H. Matsumura Nagoya Math. J. Vol. 87 (1982), 227-245

INTEGRABLE DERIVATIONS

HIDEYUKI MATSUMURA

Dedicated to Prof. Yoshikazu Nakai on his Sixtieth Birthday

Introduction

Let A be a commutative ring and D be a derivation of A into itself. If there exists a homomorphism $E: A \to A[[t]]$ such that

$E(a) \equiv a + tD(a) \mod t^2$

then we say that D is integrable. Integrable derivations have many good properties. In fact, most of unpleasant phenomena of derivations in characteristic p disappear if we consider integrable derivations only.

In §1 we state definitions and basic properties of differentiations, and we give some examples of non-integrable derivations.

§ 2 is devoted to theorems which are essentially due to Seidenberg ([18], [19], [20]). These theorems show that integrable derivations behave as they should, and provides us with necessary conditions for integrability.

Then in § 3 and § 4 we prove some sufficient conditions. In § 3 we consider smooth or formally smooth algebras, using André's homology theory. In § 4, by an elementary argument we prove a criterion of integrability, which shows that there are plenty of integrable derivations (in the case of an integral domain finitely generated over a perfect field).

§1. Definitions and examples

In this article all rings are assumed to be commutative with a unit element. Local rings are assumed to be noetherian.

Let A be a ring. The set of all derivations of A into itself is an A-module and is denoted by Der(A). If k is a subring of A, the submodule of Der(A) consisting of those derivations which vanish on k is denoted by $\text{Der}_k(A)$.

Received December 26, 1980.

A differentiation \underline{D} of A (in the sense of Hasse-Schmidt [7]) is an infinite sequence $\underline{D} = (D_0, D_1, D_2, \cdots)$ of additive endomorphisms $D_i : A \to A$ such that

(1.1)
$$D_0 = \text{identity}, \quad D_n(ab) = \sum_{i+j=n} D_i(a) D_j(b).$$

It follows that D_i is a derivation. D_i will be called the *i*-th component of \underline{D} . Let t be an indeterminate over A, and put

(1.2)
$$E(a) = E_t(a) = \sum_{n=0}^{\infty} t^n D_n(a) \in A[[t]] \quad (a \in A).$$

Then $E = E_t$ is a ring homomorphism from A into A[[t]] such that $a \equiv E(a) \mod t$. It can be uniquely extended to an endomorphism of A[[t]] such that E(t) = t; namely, we define

(1.3)
$$E\left(\sum_{i=1}^{\infty}t^{i}a_{i}\right)=\sum_{i=0}^{\infty}t^{i}E(a_{i})$$

Then, using

(1.4)
$$E(a) \equiv a \mod t \ (a \in A), \qquad E(t) = t,$$

we can easily see that E is an automorphism of A[[t]]. Conversely, any automorphism of A[[t]] satisfying (1.4) comes from a differentiation. We will denote the automorphism $E = E_t$ obtained from \underline{D} by $\Lambda(\underline{D})$; thus Λ is a bijection from the set of differentiations of A to the set of automorphisms of A[[t]] satisfying (1.4). This latter set is obviously a subgroup of Aut (A[[t]]), therefore by means of Λ we can make the set of differentiations a group, which we denote by HS(A) and call the Hasse-Schmidt group of A. If $\underline{D} = (1, D_1, \cdots)$ and $\underline{D}' = (1, D'_1, \cdots)$ are differentiations of A, easy calculations show that

(1.5)
$$\underline{D} \, \underline{D}' = (1, \, D_1 + D_1', \, D_2 + D_1 D_1' + D_2', \, \cdots, \, \sum_i D_i D_{n-i}', \, \cdots)$$
 and

$$(1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_2^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 - D_2, -D_1^3 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 + D_1 D_2 + D_2 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_1^2 + D_1 D_2 + D_2 D_2 + D_3 D_1 - D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_2 + D_2 + D_2 D_2 + D_3 D_3, \cdots) + (1.6) \quad \underline{D}^{-1} = (1, -D_1, D_2 + D_2 + D_3 + D_$$

Moreover, from (1.1) we see that

(1.7) if $x \in A$, then $(1, xD_1, x^2D_2, \dots, x^nD_n, \dots)$ is a differentiation.

We say that a derivation $D \in \text{Der}(A)$ is *integrable* if there exists a differentiation $\underline{D} = (1, D_1, D_2, \cdots)$ of A with $D_1 = D$. Such \underline{D} is called (by lack of better terminology) an *integral* of D; we also say that \underline{D} lifts D. The formulas (1.5), (1.6), (1.7) show that the set of integrable derivations

of A is an A-submodule of Der (A). We denote it by Ider (A). If A contains the rational number field \mathbf{Q} it is easy to see that all derivations are integrable. The same holds when A is a field (of any characteristic), see Th. 6. But in general there are non-integrable derivations.

Remark 1. If t' is an element of A[[t]] without constant term and \underline{D} is a differentiation of A, we get a homomorphism $E_{t'}: A \to A[[t]]$ by $E_{t'}(a) = \sum_{n=0}^{\infty} t'^n D_n(a)$, and this can be uniquely extended to an automorphism of A[[t]] as in (1.3). Applying Λ^{-1} to this, we get a new differentiation. For instance if t' = xt then we get the differentiation of (1.7).

Remark 2. If E_t and E'_t correspond to \underline{D} and \underline{D}' respectively, and if we put $s = t^n$ for some n > 1, then $E_t \circ E'_s$ gives a differentiation of the form $(1, D_1, \dots, D_{n-1}, D_n + D'_1, \dots)$. From this it is clear that an integrable derivation can have many integrals.

Let k be a subring of A. A differentiation $\underline{D} = (1, D_1, D_2, \cdots)$ is called a differentiation of A over k if $D_i(a) = 0$ for all i > 0 and for all $a \in k$. The set of such differentiations is denoted by $\operatorname{HS}_k(A)$. A derivation D is said to be *integrable over* k if it has an integral belonging to $\operatorname{HS}_k(A)$. The set of derivations which are integrable over k will be denoted by $\operatorname{Ider}_k(A)$, which should not be confused with $\operatorname{Der}_k(A) \cap \operatorname{Ider}(A)$. For instance, if A is a ring of characteristic p and if $k = A^p$, then we have $\operatorname{Der}(A) = \operatorname{Der}_k(A)$, but in most cases $\operatorname{Ider}(A)$ is not equal to $\operatorname{Ider}_k(A)$, the latter being zero if A is reduced. In fact, if $\underline{D} = (1, D_1, D_2, \cdots) \in \operatorname{HS}(A)$ and if $q = p^r$ is a power of p, then we have

$$E_t(a^q) = E_t(a)^q = (a + tD_1(a) + \cdots)^q = a^q + t^q D_1(a)^q + \cdots,$$

therefore it holds that

(1.8)
$$D_i(a^q) = 0 \text{ if } i \neq 0(q), \quad D_q(a^q) = D_1(a)^q.$$

A differentiation \underline{D} is said to be *iterative* if

(1.9)
$$D_i \circ D_j = \binom{i+j}{i} D_{i+j} \quad \text{for all } i, j.$$

This is equivalent to saying that the following diagram

(1.10)
$$\begin{array}{c} A \xrightarrow{E_{t}} A[[t]] \\ E_{t+u} \downarrow \qquad \qquad \downarrow E_{u} \\ A[[t+u]] \xrightarrow{i} A[[t,u]] \end{array}$$

(where i is the inclusion map and $E_u(t) = t$) is commutative.

A derivation D will be said to be *strongly integrable* if it has an iterative differentiation as integral.

If the ring A contains the rational number field \mathbf{Q} , then every derivation $D \in \text{Der}(A)$ is strongly integrable, and there is a unique iterative differentiation which lifts D, namely $(1, D, (1/2!)D^2, \dots, (1/n!)D^n, \dots)$. When A is of characteristic p, a strongly integrable derivation D must satisfy $D^p = 0$. In fact, if $\underline{D} = (1, D_1, D_2, \dots)$ is iterative, then by induction we have $D_i^i = i! D_i$ (all i), hence $D_i^p = 0$. The condition $D^p = 0$ is also sufficient for strong integrability when A is a field (cf. Th. 7). In the case of characteristic p the strongly integrable derivations do not form an A-module.

We shall say that differentiations $\underline{D} = (1, D_1, D_2, \cdots)$ and $\underline{D'} = (1, D'_1, D'_2, \cdots)$ commute if D_i and D'_j commute for every pair (i, j). If \underline{D} and $\underline{D'}$ are iterative and commute with each other, then their product $\underline{D}\underline{D'}$ is again iterative, because $(E_u E'_u)(E_t E'_t) = E_u E_t E'_u E'_t = E_{t+u} E'_{t+u}$ (where all maps are viewed as automorphisms of A[[t, u]] which leave t, u invariant).

Like derivations, differentiations can be uniquely extended to a localization. In fact, let A be a ring, S a multiplicative subset of A, $\underline{D} \in \mathrm{HS}(A)$ and $E_t: A \to A[[t]]$ the homomorphism corresponding to \underline{D} . Let $\psi: A \to A_s$ and $\psi': A[[t]] \to A_s[[t]]$ be the natural maps. If $s \in S$ then the element $\psi'(E_t(s)) = \psi(s) + t\psi(D_1(s) + \cdots$ is invertible in $A_s[[t]]$, whence $\psi' \circ E_t$ factors through A_s , i.e. there exists a unique homomorphism $E': A_s \to A_s[[t]]$ satisfying $\psi' \circ E_t = E'\psi \circ$.

Similarly, if I is an ideal of A and A^* is the *I*-adic completion of A, then a differentiation $\underline{D} = (1, D_1, D_2, \cdots)$ is uniquely extended to A^* . In fact, we have $D_n(I^\nu) \subseteq I^{\nu-n}$ for $\nu > n$, and so each D_n is uniformly continuous in the *I*-adic topology and can be uniquely extended to the completion A^* .

EXAMPLE 1. Let k be a ring of characteristic p, and put $A = k[X]/(X^p)$. Put $x = X \mod X^p$. Define $D \in \text{Der}_k(A)$ by Dx = 1 (thus D is induced by d/dx of k[X]). If D were integrable we would have

$$0 = E_t(x^p) = E_t(x)^p = (x + t + \cdots)^p = t^p + \cdots,$$

which is a contradiction. Therefore D is not integrable. The derivation xD is integrable: in fact, $x \mapsto x(1 + t) \in A[[t]]$ defines a k-algebra homomorphism. We have $\text{Der}_k(A) = A \cdot D$ (a free module), $\text{Ider}_k(A) = xA \cdot D \simeq$

xA (not free).

EXAMPLE 2. Let R be a discrete valuation ring of characteristic zero with maximal ideal pR, where p is a prime number. Put k = R/pR, $A = R[X, Y]/(pX - Y^p)$. Then the derivation $Y^{p-1}\partial/\partial X + \partial/\partial Y$ of R[X, Y]induces a derivation D of A, which is not integrable. In fact, D induces a derivation \overline{D} of $A/pA = k[X, Y]/(Y^p)$ such that $\overline{D}(y) = 1$, and as in the preceding example \overline{D} is not integrable. If D were integrable then \overline{D} would be so.

EXAMPLE 3. Let k be a field of characteristic p, and let $A = k[x, y] = k[X, Y]/(Y^p - X^p - X^{p+1})$. The polynomial $Y^p - X^p(1 + X)$ is irreducible (Eisenstein criterion), hence A is an integral domain. The partial derivation $\partial/\partial Y$ induces a derivation D of A over k. If D were integrable to $\underline{D} = (1, D_1, D_2, \cdots) \in \mathrm{HS}(A)$ with $D_1 = D$, then we should have

$$0 = D_p(y^p - x^p - x^{p+1}) = D(y)^p - D(x)^p - \sum_{i=0}^p D_i(x^p) D_{p-i}(x) = 1 - x^p D_p(x).$$

Therefore $D_p(x) = 1/x^p$. But $1/x^p$ is not in A. Hence D is not integrable.

EXAMPLE 4. Let B be a ring and A = B[[X]] be the formal power series ring over B. Let t be another indeterminate. Then the map $f(X) \mapsto f(X+t)$ defines an iterative differentiation of A. Similarly for A[X].

§2. Seidenberg Theorems

Let A be a ring, I an ideal of A and $\underline{D} = (1, D_1, D_2, \dots) \in \mathrm{HS}(A)$. The ideal I is said to be \underline{D} -invariant (or invariant under \underline{D}) if $D_i(I) \subseteq I$ for all *i*. When this is the case, the differentiation \underline{D} induces a differentiation of A/I. Recall that an ideal of A is called a differential ideal if all derivations of A map the ideal into itself. We shall say that the ideal I is a HS-ideal (resp. HS_k -ideal) if it is invariant under all differentiations in $\mathrm{HS}(A)$ (resp. $\mathrm{HS}_k(A)$). If A contains Q, then the differential ideals and the HS-ideals are the same (this can be seen using Remark 2 of § 1.)

THEOREM 1. Let A be a ring, I an ideal of A and t an indeterminate over A; put $A^* = A[[t]]$ and $I^* = I[[t]]$. Let $D \in HS(A)$. Then I is <u>D</u>invariant if and only if the automorphism E_t of A^* associated to <u>D</u> maps I^* onto itself: $E_t(I^*) = I^*$. *Proof.* If $D_i(I) \subseteq I$ for all i, we have $E_i(I^*) \subseteq I^*$. It is easy to see that $(E_i)^{-1}(a) = \sum t^n D'_n(a)$ where D'_n is a polynomial in D_1, \dots, D_n . Therefore we have $(E_i)^{-1}(I^*) \subseteq I^*$ also. Thus $E_i(I^*) = I^*$. The converse is obvious.

THEOREM 2. Let A be a noetherian ring and $P \in Ass(A)$. Then P is an HS-ideal, and consequently there are canonical maps

 $\operatorname{HS}(A) \longrightarrow \operatorname{HS}(A/P)$, $\operatorname{Ider}(A) \longrightarrow \operatorname{Ider}(A/P)$.

Proof. We give only a sketch of Seidenberg's proof in [19] pp. 23-24. If $(0) = q_1 \cap \cdots \cap q_r$ is an irredundant primary decomposition in A and if p_i is the associated prime ideal of q_i , then $(0) = q_1^* \cap \cdots \cap q_r^*$ is an irredundant primary decomposition in A^* and p_i^* is the associated prime ideal of q_i^* . Thus any automorphism E of A^* induces a permutation of Ass $(A^*) = \{p_1^*, \dots, p_r^*\}$. If E corresponds to a differentiation then from $E(p_i^*) = p_j^*$ it follows that $p_i \subseteq p_j$. Considering E^{-1} we get $p_i = p_j$, or what amounts to the same, $p_i^* = p_j^*$. By the preceding theorem this means that p_i, \dots, p_r are HS-ideals.

Remark 3. Example 1 shows that P is not necessarily a differential ideal.

THEOREM 3. Let A be a noetherian integral domain and A' be its derived normal ring. Then any differentiation of A extends to A', and consequently there are canonical mappings

$$\operatorname{HS}(A) \longrightarrow \operatorname{HS}(A')$$
, $\operatorname{Ider}(A) \longrightarrow \operatorname{Ider}(A')$.

Proof. Let K denote the quotient field of A, let $\underline{D} \in \mathrm{HS}(A)$ and let $E: A \to A[[t]]$ denote the corresponding homomorphism. We know that \underline{D} and E can be extended uniquely to K; we denote the extensions by the same letters \underline{D} and E. Then we have to show: $E(A') \subseteq A'[[t]]$.

It is well known that A[[t]] is normal if A is a noetherian normal ring. In the present case the ring A' is not necessarily noetherian, but still it is a Krull ring (cf. Nagata, Local Rings, p. 118), therefore an intersection of discrete valuation rings: $A' = \bigcap_{\alpha} V_{\alpha}$. Then $A'[[t]] = \bigcap_{\alpha} V_{\alpha}[[t]]$, and each $V_{\alpha}[[t]]$ is normal. Therefore A'[[t]] is also normal. Let $a' \in A'$, a' = u/v, $u \in A$, $v \in A$. Then E(a') = E(u)/E(v) belongs to the quotient field of A[[t]]. Moreover, since a' is integral over A, E(a') is integral over A[[t]], hence a fortiori over A'[[t]]. Therefore $E(a') \in A'[[t]]$. Q.E.D.

Remark 4. If A' is finite over A then A'[[t]] is finite over A[[t]] and is equal to the derived normal ring of A[[t]].

Remark 5. Example 3 of § 1, which is also due to Seidenberg, shows that a non-integrable derivation of A does not necessarily extend to A'.

COROLLARY. Let A, A' be as in Th. 3 and c be the conductor of A (i.e. $c = \{a \in A | aA' \subseteq A\}$). Then c is an HS-ideal.

Proof. Let $a \in c$, $x \in A'$, $\underline{D} = (1, D_1, D_2, \dots) \in \mathrm{HS}(A)$. Then $ax \in A$ and so $D_n(ax) = D_n(a)x + D_{n-1}(a)D_1(x) + \dots + aD_n(x) \in A$. We prove $D_n(a) \in c$ by induction on n. Suppose $D_i(a) \in c$ for i < n. Since $D_i(x) \in A'$ for all i, we have $D_n(a)x \in A$. As x is an arbitrary element of A' this means that $D_n(a) \in c$.

THEOREM 4. Let A be an excellent ring, I be the largest ideal which defines Sing(A) and P be the generic point of an irreducible component of Sing(A). Then I and P are HS-ideals.

Proof. Since P is an associated prime of I, if I is an HS-ideal then P is so by Th. 2. Thus it suffices to prove that I^* is invariant under any automorphism of $A^* = A[[t]]$. Now A^* is the t-adic completion of A[t]. Since A[t] is excellent the canonical homomorphism $A[t] \rightarrow A^*$ is regular by a well-known theorem of Grothendieck (cf. [EGA IV-2] 7.8.3 (v) or [11] Th. 79). On the other hand it is obvious that the canonical map $A \rightarrow A[t]$ is regular (for any A). Therefore $A \rightarrow A^*$ is regular. It follows that I^* defines Sing (A^*) . Since I is reduced (i.e. an intersection of prime ideals), so is I^* . Thus I^* is the largest ideal which defines Sing (A^*) , and, as such, is invariant under any automorphism of A^* . Q.E.D.

Remark 6. Similarly, the largest ideal which defines the set $\{\mathfrak{p} \in \text{Spec}(A) | A_{\mathfrak{p}} \text{ is not } Q\}$, where Q denotes the property normal, Cohen-Macaulay, Gorenstein (cf. [21]), or complete intersection (cf. [3]), is an HS-ideal.

Let k be a field and $A = k[x_1, \dots, x_n]$ be a finitely generated k-algebra. Put $R = k[X_1, \dots, X_n]$, and write A = R/I, where I is the kernel of the k-algebra homomorphism $R \to A$ which sends X_i to x_i . Let f_1, \dots, f_s be a system of generators of I. We write $\partial f/\partial x_i$ for $\partial f/\partial X_i \mod I$. Consider the Jacobian matrix $(\partial f/\partial x) = (\partial f_i/\partial x_j)_{1 \le i \le s, 1 \le j \le n}$. Let ν be an integer, $0 \le \nu < n$. The ideal of A generated by the $(n - \nu) \times (n - \nu)$ minors of $(\partial f/\partial x)$ will be called the ν -th Jacobian ideal of A and will be denoted by $J_{\nu}(A)$ or simply by J_{ν} . We put $J_n = J_{n+1} = \cdots = A$. Then we have $J_0 \subseteq J_1 \subseteq J_2$ $\subseteq \cdots$. Lipman [9] calls the first non-zero J_{ν} the Jacobian ideal of A. When k is a perfect field and A is an integral domain of dimension d, it is known that the matrix $(\partial f/\partial x)$ has rank n - d ([AG] pp. 32-33). Therefore J_d is the Jacobian ideal of A in this case.

The exact sequence (cf. [11] Th. 58)

$$I/I^2 \longrightarrow \varOmega_{_{R/k}} \otimes_{_{R}} A = AdX_1 \oplus \cdots \oplus AdX_n \longrightarrow \varOmega_{_{A/k}} \longrightarrow 0$$

shows that J_{ν} is the ν -th Fitting invariant of $\Omega_{A/k}$ (cf. [15]). Therefore the ideals J_{ν} are invariants of the k-algebra A, independent of the representation A = R/I and of the choice of the generators f_1, \dots, f_s of I. We will state the invariance more precisely in the following lemma.

LEMMA 1. The ideals J_{ν} are left fixed by all automorphisms of the k-algebra A.

Proof. Let σ be an automorphism of the k-algebra A, and M be an A-module. The A-module structure on M is defined by a k-algebra homomorphism $\psi: A \to \operatorname{End}_k(M)$. We define a new A-module structure on M by $\psi \circ \sigma$, and denote the new A-module by M_{σ} . Thus, ax in $M_{\sigma} = a^{\sigma}x$ in $M(a \in A, x \in M)$. If $D: A \to M$ is a k-derivation, then $D \circ \sigma$ is a k-derivation of A into M_{σ} . Call it D^{σ} .

$$egin{array}{ll} D^{\scriptscriptstyle \sigma}(ab) = D(a^{\scriptscriptstyle \sigma}b^{\scriptscriptstyle \sigma}) = a^{\scriptscriptstyle \sigma}D(b^{\scriptscriptstyle \sigma}) + b^{\scriptscriptstyle \sigma}D(a^{\scriptscriptstyle \sigma}) & ext{ in } M \ = aD^{\scriptscriptstyle \sigma}(b) + bD^{\scriptscriptstyle \sigma}(a) & ext{ in } M_{\scriptscriptstyle \sigma} \,. \end{array}$$

Let $\Omega_{A/k} = \sum_{i=1}^{n} A dx_i$. $\sum a_i dx_i = 0$ means that $\sum a_i D(x_i) = 0$ holds for every A-module M and for every derivation $D: A \to M$. Then $\sum a_i D^{\sigma}(x_i) = 0$ in M_{σ} , i.e. $\sum a_i^{\sigma} D(x_i^{\sigma}) = 0$ in M. Therefore we have $\sum a_i^{\sigma} dx_i^{\sigma} = 0$. Thus, by putting

$$(\sum a_i \, dx_i)^{\sigma} = \sum a_i^{\sigma} \, dx_i^{\sigma}$$

we can define an automorphism of the k-module $\Omega_{A/k}$ such that

$$(a\omega)^{\sigma} = a^{\sigma}\omega^{\sigma} \qquad (a \in A, \omega \in \Omega_{A/k}).$$

If dx_1, \dots, dx_n generate $\Omega_{A/k}$, then $dx_1^{\sigma}, \dots, dx_n^{\sigma}$ also generate $\Omega_{A/k}$. Moreover, the σ -image of a relation matrix of dx_1, \dots, dx_n is a relation matrix of $dx_1^{\sigma}, \dots, dx_n^{\sigma}$. By the independence of Fitting ideals on the choice of generators of the A-module, our lemma is now obvious.

Let B be a k-algebra. The module $\Omega_{B/k}$ represents the functor $M \to \text{Der}_k(B, M)$ on the category of all B-modules. If the restriction of this functor to the category of finite B-modules is representable, i.e. if there exist a finite B-module M_0 and a k-derivation $d_0: B \to M_0$ with the universal mapping property for the k-derivations of B into finite B-modules, then M_0 is called the universal finite module of differentials of B over k and is denoted by $D_k(B)$, cf. [17] or [22]. The following lemmas can be easily proved from the definition.

LEMMA 2. Let B be a noetherian k-algebra such that $D_k(B)$ exists. Then $D_k(B^*)$ also exists (where $B^* = B[[t]]$), and we have

$$D_{\scriptscriptstyle k}(B^*) = (D_{\scriptscriptstyle k}(B) \otimes_{\scriptscriptstyle B} B^*) \oplus B^* dt$$
 .

LEMMA 3. Let R be a noetherian k-algebra, I an ideal of R and B = R/I. Suppose $D_k(R)$ exists. Then $D_k(B)$ also exists, and we have an exact sequence

$$I/I^2 \longrightarrow D_k(R) \otimes_R B \longrightarrow D_k(B) \longrightarrow 0$$
.

(cf. [22].)

Returning to the situation $R = k[X_1, \dots, X_n]$, $I = (f_1, \dots, f_s)$ and A = R/I, we have

$$A^* = R^*/I^*$$
, $I^* = \sum_{i=1}^n f_i R^*$

and the sequence

$$I^*/I^{**} \longrightarrow D_k(R^*) \otimes_{R^*} A^* \longrightarrow D_k(A^*) \longrightarrow 0$$

is exact. Moreover, $D_k(R^*) \otimes_{R^*} A^* = (D_k(R) \otimes_R A^*) \oplus A^* dt$ is a free A^* module with basis dX_1, \dots, dX_n, dt . Therefore $J_{\nu}A^*$ is the $(\nu + 1)$ st Fitting invariant of $D_k(A^*)$, and proof of Lemma 1 can be applied, mutatis mutandis, to show that $J_{\nu}A^*$ is invariant under all k-algebra automorphisms of A^* . This proves the following theorem.

THEOREM 5. Let k be a field and A be a k-algebra of finite type. Then the ideals J_{ν} are HS_k -ideals.

EXAMPLE 5. Let k be a field of characteristic $p \ge 0$ and let $A = k[x, y] = k[X, Y]/(Y^2 - X^3)$. The derived normal ring A' is k[u] where u = y/x, and we have $x = u^2$, $y = u^3$. The conductor is xA' = (x, y)A, which is also the largest ideal that defines Sing (A). Put $D_0 = d/du \in \text{Der}_k(A')$.

The derivation uD_0 induces an integrable derivation D_1 of A because $E_t: A' \to A'[[t]]$ defined by $E_t(u) = u(1 + t)$ maps $x = u^2$ and $y = u^3$ into A[[t]]. Similarly u^2D_0 induces an integrable derivation D_2 of A. Let $D \in \operatorname{Ider}_k(A)$. Then $D \in \operatorname{Ider}_k(A') = A'D_0$. If $p \neq 2$ then $D_0(x) = 2u \notin A$ and so $D_0 \notin \operatorname{Der}_k(A)$. If p = 2 then for any element f in k[u] we have $(u + t + ft^2)^3 = u^3 + 3u^2t + 3(u + u^2f)t^2 + \cdots$, and $u + u^2f \notin A$. Thus $D_0 \notin \operatorname{Ider}_k(A)$ in all cases. Therefore we have $\operatorname{Ider}_k(A) = AD_1 + AD_2$. When $p \neq 2, 3$ it is easy to see that $\operatorname{Der}_k(A) = AD_1 + AD_2 = \operatorname{Ider}_k(A)$.

If p = 2 then the Jacobian ideal of A is x^2A . The partial derivation $\partial/\partial Y$ of k[X, Y] induces a derivation D_3 on A, and $D_0 = xD_3$. We have $\text{Der}_k(A) = AD_3$, $\text{Ider}_k(A) = AD_1 + AD_2 = AyD_3 + Ax^2D_3$. The derivation D_0 maps x^2A and (x, y)A into themselves, but it is not integrable as we have already seen.

If p = 3 the partial derivation $\partial/\partial X$ induces a derivation D_4 on A. We have $\operatorname{Der}_k(A) = AD_4$, $\operatorname{Ider}_k(A) = AxD_4 + AyD_4$.

§ 3. Integrability and smoothness

The theorems of the preceding section give various necessary conditions for a derivation to be integrable. In this section we will consider sufficient conditions of integrability.

Let k be a ring and A a k-algebra. To give a derivation $D \in \text{Der}_k(A)$ is to give a k-algebra homomorphism $\phi_1 \colon A \to A[t]/(t^2)$ such that $\phi_1(a) \equiv a \mod t$. Saying that D is integrable (over k) is equivalent to saying that ϕ_1 can be lifted to a k-algebra homomorphism $E \colon A \to A[[t]]$, and since $A[[t]] = \lim_{t \to \infty} A[t]/(t^n)$ it suffices to find, step by step, k-algebra homomorphisms $\phi_n \colon A \to A[t]/(t^{n+1})$ such that $\phi_{n-1}(a) = \phi_n(a) \mod t^n$. Such lifting is always possible if A is a smooth k-algebra in the sense of [11] (i.e. formally smooth with respect to the discrete topology in the sense of EGA, or 0smooth in the sense of André [1].)

THEOREM 6. Let k be a field and K be a separable extension field of k. Then K is a smooth k-algebra. Consequently, every derivation of K over k is integrable over k.

Proof. The smoothness is well known, cf. [5], [11]. Actually, one can say more: Let B be a differential basis of K over k. Then k(B) is a purely transcendental extension of k, and K is formally etale over k(B). (Cf. [10, Th. 2].)

COROLLARY. Let K be a field. Then any derivation of K is integrable. Proof. Put k = the prime field in K in the theorem.

LEMMA 4. Let A be a ring of characteristic p, and D be a derivation of A with $D^p = 0$. Put $A_0 = \{a \in A | Da = 0\}$. If $x \in A$ satisfies Dx = 1, then A is a free A_0 -module with $1, x, x^2, \dots, x^{p-1}$ as a basis.

Proof. Put $A_i = \{a \in A | D^{i+1}a = 0\}$ for $0 \le i < p$. By the assumption $D^p = 0$ we have $A_{p-1} = A$. We will prove

$$A_i = A_0 + A_0 x + \cdots + A_0 x^i$$

by induction on *i*. For i = 0 there is nothing to prove. Let $D^{i+1}a = 0$. Then $D^i a \in A_0$, and if we put $b = a - (i!)^{-1}x^i D^i a$, then $D^i b = 0$, i.e. $b \in A_{i-1} = A_0 + A_0 x + \cdots + A_0 x^{i-1}$. Thus $a \in A_0 + A_0 x + \cdots + A_0 x^i$, as wanted. The linear independence of $1, x, \dots, x^{p-1}$ over A_0 is obvious.

THEOREM 7. Let K be a separable extension field of a field k of characteristic p. Let $D \in \text{Der}_k(K)$. Then D is strongly integrable over k iff $D^p = 0$.

Proof. We have already seen the necessity. To prove the sufficiency, we may assume $D \neq 0$, $D^p = 0$. Take $y \in K$ with $Dy \neq 0$. Then there exists a positive integer i < p such that $D^i y \neq 0$, $D^{i+1}y = 0$. Put $x = D^{i-1}y/D^i y$. Then Dx = 1. Therefore, putting $K_0 = \{a \in K | Da = 0\}$ we have $K = K_0(x)$ and $[K:K_0] = p$ by Lemma 4. The separability of K/k implies that K^p and k are linearly disjoint over k^p . Suppose $x^p \in K_0^p k$. Then we can write $x^p = \sum_{i=1}^r y_i^p c_i$, where $y_i \in K_0$, $c_i \in k$ and y_1^p, \dots, y_r^p are linearly independent over k^p . Then y_1, \dots, y_r are linearly independent over k, and since $x \notin K_0$ and $k \subset K_0$ we see that x, y_1, \dots, y_r are also linearly independent over k. Therefore x^p, y_1^p, \dots, y_r^p must be linearly independent over k^p , hence over k by the linear disjointness. But this contradicts our assumption $x^p = \sum y_i^p c_i$. Therefore $x^p \notin K_0^p k$, and so there exists a p-basis B_0 of K_0/k containing x^p as a member. Put

$$B = (B_0 - \{x^p\}) \cup \{x\}.$$

Then, putting $y = x^{p}$ and $I = (X^{p} - y)K_{0}[X]$, we have $K = K_{0}[X]/I$. The exact sequence

$$I/I^{2} \longrightarrow \mathcal{Q}_{K_{0}[X]/k} \otimes K = (\mathcal{Q}_{K_{0}/k} \otimes K) \oplus KdX \longrightarrow \mathcal{Q}_{K/k} \longrightarrow 0$$

 \mathbf{shows}

$${\mathcal Q}_{{\scriptscriptstyle K}/k}\simeq (({\mathcal Q}_{{\scriptscriptstyle K}_0/k}\otimes_{{\scriptscriptstyle K}_0}K)/Kdy)\oplus Kdx\,.$$

This means that B is a p-basis of K/k. Put $k' = k(B_0 - \{x^p\})$. Then x is transendental over k' (cf. [10, Th. 1]), hence we can define a homomorphism of k'-algebras

$$E_t: k'(x) \longrightarrow k'(x)[[t]]$$

by $E_t(x) = x + t$. Since K is formally etale over k'(x) = k(B), it follows from the diagram

$$k'(x) \longrightarrow K$$

$$\downarrow id$$

$$k'(x)[[t]] \to K[[t]] \to \cdots \to K[[t]]/(t^2) \to K[[t]]/(t) = K$$

that E_t can be uniquely extended to a homomorphism of k'-algebras

$$E_t: K \longrightarrow K[[t]] .$$

Consider the diagram

$$\begin{array}{c} K \xrightarrow{E_t} & K[[t]] \\ E_{t+u} \downarrow & \downarrow E_u \\ & K[[t+u]] \xrightarrow{i} & K[[t,u]] \end{array}$$

We have $E_u E_t(a) \equiv a \equiv E_{t+u}(a) \mod (t, u)$ for all $a \in K$ and $E_u \circ E_t = i \circ E_{t+u}$ on k'(x). Hence the diagram commutes by the formal etaleness of K/k'(x). Therefore E_t determines an iterative differentiation $\underline{D} = (1, D_1, D_2, \cdots)$ of K over k' such that $D_1(x) = 1 = D(x)$, $D_i(x) = 0$ (i > 1). Since $D_1(a) = 0 = D(a)$ for $a \in K^p k' = K_0$, we have $D_1 = D$. Q.E.D.

Resuming our general discussion at the beginning of this section, we put $A_n = A[t]/(t^{n+1})$ and consider the extension of k-algebras

$$(3.1) 0 \longrightarrow N \longrightarrow A_n \xrightarrow{\pi} A_{n-1} \longrightarrow 0,$$

where $N = At^n$ is an ideal of square zero in A_n and $N \simeq A$ as A-module. The pull-back of (3.1) by $\phi_{n-1}: A \to A_{n-1}$ is the extension

$$(3.2) 0 \longrightarrow A \longrightarrow B \longrightarrow A \longrightarrow 0$$

where B is the fibre product of A and A_n over A_{n-1} :

$$(3.3) B = \{(\alpha, a) \in A_n \times A | \pi(\alpha) = \phi_{n-1}(a)\}.$$

The extension (3.2) is trivial if and only if ϕ_{n-1} is liftable to $A \to A_n$. Thus the obstruction to lifting ϕ_{n-1} is the cohomology class represented by (3.2) in the group $H^1(k, A, A)$ of M. André. (Cf. [1] Chap. XVI. It coincides with the group $\text{Exalcom}_k(A, A)$ of EGA.) Therefore we have

THEOREM 8. Let k be a ring and A be a k-algebra. If

 $H^{1}(k, A, A) = 0,$

then every derivation D of A over k is integrable over k.

Remark 7. As a matter of fact the extensions (3.1), (3.2) are Hochschild extensions, and so the obstruction class lies in the subgroup $H^2_k(A, A)^s$ of Exalcom_k (A, A), cf. [5] p. 65. But we will not discuss this group here.

We will apply Th. 8 to regular local rings of characteristic p. Let (A, m, K) be a regular local ring, and k be a field of characteristic p contained in A. If the residue field K is separable over k then A is formally smooth (with respect to the *m*-adic topology) over k, but not conversely.

Formal smoothness is equivalent to $H^{1}(k, A, K) = 0$, and then $H^{1}(k, A, M) = 0$ for all A-modules M which satisfy $m^{\nu}M = 0$ for some ν . Smoothness is equivalent to $H^{1}(k, A, M) = 0$ for all A-modules M. ([1] p. 223 Prop. 17, p. 222 Def. 14.) Also the following lemma is known.

LEMMA 5. Let (A, m, K) be a noetherian local ring containing a field k. Assume that A is formally smooth (with respect to the maximal ideal) over k. Then:

- i) for any prime ideal P of A the local ring A_P is formally smooth over k,
- ii) $H_i(k, A, M) = 0$ for all A-modules M and for all i > 0,
- iii) $H_0(k, A, A) = \Omega_{A/k}$ is A-flat,
- iv) $H^i(k, A, M) = \operatorname{Ext}_A^i(H_0(k, A, A), M)$ for all A-modules M and for all $i \ge 0$.

Proof. i) Formal smoothness over k is equivalent to geometric regularity over k([5] (22.5.8), [11] p. 279 Th. 93). If k' is a finite extension field of k, then $A_P \otimes_k k'$ is a localization of $A \otimes_k k'$. Therefore it is regular.

ii) follows from i) and [1] p. 331 Th. 30.

iii) and iv): By [1] p. 41 Lemma 19, $H_i(k, A, A) = 0$ (i > 0) implies

 $H_i(k, A, M) = \operatorname{Tor}_i^A(H_0(k, A, A), M), \quad H^i(k, A, M) = \operatorname{Ext}_A^i(H_0(k, A, A), M)$

for all $i \ge 0$. The first equation and ii) imply that $H_0(k, A, A)$ is A-flat.

THEOREM 9. Let k be a field and A be a noetherian local ring containing k. Assume that A is formally smooth over k and that $\Omega_{A/k}$ is a finite A-module. Then A is smooth over k. Consequently, we have

 $\operatorname{Der}_{k}(A) = \operatorname{Ider}_{k}(A)$.

Proof. The module of differentials $\Omega_{A/k}$ is finite by assumption and flat by Lemma 5. Hence it is free, and so $H^1(k, A, M) = \operatorname{Ext}^1_A(\Omega_{A/k}, M) = 0$ for every A-module M. Therefore A is smooth over k.

Remark 8. The finiteness of $\Omega_{A/k}$ holds in each of the following cases:

- 1) A is a localization of a finitely generated k-algebra;
- 2) char (k) = p and A is finite over $k[A^p]$.

The second case includes in particular $k[[X_1, \dots, X_n]]$ with $[k:k^p]$ finite.

THEOREM 10. If A is a complete local ring formally smooth over a subfield k, then $H^{1}(k, A, M) = 0$ for all finite A-module M. Consequently, we have

$$\operatorname{Der}_{k}(A) = \operatorname{Ider}_{k}(A)$$
.

Proof. Consider an extension of k-algebras

$$(3.4) 0 \longrightarrow N \longrightarrow B \xrightarrow{\alpha} A \longrightarrow 0$$

where N is a finite A-module. Let m denote the maximal ideal of A. The extension $0 \to N/mN \to B/mN \xrightarrow{\alpha_1} A \to 0$ splits because N/mN is an A/m-module. Therefore there exists a k-algebra homomorphism $\phi_1: A \to B/mN$ such that $\alpha_1 \circ \phi_1 = \text{identity}$. Using formal smoothness we can lift ϕ_1 to ϕ_2, ϕ_3, \cdots , where $\phi_i: A \to B/m^iN$, successively, because the kernel of the natural map $B/m^{i+1}N \to B/m^iN$ is an A/m-module. Since N is a finite A-module, it is m-adically complete and separated. It follows easily that B is canonically isomorphic to $\lim_{i \to \infty} B/m^iN$. Therefore we obtain a k-algebra homomorphism $\phi: A \to B$ by $\phi = \lim_{i \to \infty} \phi_i$. Since $\alpha = \alpha_1 \circ p_1$ (where p_1 is the natural map $B \to B/mN$) and $p_1 \circ \phi = \phi_1$, we get $\alpha \circ \phi = \alpha_1 \circ p_1 \circ \phi = \alpha_1 \circ \phi_1 = \text{identity}$. Therefore every extension of A by N splits, or equivalently, $H^1(k, A, N) = 0$.

The author does not know whether $H^{1}(k, A, A)$ is zero for every formally smooth local k-algebra A, nor whether $H^{1}(k, A, A) = 0$ for a local

k-algebra *A* (essentially of finite type, say) implies that *A* is regular. Of course the equality $\text{Der}_k(A) = \text{Ider}_k(A)$ may happen even if $H^1(k, A, A) \neq 0$. But anyway normality of a local ring is not enough to guarantee the integrability of all derivations, as we see in the following example.

EXAMPLE 6. Let k be a field of characteristic 2 and consider

$$A = k[x, y, z]_{(x, y, z)}, \qquad xy = z^2.$$

This is a local ring of dimension 2, and since it is a complete intersection and has an isolated singular point, it is normal. The derivations $\partial/\partial Z$ and $X\partial/\partial X + Y\partial/\partial Y$ of k[X, Y, Z] induce derivations D_1 , D_2 of A. Suppose D_1 is integrable. Then there exist power series

$$E_t(x) = x + t^2 \xi_2 + \cdots, \ E_t(y) = y + t^2 \eta_2 + \cdots, \ E_t(z) = z + t + t^2 \zeta_2 + \cdots$$

 $(\xi_i, \eta_i, \zeta_i \in A)$ such that

$$(x+t^2\xi_2+\cdots)(y+t^2\eta_2+\cdots)=(z+t+t^2\zeta_2+\cdots)^2$$
.

Then $x\eta_2 + y\xi_2 = 1$, hence $1 \in m_A$, contradiction. Therefore D_1 is not integrable. One can show that xD_1 , yD_1 , $zD_1 + D_2 \in \text{Ider}_k(A)$. The A-module $\text{Der}_k(A)$ is a free module generated by D_1 , D_2 .

We recall the famous Zariski-Lipman conjecture: Let A be the local ring of a point of a variety over a field k of characteristic zero. If $\text{Der}_k(A)$ is free then A is regular. Lipman [8] proved that A is normal. The conjecture has been proved only in the case of a hypersurface by Scheja-Storch [17]. The above example shows that the conjecture does not hold in characteristic p. But if we modify the conjecture as follows, then it may be true:

CONJECTURE. If k is perfect, if $\text{Der}_k(A) = \text{Ider}_k(A)$ and if this module is A-free, then A is regular.

§4. Finitely generated k-algebras

Let k be a perfect field and let

$$A = k[x_1, \cdots, x_n] = k[X_1, \cdots, X_n]/P, \qquad P = (f_1, \cdots, f_s)$$

be an integral domain of dimension n-r. Let J be the Jacobian ideal of A, i.e. the ideal generated by the $r \times r$ minors of the Jacobian matrix $(\partial f/\partial x)$. (Cf. § 2.) We have seen that $D \in \operatorname{Ider}_{k}(A)$ implies $D(J) \subset J$. The converse is false, but we have the following theorem. THEOREM 11. If $D \in \text{Der}_k(A)$ and $D(A) \subset J$, then $D \in \text{Ider}_k(A)$.

COROLLARY 1. If Δ is a non-zero $r \times r$ minor of $(\partial f/\partial x)$, then

 $\varDelta \operatorname{Der}_{k}(A) \subset \operatorname{Ider}_{k}(A)$.

Consequently, we have

$$\operatorname{rank}\operatorname{Der}_{k}\left(A
ight)=\operatorname{rank}\operatorname{Ider}_{k}\left(A
ight),$$

where rank M for an A-module M means the maximal number of linearly independent elements in M.

Proof of Th. 11. Put $D(x_i) = \xi_{1i} \ (\in J), \ \xi_1 = (\xi_{11}, \dots, \xi_{1n})$. Then we have

$$f_{lpha}(x+t\xi_1)\equiv 0 ext{ mod } t^2\,, \qquad 1\leqslant lpha\leqslant s\,.$$

By induction, suppose that, for some $\nu > 1$, we have found $\xi_{\mu j} \in J$ $(1 \leq \mu < \nu, 1 \leq j \leq n)$ such that

$$f_lpha \Big(x + \sum\limits_{\mu=1}^{
u-1} t^\mu \xi_\mu \Big) \equiv 0 ext{ mod } t^
u \,, \qquad 1 \leqslant lpha \leqslant s \,.$$

Then we can write

$$f_{\scriptscriptstyle lpha}\!\left(x+\sum\limits_{1}^{
u-1}t^{\scriptscriptstyle \mu}\xi_{\scriptscriptstyle \mu}
ight)\equiv t^{\scriptscriptstyle
u}F_{\scriptscriptstyle lpha}(x) ext{ mod }t^{\scriptscriptstyle
u+1}\,, \qquad 1\leqslant lpha\leqslant s\,.$$

Then the $F_a(x)$'s are linear combinations, with coefficients in A, of monomials of the form $\xi_{\mu_1 j_1} \xi_{\mu_2 j_2} \cdots \xi_{\mu_q j_q}$, $\mu_1 + \mu_2 + \cdots + \mu_q = \nu$. Since $\mu_i < \nu$ we have $q \ge 2$. Therefore $F_a(x) \in J^2$. If $\xi_{\nu_1}, \xi_{\nu_2}, \cdots, \xi_{\nu_n}$ are elements of A we have

$$f_{\scriptscriptstyle lpha}\!\left(x+\sum\limits_1^{
u}t^{\scriptscriptstyle \mu}\hat{\xi}_{\scriptscriptstyle \mu}
ight)\equiv t^{\scriptscriptstyle
u}\!\left[F_{\scriptscriptstyle lpha}\!\left(x
ight)+\sum\limits_{j=1}^n(\partial f_{\scriptscriptstyle lpha}/\partial x_j)\hat{\xi}_{\scriptscriptstyle
u j}
ight]\,\,\mathrm{mod}\,\,t^{\scriptscriptstyle
u+1}\,,\ \ 1\leqslantlpha\leqslant s\,.$$

Therefore, if we can find $\xi_{\nu j} \in J$ $(1 \leq j \leq n)$ which satisfy

(4.1)
$$F_{\alpha}(x) + \sum_{j} (\partial f_{\alpha}/\partial x_{j}) \xi_{\nu j} = 0 \quad (1 \leqslant \alpha \leqslant s)$$

then we can continue the induction and we are done.

Let $\Delta_1, \dots, \Delta_a$ be the non-zero $r \times r$ minors of the Jacobian matrix $(\partial f/\partial x)$. We may suppose that the first r rows of the matrix $(\partial f/\partial x)$ are linearly independent. Put $k[X_1, \dots, X_n] = R$. The local ring R_P is regular of dimension r, and the map $\psi : R_P \to K^n$ (K = quotient field of A) defined by

$$\psi(f) = (\partial f/\partial x_1, \cdots, \partial f/\partial x_n)$$

maps P^2R_P to zero. Therefore f_1, \dots, f_r are linearly independent modulo P^2R_P , hence we have $PR_P = (f_1, \dots, f_r)R_P$. Since $F_\alpha(x) \in J^2$ for all α , we can write

(4.2)
$$F_i(x) = \sum_{\lambda} \Delta_{\lambda} h_{\lambda i}(x), \qquad h_{\lambda i} \in J \ (1 \leq i \leq r).$$

Let $f_{r+q} = \sum_{i=1}^{r} a_{qi} f_i$, $a_{qi}(X) \in R_P$. Then we have

(4.3)
$$\partial f_{r+q}/\partial x_j = \sum a_{qi}(x)\partial f_i/\partial x_j$$

Moreover, we have $F_{r+q}(x) = \sum_i a_{qi}(x)F_i(x)$ because $f_i(x + \sum_{j=1}^{\nu-1} t^{\nu}\xi_{\mu}) \equiv t^{\nu}F_i(x)$ mod $t^{\nu+1}$. Thus, putting

(4.4)
$$h_{\lambda,r+q}(x) = \sum_{1}^{r} a_{qi}(x) h_{\lambda i}(x)$$

we see that (4.2) holds for $i = 1, \dots, s$.

Now fix an index λ and consider the simultaneous equations

(4.5)
$$extstyle \Delta_{\lambda} h_{\lambda i}(x) + \sum_{j=1}^{n} (\partial f_{\alpha} / \partial x_j) \xi_j^{(\lambda)} = 0, \quad 1 \leqslant i \leqslant s.$$

Let $\Gamma = \{i_1, \dots, i_r\}$ denote the set of indices of the rows of $(\partial f/\partial x)$ which appear in Δ_i . These rows are linearly independent, and by (4.3) and (4.4) we have

$$\operatorname{rank}\begin{pmatrix} \partial f_1 / \partial x_1 \cdots \partial f_1 / \partial x_n & h_{\lambda 1} \\ \vdots & \vdots \\ \partial f_s / \partial x_1 \cdots \partial f_s / \partial x_n & h_{\lambda s} \end{pmatrix} = \operatorname{rank} \left(\partial f / \partial x \right) = r \,.$$

Therefore, to solve (4.4) we have only to solve them for $i \in \Gamma$. We put $\xi_j^{(i)} = 0$ if the *j*-th columm of $(\partial f/\partial x)$ does not appear in Δ_i , and we find the other $\xi_j^{(i)}$ by Cramer's rule. Since $h_{\lambda i}(x) \in J$ we have $\xi_j^{(i)} \in J$. Then $\xi_{\lambda j} := \sum_{\lambda} \xi_j^{(i)}$ satisfy (4.1). Q.E.D.

COROLLARY 2. Let k, A, J be as above and let S be a multiplicative subset of A. Put $B = S^{-1}A$. Then $S^{-1}J = JB$ is the first non-zero Fitting ideal of $\Omega_{B/k}$, and if $D \in \text{Der}_k(B)$ maps B into JB then $D \in \text{Ider}_k(B)$.

Proof. There exists $a \in S$ such that $aD(A) \in J$. Then $aD \in \text{Ider}_k(A)$, hence $D \in \text{Ider}_k(B)$.

COROLLARY 3. Theorem 11 remains true if we replace the polynomial

ring $k[X_1, \dots, X_n]$ by the formal power series ring $k[[X_1, \dots, X_n]]$.

Proof. The above proof of Th. 11 applies to this case as well.

Under the assumptions of Th. 11 we have rank $\operatorname{Ider}_k(A) = \operatorname{rank} \operatorname{Der}_k(A)$ = $n - r = \dim A$. More generally, if (A, m) is a noetherian local ring and k is a quasi-coefficient field of A (i.e. k is a subfield of A such that A/m is formally etale over k), then for each $P \in \operatorname{Ass}(\hat{A})$ we have rank $\operatorname{Ider}_k(A) \leq \dim \hat{A}/P$ (Mollinelli [12]), whereas rank $\operatorname{Der}_k(A)$ can be bigger than dim A. In the case when k is imperfect Cor. 1 is false in general, as the following example shows.

EXAMPLE 7. Let k be an imperfect field of characteristic p > 2, and let $a, b \in k$ be such that $[k^{p}(a, b) : k^{p}] = p^{2}$. Put $A = k[x, y] = k[X, Y]/(X^{2p} + aX^{p} + bY^{p})$. The partial derivations of k[X, Y] induce derivations D_{x}, D_{y} of A over k, and we have $\text{Der}_{k}(A) = AD_{x} + AD_{y}$. Suppose $uD_{x} + vD_{y}$ is integrable, where u = f(x, y) and v = g(x, y). Considering the coefficient of t^{p} in the relation $(x + tu + \cdots)^{2p} + a(x + tu + \cdots)^{p} + b(y + tv + \cdots)^{p} = 0$ we get

$$(*) \qquad \qquad 2x^p u^p + a u^p + b v^p = 0.$$

Therefore $2X^p f(X, Y)^p + af(X, Y)^p + bg(X, Y)^p = (X^{2p} + aX^p + bY^p)H(X, Y)$ for some $H(X, Y) \in k[X, Y]$. Applying derivations D_a, D_b of k such that $D_a(a) = 1$, $D_a(b) = 0$, $D_b(a) = 0$, $D_b(b) = 1$ to the last relation and substituting x, y for X, Y we get

$$u^p = x^p w$$
, $v^p = y^p w$, $w = H(x, y)$.

Substituting them into (*) we have w = 0. Hence u = v = 0. Thus $\operatorname{Ider}_{k}(A) = 0$.

References

- [1] André, M., Homologie des algèbres commutatives, Springer, 1974.
- [2] ----, Méthodes simpliciale en Algèbre Homologique et Algèbre Commutative, Springer Lecture Notes in Math., 32 (1967).
- [3] Avramov, L. L., Flat morphisms of complete intersections, Soviet Math. Dokl., 16 (1975), 1413-1417.
- [4] Brown, W. C., On the imbedding of derivations of finite rank into derivations of infinite rank, Osaka J. Math., 15 (1978), 381-389.
- [5] Grothendieck, A., Éléments de Géométrie Algébrique, IV-1, Publ. I.H.E.S., no. 20, 1964.
- [6] ____, ibid., IV-2, Publ. I.H.E.S., no. 24, 1965.
- [7] Hasse, H. and Schmidt, F. K., Noch eine Begründung der Theorie der höheren

Differentialquotienten in einem algebraischen Funktionenkorper einer Unbestimmten, J. reine u. angew. Math., 117 (1937).

- [8] Lipman, J., Free derivation modules on algebraic varieties, Amer. J. Math., 87 (1965), 874-898.
- [9] —, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc., 21 (1969), 422-426.
- [10] Matsumura, H., Quasi-coefficient rings of a local ring, Nagoya Math. J., 68 (1977), 123-130.
- [11] —, Commutative Algebra, 2nd Ed. Benjamin, 1980.
- [12] Molinelli, S., Sul modulo delle derivazioni integrabili in caratteristica positiva, Ann. Mat. Pura Appl., 121 (1979), 25–38.
- [13] Nakai, Y., High order derivations I, Osaka J. Math., 7 (1970), 1-27.
- [14] —, On locally finite iterative higher derivations, ibid., 15 (1978), 655-662.
- [15] Northcott, D. G., Finite Free Resolutions, Camb. Tracts in Math., 71, Camb. Univ. Press, 1976.
- [16] Restuccia, G., Sul rango del modulo delle derivazioni di un anello in caratteristica diseguale, Rend. Sem. Mat. Univ. Politecn. Torino, 36 (1977-78), 449-462.
- [17] Scheja-Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann., 197 (1972), 137-170.
- [18] Seidenberg, A., Derivations and integral closure, Pacific J. Math., 16 (1966), 167-173.
- [19] —, Differential ideals in rings of finitely generated type, Amer. J. Math., 89 (1967), 22-42.
- [20] ----, Differential ideals in complete local rings, ibid., 95 (1973), 52-58.
- [21] Watanabe, K., Ishikawa, T., Tachibana, S. and Otsuka, K., On tensor products of Gorenstein rings, J. Math. Kyoto Univ., 9 (1969), 413-423.
- [22] Yamauchi, N., On an algebra over a field with universal finite module of differentials, Nagoya Math. J., 83 (1981), 107-121.
- [AG] Hartshorne, R., Algebraic Geometry, Springer, 1977.

Department of Mathematics Nagoya University