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INTEGRABLE DERIVATIONS

HIDEYUKI MATSUMURA

Dedicated to Prof. Yoshikazu Nakai on his Sixtieth Birthday

Introduction

Let A be a commutative ring and D be a derivation of A into itself.
If there exists a homomorphism E : A —> A[[t]] such that

E(ά) = a + tD(ά) mod t

then we say that D is integrable. Integrable derivations have many good
properties. In fact, most of unpleasant phenomena of derivations in
characteristic p disappear if we consider integrable derivations only.

In § 1 we state definitions and basic properties of differentiations, and
we give some examples of non-integrable derivations.

§ 2 is devoted to theorems which are essentially due to Seidenberg
([18], [19], [20]). These theorems show that integrable derivations behave
as they should, and provides us with necessary conditions for integrability.

Then in § 3 and § 4 we prove some sufficient conditions. In § 3 we
consider smooth or formally smooth algebras, using Andre's homology
theory. In §4, by an elementary argument we prove a criterion of inte-
grability, which shows that there are plenty of integrable derivations (in
the case of an integral domain finitely generated over a perfect field).

§1. Definitions and examples

In this article all rings are assumed to be commutative with a unit
element. Local rings are assumed to be noetherian.

Let A be a ring. The set of all derivations of A into itself is an
A-module and is denoted by Der (A). If & is a subring of A, the sub-
module of Der (A) consisting of those derivations which vanish on k is
denoted by Derfc (A).
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A differentiation D of A (in the sense of Hasse-Schmidt [7]) is an

infinite sequence D = (Z)o, A> D2, •) of additive endomorphisms A : A ->

A such that

(1.1) A = identity, Du(ab) = Σ Dt(a)Dj(b).

It follows that A is a derivation. A will be called the i-th. component

of D. Let t be an indeterminate over A, and put

(1.2) £(α) = £«(α) = ΣΓΰ»(α)eA[[ί]] (αeA).

Then E = Et is a ring homomorphism from A into A[[£]] such that a =

J?(α) mod ί. It can be uniquely extended to an endomorphism of A[[i\]

such that E(t) = t; namely, we define

(1.3)

Then, using

(1.4) E(ά) = a mod t (aeA), E(t) = *,

we can easily see that E is an automorphism of A[[t]]. Conversely, any

automorphism of A[[t\] satisfying (1.4) comes from a differentiation. We

will denote the automorphism E = Et obtained from D by A(D); thus A

is a bijection from the set of differentiations of A to the set of auto-

morphisms of A[[t]] satisfying (1.4). This latter set is obviously a subgroup

of Aut (A [[£]]), therefore by means of A we can make the set of differenti-

ations a group, which we denote by HS(A) and call the Hasse-Schmidt

group of A. If D = (1, Du •) and Df = (1, D[, ) are differentiations

of A, easy calculations show that

(1.5) DD> = (1, A + Dί, A + A A + « , , Σ A£>U, •) and
i

(1.6) S 1 = (l, - A, D\ - A, - Dϊ + AA + AA - A, •).

Moreover, from (1.1) we see that

(1.7) if x e A, then (1, xDu x2D2, , xnDn, •) is a differentiation.

We say that a derivation D e Der (A) is integrable if there exists a

differentiation Z) = (1, A , A , ) of A with A = # . Such 2 is called

(by lack of better terminology) an integral of D; we also say that D lifts

D. The formulas (1.5), (1.6), (1.7) show that the set of integrable derivations
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of A is an A-submodule of Der (A). We denote it by Ider (A). If A con-

tains the rational number field Q it is easy to see that all derivations are

integrable. The same holds when A is a field (of any characteristic), see

Th. 6. But in general there are non-integrable derivations.

Remark 1. If tf is an element of A[[t]] without constant term and D

is a differentiation of A, we get a homomorphism Et, : A -> A[[t\] by Et,{a)

= ΣΓ=o t'nDn(ά), and this can be uniquely extended to an automorphism

of A[[t]] as in (1.3). Applying Λ'1 to this, we get a new differentiation.

For instance if f = xt then we get the differentiation of (1.7).

Remark 2. If Et and E't correspond to D and Df respectively, and if

we put s — tn for some n > 1, then Et o E's gives a differentiation of the

form (1, Du , Dn_u Dn + Z>ί, •). From this it is clear that an inte-

grable derivation can have many integrals.

Let έ b e a subring of A. A differentiation D = (1, JDj, Z)2, •) is called

a differentiation of A over & if Dt{a) = 0 for all ί > 0 and for all αefc

The set of such differentiations is denoted by HSfc(A). A derivation D is

said to be integrable over k if it has an integral belonging to HSfc(A).

The set of derivations which are integrable over k will be denoted by

Iderfc (A), which should not be confused with Derfc (A) Γ) Ider (A). For

instance, if A is a ring of characteristic p and if k = Ap

9 then we have

Der (A) = DerΛ (A), but in most cases Ider (A) is not equal to IderA (A),

the latter being zero if A is reduced. In fact, if D = (1, Du D2, )e HS(A)

and if q = pr is a power of p, then we have

Et(aq) = Et(aY = (α + *A(α) + Ύ = aq +

therefore it holds that

(1.8) Dt(aq) = 0 if i =£ 0 (g), Dq(aq) = A(α)9

A differentiation Z? is said to be iterative if

(1.9) A o Dj = (£ t ; ) A + , for all ί, .

This is equivalent to saying that the following diagram

(1.10) Ettu

A[[t + «]] - U A[[ί, »]]
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(where i is the inclusion map and Eu{t) = t) is commutative.

A derivation D will be said to be strongly integrable if it has an

iterative differentiation as integral.

If the ring A contains the rational number field Q, then every deri-

vation D e Der (A) is strongly integrable, and there is a unique iterative

differentiation which lifts D, namely (1, D, (1/2\)D\ , (lln\)Dn, •)• When

A is of characteristic p, a strongly integrable derivation D must satisfy

Dp = 0. In fact, if D = (1, Dl9 D2, •) is iterative, then by induction we

have D\ = ί! D4 (all i), hence DP = 0. The condition Z)p = 0 is also sufficient

for strong integrability when A is a field (cf. Th. 7). In the case of

characteristic p the strongly integrable derivations do not form an A-

module.

We shall say that differentiations D = (1, Du D2, - •) and D' = (1, A',

Z>2, *) commute if Z^ and Dy commute for every pair (i,j). If 22 and Df

are iterative and commute with each other, then their product DDf is

again iterative, because (EuE'u)(EtE't) = EuEtE'uE't = Et+uE't+u (where all

maps are viewed as automorphisms of A[[t, ύ\] which leave t, u invariant).

Like derivations, differentiations can be uniquely extended to a locali-

zation. In fact, let A be a ring, S a multiplicative subset of A, D e HS(A)

and Et : A -> A[[t\] the homomorphism corresponding to D- Let -ψ : A ->

A5 and -ψ ' : A[[t]] -^ As[[t]] be the natural maps. If s e S then the element

ψ'(Et(s)) = ψ(s) + ίψ(A(s) + * * * is invertible in A5[[ί]], whence ψ'oίJ,

factors through A5, i.e. there exists a unique homomorphism ίJ7 : As ->

A5[[ί]] satisfying tf o ̂  = JS7ψ o .

Similarly, if J is an ideal of A and A* is the I-adic completion of A,

then a differentiation D = (1, A , D2, •) is uniquely extended to A*. In

fact, we have Dn(P) ^ Iv~n for v > n, and so each Dn is uniformly con-

tinuous in the J-adic topology and can be uniquely extended to the com-

pletion A*.

EXAMPLE 1. Let k be a ring of characteristic p, and put A = k[X]l(Xp).

Put x = Xmod X*. Define D e Derfc(A) by Dx = 1 (thus D is induced by

djdx of £[X]). If D were integrable we would have

0 - Et(xp) = Et(x)p = (x+t+ Ύ = ίp +

which is a contradiction. Therefore Z) is not integrable. The derivation

xD is integrable: in fact, x "-> x(l + 2) e A[[t]] defines a A-algebra homo-

morphism. We have Derfc(A) = A D (a free module), Iderfc(A) = xA D ~
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xA (not free).

EXAMPLE 2. Let R be a discrete valuation ring of characteristic zero
with maximal ideal pR, where p is a prime number. Put k = R/pR, A
= R[X, Y]/(pX - Yp). Then the derivation Y^d/dX + d/dY of R[X, Y]
induces a derivation D of A, which is not integrable. In fact, D induces
a derivation D of A/pA = β[X, YΊ/<TP) such that JD(:y) = 1, and as in the
preceding example D is not integrable. If D were integrable then D
would be so.

EXAMPLE 3. Let k be a field of characteristic p, and let A = k[x,y]
= k[X, Y]/(YP - Xv - Xp+1). The polynomial Yp - Xp(l + X) is irreduc-
ible (Eisenstein criterion), hence A is an integral domain. The partial
derivation d/dY induces a derivation D of A over k. If JD were integrable
to D = (1, A, A, •) € HS(A) with A = A then we should have

0 = Dp(y
p - x* - xp+1) =

i = 0

Therefore Dp(x) = l/xp. But l/xp is not in A. Hence D is not integrable.

EXAMPLE 4. Let J5 be a ring and A = B[[X]] be the formal power
series ring over B. Let t be another indeterminate. Then the map f(X)
ι-» f(X + t) defines an iterative differentiation of A. Similarly for

§ 2, Seidenberg Theorems

Let A be a ring, I an ideal of A and D = (1, Dl9 A, •) € HS(A).
The ideal / is said to be Z)-mvariant (or invariant under D) if ACD £ ί
for all i. When this is the case, the differentiation D induces a differ-
entiation of AjL Recall that an ideal of A is called a differential ideal
if all derivations of A map the ideal into itself. We shall say that the
ideal I is a HS-ideal (resp. HSfc-ideal) if it is invariant under all differ-
entiations in HS(A) (resp. HSfc(A)). If A contains Q, then the differential
ideals and the HS-ideals are the same (this can be seen using Remark 2
of §1.)

THEOREM 1. Let A be a ring, I an ideal of A and t an indeterminate
over A; put A* = A[[t]] and I* = I[[t]]. Let DeHS(A). Then I is D-
inυariant if and only if the automorphism Et of A* associated to D maps
I* onto itself: Et(I*) = 7*.
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Proof. If ACO £ I for all ί, we have #,(/*) c J*. It is easy to see

that (Et)-\a) = Σ tnD'n{a) where D£ is a polynomial in Dl9 •••,£>„. There-

fore we have (Et)-\I*) c I* also. Thus £?t(I*) = I*. The converse is

obvious.

THEOREM 2. Let A be a noetherian ring and P e Ass (A). Then P is

an US-ideal, and consequently there are canonical maps

HS(A) > HS(A/P) , Her (A) • Ider (A/P) .

Proof. We give only a sketch of Seidenberg's proof in [19] pp. 23-24.

If (0) = qx (Ί Π qr is an irredundant primary decomposition in A and if

Pi is the associated prime ideal of qt, then (0) = qr* Π Π qf is an irre-

dundant primary decomposition in A* and pf is the associated prime

ideal of qf. Thus any automorphism E of A* induces a permutation of

Ass (A*) = {pf, - - ,pf}. If E corresponds to a differentiation then from

E(pf) = pf it follows that pt <ΞPj. Considering E'1 we get pt = pό, or

what amounts to the same, pf = pf. By the preceding theorem this means

that ply ,pr are HS-ideals.

Remark 3. Example 1 shows that P is not necessarily a differential

ideal.

THEOREM 3. Let A be a noetherian integral domain and Af be its

derived normal ring. Then any differentiation of A extends to A', and

consequently there are canonical mappings

HS(A) • HS(A'), Ider (A) > Ider (A7).

Proof. Let K denote the quotient field of A, let D e HS(A) and let

E: A -> A[[t]] denote the corresponding homomorphism. We know that

D and E can be extended uniquely to K; we denote the extensions by the

same letters D and E. Then we have to show: E(A*) c A'[[t]].

It is well known that A[[f\] is normal if A is a noetherian normal

ring. In the present case the ring Af is not necessarily noetherian, but

still it is a Krull ring (cf. Nagata, Local Rings, p. 118), therefore an

intersection of discrete valuation rings: A ' = f | « K Then A'[[t]] = Π« KtML

and each Va[[t]] is normal. Therefore A'[[t]] is also normal. Let af e A',

a! = u/v, ueA, veA. Then E(a') = E(u)/E(v) belongs to the quotient field

of A[[ί]]. Moreover, since af is integral over A, E(af) is integral over

A[[t]], hence a fortiori over A'[[ί\]. Therefore E(a;) e A'[[t]]. Q.E.D.
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Remark 4. If A' is finite over A then A'[[t\] is finite over A[[t\] and

is equal to the derived normal ring of A[[t]].

Remark 5. Example 3 of § 1, which is also due to Seidenberg, shows

that a non-integrable derivation of A does not necessarily extend to A'.

COROLLARY. Let A, A! be as in Th. 3 and c be the conductor of A

(i.e. c = {ae A\aA! c; A}). Then c is an ΈlS-ίdeal.

Proof. Let ae c, xe A', D = (1, A , A, ) e HS(A). Then α x e i and

so Dn(ax) = Dn(a)x + Dn^{a)Dx{x) + + aDn(x) e A. We prove Dn(a) e c

by induction on n. Suppose D^a) e c for i < n. Since Dt(x) e A7 for all i,

we have Dn(a)x e A. As x is an arbitrary element of A' this means that

DM e c.

THEOREM 4. Lei A be an excellent ring, I be the largest ideal which

defines Sing (A) and P be the generic point of an irreducible component of

Sing (A). Then I and P are HS-ideals.

Proof. Since P is an associated prime of I, if / is an HS-ideal then

P is so by Th. 2. Thus it suffices to prove that I* is invariant under any

automorphism of A* = A[[Z]]. Now A* is the ί-adic completion of A[t].

Since A[t] is excellent the canonical homomorphism A[t] -* A* is regular

by a well-known theorem of Grothendieck (cf. [EGA IV-2] 7.8.3 (v) or [11]

Th. 79). On the other hand it is obvious that the canonical map A —> A[t]

is regular (for any A). Therefore A-+ A* is regular. It follows that 7*

defines Sing (A*). Since I is reduced (i.e. an intersection of prime ideals),

so is /*. Thus J* is the largest ideal which defines Sing (A*), and, as

such, is invariant under any automorphism of A*. Q.E.D.

Remark 6. Similarly, the largest ideal which defines the set {p e

Spec (A) I Ap is not Q}, where Q denotes the property normal, Cohen-

Macaulay, Gorenstein (cf. [21]), or complete intersection (cf. [3]), is an

HS-ideal.

Let k be a field and A = k[xί9 , xn] be a finitely generated ^-algebra.

Put R = k[Xl9 - , Xn], and write A = R/I, where I is the kernel of the

β-algebra homomorphism R-> A which sends Xt to xt. Let fu , fs be a

system of generators of /. We write dfldxt for 9//&X, mod I. Consider the

Jacobian matrix (dfjdx) = (dfildXj)1<i<Sfi<j<n. Let v be an integer, 0 < v < n.

The ideal of A generated by the (n — v) X (n — v) minors of (df/dx) will
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be called the y-th Jacobian ideal of A and will be denoted by JV{A) or

simply by Jv. We put Jn = Jn+ί — = A. Then we have Jo c: Jx cz J2

c: . Lipman [9] calls the first non-zero e/v the Jacobian ideal of A.

When k is a perfect field and A is an integral domain of dimension d, it

is known that the matrix (df/dx) has rank n — d ([AG] pp. 32-33). There-

fore Jd is the Jacobian ideal of A in this case.

The exact sequence (cf. [11] Th. 58)

I/P -—> ΩR/k 0R A == AdXt φ - Θ AdXre > β ^ > 0

shows that Jv is the v-th Fitting invariant of ΩA/k (cf. [15]). Therefore the

ideals Jv are invariants of the β-algebra A, independent of the represent-

ation A — Rjl and of the choice of the generators f19 , /, of J. We will

state the invariance more precisely in the following lemma.

LEMMA 1. The ideals Jv are left fixed by all automorphisms of the k-

algebra A.

Proof. Let a be an automorphism of the Λ-algebra A, and M be an

A-module. The A-module structure on M is defined by a ^-algebra homo-

morphism ψ : A -> Endfc (M). We define a new A-module structure on M

by ψoσ, and denote the new A-module by Ma. Thus, ax in Mσ = aσx in

M (ae A, xe M). If D : A -> M is a /^-derivation, then ΰ o α is a fe-deri-

vation of A into Mβ. Call it Dσ.

jy{ab) = D(αff6σ) = ασD(6ff) + b°D{a°) in

= αDff(6) + bDσ{a) in

Let ΩA/k = 2 i AdXi. 2 α^d^ = 0 means that 2 ^i-D(^) = 0 holds for every

A-module M and for every derivation D : A -> M. Then 2] ^ίDσ(Xi) = 0

in Mσ, i.e. 2 β<-D(*ί) = 0 in M. Therefore we have J ] αj dxj = 0. Thus,

by putting

we can define an automorphism of the ^-module ΩA/lc such that

(μω)σ = aaof (aeA,ωe ΩA/k).

If dxλ, , dxn generate β^/fc, then dxσ

l9 , dxσ

n also generate β4/fc. More-

over, the σ-image of a relation matrix of dxj, > ,dxn is a relation matrix

of dx{, , cϊα£. By the independence of Fitting ideals on the choice of

generators of the A-module, our lemma is now obvious.
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Let B be a β-algebra. The module ΩB/k represents the functor M->

Όerk(B, M) on the category of all J3-modules. If the restriction of this

functor to the category of finite JB-modules is representable, i.e. if there

exist a finite J3-module MQ and a /^-derivation d0: B-+ Mo with the universal

mapping property for the /^-derivations of B into finite J3-modules, then

Mo is called the universal finite module of differentials of B over k and

is denoted by Dk(B), cf. [17] or [22]. The following lemmas can be easily

proved from the definition.

LEMMA 2. Let B be a noetherian k-algebra such that Dk(B) exists.

Then Dk(B*) also exists (where B* = B[[t]]), and we have

Dk(B*) = (Dk(B) ®B B*) Θ B*dt.

LEMMA 3. Let R be a noetherian k-algebra, I an ideal of R and B =

R/L Suppose Dk(R) exists. Then Dk(B) also exists, and we have an exact

sequence

IIP > Dk(R) ® , ΰ > Dk(B) > 0 .

(cf. [22].)

Returning to the situation R == k[Xu , Xn], I = (/i, ,fs) and A

= Rjl, we have

A* = R*/I* , /* =
1

and the sequence

/*//*2

 > Dh(R*) ®Λ A* • Dt(A*) > 0

is exact. Moreover, Dk(R*) ®Λ, A* = (Dk(R) ΘR A*) Θ A*dt is a free A*-

module with basis dXu , dXn, dt. Therefore JVA* is the (v + l)st Fitting

invariant of Dfc(A*), and proof of Lemma 1 can be applied, mutatis

mutandis, to show that JVA* is invariant under all /^-algebra automorphisms

of A*. This proves the following theorem.

THEOREM 5. Let k be a field and A be a k-algebra of finite type. Then

the ideals Jv are HSk-ideals.

EXAMPLE 5. Let k be a field of characteristic p > 0 and let A =

k[x,y] = k[X, Y]/(Y2 - X3). The derived normal ring A7 is k[u] where u

= y/x, and we have x = u2, y = u\ The conductor is xA! — (x, y)A, which

is also the largest ideal that defines Sing (A). Put Do = d/du e Derfc (A').
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The derivation uD0 induces an integrable derivation A of A because

Et : A' -> A'[[t]] denned by Et(ύ) = u(l + t) maps x = u2 and y = u3 into

A[[£]]. Similarly u2D0 induces an integrable derivation A of A. Let D

e Iderfc (A). Then D e Iderfc (A') = A'A- If P =£ 2 then A(*) = 2u £ A

and so A 6 Derfc (A). I£ p = 2 then for any element / in k [u] we have

(u + t + ft2)3 = u3 + 3uH + S(u + u2f)t2 + , and u+ u2f<£ A. Thus A £

Iderfc (A) in all cases. Therefore we have IderΛ (A) = ADX + AD2. When

p Φ 2, 3 it is easy to see that Derfc (A) = ADλ + AD2 = Iderfc (A).

If p = 2 then the Jacobian ideal of A is x2A. The partial derivation

d/dY of £[X, Y] induces a derivation A on A, and DQ = ΛU93 We have

Derfc (A) = AD3, Ider, (A) = AD, + AA = AyDs + Ax2A The derivation

A maps x2A and (x,y)A into themselves, but it is not integrable as we

have already seen.

If p = 3 the partial derivation d/dX induces a derivation A on A.

We have Der, (A) = AA, Her, (A) = AxD4 + A yA

§ 3. Integrability and smoothness

The theorems of the preceding section give various necessary con-

ditions for a derivation to be integrable. In this section we will consider

sufficient conditions of integrability.

Let k be a ring and A a ^-algebra. To give a derivation D e Derfc (A)

is to give a A-algebra homomorphism φγ: A -> A[t]/(t2) such that φ^ά) = a

mod L Saying that D is integrable (over k) is equivalent to saying that

φx can be lifted to a ^-algebra homomorphism E: A —> A[[ί]], and since

A[[t]] = lim A[£]/(Γ) it suffices to find, step by step, A-algebra homomor-

phisms φn : A -> A[ί]/(Γ+1) such that ^..Xα) = ^(α) mod Γ. Such lifting is

always possible if A is a smooth ^-algebra in the sense of [11] (i.e. formally

smooth with respect to the discrete topology in the sense of EGA, or 0-

smooth in the sense of Andre [1].)

THEOREM 6. Let k be a field and K be a separable extension field of k.

Then K is a smooth k-algebra. Consequently, every derivation of K over

k is integrable over k.

Proof. The smoothness is well known, cf. [5], [11]. Actually, one can

say more: Let B be a differential basis of K over k. Then k(B) is a purely

transcendental extension of k, and K is formally etale over k(B). (Cf. [10,

Th. 2].)
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COROLLARY. Let K be a field. Then any derivation of K is integrable.

Proof. Put k — the prime field in K in the theorem.

LEMMA 4. Let A be a ring of characteristic p, and D be a derivation

of A with Dp = 0. Put AQ = {a e A\Da = 0}. If xeA satisfies Dx = 1,

then A is a free A0-module with 1, x, x\ , xp~1 as a basis.

Proof. Put A, = {α e A\Dί+ίa = 0} for 0 < ί < p. By the assumption

ΰ p = 0 we have Ap_1 — A. We will prove

At = Ao + Aox + + Aox
{

by induction on ί. For i = 0 there is nothing to prove. Let Di+1a = 0.

Then Dιa e Ao, and if we put b = α - (ί!)" VZ>α, tfierc D<& = 0, i.e. b e A,.,

= A + 4̂ô  + + AQX*'1. Thus α e Ao + Aox + + Aox
t

9 as wanted.

The linear independence of 1, x, , xv~ι over Ao is obvious.

THEOREM 7. Lei K be a separable extension field of a field k of char-

acteristic p. Let D e Derfc (K). Then D is strongly integrable over k iff

Dp = 0.

Proof. We have already seen the necessity. To prove the sufficiency,

we may assume D Φ 0, Dp = 0. Take yeK with Dy Φ 0. Then there

exists a positive integer i < p such that jDέy ^ 0 , Dί+1;y = 0. Put x =

Then Dx = 1. Therefore, putting i£"0 = {α e K\Da = 0} we have

and [K: Ko] = p by Lemma 4. The separability of K/k implies

that Kp and k are linearly disjoint over kp. Suppose xp e Kvk. Then we

can write xp = Σ^iyfc*, where ^ e iζ,, c< € A and yf, -,yp are linearly
independent over kp. Then y1? •• ,y r are linearly independent over /2,
and since x 6 Ko and k a Ko we see that x, yt, , yr are also linearly
independent over k. Therefore xp, yf, , yv

r must be linearly independent
over kp, hence over k by the linear disjointness. But this contradicts our
assumption xp — J^yPct. Therefore xp g Kpk, and so there exists a p-basis
Bo of KJk containing xp as a member. Put

B = (B0-{xp})U{x}.

Then, putting y = xp and I = (Xp - y)ί:o[X], we have K = £o[X]/J. The

exact sequence

ΩKΰ[xyk®K= (ΩKo/k ®K)@ KdX-^Ωκlk — > 0
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shows

Ωκ/k ~ ((ΩKo/k ®Ko K)IKdy) Θ Kdx.

This means that B is a p-basis of K/k. Put kf = k(B0 - {xp}). Then x is

transendental over h! (cf. [10, Th. 1]), hence we can define a homomor-

phism of ^-algebras

Et:k'{x)—>k\x)[[t\]

by Et(x) = x + t. Since K is formally etale over k'(x) = k(B), it follows

from the diagram

k'{x) — • K

k'(x)[[t)} - K[[t\]-> • -*K[[t]]l(f) - K[[t]]l(t) = K

that Et can be uniquely extended to a homomorphism of ^'-algebras

Et:K —

Consider the diagram

K —

K[[t+u]] -Uκ[[t9u]].

We have EuEt(a) = α = Et+U(a) mod (£, w) for all α e i f and EuoEt = ioEt+U

on ^'(x). Hence the diagram commutes by the formal etaleness of K/k'(x).

Therefore Et determines an iterative differentiation D = (1, Du D2, •) of

if over kf such that D^x) = 1 = D(x), Dt(x) = 0 (i > 1). Since D^a) =

0 = D(a) for <x e ifp^ = Ko, we have Di = D. Q.E.D.

Resuming our general discussion at the beginning of this section, we

put An = A[t]/(tn+1) and consider the extension of ^-algebras

(3.1) 0 >N • An - % An_x • 0 ,

where JV =• Atn is an ideal of square zero in An and N ~ A as A-module.

The pull-back of (3.1) by φn_ί : A -> An_ί is the extension

(3.2) 0 • A • B > A > 0

where B is the fibre product of A and An over A n - 1 :
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The extension (3.2) is trivial if and only if φn_λ is liftable to A-+An.

Thus the obstruction to lifting φn_1 is the cohomology class represented

by (3.2) in the group W(k, A, A) of M. Andre. (Cf. [1] Chap. XVI. It

coincides with the group Exalcomfc (A, A) of EGA.) Therefore we have

THEOREM 8. Let k be a ring and A be a k-algebra. If

then every derivation D of A over k is integrable over k.

Remark 7. As a matter of fact the extensions (3.1), (3.2) are Hochs-

child extensions, and so the obstruction class lies in the subgroup H2

k(A, A)s

of Exalcomfc (A, A), cf. [5] p. 65. But we will not discuss this group here.

We will apply Th. 8 to regular local rings of characteristic p. Let

(A, m, K) be a regular local ring, and k be a field of characteristic p

contained in A. If the residue field K is separable over k then A is

formally smooth (with respect to the m-adic topology) over k, but not

conversely.

Formal smoothness is equivalent to Hx(k, A, K) = 0, and then Hx(k,

A, M) = 0 for all A-modules M which satisfy mvM — 0 for some p.

Smoothness is equivalent to Hλ(k, A, M) = 0 for all A-modules M. ([1] p.

223 Prop. 17, p. 222 Def. 14.) Also the following lemma is known.

LEMMA 5. Let (A, m, K) be a noetherian local ring containing a field

k. Assume that A is formally smooth (with respect to the maximal ideal)

over k. Then:

i) for any prime ideal P of A the local ring AP is formally smooth

over k,

ii) Ht(k, A, M) = 0 for all A-modules M and for all i > 0,

iii) H0(k, A, A) = ΩA/lc is A-flat,

iv) H'(k, A, M) = Exti(i/0(β, A, A), M) for all A-modules M and for

all ί > 0.

Proof, i) Formal smoothness over k is equivalent to geometric

regularity over k([5] (22.5.8), [11] p. 279 Th. 93). If kf is a finite extension

field of k, then AP ®k k' is a localization of A ®fc k
f. Therefore it is regular.

ii) follows from i) and [1] p. 331 Th. 30.

iii) and iv): By [1] p. 41 Lemma 19, Ht(k, A, A) = 0 (i > 0) implies

, M) = Tor((HQ(k, A, A), M), H\k, A, M) = Exti(tfo(£, A, A), M)
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for all i > 0. The first equation and ii) imply that HQ(k, A, A) is A-flat.

THEOREM 9. Let k be a field and A be a noetherian local ring con-

taining k. Assume that A is formally smooth over k and that ΩA/Jc is a

finite A-module. Then A is smooth over k. Consequently, we have

Derfc (A) = Iderfc (A).

Proof. The module of differentials ΩA/lc is finite by assumption and

flat by Lemma 5. Hence it is free, and so Hι(k, A, M) = Ext^(β^/fe, M) =

0 for every A-module M. Therefore A is smooth over k.

Remark 8. The finiteness of ΩA/k holds in each of the following cases:

1) A is a localization of a finitely generated k-algebra;

2) char (k) = p and A is finite over &[AP].

The second case includes in particular k[[Xu , Xn]] with [k : kp] finite.

THEOREM 10. If A is a complete local ring formally smooth over a

subfield k, then H\k, A, M) = 0 for all finite A-module M. Consequently,

we have

Derfc (A) = Iderfc (A).

Proof Consider an extension of fe-algebras

(3.4) 0 • N • B - ^ > A > 0

where N is a finite A-module. Let m denote the maximal ideal of A.

The extension 0 —• N/mN -> B/mN % A -> 0 splits because NjmN is an

A/m-module. Therefore there exists a β-algebra homomorphism φx : A ->

B/mN such that a1oψ1 = identity. Using formal smoothness we can lift

φλ to φ2, φz, - -, where φt: A -> BjmιN, successively, because the kernel of

the natural map B/mί+ίN-^ BlmιN is an A/m-module. Since N is a finite

A-module, it is m-adically complete and separated. It follows easily that

B is canonically isomorphic to lim B/mW. Therefore we obtain a ^-algebra

homomorphism φ : A -> B by φ — lim φt. Since a = aίop1 (where px is the

natural map B -> BjmN) and px o φ = φl9 we get a o φ = ax °px oφ z= a1oφί =

identity. Therefore every extension of A by N splits, or equivalently,

H\k, A, N) = 0. Q.E.D.

The author does not know whether Hι(k, A, A) is zero for every

formally smooth local ^-algebra A, nor whether Hι(k, A, A) = 0 for a local
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β-algebra A (essentially of finite type, say) implies that A is regular. Of

course the equality Derfc (A) = Iderfc (A) may happen even if Hι(k, A, A)

Φ 0. But anyway normality of a local ring is not enough to guarantee

the integrability of all derivations, as we see in the following example.

EXAMPLE 6. Let k be a field of characteristic 2 and consider

A == k[x, y, z](x>y>2) , xy = z2.

This is a local ring of dimension 2, and since it is a complete intersection

and has an isolated singular point, it is normal. The derivations d/dZ

and Xd/dX + Yd/dY of k[X, Y, Z] induce derivations D19 D2 of A. Suppose

Dί is integrable. Then there exist power series

Et(x) = x + fξ2 + , Et(y) = y + t% + . . , Et{z) = z + t + t%2 + •

(f u %> C* e A) such that

(x + ί»f8 + ) ( y + ft» + • • • ) = (« + « + % + )2

Then x^2 + yξ2 = 1, hence 1 e mA, contradiction. Therefore D1 is not inte-

grable. One can show that xDl9 yDu zDx + D2e Iderfc (A). The A-module

DerΛ (A) is a free module generated by Dl9 D2.

We recall the famous Zariski-Lipman conjecture: Let A be the local

ring of a point of a variety over a field k of characteristic zero. If

DerΛ (A) is free then A is regular. Lipman [8] proved that A is normal.

The conjecture has been proved only in the case of a hypersurface by

Scheja-Storch [17]. The above example shows that the conjecture does

not hold in characteristic p. But if we modify the conjecture as follows,

then it may be true:

CONJECTURE. If k is perfect, if Derfc (A) = Iderfc (A) and if this module

is A-free, then A is regular.

§4. Finitely generated Λ-algebras

Let k be a perfect field and let

A = k[xu , xn] = k[Xu - , Xn]/P, P = (Λ, .,/,)

be an integral domain of dimension n — r. Let J be the Jacobian ideal

of A, i.e. the ideal generated by the r X r minors of the Jacobian matrix

(dfldx). (Cf. § 2.) We have seen that D e Iderfc (A) implies D(J) c J. The

converse is false, but we have the following theorem.
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THEOREM 11. If D e Derfc (A) and D{A) c J, then D e Iderfc (A).

COROLLARY 1. If J is a non-zero r X r minor of (df/dx), then

Δ Derfc (A) c Iderfc (A).

Consequently, we have

rank Derfc (A) = rank Iderfc (A) ,

where rank M for an A-module M means the maximal number of linearly

independent elements in M.

Proof of Th. 11. Put D(xt) = ft< ( e J ) , ft = (ft,, , ftj. Then we

have

fa(x + ίft) = 0 mod f , 1 < a < s .

By induction, suppose that, for some v > 1, we have found ξμJ e J ( l < i « < v ,

1 < j; < n) such that

fa(x + Σ tμξμ) = 0

Then we can write

(* + Σ tμξμ) =tvFa(x) mod tv+1, 1 < α < s .

Then the Fa(x)'s are linear combinations, with coefficients in A, of mono-

mials of the form ξμihξμ2h -ξμqh, μx + μ2 + + ̂  = ̂  Since μt < v we

have g > 2. Therefore Fa(x) e J2. If f vl, ξv2, , ftn are elements of A we

have

( + Σ ^f.) ^ ίυ[Fα(x) + Σ(3/«/3*i)£*i] m o d ίυ+1» 1 < « < s

Σ

Therefore, if we can find ξvj e J ( l < j < w ) which satisfy

(4.1) Fa(x) + Σ (dfjdxj)ξvj = 0 (1 < a < s)
i

then we can continue the induction and we are done.

Let 4 , , Δa be the non-zero r X r minors of the Jacobian matrix

(df/dx). We may suppose that the first r rows of the matrix (dfjdx) are

linearly independent. Put k[Xu , Xn] = R. The local ring RP is regular

of dimension r, and the map ψ : RP —> ifw (if = quotient field of A) defined

by
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maps P2RP to zero. Therefore fu , fr are linearly independent modulo

P2RP, hence we have PRP = (fl9 ,fr)RP. Since Fa(x)eJ2 for all a, we

can write

(4.2) F^x) = Σ ^ K(x), hu e J (1 < i < r).

Let / r + β = Σ U aqifi9 aqί(X) e RP. Then we have

(4.3) dfrjdxj = Σ aqί(x)dfjdxj.

Moreover, we have F r + β(*) = X)f aqi(x)Fi(x) because ft(x + Σΐ" 1 ^ ) =

modtv+1. Thus, putting

(4.4) Kr+q(x) = ±aqi(x)hλi(x)
1

we see that (4.2) holds for ί = 1, , s.

Now fix an index Λ and consider the simultaneous equations

(4.5) 4, Λlf(*) + Σ (βfJ3x,)ξ? = 0 , 1 < i < β .
7 = 1

Let T7 = {ij, , ir) denote the set of indices of the rows of (df/dx) which

appear in Δλ. These rows are linearly independent, and by (4.3) and (4.4)

we have

Γ*'"** A"Lrank I I — rank {dfjdx) = r .

Therefore, to solve (4.4) we have only to solve them for i e Γ. We put

ςf> = 0 if the -th columm of (βfjdx) does not appear in Aλ, and we find

the other ξf by Cramer's rule. Since hλi(x) e J we have ξf e J. Then

ξ^ = Σχξ? satisfy (4.1). Q.E.D.

COROLLARY 2. Let k, A, J be as above and let S be a multiplicative

subset of A. Put B — S~^A. Then S^J = JB is the first non-zero Fitting

ideal of ΩB/ky and if D e Derfc (B) maps B into JB then D e Iderfc (B).

Proof, There exists a e S such that aD(A) e J. Then aD e Iderfc (A)y

hence D e Ider*. (B).

COROLLARY 3. Theorem 11 remains true if we replace the polynomial
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ring k[Xίy , Xn] by the formal power series ring k[[X19 , Xn]].

Proof. The above proof of Th. 11 applies to this case as well.

Under the assumptions of Th. 11 we have rank IderA(A) = rank Derfc(A)

= n — r — dim A. More generally, if (A, m) is a noetherian local ring

and k is a quasi-coefficient field of A (i.e. k is a subfield of A such that

Ajm is formally etale over k), then for each P e Ass (A) we have rank

Iderfc (A) < dim A\P (Mollinelli [12]), whereas rank Derfe (A) can be bigger

than dim A. In the case when k is imperfect Cor. 1 is false in general,

as the following example shows.

EXAMPLE 7. Let k be an imperfect field of characteristic p > 2, and

let a,bek be such that [kp(a, b) : kp] = p\ Put A = k[x,y] = fe[X, Y]/

(X2p + aXp + &7P). The partial derivations of k[X, Y] induce derivations

Dx, Dy of A over £, and we have Derfc (A) = ADX + AD^. Suppose wZ)̂

+ vDy is integrable, where u = /(#, y) and i; = ^(x, y). Considering the

coefficient of tp in the relation (x + tu + - -)2p + a(x + tu + -)p + b(y

+ tv + )p = 0 we get

( * ) 2xpu* + aup + bυp == 0.

Therefore 2XY(JΓ, 7)^ + α/(X, 7)^ + 6ί(Jζ Y)' = (X2p + αX* + bYp)H(X, Y)

for some iϊ(X, Y)efe[X, Y]. Applying derivations Z)α, Z)δ of k such that

Dα(α) = 1, Dα(6) = 0, Db(a) = 0, A(&) = 1 to the last relation and sub-

stituting x9 y for X, Y we get

wp = XPW , ϋ p = y p ^ , w = H(x, y).

Substituting them into (*) we have w = 0. Hence u = u = 0. Thus

Iderfc (A) = 0.
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