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SOME RESULTS ON THE VARIETY OF COMPLEXES

YUJI YOSHINO

§ 1. Main theorems

Let R be a (commutative) Noetherian ring, and let {n0, nu •• ,τιm}

{kl9 k2, , km) be two sequences of integers satisfying m > 0, kt >̂ 0 (i = 1,

2, , m) and Ui^i kt + kί+1 (ί = 0, 1, 2, , m) with k0 = km+1 = 0. We

consider the m-ple of matrices (X(1), X(2\ ,X(m)), where X(s) = (*#) is

an Wj.! X ws matrix of indeterminates over R (s = 1, 2, , m). In this

case we denote by R[X(1\ X{2\ « ,X(m)] a polynomial ring over i? with

the indeterminates {JC^ J I ^ s ^ m, 1 ̂  ίs ^ TÎ -I? 1 ^SΛ ̂  ns} Now we

define an algebra BR(\nu ' ' 'l71™) as follows,

Γ? / fi/θ9 '"It > ' ' ' m l . p r y ( l ) V(2) V(wι)Ί/7
J-JR\ I — jίX[̂ \. , J\ , , -Λ J/-t

\ jb . . . h J

where / is the ideal generated by all the elements of matrices X^-^X^

(s = 2, 3, , m) and the minors of Xω of size ks + 1 (s = 1, 2, , m).

These algebras first appeared in the following setting: In the affine

space A% = ΘΓ=i Ή.omR(An

E\ A^-1) if we define the subvariety W(ku k2, , km)

of A% to be the closed subset consisting of (fl9 f2, , fm) with /̂  e

ΈίomR(An

B\ A^-1), fj^ = 0 (i = 2, 3, , m) and rank (f%) = kt (ί = 1, 2, ,

m), then the algebra BR(n°lnu ' ' '> nA is nothing but the coordinate ring
\ KU ' ' ' 9 Km )

of W(kl9 K ',kM). (See [3; Theorem 1.7].)

These varieties are called the (Buchsbaum-Eisenbud) varieties of

complexes. (Notice that for m = 1, we obtain the determinantal varieties,

whose properties have been considerably studied.)

Recently in their paper [3] DeConcini and Strickland have proved

that BR (n°in^ ' ' ΊnA is normal iff R is normal, and Cohen-Macaulay

iff R is Cohen-Macaulay, and their work encourages us to make our way
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into the deeper study of these algebras.
In relation with their results, one of the purposes of the present

paper is to determine the divisor class group of BR(n°\ni9 I71™) in

normal case and another is to get a necessary and sufficient condition
for these algebras to be Gorenstein.

Our main theorems are the following.

THEOREM 1.1. Let R be a normal domain (and {n09 nl9 , nm}9 {k^ k29

. , km) as above). If we put ti — ni — ki — ki+ί (i = 0,1, , m) with k0

= km+1 = 0, then the divisor class group of BR(n°lniί lJlm) is given as
\ Rl9 - - - 9 κm ]

follows;

Cl (BJ** n»-"> n A \ = Cl(R) Θ Zh

where h = #{i|0 < kt < ni9 t^x > 0} + #{i|0 < kt < ni9 tt = tt_x = 0}.

THEOREM 1.2. Assume that ki > 0 (i = 1, 2, , m). If we denote tt

^nt-ki- ki+1 (i = 0,1, , m)9 then BR(\nι> " 'lnΛ is a Gorenstein
\ Kit ' ' ' > Rm )

ring if and only if R is Gorenstein and the integers tQ9 tl9 , tm satisfy

one of the following conditions;

( i ) t0 = £j = — tm9

(ii) t0 = 0, h = t2 = = tm9

(iii) tm = 0, to = tx = .. = ίm.j,

Remark 1.3. The assumption that kt > 0 (i = 1, 2, , m) in Theorem

1.2 is not so serious. In fact if k8 = 0 for some s, then by the definition

of those algebras we have an isomorphism;

73 / ^ 0 J 7^1 > * * *> ^ m \ - ^ ϋ i ^0> ^ l > * * "> ^ s - l \ K>> D I 7^89 ^ s + l> * * *> ^ m \
•£»Jϊl τ τ I — ^ Λ l τ 7 I ^ R ̂ RX r 7 I

\ h . . . h I \ h . . . h / \ h . . . h f
\ I*ΊJ 9 ""Til *"\9 9 '*'S~1 ^S + l9 9 **"(fl

So we can apply our theorem also in this case, because if A and B are
finitely generated and faithfully flat iϊ-algebras, then A ®R B is Gorenstein
if and only if A, B and R are all Gorenstein. (Cf. [10; Theorem 2])

Remark 1.4. In the case m = 1, our results are contained in Bruns
[2] and Svanes [9] respectively.
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Whole of this paper is devoted to the proof of these theorems. Since

our method is mainly based on the one developed by DeConcini and

Strickland, we will often refer the reader to their paper [3].

The author wishes to thank Professor Kei-ichi Watanabe for his

stimulative suggestion and helpful discussion on this topic.

§ 2. Preliminaries

Let BR(n\nu '"lnm\ be as in the previous section. (We always

assume that kt ^ 0 and ni >̂ kt + kί+ι for any i — 0, 1, , m with k0 =

km+1 = 0 and denote tt = nt — ki — kί+ί.)

The symbol [il9 ί2, -'ΆAJu h> * * > Λ L will denote the element of

BR(n°'h
ni' " 'lnm) which is given by the minor of the matrix X(s) whose

rows are those of indices ίu ί2} , it and whose columns are those of

indices j u j 2 , , j t . If {hl9 h2, , hns_t, j u - , jt} = {1, 2, , ns}, then

[i» h, , ίt\Ji9J29 ' 'Jt]s can also be written as

where σ is the sign of permutation (hu , hn$_t,ju •• )jfs). (For more

detail see [3; § 1]).

The following lemma will be useful for us in proving inductively

something about the property of these algebras.

LEMMA 2.1. (See also [3; Lemma 2.10].) If we denote

a = [ίu '' '9h\ju '' 'Jt]s (l£s <Lm, 1 <; t < k,9

1 ^ h < h < - - <hik n*-u 1 ^ 3\ < h < - - <jt^ ns),

then there exists an isomorphism;

τ> fn>o> ni> - - •> ̂ m\Γ 1 ] ~ Ώ ίno > '' > n*-i — t, ns — t, ns+l9 , nm\
A k . k / U J ~~ V k k - t k . k I

as R-algebras, where

R = R\ {xfl \ ί = h , i, or j = Λ, . . . , J, — .
L αJ

Proo/. To prove this lemma we have only to consider the case of

a = [1, 2, , t\l9 2, , ί]s. Then it is easy to see that there exist P e

GL(ns^; R) and QeGL(ns; R) such that
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1

PX^Q =

0 yes)

where Yω is an (ns.ι — t) X (ns — t) matrix. Furthermore if we put

Γ * Λ)t
Q-iχc+i) = a n d p - » p - i = [ * | y^-1)]

L y ( s + 1 ) J T
(we assume that Z ( 0 ) = Z ( w + 1 ) = 0), and if Y(ί) = Z ( ί ) (i Φ s - 1, 5, 5 + 1),

then we can easily verify that BR(\nu ' " ' M Γ J L Ί is generated by

\ # ! , • • • , ^m / L α J

those elements of Y(i)'s over JS and all their relations must be induced

by those of X(ί)'s. So we can consider this algebra to be the variety of

complexes over R with the generic matrices (Y(1), , Y(m)). We leave to

the reader the detail of this proof.

Remark 2.2. If a = [1, , ί | l, , t]s is as in Lemma 2.1, then the

matrices P and Q are given in the following form:

P'\ 0
\ 1

0
e G I ( Λ , ; Λ)

t t

In this case let [iu , ip\ju ? jp]^ denote the element of

ίn0, Πι, • • •, ns_, — t,n, — t, , nm\

\ h ••• k - t ••• k I

which is given by the determinant of [yif]i=ίu...,ίp in the notation of the

above proof.

Then by this remark it is not so difficult to see the following

LEMMA 2.3. Let a = [1, 2,

f be the natural map

l, 2, , t]s be as in Lemma 2.1 and

r> Mo, nu , nm\ r> (n0, , ns_x — t, ns — t, , 7im\

which is given in Lemma 2.1.
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(1) If {i19 . . , ip} g {t + l9t + 2, , Λ . . J α/zd

{ Ί , Λ, , ΛJ g {t + 1, ί + 2, . ., n,}, then

/ ( [ I , 2, •. , ί , i 1 , - . . , ί p | l , 2 , .- , ί , Λ , ••-,;,].)

= wp! — t,ί2 — t, - ,ίp — t\j, — ί, j 2 — t, j p — i\7

where u is a unit in R.

(2) // {iu , ip} g {t + 1, t + 2, . ., n,} cmd

{Λ, -- ,Λ} ^ {1,2, •• ,n s + 1 }, then

f([h, '' •> JpUi? •? JpJί+i) = [ίi — t, i2 — t, , i^ — ί^'j, , y j j^ ! .

(3) //{i1( . . , i p } S { l , 2 , •••,»,.,}

ί/» , j,} S {« + 1, t + 2, , n,_,},

/(tii, ••-,»„ U"i, , Λl.-i) = tii, , iP IΛ - ί, •• ,jp- flΓ-i

(4) // q- ̂  s - 1, s, s + 1, ίΛew

/([ii, , iP IΛ, • , Λ ] ? ) = [ii, , iP \h, , Λl7

In the ring BR(n%"" '" "ί M let /«'>(»„ .,ip\ju • • -,]„) denote the
\ Kl9 * * * ? "'TO /

ideal generated by the maximal minors of the matrix [Xiγ]isSil%...,ip* And
j = jl,' ',jq

in the same way we define ϊ(r)(h, , iP|ji, -JΛ) as the ideal of

B,
)> , ns-ι — t, ns — t, , nΛ

h . . . h — t . h J

generated by the maximal minors of the matrix [y^L-ii.—.v Then as a
J = jl,' >,Jq

corollary of Lemma 2.3 we get

COROLLARY 2.4. Let a = [1, 2, - , ί 11, 2, , t]s be as in Lemma 2.3, then

( 1 ) J ( s ) ( l , 2 , . . . , U i , •• , ί p | l , 2 , •• , ί , Λ , •• , Λ ) f - 1
L θ J

θ

= / ' " ( i , - <, ι 2 - < , • • • , iP - t\U - t,h - t, • • , Λ ~

if t<iu£ /z,_, (w = 1, 2, ,p) and t < jv £ n, (υ = 1, 2, , q).

(2) I<»»(1,2, . . ,n,|Λ, •••'

= 7<s+1)(l, 2, , n. - ί|Λ, • ,./,) ifq£ns-t.

(3) Γ-'ft, ...,ίp | l,2, . . . . n ^ f i ]

= 7<s-1)(i1, - - . , ί p | l , 2, . . , n . . 1 - ί ) ifp^n^
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(4) j o f t , .,ip\ju . , Λ ) ί - l = ϊω(h, , ipl/i, ,Λ)
L α J

// r Φ s — 1, s, s + 1.

FACT 2.5. Let H be the set consisting of all the determinants. We

partially order H by the following; When x= [iu ---,it\jl9 •• , Λ L a n ^

x/ = [£(, . . . , i^ljί, -,./{/],/, x and #' are incomparable if s Φ s'', while if

s = s' then x ^ x' if ί ^ ί' and itt ^ ΓM, j u ^ /M for α = 1, 2, . , t'. The

product JCJC7 (s' ^ s) is said to be standard if one of the following condi-

tions holds;

(1) s' > s + 1

(2) s' — s and x and Λ/ are comparable in the partial order on H.

(3) s' = s + 1, ns — £ ̂  £' and writing ^ < w2 < < uns_t

for the complement of {jl9 , j j in {1, 2, , raj, we have

uns-t-v+i ^ i; = 1, 2, ,t'.

(If we symbolically write x = [I| J ] s , x
f = [Γ\J']s+ι and if we define a per-

mutation ;rs on {1, 2, , raj as

πs(u) = ns — u + 1 (1 ̂  zz ̂  ra,),

then this condition could be re-written as πs(J) ̂  π£I').)

Now we define an arbitrary product xxx2 xn of minors to be standard

if each product xtXj is standard in a suitable order.

Then the theorem of DeConcini and Strickland says that the algebra

BR(n°lnu '"inm) is a Hodge algebra over R generated by H. (Cf. [3] and
\ KD ' ' ' 9 Km I

[5; §16])

Remark, Our notion of standardness does not coincide with that of

[3]. In fact the condition (3) above corresponds to the standardness given

in [3] by considering the product matrices

instead of Xω and X{s+1\ This is necessary if one wishes to make

BR(n°lnί' '' Ίnm) a Hodge algebra defined in [5].

LEMMA 2.6. Suppose that R is a reduced ring and kr ^ 1. If we denote
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d — [1, 2, , kx 11, 2, , kja and p = J ( 1 ) (l , 2, , kλ | 1, 2,

ideals (d) and p are radical ideals.

Moreover if m ̂  2, k ^> 1 and i/ we denote w = [1, 2, , £m 11, 2, , km]v

then w is a non zero divisor on Bjp and B/(d), where

B = BE

Proof. Recall that a subset / of H is called a poset ideal if I B a >̂ b

eH implies b el. In our case {d} and the system of generators

of p are in fact poset ideals of H. (Notice that d is a minimal element

in H.) Thus by Proposition 1.2 of [5] we have that both B/(d) and B/p

are also Hodge algebras over R. In particular they are reduced.

Next assume that α>(Σ< <*Λ) 6 p (resp. e (d)) where each xt is a stand-

ard monomial and at e R. By the straightening law we can write wxt =

Σ J ^ii^ίi (yu is a standard monomial and bυ e i?). In this expression each

monomial yi} contains w, for w is minimal in the order on H. Since

Σlίj aίbίjyij e p (resp. e (d)) and since this expression is unique, each yi}

also contains one of [1, 2, , kx \ iu , ih^x (1 ̂  ix < < 4! ^ n2) (resp. d).

Thus we have w(Σ a^) e wp. (resp. e (wd)). Because w i s a non zero

divisor on B, we conclude that X^ α A e ί3 (resp. e (d)). Hence w; is a non

zero divisor on Bjp (resp. B/(d)).

Now we shall prove the main proposition of this section.

PROPOSITION 2.7. Assume that R is an integral domain and kx ^ 1.

// we put p = J ( 1 )(l, 2, , kt\l, 2, , n^ as in Lemma 2.6, then p is a

prime ideal and

ht( t ,)=( i <*•<"•;
I γt Jo Jp | 1 (Jo γt j
I' Ί '̂ 1 *^2 l~̂  \ 1 0/

Proof. We prove the proposition by the induction on m. If m = ly

( \
°̂  M is the determinantal variety and so the

result has been known by [6; Theorem 1].

So assume that m I> 2. If we denote w — [1, 2, , km (1, 2, , &m]m,

then by Lemma 2.6 we have only to prove that pBw is prime and its height

is given as in the proposition.
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On the other hand Bw is isomorphic to B:= Bn(
n0ί ' ' V nm~2i T1*-1 ~

with a certain integral domain R and by this isomorphism pBw corresponds

to the ideal p which is defined in B as in the same way as p. (See

Corollary 2.4.)

By the induction hypothesis p is in fact a prime ideal and

ίl (h < n0)

ht(p) = In, - h - k2 + 1 (k, = no,m^ 3)

[(n, — k2) — k, + 1 (&! = no, m = 2).

This is what we wanted.

Remark 2.8. / : = / ( 1 )(1, 2., , n0 \ 1, 2, , ̂ ) may not be a prime ideal.

In fact if we consider

B : = ^ ( 1 >

1

2 >

1 ) = β[w» ^ ^ y> ̂  M;]/(MΛ; + ra, uy + i u;, xw; - yz),

then I — (ύ), p = (^, ι;) and so

JB/I ^ JR[U, x, y, z, w]l(vz, vw, xw — yz)

which is not an integral domain, while

B/p ~ R[x, y, z, w]l(xw - yz)

is an integral domain whenever R is a domain.

§ 3. Proof of Theorem 1.1.

In order to prove Theorem 1.1 we need some lemmas on the decom-

position of a certain principal ideal, which will be stated in (3.2).

In the following we always denote B:= BR(\nu '' 'l71™).
\ "ίi ' ' ' > rim /

LEMMA 3.1. Assume that R is an integral domain and 1 ^ kx < n^

If we denote p = / ( 1 )(1, 2, , k, 11, 2, , nx)

d = [ l , 2 , . . . , ^ | 1 , 2 , . . . , ^ L

and e = [1, 2, . , kt\l9 2, .. , k, - 1, kx + 1]^

β Λαue (d) = p Π (dJ5e Π B).

Proof. It is enough to see that for an element x of p> ex e (d) implies
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Let us describe x as a linear combination of standard monomials as

follows

where each standard monomial xt contains one of [1, 2, , kλ\iu , ik^

(1 ^ ίi < < iUl <Ξ Tij), since * e p.

Assume that x{ does not contain d. Then by the definition of stand-

ardness we can easily check that ext is also a standard monomial. Since

ex e (d) and since d is a minimal element of if, the straightening law

shows that the monomial ext contains d. It also means that xt contains

d, which is a contradiction. Thus d is included in each monomial xi9 so

x e (d).

PROPOSITION 3.2. Assume that R is an integral domain, kx > 0 and

(1) 1/ Aj < min {720, n j or kλ — n0 = n2 — /e2 <

(rf) = P n q

where p = / ( 1 )(1, 2, , ^ 11, 2, , n^, which is a prime ideal of height one

as shown in Proposition 2.7 and q denotes another prime ideal of height

one,

(2) // kλ = nx or kx = nQ < nλ — k2, then the ideal (d) is prime itself

Proof. If kλ = nu then (d) = p, so it is prime by Proposition 2.7.

Assume that kx < nλ. In this case let us denote

e= [1,2, . . . ,^11,2, •••,*!- 1, *! + 1]1

as in Lemma 3.1. First we claim that dBe is a proper prime ideal.

In fact we have already known that Be ~ Bn(
ni ~h

kl' n* V '>nA with

R = R[{x$\i = 1,2, " -,k, or j = 1, 2, , kλ - 1, ^ + 1}, 1/β] and by this

isomorphism d corresponds to the element d:= det [x(

ιf]i=i^..^liι of R. It

is well known that d is a prime element of JR. (See [6; Theorem 1].)

Hence BJdBe - Bm&(nχ ~~h

kl> n^ V '>nA which is in fact an integral do-

main, and so we conclude that dBe is prime as we wanted.

Thus if we denote q = dBe Π B, then by Lemma 3.1 we get the de-

composition of (d) into prime ideals;
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(Remark that clearly p gL q.)

In the first case of proposition, the height of p is one as shown in

Proposition 2.7. So (*) gives the irredundant decomposition of (d).

On the other hand if kx = n0 < nx — kz, then ht (p) ^ 2 by Proposition

2.7, hence q must be contained in p since (d) is a radical ideal. Q.E.D.

Proof of Theorem 1.1. Assume that R is a normal domain as in the

assumption of Theorem 1.1.

To prove the theorem it will be sufficient to see the following claim;

(3.3) C l (BR(n°> Uu '''' nA\ ~ Ze Θ C l (βJnι ~~ ku n*> '"> nA)
\ \ kί9 - ,km // V V k2, --',km //

where

(if 0 < kx < min {n0? n j or 0 < kx = n0 = ^ — ^2 <
e ——

\Q (otherwise),

where R is a certain normal domain which is a faithfully flat ϋ-algebra

and has the same divisor class group as R.

If the claim (3.3) is verified, then we can prove Theorem 1.1 by the

induction on m. In fact if m = 1, then by the claim we have

Cl (Bjn°> Ul\\ - Ze 0 Cl (R)

where

min {nQ, nt},{1 if 0 < kx < mi

0 otherwise,

that is nothing but Theorem 1.1 in case m = 1.

If m > 1 and if we put

h ί n o n u n Λ ^^{i

(recall that t% = nt — kt — kί+ί), then by (3.3) and by the induction hypo-

thesis we get

Cl R(n«> n » - > nA) ~Zh@C\(R)
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where h = e + hi71' ~h

kl> n2> V ' ' M . Here it is not so difficult to see
\ #2> * * * 9 Km J

that h = h(\nu "'ίn').
\ &\9 ' ' ' 9 R"m )

Now we proceed to the proof of (3.3).
Our proof will be divided into the following three cases;

(1) fei = 0,

(2) kx = nj or kt = nQ< nx — k2,

(3) 0 < &! < min{π0, n j or 0 < kx = n0 = nx — k2 < n^

(Observe that they exhaust all the possible cases.)

In case (1) it is clear that BR(\n^ ' "lnΛ - BR(n\n* '' ΊnA.
\ Kl9 ' ' ' > Km ) \ ^2> * ' * 9 R"m, )

Thus there is nothing to prove.

In case (2) the element d = [1, 2, , kγ\l, 2, , βjj is a prime ele-

ment by Proposition 3.2. Therefore the divisor class group does not

change after localizing by d. On the other hand there is an isomorphism

ί^of ni9 •> ̂ "ΛΓJLΊ —
\ kU"'9km /Idi k2,' ,km

as we have shown in Lemma 2.1. Since

R = R[{[i IΛi 11 ̂  i ^ K 1 ̂  j ^AJ

and since d is a prime element of R[{[i I./L 11 ̂  i ^ /?!, 1 ̂  j ^ AJ] (see

[6; Theorem 1]), we have an isomorphism C1(J?) ~ Cl(R). Hence we get

the claim in this case.

In case (3) the ideal (d) is decomposed into the intersection of two

prime ideals;

(d) = p Π q

as shown in Proposition 3.2. If D(A) denotes the free abelian group

generated by height-one prime ideals in a normal domain A, and F(A) the

subgroup of D(A) consisting of principal divisors, then we have the fol-

lowing commutative diagram induced by the natural map B —> Bd, where

Jβ _ Jβ (^0> f^\9 ' ' ' 9 7lm\

\ fc\9 ' ' ' ? β"m J

F(B) - i » F(Bd)
i r, i

D(B) -^ D(Bd)

Cl(B) -^ C1(B4)
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Immediately it can be known that

Ker (η) = Z div (p) + Z div (q)

Ker(f) = Zdiv(d)

where "div" expresses the class in D(B). (Notice that F(B) ~ Q(B) -
{0}/U(B) where Q(B) is the quotient field of B and U(B) the group of
units in B. See [1; Chapter 7].) Furthermore by the above decomposition
of (d) it is clear that div(d) = div(p) + div(q) in D(B). Hence we con-
clude that the kernel of ζ is generated by cl (p) and it is Z-free. Anyway
we get the following exact sequence of abelian groups;

(#) o >Z >C1CB)—Uci(B) >0

l ι >d(p)

where B:=Bd~ BJ711 ~£'^ kj *") a s i n L e m m a 2 L

It remains only to prove that this sequence (*) is split. We shall
prove this by the induction on m.

Since we may assume that B also satisfies our claim (3.3), Cl (B) can
be expressed by the direct sum of Cl (R) and Z% for some h ^ 0, as we
have shown above. On the other hand by the diagram of algebras;

B > B

R > R

we get the following commutative diagram of abelian groups;

C1(B) --U

ίd(R) -A

where β is an isomorphism as in the proof of case (2).
If m — 1, a is also an isomorphism and so ζ has the right inverse

aβ~ιa~x as wanted.
Assume that m > 1. Then by the induction hypothesis & has the

left inverse δ and the cokernel of a is isomorphic to Z\ So there exists
a map ΐ: Zκ -> C1(B) such that πζΐ gives the identity map on Zκ where
π denotes the natural projection from Cl (JB) to Coker {a) ~ Zh. Thus we
can conclude that aβ~1δ®ϊ is the right inverse of ζ.
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This completes the proof of (3.3) and so Theorem 1.1.

Remark 3.4. There exists an automorphism of B\=BR(\nu '' Ίnm)
\ #i? ' *) κm j

which permutes some columns of the matrix X(1) and leaves the ideal p

stable. From this fact we see that even if d denotes [1, 2, , kx \ i19 , ikjt

for arbitrary ix < < ikl <L nx instead of [1, 2, , kλ | 1, 2, , kx]u then

the natural map from C\(B) to Cl(Bd) is an isomorphism in case (2) and

the sequence (*) is also split exact in case (3).

Carefully pursuing the proof of the theorem, we shall have the fol-

lowing corollary which will be used in Sections 4 and 5 to prove Theorem

1.2.

COROLLARY 3.5. Let us denote B:=BR(n\n" " Ίnm) with a normal

domain R and x:= [1|1L for some s. If one of the following conditions

holds;

( i ) k,^2,

(ii) s = 1, kγ = k2 = n0 — 1 and nx > 2,

(iii) s = m, km = km_λ = nm = 1 and nm^ > 2,

then the group homomorphism Cl (B) —> Cl (Bx) induced by the natural map

of B to Bx is an isomorphism.

Proof. In case (ii) or (iii) the element x is prime by Proposition 3.2

and so the result will be obtained by [1; Chapter 7 § 1 Proposition 17].

In case (i) we prove this by the induction on m. It is also divided

into the following three cases as in the proof of (3.3):

(1) fti = 0,
(2) kλ = nx > 0 or 0 < kx = n0 < nx — k2,

(3) 0 < kx < min {n0, n j or 0 < kx = nQ = nx — k2 < nx.

In case (1) this obviously reduces to the case with less m since

In case (2) let us denote

d = f[l,2, ••.,A1|1,2, •• , ^ 1 ] 1 if sψ2,

[ [1 ,2 , •• , A 1 | n 1 - Λ 1 + 1, • • . , n j 1 if 5 = 2 ,

and
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I
n o U 1 1 1 9 . . . j b 11~ i f <? 1

L > > 9 l ~~~^ I 9 9 9 l J i •'••*• ^ — •*• 9

[1, 2, , k, | nx - ku , nx - 1]Γ if s = 2,

Then by Lemma 2.3 we know that c? corresponds to d under the natural

map from B to Bx. (Notice that in case s = 2, nλ — kx >̂ k2 ^ 2.) Apply-

ing Remark 3.4 to B and I?,., we get the commutative diagram;

C1(B.) —

ί
> Cl(Bd)

I'
where the horizontal arrows are isomorphisms. On the other hand the

induction hypothesis shows that β is also an isomorphism. Thus a is an

isomorphism as we wanted.

In case (3) let d and d be as above and let p denote the ideal;

, . . . , £ , - 1 1 1 , 2 , . . . , Λ l - l ) if s = l ,

, . . . , ^ | 1 , 2, . . . , 1 1 , - 1 ) if s = 2 ,

o r 1^(1,2, - . . , ^ 1 1 , 2 , --^nd if s>3.

Then d (resp. p) corresponds to d (resp. p) as we have shown in Lemma

2.3 and Corollary 2.4. Thus we obtain the following commutative diagram

with exact rows.

0 > zcl(p) > Cl(Bs) • Cl(Bxd) • 0

ί ί ί
0 >Zcl(p) >Cl(B) >Cl(Bd) >0

(Notice that a is an isomorphism.) On the other hand by the hypothesis

of induction we can easily see that T is an isomorphism. So it is con-

cluded that β is also an isomorphism. Q.E.D.

§ 4. Reduction

In this section we shall show that it is sufficient to prove the follow-

ing proposition in order to get Theorem 1.2.

PROPOSITION 4.1. Assume that R is a field. Then BB(
n°'™u '^n

is Gorenstein if and only if one of the following four conditions holds:

(1) n o + l = n 1 = n 2 = = 7im_! = nm + 1,
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(2) n0 = 1, n, = n2 = = nm_, = nm + 1,

(3) τιm = 1, n0 + 1 = ^ = n2 = = ftw_i,

(4) n 0 = nm = 1, π-j = n2 = - - - = nm_ί.

The proof of this proposition will be done in the next section, and

for a while we assume that this holds actually.

For the purpose of reducing Theorem 1.2 to this proposition we need

some lemmas, the following one of which is rather well known.

LEMMA 4.2. (1) BR{n\Uι' '"'b
nm) is Gorenstein if and only if R and

a r e Gorenstein for any prime ideal p of R where k(p)

= RJρRP.
(2) Let R-> S be a faithfully flat extentίon of Noetherίan rings with

Gorenstein fibres. Then BB(
n\ni> ' " M is Gorenstein if and only if
\ K\9 ' ' •> Km J

Bsί\
Uι' "Ίnm) is Gorenstein.

\ K\9 ' ' ' 9 Km )

Proof. (1) Since the natural map R -> BR{n\n" ' " \nΛ is faithful-
\ Kl9 ' 9 Rm }

ly flat, the result is obtained from [10; Theorem 1].

(2) By the assumption we see that the natural map from

D [n0, nί} , nm\ , R ίn0, nl9 , nm\
\ kί9 - - , km I \ ku , km /

is faithfully flat. Thus if Bs(™\n']'//'k
nm) is Gorenstein, then by [10;

Theorem 1] we see that BR{n\n" ' "l nA is also Gorenstein. Conversely
\ R\9 ' ' ' 9 Rm )

assume that BR(\nu ' " *ϊ M is Gorenstein. Then R is Gorenstein and
\ R\9 ' ' * > Rm J

so is S. (Use (1) and [10; Theorem 1].) Hence the Gorensteinness of

( \ / \
"05 n^ ' ' , nm \ , D i ι*Ό9 "Ί) ' ' ' 9 nm \̂ -x QT

I _ ±jR\ ]<yR &
K\) ' ' , Km ' v rCί9 ' ' ' 9 Km '

follows from [10; Theorem 2].

LEMMA 4.3. Let us denote B = BR(n%ni> " *' nΛ and x = [1|1], for
\ R\9 ' ' ' 9 Rm /

some s. If one of the following conditions holds;

( i ) k$^2,
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( i i ) s = 1, kx — kz = n0 = 1 and nί > 2,

(iii) s = m, km = fcTO_, = nOT = 1 and rc^ > 2,

ί/ιβ7i JB is Gorenstein if and only if Bx is Gorenstein.

Proof. By the above lemma we may assume that R is a field, and so

we can consider the canonical module KB of the graded ring B. (For the

definition of KB see [7; Chapter 2].) Remark that KB is isomorphic to a

certain divisorial ideal of B since B is a Cohen-Macaulay normal domain.

(Cf. [8; Korollar 6.7]) Therefore KB defines the divisor class cl(KB) in

C1(JB) and thus B is Gorenstein if and only if cl(KB) = 0. (See [8; Satz

5.9].)

If we denote B' = BJ*0'/*1' ' " ' n-*Γ" \ n ~~ *' *,* *' nA and Λ -

R[{[i\j]s\ί = 1 or 7 = 1}, 1/Λ], then B̂ . ^ Bf ®RR as we have shown in

Lemma 2.1, and so we have the natural maps among the divisor class

groups;

Cl (B) -U Cl (Bx) ~ Cl (B' ®R R) <J— Cl (Bf)

which are all isomorphisms by Theorem 1.1. and Corollary 3.5. Here it

can be easily checked that f(cl(KB)) and g(cl(KB,)) give the same element

in Cl(Bx). (Use [7; Proposition (2.2.9)].)

Thus cl(KB) — 0 if and only if c\(KB) = 0 and this establishes the

lemma.

Now let kt > 0 (ί = 1, 2, , m) be as in the assumption of Theorem

1.2. (Recall that we always assume that ni >̂ kt + kί+1 with k0 = km+ί

= 0.)

Then the Gorensteinness of BR{n\nχ> '"'h
nm) is equivalent to the

Gorensteinness of R and RHJn°ίni' " 'i71™) for all p e Spec(i?). Lemma

4.3 and Lemma 2.1 show that if ks > 1 then it is also equivalent to the

Gorensteinness of R and BHJn<* ' ,*' 7l'~1 7 1 ? !?' " -1', ' *>Γlm>) for any

peSpec(β) where A(p) : = ft($>)[{[i|j].|i = 1 or j = 1}, 1/[1|1]J. Then by

Lemma 4.2 (2) we see that it holds if and only if R and

τ> (n0, , ns.ι — 1, n, — 1, , n r a\
ω V k ••• k 1 £ ' /

are both Gorenstein. If we continue this process using Lemma 4.3 until
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each integer of the lower row of the parenthesis becomes 1, then it will

be concluded that it is equivalent to the Gorensteinness of R and

k(

(to + 1, U + 2, t2 + 2, tm-x + %tm + 1\
Λ l l l . . . l /

\ -L, -L, J., , J- /

for all p e Spec(i?). (Recall that ti — ni — ki — ki+ί.)

Thus if we assume the validity of Proposition 4.1, then we shall get

Theorem 1.2.

§ 5. Final step of the proof

Now we shall prove Proposition 4.1. Our main tool is the Poincare

series of graded rings which is defined as follows; If A = ®n^QAn is an

N-graded ring with Artinian AQ and An of finite length over Ao, then the

Poincare series PA(λ) of A is the formal power series in λ given by

Σ lengthAo(An)λn .

(We remark that this is always a rational function in λ if A is Noetherian.)

The reason why we are going to consider the Poincare series is the

following lemma due to R.P. Stanley.

LEMMA 5.1 [11: Theorem 4.4]. Suppose that A is a Cohen-Macaulay

domain with Ao a field and d = dim A. Then A is Gorensteίn if and only

if the equality;

PΛ(llλ) = (-iyλ'PΛ(λ)

holds for some ae Z.

First of all we shall compute the Poincare series of BRl '- s J where r, s

>̂ 1. (In the rest of this paper we assume that R is a field.) If we denote

it by Frs(X) then it is given by

(5.2) Frs(X) = Σ (n + Γ 7 ψ + S ~ ^λ'
n^o\ r — 1 / \ s — 1 /

where ( ^ J = 1 for any u I> 0.

In fact each standard monomial of BR[\ J of degree n is written as
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α,

V
bn

for some 1 <z αx ^ a2 <̂  ^ αn ^ r and 1 ^ 6j ^ 62 ^ ^ bn<^ s. (See
[5; Theorem 12.1].) Thus the number of standard monomials of degree n

is given by (n + ^ ~ ^ί*1 +_f ~ XY This establishes the equality (5.2).

On the other hand Frs(X) should be written as a rational function in
λ. In fact we get the equality;

where frs(λ) = Σ (r .
j^o \ J

Remark t h a t l u \ = 0 iΐ υ <CQ or v > u.

To prove this equality we have only to notice that both functions in
(5.2) and (5.3) are uniquely determined by the following condition.

(*) FU(X) = I

rFr+1,.(X) ~ aFr<t+1(.λ) = (r - 8)Fr,(λ).

In the same way we define another formal power series Grs(λ) as
follows:

If r ^ 1 and s ^ 2, then
(5.4)

Then the same method as above shows that it is also written as a rational
function in λ:

where ?r.(A) = ξ ( j ) ( * I ? ) * € z[fl-

it is easy to check the following facts about those functions.

deg fr,(λ) = min {r, s} - 1,

dβg^W = min{r, s- 1}.
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(5.7) (i) If r, s >̂ 1, then frs{X) is a monic polynomial if and only if either

r = s or (r - l)(s - 1) = 0.

(ii) If r >̂ 1 and s >̂ 2, then £VS(Λ) is monic if and only if either

r = s — 1 or r = 1.

If r ^ 1, then

(5.8)

Remark 5.9. If -BΛ(ΓI J is Gorenstein, then .Fr/Λ) satisfies the equal-

ity in Lemma 5.1. In particular the coefficient of highest degree term in

frs(λ) should be one. Thus in this case it must be r = s or (r — l)(s — 1)

= 0. Conversely if r = s or (r — l)(s — 1) = 0, then Frs(λ) certainly sat-

isfies the condition in Lemma 5.1.

In such a way we can get the necessary and sufficient condition for

BR\\S) t ° be Gorenstein.

We shall generalize this method to prove Proposition 4.1.

Now we denote the Poincare series of

JD fn>o, Ml, ' ' '> Km] }.„ p
nR\ 1 . . . 1 / ° y • r

(Recall that nQ JΞ> 1, nm ^ 1 and Πi ̂  2 if 1

LEMMA 5.10. (1) PWo,ni(J) = Fno,ni(λ),

(2) Pnonx.-n^) = ^ n . - l W ^ , . , J ί +
whenever m ^ 2.

<

- 1 .

Proof. We have already known (1). To prove (2) we must notice

that each standard monomial of BJ^'^'/Z/'^A is given by

αί

alt

bl

al

al

bl

b\

a\

<

6Γ"1

uυm-t

af

avm

bf
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where 1 <̂  a\ ̂  a\ <̂  <L α*, <̂  n ^ , 1 ^ &ί ̂  &2 ̂  ^ &J, ί* ty for any

i = 1, 2, , m and α^ < 7VJ whenever 6^ = TV (See (2.5).) Remark that

the degree of this standard monomial is vί + v2 + + vm. Thus it

is concluded that the number of standard monomials of degree n in

^H 1, ..-,1 / 1S

( n ) _ v (v: + n 0 - 1\ ί/ϋj + Tij - 2\/u2 + 7i! - 1\

ϋ i + υ a + . + υ m = n \ Πo — 1 / v \ Πγ — Δ / \ 7 2 ! — 1 /

M + nx - 2\(v2 + U,- 2X\ Uυm.x + nm_γ - 2\/vm + nm^ - 1\

\ 7 i 1 - l / \ n 1 - 2 / J l\ nm^ -2 A nm - 1 /

, /ym_! + 72m.! - 2\/um + 7zm_i - 2\1 /ι;w + nm - 1\

V n ^ - 1 A n ^ - 2 / i \ Λ Λ - 1 /

In particular we have that

r(n) _ y i ί/^i + 720 - l V y j + n 2 - 2\ (W_V1)
nol>1-11- ~ ^ o IV 7 T O - 1 A 7 1 , - 2 Γ " ™

ίvx + n0 - lλ/iΛ + nx - 2\ (n_υo) 1
\ Λ o - 1 / \ Λ j - 1 / J

Since PnoWl...nmW = Σ ^ o έ o C , . . ^ ^ , this establishes the lemma.

As the corollary of this lemma we can write Pnon^^nm(^) a s a rational

function in λ.

COROLLARY 5.11.

P (Tϊ — Pnoni—nm\")
* nQn1:.nm\Λ/ ~ ft ___ fid

where pnoni(λ) = fnonι(λ),

- l , ^ , . . . ^ ) € Z[λ] ίf TΠ ̂  2

ra-1

d = nQ + 7im + 2 2 ^ — 2τn + 1.

(Remark that the integer d in this lemma is the Krull dimension of

the ring BR(n%nu '"9

h

nm\ See [3; Lemma2.3]. And also remark that

all the coefficients of the polynomial p«oni...nm(>0 a r e non-negative integers.)

Here by using (5.6) we know inductively that
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n o n i _!p n i n 2 = min{7i0, fy - 1} + min{fy, fy} - 2,

^ . iA^. . .^ = min{ra0, fy - 1} + minify, fy - 1}
m—2

in i fy^ — 1, nm) + 2 min{fy, nί+ί} — m + 1
i = 2

if m ^ 3,

= min{n0, fy — 1} + minify^ — 1, λim}
m-2

+ J ] min{fy, fy+1} — τn + 1 i f m ^ 2 .

In particular we have the following lemma.

LEMMA 5.12. deg fnQni-,pni...nm £ deg gno7ilpni_lίn2...nm and the equality

holds if and only if fy < n2.

Now let us prove Proposition 4.1. If m = 1, then we have already

proved it in Remark 5.9. So in the following we assume that m >̂ 2.

Suppose that BR(n°> "ι\ [ [ " ' χ M is a Gorenstein ring. Then Pnanι...nn(λ)

satisfies the condition in Lemma 5.1, so in particular the polynomial

jP»om...nw(Λ) is monic. Thus Lemma 5.12 gives that fy ^ fy and &oKlpWl_i,n2...%

is also monic. By (5.7) this is equivalent to say that pMl_],Λa...»m is monic

and either τz0 + 1 = fy >̂ n2 or τz0 = 1, fy ^ fy. If we continue this pro-

cess, we can easily get one of the four conditions in Proposition 4.1.

Conversely assume that n0 + 1 = fy = = nm_ί = nm + 1. For the

convenience let us denote r = n0 = nm and

with Sj = F r r and T, = Fr+Ur.

Then by Lemma 5.10 we see that

\Sm(λ)] = Γ Gr,r+1(X), Frr(λ)
lTm(X)i ίGr+hr+i(λ), F r + 1 > r

= r σr.r+.o), ίVrW i m r o i

LG r + 1 ) r + iα), F r + 1 , r «J L 1 J

Thus by (5.8) we have an equality;
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Comparing these equalities we easily conclude that

Hence BB(
r' r + \ m\\Ί r j " 1 ? Γ ) is Gorenstein by virtue of Lemma 5.1.

Next we assume that nQ = 1 and nx = ra2 = = nm_! = nm + 1 ( = : r).
If r = 2, this case is included in the previous one, and there is nothing
to say. So we may take r > 2. Then using Lemma 4.3 (ii), we have that

J \r;r ~ X) is Gorenstein if and only if BR(r ~ \ τ\ '\ Γ ' [ ~

m - l

is Gorenstein. Thus by the previous case it is concluded that

BRi ' ' * ' ' ' ' ~ I is always Gorenstein whenever r ^ 2.

The other cases in Proposition 4.1 can be treated as in the same
method using Lemma 4.3, and so we omit the detail.
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