eigen-values of $\binom{t_{1}}{t_{2}}\left[C^{-1}\right]$. Set $P=$ $T \cdot Q\left[{ }^{t} C^{-1}\right]$, then $\operatorname{tr} P<1$ implies $s_{1}^{2}+s_{2}^{2}<1$ and $s_{1}^{2} \ll 1, s_{2}^{2} \ll 1 . \operatorname{tr} P<2|P|$ implies $\left(s_{1}^{2}+s_{2}^{2}\right) / s_{1}^{2} s_{2}^{2}<2$ and $s_{1}^{2} \gg 1, s_{2}^{2} \gg 1$. If $\operatorname{tr} P \geqq 1$ and $\operatorname{tr} P \geqq 2|P|$, then we have either $s_{1}^{2} \geqq 2 / 3, s_{2}^{2} \leqq 2$ or $s_{1}^{2}<2 / 3, s_{2}^{2}>1 / 3$. Since $J_{k-3 / 2}(x)$ $=O\left(\min \left(x^{k-3 / 2}, 1 / \sqrt{x}\right)\right)$, we have

$$
\left|\int_{0}^{1} \prod_{i=1,2} J_{k-3 / 2}\left(4 \pi s_{i} t\right) t\left(1-t^{2}\right)^{-1 / 2} d t\right| \ll \begin{cases}|P|^{k / 2-3 / 4} & \text { if } \operatorname{tr} P<1 \\ |P|^{-1 / 4} & \text { if } \operatorname{tr} P<2|P| \\ |P|^{k / 2-3 / 4}(\operatorname{tr} P)^{(1-k) / 2} & \text { otherwise }\end{cases}
$$

Thus we have

$$
\begin{aligned}
& \left|\sum_{D \bmod C A} h(M, T)\right| \ll|T|^{\mid k / 2-3 / 4} c_{1}^{1 / 2} c_{2}^{-1+\varepsilon}\left(c_{2}, T[v]^{2 / 2}\right. \\
& \quad \times \begin{cases}|P|^{k / 2-3 / 4} & \text { if } \operatorname{tr} P<1 \\
|P|^{-1 / 4} & \text { if } \operatorname{tr} P<2|P|, \\
|P|^{k / 2-3 / 4}(\operatorname{tr} P)^{(1-k) / 2} & \text { otherwise }\end{cases}
\end{aligned}
$$

where $C=U^{-1}\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right) V^{-1}, \quad U, V \in G L(2, Z), \quad 0<c_{1} \mid c_{2}$ and $P=T \cdot Q\left[{ }^{t} C^{-1}\right]$, and v is the second column of V.

Fix $0<c_{1} \mid c_{2}$ and $V \in G L(2, Z)$ and let v be the second column of V.

We suppose that $A=T\left[V\left(\begin{array}{ll}c_{1} & \\ & c_{2}\end{array}\right)^{-1} U_{1}\right]$ is Minkowski-reduced for $U_{1} \in$ $G L(2, Z)$. Set $C=U^{-1} U_{1}^{-1}\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right) V^{-1}$, then $\left|T \cdot Q\left[{ }^{t} C^{-1}\right]\right|=|Q \| A| \frown|A|$ and $\operatorname{tr}\left(T \cdot Q\left[{ }^{t} C^{-1}\right] \frown \operatorname{tr}\left(T \cdot 1_{2}\left[{ }^{t} C^{-1}\right]\right)=\operatorname{tr} A[U]\right.$. Thus we have

$$
\sum_{U \in G L(2, Z)}\left|\sum_{D \bmod C A} h(M, T)\right| \ll|T|^{k / 2-3 / 4} c_{1}^{1 / 2} c_{2}^{-1+\varepsilon}\left(c_{2}, T[v]\right)^{1 / 2} f(A)
$$

where

$$
\begin{aligned}
& f(A)=\sum_{\substack{U \in \mathcal{A L}(2, Z) \\
\operatorname{tr} A[U]<1}}|A|^{k / 2-3 / 4}+\sum_{\substack{U \in \mathcal{C L}(2, Z) \\
\operatorname{tr} A[U]<1 A \mid}}|A|^{-1 / 4} \\
& +\sum_{\substack{U \in(A U C Z, Z) \\
\text { tr } A[U T) \\
\operatorname{tr~} A[U] \gg|A|}}|A|^{k / 2-3 / 4}(\operatorname{tr} A[U])^{(1-k) / 2} .
\end{aligned}
$$

Lemma 2. Let $A^{(2)}>0$ be Minkowski-reduced. Then we have

$$
f(A) \ll m(A)^{s} \max (1,|A|)^{(3-k) / 2+\varepsilon}|A|^{k / 2-5 / 4-\varepsilon},
$$

where $m(A)=\min _{0 \neq x \in Z^{2}} A[x]$.
Proof. Set $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Since A in Minkowski-reduced, $A \smile\left(\begin{array}{cc}a & \\ & c\end{array}\right)$, $|A| \asymp a c, m(A) \asymp a, a \leqq c$, and we have only to prove Lemma 2 for $H=$ $\left(\begin{array}{cc}a & \\ c\end{array}\right)$ instead of A. First we estimate $\#\{U \in G L(2, Z) \mid \operatorname{tr} H[U] \ll 1\}$. For $U=\left(\begin{array}{ll}u_{1} & u_{2} \\ u_{3} & u_{4}\end{array}\right) \in G L(2, Z)$ and $n \in Z$, it is easy to see

$$
\begin{aligned}
\operatorname{tr} H\left[\left(\begin{array}{cc}
1 & n \\
& 1
\end{array}\right) U\right]= & a\left(u_{3}^{2}+u_{4}^{2}\right)\left\{n+\left(u_{1} u_{3}+u_{2} u_{4}\right)\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}\right\}^{2} \\
& +c\left(u_{3}^{2}+u_{4}^{2}\right)+a\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}
\end{aligned}
$$

Hence $\operatorname{tr} H(U] \ll 1$ implies $c \leqq c\left(u_{3}^{2}+u_{4}^{2}\right) \ll 1$ and $a\left(u_{3}^{2}+u_{4}^{2}\right)\left(n+{ }^{*}\right)^{2} \ll 1$. For relatively prime numbers u_{3}, u_{4}, we fix $U=\left(\begin{array}{ll}* & * \\ u_{3} & u_{4}\end{array}\right), U^{\prime}=\left(\begin{array}{cc}* & * \\ u_{3} & u_{4}\end{array}\right) \epsilon$ $G L(2, Z)$ with $|U|=1,\left|U^{\prime}\right|=-1$. Then any element in $G L(2, Z)$ is uniquely decomposed as $\left(\begin{array}{rl}1 & n \\ & 1\end{array}\right) U$ or $\left(\begin{array}{cc}1 & n \\ & 1\end{array}\right) U^{\prime}$ for $n \in Z$. Thus we have

$$
\begin{aligned}
\#\{U \in G L(2, Z) \mid \operatorname{tr} H[U] & \ll 1\} \ll \sum_{\substack{\left(u_{3}, u_{2}\right)=1 \\
u_{3}^{2}+u_{4}^{2}<c-1}} \#\left\{n \in Z \mid(n+)^{2} \ll a^{-1}\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}\right\} \\
& \ll \sum_{\substack{\left(u_{3}, u_{4}\right)=1 \\
u_{3}^{2}+u_{4}^{2} \ll-1}} a^{-1 / 2}\left(u_{3}^{2}+u_{4}^{2}\right)^{-1 / 2} \\
& \ll \sum_{m \ll c^{-1}} a^{-1 / 2} m^{-1 / 2+\varepsilon} \ll a^{-1 / 2} c^{-1 / 2-\varepsilon}
\end{aligned}
$$

Thus the first sum in $f(A)$ is $O\left(a^{k / 2-5 / 4} c^{k / 2-5 / 4-\varepsilon}\right)$ if $c \ll 1$, or 0 otherwise. From ($a \leqq$) $c \ll 1$ follows

$$
\begin{gathered}
\left.a^{k / 2-5 / 4} c^{k / 2-5 / 4-\varepsilon} m(A)^{\varepsilon} \max (1, \mid A)^{(3-k) / 2+\varepsilon}|A|^{k / 2-5 / 4-\varepsilon}\right)^{-1} \\
\quad \frown \max (1, \mid A)^{(k-3) / 2-\varepsilon} \ll 1 .
\end{gathered}
$$

Next we estimate $\#\{U \in G L(2, Z)|\operatorname{tr} H[U] \ll| H \mid\} . \quad \operatorname{tr} H[U] \ll|H|$ implies $u_{3}^{2}+u_{4}^{2} \ll a,\left(n+{ }^{*}\right)^{2} \ll c\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}$. Similarly to the first sum, we have

$$
\#\{U \in G L(2, Z)|\operatorname{tr} H[U] \ll| H \mid\} \ll \sum_{m \ll} m^{\varepsilon}(c / m)^{1 / 2} \ll c^{1 / 2} a^{1 / 2+\varepsilon}
$$

$u_{3}^{2}+u_{4}^{2} \ll a$ implies $1 \ll a \leq c$. Thus the second sum in $f(A)$ is $O\left(a^{1 / 4+\varepsilon} c^{1 / 4}\right)$ if $1 \ll a$ or 0 otherwise. From $1 \ll a \leqq c$ follows

$$
\begin{gathered}
a^{1 / 4+\varepsilon} c^{1 / 4}\left(m(A)^{\varepsilon} \max (1,|A|)^{(3-k) / 2+\varepsilon}|A|^{/ 2-5 / 4-\varepsilon-\varepsilon}\right)^{-1} \\
\asymp(a c)^{3 / 2-k / 2+\varepsilon} \max (1,|A|)^{(k-3) / 2-\varepsilon} \ll 1 .
\end{gathered}
$$

Lastly we estimate the third sum in $f(A)$. Set

$$
X=\sum_{\substack{U \in G(L 2, Z) \\ \operatorname{tr} A T \\ \operatorname{tr} A[U] \gg|A|}}|A|^{\left.\right|^{k / 2-3 / 4}(\operatorname{tr} A[U])^{(1-k) / 2}}
$$

Then

$$
\begin{aligned}
& X \ll(a c)^{k / 2-3 / 4} \sum_{\substack{U \in G \in(2, Z) \\
\operatorname{tr} H[U] \gg \max (1,|H|)}}(\operatorname{tr} H[U])^{(1-k) / 2} \\
& \ll a^{-1 / 4} c^{k / 2-3 / 4} \sum_{\operatorname{tr} B[U \in \gg \max (a, Z)}^{U-1, c)}(\operatorname{tr} B[U])^{(1-k) / 2},
\end{aligned}
$$

where we set $B=\left(\begin{array}{cc}1 & d\end{array}\right), d=c / a(\geqq 1)$. Hence we have

$$
X \ll a^{-1 / 4} c^{k / 2-3 / 4} \sum_{\left(u_{3}, u_{4}\right)=1}\left(u_{3}^{2}+u_{4}^{2}\right)^{(1-k) / 2} \sum_{u_{1}, u_{2}} \sum_{n} g\left(n, u_{1}, u_{2}, u_{3}, u_{4}\right)^{(1-k) / 2}
$$

where $g\left(n, u_{1}, u_{2}, u_{3}, u_{4}\right)=\left\{n+\left(u_{1} u_{3}+u_{2} u_{4}\right)\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}\right\}^{2}+\left(u_{3}^{2}+u_{4}^{2}\right)^{-2}+d, u_{3}$, u_{4} run over relatively prime integers and for given u_{3}, u_{4} we take integers u_{1}, u_{2} such that $u_{1} u_{4}-u_{2} u_{3}= \pm 1$ and $\left|\left(u_{1} u_{3}+u_{2} u_{4}\right)\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}\right| \leqq 1 / 2$, and n runs over integerr such that $g\left(n, u_{1}, u_{2}, u_{3}, u_{4}\right) \gg \max \left(a^{-1}, c\right)\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}$. ($G L(2, Z)$ is parametrized by $u_{1}, u_{2}, u_{3}, u_{4}$ and n.) It is easy to see

$$
g\left(n, u_{1}, u_{2}, u_{3}, u_{4}\right) \asymp n^{2}+d,
$$

since $\left|\left(u_{1} u_{3}+u_{2} u_{4}\right)\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}\right| \leqq 1 / 2$ and $d \geqq 1$. Hence we have

$$
\left.\begin{array}{rl}
X & \ll a^{-1 / 4} c^{k / 2-3 / 4} \sum_{\left(u_{3}, u_{4}\right)=1}\left(u_{3}^{2}+u_{4}^{2}\right)^{(1-k) / 2} \sum_{u_{1}, u_{2}} \sum_{n} g\left(n, u_{1}, u_{2}, u_{3}, u_{4}\right)^{(1-k) / 2} \\
& \ll a^{-1 / 4} c^{k / 2-3 / 4} \sum_{\left(u_{3}, u_{4}\right)=1}\left(u_{3}^{2}+u_{4}^{2}\right)^{(1-k) / 2} \sum^{(1-k) / 2},
\end{array} n^{2}+d\right)^{(1-k)},
$$

where $n \in Z$ must statisfy $n^{2}+d \gg \max \left(a^{-1}, c\right)\left(u_{3}^{2}+u_{4}^{2}\right)^{-1}$. Hence we have

$$
X \ll a^{-1 / 4} c^{k / 2-3 / 4} \sum_{m \geqq 1} m^{(1-k) / 2+\varepsilon} \sum_{n^{2}+d \gg \max (a-1, c) / m}\left(n^{2}+d\right)^{(1-k) / 2} .
$$

We prove

$$
Y=\sum_{\substack{n \in \dot{Z} \\ n^{2}+d \geqq(>0)}}\left(n^{2}+d\right)^{(1-k) / 2}=O\left(\alpha^{1-k / 2}\right) .
$$

If $d \geqq \alpha$, then

$$
\begin{aligned}
Y= & \sum_{n}(n+d)^{(1-k) / 2} \ll d^{(1-k) / 2}+\sum_{n \geqq 1}\left(n^{2}+d\right)^{(1-k) / 2} \\
& \ll d^{(1-k) / 2}+\int_{0}^{\infty}\left(x^{2}+d\right)^{(1-k) / 2} d x \ll d^{(1-k) / 2}+d^{1-k / 2} \\
& \ll d^{1-k / 2} \leqq \alpha^{1-k / 2} .
\end{aligned}
$$

If $d<\alpha$, then, denoting by m the least positive integer n that satisfies $n^{2}+d \geqq \alpha$, then we have

$$
\begin{aligned}
Y= & 2 \sum_{n \geq m}\left(n^{2}+d\right)^{(1-k) / 2}=2 \sum_{n \geqq 0}\left\{(n+m)^{2}+d\right\}^{(1-k) / 2} \\
& \ll \sum_{n \geqq 0}\left(n^{2}+\alpha\right)^{(1-k) / 2} \ll \alpha^{1-k / 2} .
\end{aligned}
$$

We note $\max \left(a^{-1}, c\right) / \max \left(a, c^{-1}\right)=c / a=d$. Hence we have

$$
\begin{aligned}
X \ll & a^{-1 / 4} c^{k / 2-3 / 4}\left\{\sum_{m \geqq \max (a, c-1)} m^{(1-k) / 2+\varepsilon} d^{1-k / 2}\right. \\
& \left.+\sum_{m<\sum_{\max (a, c-1)}} m^{(1-k) / 2+\varepsilon}\left(\max \left(a^{-1}, c\right) / m\right)^{1-k / 2}\right\} \\
\ll & a^{-1 / 4} c^{k / 2-3 / 4}\left\{\max \left(a, c^{-1}\right)^{(3-k) / 2+\varepsilon} d^{1-k / 2}+\max \left(a^{-1}, c\right)^{1-k / 2} \max \left(a, c^{-1}\right)^{1 / 2+\varepsilon}\right\} \\
\asymp & a^{\varepsilon} \max (1, a c)^{(3-k) / 2+\varepsilon}(a c)^{k / 2-5 / 4-\varepsilon} \\
\asymp & m(A)^{\varepsilon} \max (1, \mid A)^{(3-k) / 2+\varepsilon}|A|^{k / 2-5 / 4-\varepsilon} .
\end{aligned}
$$

Thus we have completed a proof of Lemma 2.
Lemma 2 implies immediately

Lemma 3.

$$
\begin{aligned}
& \left.\sum_{U \in G L(2, Z)}\left|\sum_{D \bmod C A} h(M, T)\right| \ll|T|^{k-2-\varepsilon} m\left(T\left[\begin{array}{ll}
V\left(c_{1}\right. & \\
& c_{2}
\end{array}\right)^{-1}\right]\right)^{\varepsilon} \\
& \quad \times \max \left(1,|T|\left(c_{1} c_{2}\right)^{-2}\right)^{(3-k) / 2+\varepsilon} c_{1}^{3-k+2 \varepsilon} c_{2}^{3 / 2-k+3 \varepsilon}\left(c_{2}, T[\mathrm{l}]\right)^{1 / 2}
\end{aligned}
$$

where $C=U^{-1}\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right) V^{-1}, 0<c_{1} \mid c_{2}$ and v is the second column of V.
Now we can prove our theorem.

$$
\begin{aligned}
& \sum_{c_{1} \mid c_{2}} \sum_{V \in G L(2, Z) / P\left(c_{2} / c_{1}\right)} \sum_{U \in G L(2, Z)}\left|\sum_{D \bmod C A} h(M, T)\right| \ll \sum_{c_{1} \mid c_{2}} \sum_{V \in G L(2, Z) / P\left(c_{2} / c_{1}\right)}|T|^{k-2-\varepsilon} \\
& \quad \times m\left(T \left[V\left(\begin{array}{ll}
c_{1} & \left.\left.c^{-1}\right]\right) \varepsilon \\
\quad c_{2}
\end{array}\right)^{-1} \max \left(1,|T|\left(c_{1} c_{2}\right)^{-2}\right)^{(3-k) / 2+\varepsilon} c_{1}^{3-k+2 \varepsilon} c_{2}^{3 / 2-k+3 \varepsilon}\left(c_{2}, T[v]\right)^{1 / 2}\right.\right. \\
& \quad<|T|^{k-2-\varepsilon / 2} \sum_{c_{1} \mid c_{2}} \sum_{V \in G L(2, Z) / P\left(c_{2} / c_{1}\right)} \max \left(1,|T|\left(c_{1} c_{2}\right)^{-2}\right)^{(3-k) / 2+\varepsilon} \\
& \quad \times c_{1}^{3-k+\varepsilon} c_{2}^{3 / 2-k+2 \varepsilon}\left(c_{2}, T[U]\right)^{1 / 2},
\end{aligned}
$$

where we used $m\left(T\left[V\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right)^{-1}\right]\right) \ll \left\lvert\, T\left[\begin{array}{ll}\left.V\left(\begin{array}{cc}c_{1} & \\ & c_{2}\end{array}\right)^{-1}\right]^{1 / 2},\end{array}\right.\right.$

$$
=\Sigma_{1}+\Sigma_{2}
$$

where $\Sigma_{1}\left(\right.$ resp. $\left.\Sigma_{2}\right)$ is a partial sum such that $\left(c_{1} c_{2}\right)^{2} \geqq|T|\left(\right.$ resp. $\left.\left(c_{1} c_{2}\right)^{2}<|T|\right)$.

Since

$$
\begin{aligned}
& \sum_{n \geqq \alpha} n^{5 / 2-k+3 \varepsilon}(e(T), n)^{1 / 2}<\sum_{r \mid e(T)} \sum_{s \geq \alpha / r}(s r)^{5 / 2-k+3 \varepsilon} r^{1 / 2} \\
& \quad=\sum_{r \mid e(T)} r^{3-k+3 \varepsilon} \sum_{s \geq \alpha / r} s^{5 / 2-k+3 \varepsilon} \ll \sum_{r \mid e(T)} r^{3-k+3 \varepsilon}(\alpha / r)^{7 / 2-k+3 \varepsilon} \\
& \quad=\alpha^{7 / 2-k+3 \varepsilon} \sum_{r \mid e(T)} r^{-1 / 2}=O\left(e(T)^{\varepsilon} \alpha^{7 / 2-k+3 \varepsilon}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
\Sigma_{1} & <|T|^{k-2-\varepsilon / 2} \sum_{c_{1}} c_{1}^{5-2 k+3 \varepsilon} e(T)^{\varepsilon}\left(\sqrt{|T|} / c_{1}^{2}\right)^{7 / 2-k+3 \varepsilon} \\
& =|T|^{k / 2-1 / 4+\varepsilon} e(T)^{\varepsilon} \sum_{c_{1}} c_{1}^{-2-3 \varepsilon}=O\left(|T|^{k / 2-1 / 4+2 \varepsilon}\right)
\end{aligned}
$$

$$
\Sigma_{2} \ll|T|^{k-2-\varepsilon / 2} \sum_{\substack{c_{1} 1 c_{2} \\\left(c_{1} c_{2}\right)<|T|}}|T|^{(3-k) / 2+\varepsilon} c_{1}^{-\varepsilon} c_{2}^{-3 / 2} \sum_{V \in G L(2, Z) / P\left(c_{2} / c_{1}\right)}\left(c_{2}, T[v]\right)^{1 / 2}
$$

$$
\ll|T|^{k / 2-1 / 2+\varepsilon / 2} \sum_{\substack{c_{1}, c_{2} \\\left(c_{1} c_{2}\right)<\backslash T \mid}} c_{1}^{-\varepsilon} c_{2}^{-3 / 2} c_{1}^{1 / 2}\left(c_{2} / c_{1}\right)^{1+\varepsilon}\left(c_{2} / c_{1}, e(T)\right)^{1 / 2}
$$

$$
=|T|^{k / 2-1 / 2+\varepsilon / 2} \sum_{\substack{c_{1}, n \\ c_{1}^{2} n<\sqrt{|T|}}} c_{1}^{-1-\varepsilon} n^{-1 / 2+\varepsilon}(n, e(T))^{1 / 2} .
$$

Since

$$
\begin{gathered}
\sum_{n<\beta} n^{-1 / 2+\varepsilon}(n, e(T))^{1 / 2}<\sum_{r \mid e(T)} \sum_{s<\beta / r}(s r)^{-1 / 2+\varepsilon} r^{1 / 2} \\
=\sum_{r \mid e(T)} r^{\varepsilon} \sum_{s<\beta / r} s^{-1 / 2+\varepsilon} \ll \sum_{r \mid e(T)} r^{\varepsilon}(\beta / r)^{1 / 2+\varepsilon} \\
=\beta^{1 / 2+\varepsilon} \sum_{r \mid e(T)} r^{-1 / 2}=O\left(e(T)^{\varepsilon} \beta^{1 / 2+\varepsilon}\right),
\end{gathered}
$$

we have

$$
\Sigma_{2} \ll|T|^{k / 2-1 / 2+\varepsilon / 2} \sum_{c_{1}} c_{1}^{-1-\varepsilon} e(T)^{\varepsilon}\left(\sqrt{\left.|T| / c_{1}^{2}\right)^{1 / 2+\varepsilon}}\right.
$$

$$
\begin{aligned}
& \Sigma_{1} \ll|T|^{k-2-\varepsilon / 2} \sum_{\substack{c_{1} 1 c_{2} \\
\left(c_{1}\left(c_{2}\right) \geq|T|\right.}} c_{1}^{3-k+\varepsilon} c_{2}^{3 / 2-k+2 \varepsilon} \sum_{V \in G L(2, Z) / P\left(c_{2} / c_{1}\right)} c_{1}^{1 / 2}\left(c_{2} / c_{1}, T[U]\right)^{1 / 2} \\
& \ll|T|^{k-2-\varepsilon / 2} \sum_{\substack{c_{1}\left|c_{2} \\
\left(c_{1} c_{2}\right)^{2} \geq|T|\right.}} c_{1}^{7 / 2-k+\varepsilon} c_{2}^{3 / 2-k+2 \varepsilon}\left(c_{2} / c_{1}\right)^{1+\varepsilon}\left(c_{2} / c_{1}, e(T)\right)^{1 / 2} \\
& \ll|T|^{k-2-\varepsilon / 2} \sum_{\substack{c_{1}, n \\
c_{1}^{2} \geqq \sum \sqrt{T T} \mid}} c_{1}^{5-2 k+3 \varepsilon} n^{5 / 2-k+3 \varepsilon}(e(T), n)^{1 / 2} .
\end{aligned}
$$

$$
=|T|^{k / 2-1 / 4+\varepsilon} e(T)^{\varepsilon} \sum_{c_{1}} c_{1}^{-2-3 \varepsilon}=O\left(|T|^{k / 2-1 / 4+2 \varepsilon}\right) .
$$

It is easy to see that $\sum h(M, T)$ is absolutely convergent with minor changes. Thus we have completed a proof of our theorem.

References

[1] U. Christian, Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen, Math. Ann., 148 (1962), 257-307.
[2] C. S. Herz, Bessel functions of matrix argument, Ann. of Math., 61 (1955), 474-523.
[3] Y. Kitaoka, Fourier coefficients of Siegel cusp forms of degree two, Proc. Japan Acad., 58A (1982), 41-43.
[4] H. Maass, Über die Darstellung der Modulformen n-ten Grades durch Poincarésche Reihen, Math. Ann., 123 (1951), 125-151.

Department of Mathematics
Faculty of Sciences
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: *) This proof was suggested by Prof. Y.-N. Nakai.

