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IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS

OF THE POINCARE GROUP WITH RESPECT

TO THE POINCARE SUBSEMIGROUP, III

HITOSHI KANETA

The aim of this paper is to prove that irreducible unitary represent-
ations (E7''f,φ'' ) of the Poincare group P = i?4 X SSL(2, C) are reducible
as the representations of the Poincare subsemigroup P+ = V+XSSL(2, C)
with V+ = {xl — x\ — x\ > 0, x0 > 0}. The representations mentioned above
are those associated with the one-sheeted hyperboloid VtM = {yl — yl — yl
— y\ — — M2} (M > 0) and the irreducible unitary representations ττ(̂ ε) of
SU(1,1) not belonging to the discrete series (see the end of this intro-
duction for the definition of the discrete series). To attain our purpose
we shall determine all P+-invariant, closed proper subspaces for the re-
presentations (C/Λε, £>Λε) (Theorems 1.1 and 4.1). Other irreducible unitary
representations of P are known to be irreducible even when they are
restricted to P+[6].

In [6], [7] and this paper we are concerned with the question whether
(Q) there exists a P+-invariant, closed proper subspace for an irreducible
unitary representation of P.

A physical aspect of this problem is as follows. From E. Wigner's
view point of relativistic quantum mechanics an irreducible unitary re-
presentation (U, §) describes the dynamics of an elementary particle. In
particular the one-parameter unitary group U(t, 0, 0, 0, e) (t e R) on φ stands
for the dynamical transformation group. On the other hand some elemen-
tary particles (a neutral pion, for example) are known to decay spontane-
ously. If one tries to explain the phenomena from Wigner's point of view,
one naturally expects that there exists a proper closed subspace 3f of φ
such that 3f is invariant under U(t, 0, 0, 0, e) (t > 0) and [7(0, 0, 0, 0, g)
(g e SL(2, C)), equivalently such that Of is P+-invariant. We are very likely
to suspect the existence of an irreducible unitary representation of P with
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this property. In reality, however, there do exist such representations.

As in [7] the Hubert transform and the Frobenius method for ordinary

differential equations with a regular singularity find their applications here

too. But the most effective measures are provided by the eigenfunction

expansion theorems in [4, 5], This is because we must deal with second

and first order ordinary differential operators Lkti and Mkt4 respectively,

acting on L2(R)2k+1 (see (1,13), (1,14)). Of course these operators are con-

nected with the Laplacians Δ and Δ' of SL(2, C) respectively.

In § 1, after the definition of the representation (C7/ίβ, φ'Ό we shall

show that, if the statement (Q) above is valid for this representation, there

exists a non-trivial sequence {Dk}kez++ε of closed subspaces in L\R)2k+ί or

L2(R) such that it satisfies certain conditions (Q.I) and (Q.2) in Lemma

1.4. Conversely, once such sequences are given (Proposition 1.5, Theorems

2.2 and 3.1), we can construct P+-invariant subspaces 2** of φ' (Theorems

1.1 and 4.1) mainly due to Proposition 1.6. To determine all nontrivial

sequences {Dk}kQZ++ε satisfying the conditions (Q.I) and (Q.2) is, therefore,

the core of our argument. The simplest case, in which τr(Λβ) is the unit

representation of SU(1,1), namely (£, ε) = (0, 0), is discussed in § 1, while

the other cases are investigated in §§ 2 and 3. In the final section, §4,

we shall describe all the P+-invariant, closed proper subspaces of £>Λe for

(£, ε) Φ (0, 0).

Notation and terminology.

Z is the set of integers and Z+ = {n e Z; n > 0}.

R is the set of real numbers, i?+ == {λ e R; λ > 0} and Jί* = i?\{0}.

C is the set of complex numbers and C* = C\{0}. T = {zeC; \z\ = 1}.

DT={z e C; |Im s|<τr/2, Dτ={z e C; |Im z\<π/2} and Dr=Dr\{±iπl2}. Through-

out this paper σ = τ - wr/2. ViM = {yeR4;yl- y\ -y\-y\=- M2}(M > 0)

and B, = RX (0, π) X (0, 2ττ). RJ(σ) = '(/.»(- σ), - , / * ( - a)) for a function

f(σ) = '(/ (̂cr), ,/_&(σ)), keZ+/2. A polynomial in logσ with holomorphic

coefficients will be denoted by h(σ, logσ), namely h(σ, logσ) = Σln hn(σ) X

(log σ)n

y where hn(σ) are holomorphic in a vicinity of zero. Ga = (a—i sh τ)"1

(Re a > 0). For the definition of the function P*μv{z), see [13, p. 120]. We

abbreviate the integral f(τ)dτ to \fdτ or </). a oc b means a — cb for

some c e C*. ((a ± b)) = (α + b)(a — 6), and sign y = ± l i f ± y > 0 .

Mmt7l is the set of all complex m X n-matrices, Mn = M n t n , M i = {A e Mn;

A > 0} and M^+ = { A e M n ; i > 0 } . 7W stands for the unit matrix in Mn.
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For A = (ajk) in Mm>n denote by *A = (akj) the transposed matrix of A and

set A = (ajk), A* = ιA and \A\ = maxfc X^ |α i fc |.

Cr(S)n (r = 0,1, , oo) for a C°°-manifold S is the totality of Cn-valued

Cr-functions on S. Cr

0(S)n = / e Cr(S)n; f is compactly supported}. C°0(S)n

= C0(S)n. Hr(R) (r e Z+) is the Sobolev space of order r on R. Hr(R)n =

Σ"-i © flr(B) and L2(i?)n = H0(R)n. Let (JB, 2) be a measurable space,

where B is a Borel subset of Rn and J? is the set of all Borel sets in JB.

L\B, μ) is the usual IΛspace defined in terms of the measure μ on (B, Σ).

Let /) be a M++-valued Borel measurable function on B. L2(B, p) =

L2(JB, pcfjc) stands for the Hubert space consisting of Cn-valued Borel

measurable functions f on B such that f*(x)p(x)f(x)dx < oo, where dx
J B

is the Lebesgue measure, a.e. means almost everywhere with respect to
the Lebesgue measure.

Let L be a linear operator L : Hx-+ iJ2. Then Ker L is the kernel of

L. When both iT, are Hubert spaces, L* means the (formal) adjoint of L,

LHλ denotes the range of L, namely {Lh; heHx lies in the domain of L).

Let Ho be a subspace of H2. Then L\H0 denotes the restriction of L to ίΓ0

JD-1- = {λe iϊ; Λ is orthogonal to D} for a Hubert space if and its subset

D. <,) and || || stand for the inner product and the norm on a Hubert

space (Cn, L2(B, μ), etc.) respectively. However, (x, y) = xoyo — x^yx — x2y2

— x3y3 for x, y in i?4 and </) = f(τ)dτ for an integrable function / on
JR

R. Throughout this paper Hubert spaces are understood to be separable.

G = SL(2, C), Go=SC7(l, 1) = { ( | ~ ) ; W2-|j8Γ = l} and P = R'χsSL(2, C)

with the multiplication (x, g)(x',g') — (x + g*~1x' g~1

9gg')9 where any x =

(Λb, X19 X2, X3) in i?4 is identified with the matrix (x° "Γ ^3 ^2 ~ l X lY

@m>p are irreducible unitary representations of G belonging to the

continuous series [12, § 11], τr(As) stand for irreducible unitary represent-

ations of Go (see the beginning of § 1). One-parameter subgroups ωό(t)r

1 < j < 6, of G are given as follows.

/ Λ / cos ί/2 ί sin ί/2\ (Λ /cos ί/2 - sin ί/2\
\i sin ί/2 cos ί/2/ Vsin ί/2 cos ί/2/

it/2 0 \ , Λ __ /ch ί/2 sh ί/2\
!/ ?O ov rk τ//9/ \ all //9 r»Vι //9/

exp —Li\Δ/ \sn £/z en t/z/

ω 5 ( ί ) = / chί/2 ishί/2\ ( ) = /expί/2 0 \
w \-ish</2 chί/2/' W V 0 exp -ί/2/

(r, 0, $) in -B3 = R X (0, π) X (0, 2π) is a local coordinate of a open dense
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subset of ViM = {y e R4; yl - yl - yl - yl = - M2} (M > 0) in the sense

t h a t the map (τ, θ, φ) -> (ω6(τ)ω2(θ)ω3(φ))*yω6(τ)ω2(θ)ω3(φ) of B3 into VtM is a

diffeomorphism, where y = ^\Q I )

Let (T, φ) be a continuous unitary representation of G. Then, we set

ω, - dldt\t=0T(ωj(t)) (1 < J < 6), # ± = ιω2 ± ωu H3 = iω3,

F ± = iα>5 ± ω4, F 3 = iωβ, 4, = - ( # + # . + # - # + + 2#3

2)/2,

Δ' = (H+F_ + H.F+ + F+Jff_ + F_H+

A closed subspace D of a Hubert space H is said to be invariant

under a self-adjoint operator L if P^L = LPD, where PD is the orthogonal

projection: H-+D.

An irreducible unitary representation (π, Qπ) of Go is said to belong

to the discrete series in our sense if the selfadjoint operator djdt\t=ϋiπ{ω3{t))

is unbounded, but bounded either from below or above.

§ 1. P+-invariant subspaces for the representation (C/00, £>°'°)

After defining irreducible unitary representations (Ue>% φ*'ε) of P as-

sociated with the one-sheeted hyperboloid ViM and irreducible unitary

representations πu^ of Go, we shall obtain all the P+-invariant, closed

prober subspaces in ξ>0)0. Here 7r(0,0) stands for the unit representation

while 7r(/ιt) ((£, ε) Φ (0, 0)) stands for the irreducible one Γ(Λf) not belonging

to the discrete series [13, p. 305]. Thus τr(_1/2+ί5?)1/2) (η > 0), π(.1/2+ίVf0) {η > 0)

and 7r(Λo) (— 1 < ^ < — 1/2) are irreducible representations belonging to the

continuous spinor series, the continuous non-spinor series and the supple-

mentary series respectively. P+-invariant subspaces in ξ>Λε ((£, ε) Φ (0, 0))

will be discussed in §4, since it is necessary to determine nontrivial

sequences {Dk}kez++e which satisfy certain conditions (Q.I) and (Q.2) in

advance. See Lemma 1.4 for the definition of (Q.I) and (Q.2).

Let G act on R4 by y g = g*yg, where y = (y0,yί9y2,yz) is identified

with the matrix ( °̂ "Γ ^3 y<ι T l^ι\ Then the isotropy group at y = M

( _ -j A\ \yz ~r ιy\ jo -Γ ^3 /

j J j is Go = SC/(1,1), and a map p : G -• V<Jf defined by p(g) == ̂ *j)^

is a surjection. We fix once for all measurable sections su (u e SU(2))

such that p°su is the identity and that

Su °P«r, θ, φ}) = <r, ί, ^>u for (τ, θ,φ)eB3 = Rχ (0, TΓ) X (0, 2π),

where (τ,θ,φ) = ωe(τ)ω2(θ)ω3(φ). Denote by φ, and Φid^cί^/M 2 ]^ ! the
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representation space of π = πiiit) and a G-invariant measure on VίM re-

spectively. Following Mackey [10], we can define irreducible unitary

representations (U"tU, &) associated with ViM and π as follows;

& = L\VίM - <ρπ, dyιdytdyJM*\y0\),

where F e & and (0, sM(;y))(x, g) = (*', go)(O, su(y>g)) with g0 e Go. Of course

φπ denotes a Hubert space consisting of the square integrable ξ)π-valued

functions on ViM with respect to the measure dy1dy2dyJM2\yQ\. Since the

image {p((τ, θ, $)); (r, θ, φ) e B3} is dense and open in ViM, we can naturally

identify %>π with a Hubert space $'»•;

(1.2) φ'" - L2(β3 -> φ,, ch2r sin θ dτ dθ dφ)

which is, by definition, a Hubert space consisting of square integrable

(Qn-valued functions on B3 relative to ch2r sin θ dτ dθ dφ. Under this iden-

tification (C7*'e, φπ) gives a representation (t/Λ , ίρΛ') which we intended to

define. Trivially £>M = L2(B3, ch2r sin θ dτ dθ dφ) while Co~ (JB3 X T7) is dense

in §*>' provided (£9 e) Φ (0, 0). In the latter case we have, for fe Co(B3χT),

>, ff9 φ'9

where <τ, 0, ̂ >^ = ( | ^Vτ7, ^, f >. It also follows from (1.1) that

(1.4) C7'"(f, 0, 0, 0, e) = exp {iMί sh τ).

Now regarding (C7Λβ, φAβ) as a representation of G, we define operators

®j (1 < jf < 6), i/±, ίΓ3, F±, F3, Jo, J and Δf. As to the domains of these

operators, see [6, p. 117]. In the case (£, ε) Φ (0, 0) explicit forms of these

operators restricted to C^(BZ X T) are known [6, § 4] except for that of Δ

(there is a misprint on p. 122, namely p(g) = — g*xg instead of g*xg).

Painstaking calculation is necessary to derive the following formula. See

[6, p. 127] for the explicit form of Δo.

J = - 3? - th2r dl - l 1 ^ ^ ^
ch τ

_
chr
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- (th2τcot20 + 2thτcot<?cos^ + _ l _ J g , - 2thτd
I ch τ ch2r J

1_(£ cos ψ + εί sin ψ) - th2r cos θ\dd
ch

(1.5) - 2 l t h τ [U sin ψ + ε(cos ψ + ε sh τ co
en τ sin 0

+ — — {- ^ sh r cot 0 sin ψ + εi(sh2τ cot20
ch2r

+ 2shrcot0eosψ p + A 2

+ ε2fth2τ cot2^ + 2 t h r cot 0 cos
\ chτ

^ sin ψ - 1 + A .
chr

In the case (A ε) = (0, 0) explicit forms of H±, H,, etc. restricted to

take the forms;

H± = e ^ ( ^ , ± cot 0 3^), H3 = ί9#,

F ± = eTίί5f + sin 0 dτ T th r cos 0 3, + i-ίίLLβΛ , J ' = 0 ,
\ sin 0 /

(1.6) F^ = ^ c o s ^ ̂  _ t h r g i n ^ g ^ ^ J Q = gj + c Q t θd^ + __J_d2 ?

sm20

Δ = - 3J - 2 th r 3T - th2rfa2, + cot 0 9, + —!_3jY - 1 + J o .
\ sin20 /

Notice that (1.6) follows from the corresponding ones in the case (β, 0),

I Φ 0, simply by deleting terms containing functions of ψ or dΨ and

setting I = 0. Put, for β e Z+/2 and /̂  = - k, - k + 1, , k,

(1.7) m;μ = {/e ^ . ; Jo/ = - * ( * + 1)/, Hzf = μf].

Then, as is well-known, $«>e = Σlic,μ θ ^ ' , ; .

PROPOSITION 1.1. iΓ^μ = {0} if k + eeZ+ + 1/2. Otherwise,

1T& = {/(τ)P;iO(cos0)e-^; /6 L2(iϊ, ch2r)} ,

^i ' , ; - f Σ Λ(τ)PJ,_υ(cos0)e-^+i(υ+ε)ψ; /v e L2(i?, ch2τ))

/or (A ε) =£ (0, 0). See [13, p. 120] /or the definition of Pk

μv(z).
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Proof. Suppose fx e C0°°(i?). Then frP^ e~ifiφ(k e Z+) or f,P\^ e-*********

(k + ε 6 Z+) lies in the domains of ωj} Jo, Δ and A', and these operators

act on these functions as smooth differential operators. These facts can

be shown as Lemma 9 [6]. After this remark we shall prove the proposition

only in the case μ = k, for the other cases can be dealt with by the aid

of the relation HT%μ = Hksμ i^i% and a formula [13, p. 137];

(1.8) ( V Γ ^ 2 A - J^—Jf\piχz) = - W(k + μ)(k - μ
\ CtZ 1 — Z /

Thanks to Proposition 1 [6] it is enough to consider the case (£, ε) = (0, 0).

First since £/M(0, — e) is the identity operator, there results that i^μ = {0}

if k & Z+. Secondly, it is easily seen that f.Pt,, e~ίkφ e iK%k e Z+), for Pt>0

is a solution of the following equation.

(1.9) {(1 - z2)d2ldz2 - 2zdldz - k2l(l - z2) + k(k + ΐ)}Q(z) = 0,

Finally assume feiT0^k (keZ+). Let h(τ,θ,φ) = hx(τ)h2(θ)hz(φ) be an ele-

ment of Co00^). Since </, (£Γ3 - k)K) = 0, there results / = f2e~ί]cφ for an

U 6 U(R X (0, TΓ), ch2r sinί). Now the equality </, {Jo + k(k + ΐ)}h) = 0

yields

</2, {3? + cot 0 9 , - /e2/sin20 + Jfe(fe + 1)}ΛΛ> (β-1^, Λ3> - 0 .

Set /2(τ, /9) = g(τ, cos θ). Then g(τ, •) is a weak solution of (1.9) for a.e. τ.

Consequently there are measurable functions fh /τ) such that /2(τ, θ) =

Σ5=I/I,J Qj(cosθ) a.e. on J? X (0,^), where Qό is a fundamental system of

(1.9) with Qi = Pϊ,o Note that each / l f i belong to L2{R, ch2τ). This is

because /1(J are linear combination of/2( ,^) and/2( , θ2) for some fixed ^ .

Since Q2(z) is not bounded on (—1,1) [6, Lemma 8], we can argue as in

the proof of Proposition 1 [6] to show that fu2 must vanish. Thus / =

ftPUe-**' for some fx e L%R, ch2τ). Q.E.D.

Put Wfa = L\R) or U(R)2k+1 (k + ε e Z+) according as {£, ε) = (0, 0) or

not, and introduce a Hubert space W*>ε;

Then, in view of Proposition 1.1, an onto isometry J{\ε

μ : ί^ί\ε

μ -> Wi\ε

μ can

be defined by
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(1.10) J&(£k f> pk" -> e-^+i^ή = ( ^ ^ ^ - c , ch

where c, is the norm of eu"+')ψ in £>„, which is equal to Γ(£ — v + 1)/Γ(— ̂  — y)

or 1 according as — 1 < ̂  < — 1/2 or not. Now we have an onto isometry

Je> = Σ ί . ^ . i t + . e ^ + Φ ^ : &'" -* W " By the aid of this isometry we shall

inquire into actions on ξ>''' of Δ, Δ', F± and F3. Some calculation similar

to that on p. 132 [6] yields

(1.11) J&ΛJΪX1 = Lk,,, Je

k<;k Δ'Jl-f1 = MkJ ,

where LkJ and Mktt are selfadjoint operators taking the following forms.

(1.12) Lkι0 = - dηde + {1/4 - (k + l/2)2}/ch2r, M M = 0,

(1.13) L M = - dηdτ1 + A\(l - sh2r)/ch2r + iUt,, th r/ch r

- {k(k + 1) + ̂  + D}/ch2τ,

(1.14) M M = - 2iAs d/dτ 4- V*,,/ch r .

In the above At, Ukιt and Vktt are constant matrices in M2h+1. Their v-th

r o w s (v = k, k - 1, • • , - h) axe (• • -Oβ • •), ( αβ bβ- • •) and ( 0 αβ

bβ ) respectively, where 6V is the {v, v + l)-component and

σ. = - 0? +

6, = (£ - v

Note that the last factors of α, and &„ are equal to 1 if 6 = — 1/2 + i^

(η > 0). By a theorem [8, p. 287] the domains of L t j0, Lt<< and ΛfM (^ ^ 0)

are 2ί2(i?), ίί2(i?)2 i : t l and fli(2ϊ)>**1 (or { ( / , ) e L W + 1 ; / , € f l i ( B ) for v ̂  0} if
& e Z+) respectively. We turn to F± and F3. At this stage another formulas
on P*. are required [13, p. 187-188].

(1.15) cos θ PI =

± ^ + D)
+ (k

(1.16) cos 1 PI = _ 1

(1.17) s i n | P;, = ^ — y ί - V(ft - μ)(k

+ μ + 1)(Λ - v +
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The sign of PJΐί/2,«-i/2 i n (1-17) is correct, while the corresponding one on

p. 188 [13] is misprinted. Combining (1.16) and (1.17), we obtain

sin
sm

M * - »)(* + v + l±pk
-2)

, V((fe±^ + l))((feTΊΓ+3/2±l/2))
+ (2& + 1)(2& + 2) ^'• +If '

which is equal to

v - 1/2 ± 1/2))

2) r " " - 1

Vftfe ± jti + l))((fe - v + 3/2 ±
+ (2ft + l)(2ft + 2)

for P'% = P1μ^ [13, p. 123]. Now assume (^ ε) Φ (0, 0) and let /„ e C^(R)

(v = k, k — 1, , — k). Then, making use of (1.15), (1.18) and a formula

[13, p. 137]

- v){k

-v + l)(ft + v)P*μ,-i(coB Θ))j2 ,

we can show
k

X 3 Z_l I » J /i,-v e

2ft(2fe>(+ 1) ̂  , έ » [ 2 W ( k ~ v){k + U){fί + {k + 1 ) t h

- (̂  - v + 1) V(ft-«)(ft-v + l)Λ-i}/ch r]

(1.19) χ pj-j _w+1(>+.)+ + _ J f; [_ 2i(fi + th
2/(^ + 1)

1) V(k - v)(ft

l)(ft

X {f: - ft th r/,) + {(̂  + y + 1) V(ft - w)(ft - v +
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Thanks to (1.19), (1.18) and a formula [13, p. 136]

(1.20) {VT^J* d\dz + f ~ \ }p*χZ) = - W(k - μ){k + μ

we can spare much calculation in reducing F± Σί=-fc/,Pί,-ve~w + i ( 1 '+ £ ) ψ, for

F_ = [ίf_, F3] and F+ = [Fz, H+] as they ought to be [12, p. 77]. The case

(£9 e) = (0, 0) needs no separate consideration. The results in this case

are obtainable from those in the case (£, 0) by setting i = 0 and fv = 0

for v Φ 0. To sum up,

LEMMA 1.2. Let f = (fk*iμ) be an element of W^& whose (k, μ)-component

fk>μ alone does not necessarily vanish and lies in H^R) or Hί(R)21c+1 according

as (£, ε) = (0, 0) or not. Then f belongs to the domains of J*>*FsJ
e>*-\s = ± ,

3). Moreover, omitting the suffix (£, ε) ofJίε, we have the following relations.

- μ)(k + μ)

(JFzJf)k,μ

(1.21) 2k(k

f) κ f

f)k^μ> = 0 otherwise .

(JF±Jf)k-ι>μ±λ ^ K*,t_Uifk,μ, (JF±J-'f)k>μ±1 oc M fc,/ fc,,,

(JF±J~ιf)k+ι,μ±ι oc K+ik>£fk>μ, (JF±J-lf)v,, = 0 otherwise .

αboi β i^+,fc,o = 2i(^ + l){djdτ — (k + l)thτ} (& e Z+), αrad m £/ιe case

(1.23) X+, t i, = 2iBk{d/dτ - (k + l ) thτ} + Yfcf//chr,

where Bk and Yk># are constant matrices in M2k+Bt2k+1. Their v-th rows

(v = k + 1, k, , - & - 1) are ( 0 V(Jfe - v + l)(ife + v + 1) 0 •)

0 (S + v + 1) V(k - v)(k - v + 1) V\S - v\l\t + P + 1| 0 (^ - v + 1) X

+ v)(/̂  + y + 1) \l\ί + v\\\ί — v + 1| 0 •) respectively, in particular their

(v, v)-components are equal to V(k — v + ί)(k + v + 1) arad 0 respectively.

Proof. For the sake of definiteness assume ( ,̂ ε) Φ (0,0). When /fc>//

lies in C0°°(i?)2fc+1, (1.21) and (1.22) hold. To conclude the proof, it is enough

to recall that C0°°(i2)2fc+1 is dense in fl;(B)2*+1 and that the infinitesimal

operators ωj (4 < j < 6) are closed operators. Q.E.D.
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We shall now show that, if there exists a P+ -invariant, closed proper

subspace Sf of ξ>Λe, there is a nontrivial sequence {Dk}kez++ε satisfying

certain conditions. For this purpose, set

(1.24) Tt = J ' U'*9(tlM, 0, 0, 0, e) J ^ " 1 = exp{iί sh τ}.

LEMMA 1.3. Suppose there exists a P^invariant, closed proper subspace

9 of φ' , and put Q)kiμ = 2 Π τTl;; (feeZ+ + ε). Then,

( i ) ^ f c j k is a proper closed subspace of if^k and invariant under

self adjoint operators Δ, Δf and the semigroup U£'ε(t, 0, 0, 0, e) (t > 0),

(ii) F+Sktk c 9k+llk+ι and F_@ktk c Σ i = - i θ ^ + i ) f e - ,

Proof. The statement (ii) holds because of (34) and (35) [12, p. 106].

Another way to prove (ii) directly is to use Lemma 1.2 and the fact that £>Λε

= Σie,μ Φ W'k'μ Since iJ3 and Δo commute with Δ, Δf and [/'"(ί, 0, 0, 0, e),

(i) follows except that @kjk is a proper subspace. Assuming that @ktk = {0}

for some keZ+ + ε, we shall show that ^ f c > f c = {0} for any k. First, ̂ ',&>

={0} for kf < k, because, if 3ιk.# Φ {0} then F+@k>,k> φ {0} (see Lemma 2

(iii) [6]). Secondly, ^ f c + l f f c +i = {0}. To prove this, set Ga = (a — i shτ)"1

(Re a > 0), which we regard as the resolvent of the semigroup U^ε(t/M, 0,

0, 0, e) or Tt (t > 0). Since W{\'k c ^ 1 and since 2L is invariant under

^ i ε (0, g) (g e G) and U^(- t, 0, 0, 0, e) (t > 0), there results, for any fe J^

0*+i,*+i and he

(1.25) </, Jί-^F+Jis1 h) = 0 , <GJ, J^k+1F+J{Sλ A> = 0 .

From now on let (̂ , ε) ̂  (0, 0). Another case is easier to handle. We

recall that a locally integrable function on R having a locally integrable

derivative in the distribution sense is absolutely continuous. Set / = (fv).

Then the first equality in (1.25) implies that fv {\v\ < k) is absolutely con-

tinuous, and the second one now can be rewritten as

(1.26) 2ί(BkG'af, h) + </, K+>k,eGth) = 0 .

iΓi\ε

k being invariant under Z7Λe(— t, 0, 0, 0, e) (t > 0), the second term

vanishes. Now (1.26) yields /„ = 0 (\v\ < k), and the first equality in (1.25)

implies / = 0, as desired. Similarly it can be shown that if @kfk = if^k

for some k the same is true for any k. Q.E.D.

We shall give a more manageable necessary condition for (U£i% ^> £)

to have a P+-invariant, closed proper subspace.

LEMMA 1.4. Suppose there exists a P^invariant, closed proper subspace
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in ^ ' ε . Then there is a sequence {Dk;keZ+ + ε, Dk is a proper closed

subspace of L2(R)2k+ί (or L2(R) if (£,ε) = (0,0))} which satisfies (Q.I) and

(Q.2);

(Q.I) Dk is a closed subspace of L2(R)2k+ι (or L2(R)) and invariant

under the self adjoint operators Lkfi, Mkti and the semigroup Tt (t > 0).

(Q.2) K+tk>eDk c Dk+ί and K*k_ιeDk c. Dk_u where the domains of

the operators are H2(R)2k+1 (or H2(R) if (£9 ε) = (0, 0)).

Proof. We retain the notation in Lemma 1.3. Put Dk — Ji\%@k,k. We

shall show that the sequence {Dk}kez++, satisfies (Q.I) and (Q.2). By (1.11)

and (1.24) Lemma 1.3 (i) implies (Q.I). Denote by E{\a

μ the orthogonal

projection: £*••-> TTfo, J f t ^ F + J f t - 1 oc K+ttti and J^^E^^F.J^1

oc K%tk.lti on account of Lemma 1.2. Now Lemma 1.3 (ii) implies (Q.2).

Q.E.D.

In case (£9ε) = (0,0), all sequences {Dk; keZ+, Dk is a closed proper

subspace of L\R)} satisfying (Q.I) and (Q.2) can be determined as a result

of the Part II [7, § 1]. Indeed, using the notation there, it is clear that

Lkf0 = ĵfc+i/2,0, K+iki0ocF+tk+ί/2)Q a n d 2?* f f c _ I f 0 ocF_ i J f c + 1 / 2 f o. There fore we get

PROPOSITION 1.5. Let Dk be α closed proper subspace of U(R) (k e Z+).

Then {Dk}kez+ satisfies (Q.I) and (Q.2) iff it coincides with either {D0

k+1/2i_}kez+

Proof. The sequences {D°k+1/2i±} satisfy the conditions (Q.I) and (Q.2)

by Theorem 1.4 [7]. In view of Theorem 1.2 [7], DQ coincides with one of

JDJ/2,±. Theorem 1.3 and the relation (1.32) [7] now imply that Dk = D°k+1/2^±

according as Do = Dϊ/a,±. Q.E.D.

In case (£9 ε) Φ (0, 0), an analogue of Proposition 1.5 will be obtained

later (Theorems 2.2 and 3.1). Throughout the rest of this section we shall

be exclusively concerned with the case (£, ε) — (0, 0). Correspondingly k

runs in Z+. Define subspaces °̂±'° of £0 '0 by

<3>o,o v rτ\ τo,o -l no
k,μ,k£Z +

Now we are ready to state one of our main theorems in this paper.

THEOREM 1.1. Let 3t be a closed proper subspace of £>M. Then 9) is

P^invariant iff it coincides with one of &/.

THEOREM 1.2. The representations of SL(2, C) realized in ^°f decompose

into irreducible ones as
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f@ <3Of, dp 0 2] Θ ©2n,o m °̂+'°,

in

Remark. Mukunda [11] has shown that the representation ([/ M ,

of SL(2, C) decomposes into irreducible ones as

([2]Γ <50,,dp)@
\ J R+ / n-i

Proof of Theorem 1.1. 1) We shall show that the condition is neces-

sary. To this end set 9htμ = 9 Π Ψ^%. Then ®k)1c = Jl^1 D*k+1/it± by

Lemmas 1.3, 1.4 and Proposition 1.5. Since Hl"μ2ktk = @k>μ, $k,μ = J ^ " 1

D\+i,2,± on account of (1.6) and (1.8). Consequently 2 = Σk,μ θ 3fktμ = ̂ ±°.

2) We shall show that °̂±'° are P+-invariant. It is evident that J0^1

Dk+i/2, are invariant for £/0'0 (ί, 0, 0, 0, e) (ί > 0). Since H_ and H3 leave

^*,±^Σί=-λ; θ Jl'ϊμ'1 D°k+1/2t± invariant, 2kt± are SC7(2)-invariant. It suffices

to verify that °̂±'° is invariant under C70'0 (0, ωβ(t)) (t e R), for the semigroup

(t, 0, 0, 0, e) (ί > 0) and G generate P+ topologically, G being generated by

S£7(2) and the one-parameter subgroup ω6(t). For this purpose put Dktμt±

= -DJ+i/2,±> -D*f/.,± = j5j+i/2,± a n ^ J5fc>Aί,± = J3*+i/2,±> then we have onto iso-

metries ^u+w'. Dktμι±-+Dktμt± and /±)fc+1/2 : DkiMt± -+Dk,μ,± (see (1.34) [7]).

Regarding Dkiμί± as subspaces of W°k^μ (see (1.10)), define subspaces D± =

Σ*. ,ΦA,, ,± of W°'°. Set fl± = ^ e A , M and 4 = ^ ® 4 , ± .

Then we can naturally define onto isometries &'± : D± -> D± and J± : D± —>

D,, in terms of ^*fc+1/2 and I±,k+ί/2 respectively. It clear that D± = J 0 ' 0 ^ 0 /.

Let us further define dense subspaces D±c of D±. Put Dk>μ,±iC = C0(R+y

θ Ek+1/2>± and denote by Z)±>c the algebraic sum 2]^.^ θ Dkyμ,±,c. By Lemma

2.4 [7] it is enough to show that F 3 restricted to S°±'°c = (I±&r

±J°>°)-1D±tC

is essentially self adjoint in °̂±'°. To this end, set

iώ6>± = (I±^±J^)Fz{I±^±J^Yι with domain D±)C,

and let us prove that /α>6>± is essentially selfadjoint in D±. Let h = {hk>^)

be an element of j3± f β with hr,μ, = 0 for (Λ7, μ') Φ (k, μ). Then, by (1.35)

and (1.33) [7] we obtain

(iώ h) (λ) - + i (k-μ+H2± 1/2) (fe + jϋ + 1/2 ± 1/2)
(1.28) {lω'h)k^{λ) - ± W (2fc±l)(2fc + 2 ± l )

X V(k + 1/2 ± 1/2)2 + λ hKμ> (X)(λ > 0),
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(iώ fλ (-(j- 1I2Y) + i -(* + V2± V2)(k + μ + l/2± 1/2)

29)

X V(A + 1/2 ± 1/2)2 - 0' - 1/2)2 &,,(- ( -

(iώt h)k%μ{λ) = 0 for (kf, μ') Φ(k±l,μ).

In the above ώ6 stands for one of ώ6i±. Applying Proposition 1.6 in the
•Λ •* /\

case (m, /?) = (2jf — 1, 0) to iώ6)+ in {Λ e Z)+; hktμ(λ) — 0 except for Λ =

— (j — 1/2)2}, iώ6>+ turns out to be essentially selfadjoint there (j e Z+ + 3/2).

Put Dl = {Λei3+; Λfej//(^) = 0 for ^ < 0}. We shall prove that ώ6>+, which

is symmetric, is essentially selfadjoint in DX too by showing that the

image (iώ6>+ — z)0X Π D+,c) is dense in Σ>X for any 2; (Im^ Φ 0). If an

/eJ9t is orthogonal to the image, it follows from (1.28) that

(1.30)

On the other hand, using the notation in Proposition 1.6, let U be a

unitary operator on ^,2vτ such that U β = ( - 1)*/*. Evidently ^

is also essentially selfadjoint and satisfies

T-ψμ = - V((Λ ± μ)) ckf
k

μ-' - aJl + V((* ±μ+D) ck+1ft
+ί .

Now (1.30) yields fk,μ(X) = 0 a.e. on R+, namely / = 0. The proof of essen-

tially selfadjointness of iώ6t_ is similar. Q.E.D.

Proof of Theorem 1.2. Put 3fk^± = @°f Π #1',% For the proof it is

enough to determine the spectral type of selfadjoint operators J|^o,o,± and

Δ'\@ktkt± θ F+@k_ltk_h ± (k e Z+ + 1) [6, § 3]. The following unitary equival-

ence relations are clear.

,± - L0>0\Dl/2f± = J?1/2>0\Dϋ

1/2f± ~[@ λdλ.
J R +

On the other hand, by (1.32) [7] and (1.22) it can be easily seen that

^ - Θ F A - i , * - ! , - = {0} and Φ ^ . θ ί Λ-i,*. ! , , c {e/l^-'^+iA.+i/*}. As

to the definition of efc+1/2,fc+i/2, see Lemma 1.8 [7]. We claim that the

opposite inclusion relation also holds. To prove this, suppose an fe

0*-i(*-i.+ lies in the domain of F+. Then {Jl V1 βfc+1/2)fc+1/2, F+f} = (F_J^

ek+1/2,ic+i/2,fy = <0, JΆ,jc-if) = 0, for JKΓί,fe_1eΛ+1/2,fc+1/2 = 0. Since J r = 0, we

have
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where δ is the Dirac measure with unit mass at λ — 0. Q.E.D.

The proof of Theorem 1.1 relies on the next proposition, which asserts

that the operators icoj (1 < j < 6) for the irreducible unitary representation

©m>/0 [12, § 11] are essentially selfadjoint even if they are restricted to the

algebraic linear span of the canonical basis.

PROPOSITION 1.6. Let £2

m,p be a Hilbert space {(akjμ); k = m/2, m\2 + 1,

-• ,μ= - k,- k + 1, -",k with Σ * J α * J 2 < °°} for (m, p) e {(0, p); p>0}

\J(Z+ + 1) x R, and denote by £2

m,p%c a dense subspace {(ak)μ) e £2

m,p; ak>μ = 0

for large k}. Then following operators iώj>m>p in ΰ2

m,p with domain ί\,PyC

are essentially selfadjoint. In order to define these operators, let fk

μ be an

element of £2

m^p with (£', μ')-component δkk,δμμ, and put

H± = ίώ2 ± ώi, H3 = ίώ3, F± = ίώ5 ± ώ 4 , F3 = iώ6,

where the suffix (m, p) is omitted for the brevity. Then we define iώjtmtP

indirectly by requiring the following equalities.

H± pμ = VΓk±μ+l)(kTμ)fk

μ±i > HJl = μft ,

FJl = ±

± V(±μ+)(±μ +

~μf)ckf*μ-* - μakfϊ - V((k± μ + lj)

where ak = mpl{4k(k + 1)}, cfc - W(k2 - m2/4)(^2 + p2l4)l{k\4:k2 - ϊ)} [12, p.

110 and p. 152].

Remark. Quite analogous statement holds for an irreducible unitary

representation belonging to the supplementary series of SL(2, C), as one

can infer from our proof of the proposition.

COROLLARY. Let F3 be an operator in £2

mjP with domain £2

m,p,c such that

Then Fs is essentially selfadjoint.

Proof of the corollary. Indeed, Fz is unitarily equivalent to Fz under

a unitary operator U sending fk

μ to (— i)kf-μ. Q.E.D.

To shorten the proof of Proposition 1.6, we prepare two lemmas.
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LEMMA 1.7. Let R be the right regular representation of SU(2), and

denote by Rt (1 < ί < 3) and ΔR the infinitesimal operator d/dt R(ωί(t))t=0

and the Laplace operator Σ?=i^* respectively. For an fe C°°(SU(2)) define

fn(neZJ2) by

ίn = Σ Σ

where ck

μv is the matrix element of the representation @2fc of SU(2) [12, p.

58] and < , > denotes the inner product on L2(SU(2)) relative to the normalized

Haar measure. Then ||(1 - ΔRY(f - fn)\\ and ||(1 - Δ^R^f - fn)\\ (q e Z+)

tend to zero as n-+ oo. In particular fn (resp. RJn) converge to f (resp.

Rtf) as n-> oo relative to the uniform norm.

Proof. The L2-norms tend to zero on account of the Peter-Weyl

theorem and the fact that ΔR cμv = — k(k + ϊ)ck

v. The Sobolev lemma [9,

p. 51] now implies the convergence with respect to the uniform norm.

Q.E.D.

After Neumark [12, p. 143] we denote by (V, L2

m(SU(2))) the irreducible

unitary representation @W)j0 realized in L2

m(SU(2)).

LEMMA 1.8. Let ω3 (1 < j < 6) be the infinitesimal operator for the

representation (V, L2

m(SU(2)))~ Then there exist smooth functions aJt (0 <

i < 3) on SU(2) such that

3

<όjf(u) — aj0(ύ)f(u) + Σ aji(u)Rτf(u)
ί = l

for any fe C°°(SU(2)) Π L2

m(SU(2)), where Rt stands for the same as in

Lemma 1.7.

Proof. Recall that V(g)f(u) = a(ug)/a(ug)f(ug). Here a(g) = \g22\
ip~m-2

X g^ for g = (gtJ) e G, and ug denotes a unitary representative of the

Kyi"1 £\ 1

Λ 5) λ > 0 \. Both maps (u, g) ->

a(ug)/a(ug) and (u, g) —> ug defined on SU(2) x G are smooth. Indeed, first,

simple calculation yields
a(ug)/a(ug) = {\u2ίgn + u22g2ί\

2 + \u21g12 + u22g22\
2Y'2+ip-m)/2

[12, p. 141]. Secondly, since a map g -» eg defined on G is smooth [12,

p. 141], ug is smooth on SU(2) X G. Consequently V(ωj(t))f(u) is smooth

on R X $£7(2), from which the lemma follows at once. Q.E.D.
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We return to the

Proof of Proposition 1.6. Set C~ = C~(SU(2)) n Um(SU{2)). As we

noticed in the proof of Lemma 1.8, V(g) leaves C~ invariant. Recall that

{φk

m/2,μ eCZ;k = m/2, m/2 + 1, , μ = — k, - k + 1, , k) is a complete

orthogonal basis of L2

m(SU(2)) and that, if fk

μ and ώά in Proposition 1.6 are

replaced by φk

m/2,μ and ωj (see Lemma 1.8) respectively, still the equalities

there hold [12, p. 147]. Denote by C~jC the algebraic linear span of

{φm/2,μ} To prove the proposition, now it is enough to show that ίωj

restricted to C~}C is essentially selfadjoint. We denote this operator by

ίωjtC. To this end we shall establish first the essentially selfadjointness

of iωό restricted to C~. We denote this operator by ίωj>oo. Assume that

an / is orthogonal to the image (ωj — a) C~ (Re a Φ 0). Then, since

V(g)Cz c C~, we have </, V(ω/ί))(ω, - a)φ) = 0 for any φ e C^. Multi-

plying both side by e~at and integrating on J?+ or R\R+ according as

Re a > 0 or not, we obtain </, φ) = 0, namely / = 0. Secondly, the closure

of ίωjjC is an extention of iωj>00 in virtue of Lemmas 1.7 and 1.8. Therefore

ίωjtC is essentially selfadjoint. Q.E.D.

§ 2. Invariant subspaces common to Lkιi9 Mk>e and Tt (t > 0) in
L2(R)2k+\ keZ+ + 1/2

The ultimate aim of this section and the next one is to enumerate

all non-trivial sequences {Dk}kez++ε satisfying the following conditions (Q.I)

and (Q.2);

(Q.I) Dk is a closed subspace of L%R)2k+ί, and is invariant under the

selfadjoint operators L M , MkJ and the semigroup Tt(t > 0).

(Q.2) K+tkjDk c Dfc+1 and K*tk_u&Dk c Dk_u where the domains of

K+tkti and K*tk_1%t are H2(R)2k+\

See (1.13) (1.14), (1.23) and (1.24) for the definition of the operators men-

tioned above. A sequence {Dk} is said to be nontrivial if not all Dk are

trivial. To attain this aim, the following relations will be extensively

used, the proof of which relies on direct calculation.

(2.1) K+tki£Lkt£ = Lk+ίJK+ΛJ , K+ikt£Mkt£ = Mk+h£K+iki£.

(2.2) # ί , M # + f M = Mh + 1Y + 4(k + tfL^ - Ml,.

(2.3) # + , & _ M Z * , f t _ M = 4k* + 4£2LM - Ml,.

In the above the equalities holds on C°°(R)2k+1, and the left side of (2.3)

is understood to be zero if k < 1/2. It also should be noted that Dk is
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invariant under Tt (t > 0) iff it is invariant under multiplication operators

Ga = (a — ishτ)" 1 (Re a > 0). By abuse of notation Ga will sometimes

stands for the function (a — ishτ)'1 on R.

Throughout the rest of this section, assume that keZ+ + 1/2 and £

= — 1/2 + iη (η > 0), and the suffix £ will be dropped in principle. Let

us start with reviewing the eigenfunction expansion theorem for Mk. By

the theorem Mk will be reduced to a simpler operator, as far as invariant

subspaces for Mk are concerned. Denote by Φk(τ, λ) the solution of a

differential equation

Since V /̂ch τ is integrable, there exists a so-called spectral density βk

satisfying the following conditions i)~iii) [4, Theorem 2].

i) βk is a MfkXrvalued continuous function on R.

ii) A map # f c : L2(R)2k+1 -> L2(R, βk) defined by

(2.4) βkf(X) = l.i.m. f Φf(τ, λ)f{τ) dτ
iV-oo J \τ\<N

is an onto isometry, whose inverse β^1 is given by

(2.5) #?g(τ) = l.i.m. f Φk(τ, λ)pk(λ) g(X) dλ .

iii) βkMkβ^g(X) = λg{λ) if λg(X) e L2(i?, ft). _

Denote by Mk a differential operator 2ίAk d\dτ + V^/ch τ, and consider the

following equations;

(2.6) (Mk - λ)ζ = 0. (2.6) (Mfc - J)χ = 0.

Both of them have regular singularity at τ = wr/2, in other words at

σ = 0. By definition α is an indicial root of the equation (2.6) at σ = 0

if det (a — 2~1A^1FA.) = 0. The definition of an indicial root of the equation

(2.6) is similar.

LEMMA 2.1. The sets of indicial roots of (2.6) and (2.6) coincide. They

are {aky, v = — k, — k + 1, , k}, where

ak,v = - (k + 1/2) + (sign v)(2v + ivj).

Proof. The complex conjugate of an indicial root of one equation

is the one of the other. So only the equation (2.6) will be discussed.

If k = 1/2, the lemma holds. Suppose the assertion is valid up to k.
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It suffices to show that - (k + 3/2) + 2v ± iη (v = 1/2, 3/2, , k) are

characteristic roots of — (2Afc+1)"1 Vte+ί. Indeed, since the characteristic

polynomial of the matrix is even, — (k + 3/2) + 2v ± iη (v = k + 1) turn

out to be characteristic roots. To complete the proof, assume that

{- (2Ak)-1Vk - akjpk,v = 0 (\v\ < k) for pfc,v e M8fc+lil\{0}. By Lemma A.2 [7]

the equation (2.6) has solutions φk,v assuming the form σak'v(pkiV + σh(σ, log σ))

near σ = 0. Since K+,kφk,υ takes the form Γ 1"" 1 (pk+i,v + σh(σ,logσ)) for

some non-zero vector pk+Uυ, akiV — l is a characteristic root of — (2Ak+1)'1 Vk+ί

on account of Lemma A.2 [7]. Q.E.D.

When & = 1/2, all invariant proper closed subspaces common to Mk

and Tt (t > 0) can be specified. We shall define the subspaces. To begin

with, by Lemma A.2 [7] there are solutions ζfc,±fc(τ, λ) of (2.6) and χfc,±fc(τ, λ)

of (2.6) which, being holomorphic in Dτ X C, take the following form near

σ = 0;

(2.7)

w h e r e ιzki±k^ = %,±fc,0 = (1 , + 1). S e t ζfc = (ζ fc,_ fe, ζ fc, fc), χk = (χfe,_fc, χ fc? fe), a n d

define Zk, Xk, sk,± and rk%± by

ζfc(τ, ^) = Φk(τ, λ)Zk(λ), χfc(r, ί) = Φk(τ, λ)Xk(λ) for (τ, X) e R\

( 2 8 )

 β l ι ± = j r ^ ( i ± i , i τ i ) ,

In terms of the isometry # 1 / 2 we define proper closed subspaces Z>f/2,± of

L W by

(2.9) A'/2,± - ^Γ/ife e L\R, p1/2); %/2,±(λ)g(λ) = 0 a.e.}.

These subspaces are what we intended to define, for we can show

THEOREM 2.1. Let D be a closed proper subspace of U(R)\

( i ) D is invariant under the selfadjoint operator Mί/2J and Tt (t > 0)

iff it coincides with one of Dι/2,±.

(ii) Dl/2t± are invariant under the selfadjoint operator Lί/2J%

For the proof we prepare a few lemmas in advance. The first one

is concerned with estimates of the solutions of (2.6) and (2Λ3)Γ.

LEMMA 2.2.

( i ) Fix λ0 e R and ε > 0. Then there exist positive K and δ such that
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\Φk(τ,λ0)\ <K on D r n { R e τ | > 1}, \Φk(τ, λ)\ < Ke^ on R X {\λ - Jto| < δ}.

(ii) Let χ(τ,λ) be a solution of (2.6) with χ(0, λ) = I2k+1. Then the

statement (i) holds for χ.

Proof. Put Ψ = exp{^τ(2iAfc)-
1}Φfe. Then Ψ satisfies an equation Ψ' =

W(τ,λ)Ψ with Ψ(O,λ) = In+l9 where W = expyr(2iAJfc)"1}(2iAt)-1 Ffcexp{-^r

X (2Mfc)~
1}/ch r. Trivially |3Γ(r, Λo)| is bounded on AΠ{|Re τ| = 1}. More-

over, there exists an integrable function w on (— oo, — 1] U [1, oo) such that

\W(τ,λQ)\ < w(Reτ) on AίΊ{ |Reτ | > 1}. It now follows from Problem 1

[2, p. 97] that \Ψ(τ, λo)\, hence \Φk(t, λo)\ as well, is bounded on Dτ X {|Rer|

> 1}. Next take so small a positive δ that |Im{Λ(2 AJ"1}! < min{ε, 1/4}.

Then there is an integrable function v on R such that \W(τ, λ)\ < v(τ) on

R X {λ - λo\ < δ}. Using Problem 1 [2, p. 97], we conclude that |?P"(r,^)|

is bounded on R X {\λ — λo\ < δ}. Now the second inequality in (i) follows

at once. The proof of (ii) is quite similar to that of (i). Q.E.D.

Denote by Mk(σ) and Mk(σ) the differential operators Mk and Mk re-

presented in terms of σ = τ — ίπ/2 respectively, and let Rk be a map

sending an M2fc+M-valued function f(σ) = t(fk(σ), •• ,/.Jfc(σ)) to '(/_*(- σ),

• ••,/»(-*)).

LEMMA 2.3.

( i ) RkMk(σ)Rk = Mk{σ\ RkMk{σ)Rk = Mk{σ\ RkLk(σ)Rk = Lk(σ),

RkLk(σ)Rk = Lk(σ).

(ii) For k = 1/2 and neZ+, we have

Proof. The assertion (i) is easy to verify. As to (ii) only zki±k^n will

be treated. Set zkt±k(σ) — YZ^zk,±k,ne
n. Then it is enough to show that

Rkzk,±k(&) — T-zkt±k(σ). To this end notice t h a t Rkζk,±k = a±kζkί±k for some

constant a±k on account of (2.1). Consequently Rkzkt±k(σ) — b±kzkj±k(σ) for

some constant b±ky which yields b±k = + 1, since tzktkjQ == (1, + 1). Q.E.D.

The following lemma is concerned with the if part of Theorem 2.1.

LEMMA 2.4. Let k = 1/2 and v = ± 1/2. Then, for any reals λ, ξ and

a(Rea>0), the integral <*%*,„(*-, λ)Gaζkf_Xτ, ξ)} vanishes.

Proof. By Lemma 2.3 (ii) ^ ( τ , X)ζk>_v(τ, ξ) takes the form Σ?=oCw(72n+1

near σ — 0. Changing the variable τ to z = (1 + i sh r)/2, we can apply
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Proposition 1.2 (i) [7] to the integral in view of Lemma 1.1 (ii) [7] and

Lemma 2.2. Q.E.D.

We return to the

Proof of Theorem 2.1. Let k = 1/2 throughout the proof. 1) We

shall show that Diy± have the desired invariant property. By the aid of

the isometry # f c it is easy to see that they are Mfc-invariant. Since Lk

= Ml — 1/4 by (2.3), they are Lfc-invariant too. In order to show that

Tt (t > 0) leaves D{t± invariant, it suffices to verify

(2.10) %,±(λ)\.^* Gβi1 rkfΛ](X) = 0 for Re a > 0 and h e C0(Ry .

To this end we will show

(2.11) <'sk.Λ*)Φt(τ, X) GaΦk(τ, ξ)pk(ξ)rkt±(ξ)> = 0 ,

from which (2.10) follows immediately. Put

I*M = <%(*, X) Gaζk(τ, £)> , p = Z?pk 'Xz1, v± = '(1 ± 1, 1 + 1).

Then the left side of the equality (2.11) can be rewritten as tυ±la^ ρ(ξ)X

(_i o)t!± d e t x ^ ) ' b e c a u s e (_? o ) γ (- i o) = " ίy~1 d e t γ f o r a r e g u l a r

matrix Y. On the other hand, since Iatλtξ is diagonal by Lemma 2.4, there

results that p(ξ) is also diagonal (see the proof of Theorem 1.1 [7]). Now

one can verify (2.11) easily. 2) We shall show that if Mk and Tt (t > 0)

keep D invariant, then D = Dit±. According to Proposition 1.4 [7] there

exist disjoint Borel sets Bl9 B2 of R and a Borel measurable function s on

Bλ with values in M2>1\{0} such that

# f c D = {geU(R,pk);g = 0 a.e. outside Bu and *sg = 0 a.e. on B,}

®{ge L\R, pk); g = 0 a.e. outside B2}.

We must show that B^ = R, B2 = φ and s — c±sk± for some C*-valued

measurable function c± on R. Since GaD is dense in D, there exist /i and

f2 in D such that

(2.12) det (# f c GJt(X), # f c GJ2(λ)) Φ 0 a.e. on B2.

If B2 is not a null set, the determinant does not vanish a.e. on R, for it

is real analytic in λ by virtue of Lemma 2.2. Since D is a proper closed

subspace, B2 must be a null set. Now that B2 = φ, analyticity of β\GJ

(/eΰ\{0}) yields Bλ = i?. Moreover we can assume s = ί -

Put r = f ° θ) s* T h e n > f o r a n y Λ e ^ ^ a n d ^ 6 R> w e h a v e
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(2.13) ls(X) [ # * Ga ?? r±h] (X) = 0.

Let h converge to the Dirac measure supported at ξ to obtain <'s(Λ) Φ*(τ, X)

X Ga Φk(τ, ξ) pk(ξ) r(ξ)) = 0 , which is equivalent to

(2.14) '(X,-1 s) (λ) /„,,,, ,<£)( _ J J) (X,-1 β) (0 = 0.

Put Xj 1 8 = t(a_k, ak) and pu = (v, υ)-component of p{v = ± k). Then (2.14)

implies on account of Proposition 1.2 (ii) [7] that a function of z = (1 +

i sh r)/2

Σ fcf/τ, ξ) py(ξ) a_v(ξ)l{z(l -

is holomorphic in {Re z < 1}. Thanks to Lemma 1.1 [7], the function is

so iff aXX)a_Xξ) = 0 (v = ± k). Since av is real analytic, it follows that

either αfc = 0 or α_fc = 0. That is, s•= c±sfc,±. Q.E.D.

When ^ > 1/2, there are, as will be shown later, at least two proper

closed subspaces of Lz(R)21c+\ say D{±, satisfying the condition (Q.I). For

our purpose it is desirable, but not necessary, to determine all closed

proper subspaces satisfying the condition. In order to define De

k± we

begin with

LEMMA 2.5. Let ζ = *(ζfc, , ζ_ft) and χ = *(£*., , χ_fc) be solutions of

(2.6) and (2.6) respectively. Then ζ and χ satisfy

(2.15) ϋ:* f f c . 1C = O, (2.15) ϋΓ* ) f e_ i χ = O,

respectively iff ζfc a n d χfc solve certain second order differential equations of

the following form respectively.

(2.16) Σ σnckt2_n(σ, λ)ζ™ = 0 , cfc,0 = 1,
71 = 0

(2.16) Σ σ"c*,,-»(σ, λ)χ£> = 0 , c»,0 = 1 ,
71 = 0

where ck>n and ck>n, being holomorphic in Dτ X C, satisfy the following

condition;

a(a — 1) + efc,i(O, λ)a + cfe>2(0, X) = a(a — 1) + cfc>1(0, λ)a + cfc>2(0, ̂ )

= ( α — α f c f . i/2)(α — tffcfi/2).

Proof. The ^-component of ζ is expressible in terms of ζk and its
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derivatives. Suppose ζ satisfies (2.15). Then the equality (K%>k_iζ)k_1 = 0

gives a second order differential equation (2.16). In particular, it follows

easily that dim(Ker Kt,k-i) = % where K*ik_x is regarded as a linear map

sending solutions of (2.6) to solutions of (2.6) with the suffix k —• 1.

Therefore, if ζk solves (2.16), ζ satisfies (2.15). Similar argument is available

for χ. Q.E.D.

At this stage fundamental systems {ψk>v; \v\ = 1/2, •••,&} and {ψkfV;

\v\ = 1/2, •••, k} of the equations (2.6) and (2.6) respectively are to be

introduced.

(2.17)
l ί Γ Ψ * - i . . (M < k) or fkι±k (|v| =

where ψfc,±t(r, Λ), being holomorphic in Dτ X C, satisfy if*,^-^.^ = 0

and have the following expansion near a = 0;

' k,±k
\n=Q

(2-17) _ r χ i / i ( , for Jfe = |v| = l/2,

I jζ i^fe-i (12̂ I ^ &) o r lî t. u (\v\ = A))

where ψkt±k(τ9X), being holomorphic in i)Γ X C, satisfy K%flc_1ψkf±k — 0

and have the following form;

Ψic,±k = σ α f c ' ± 1 / 2 ( 2 β f c,± f c, u <7 K ) , efc,±fc,o ^ 0 .
Wo /

Note that ψk}±k as well as ψkf±k really exists in view of Lemma A.I [7]

and Lemma 2.5. Put ¥k>v = (ψk,-v, ψktV), Ψk = (W*Λβ, , ?Γ*ffc), ??"*,. = (ψfc,-,,

ψk>v), and define Zfc(λ), M^) 6 Λ ί2fc+i> Xk(λ)eM2 and sfcι±(^), rfcj=(^)M2>1 by

Pk = Zk βk Z* ,

(2.18) ¥ktk(τ, X) = ΨkΛ{τ, λ)Xk(λ) for (r, ̂ ) e i? 2 ,

s,,± = X, '(1 ± 1,1 + 1), rk,± =

Via an onto isometry: L2(R, ρk)-± U(R, pk) sending g to Z*~*g there arise

an onto isometry ^ k : L\Rfk+ι ->• L%R, pk) and its inverse J ^ 1 ;

(2.19) &tf(X) = l.i.m. f Ψf(τ, X)f(τ) dτ .

(2.20) J^,-1 ί(r) = l.i.m. f ¥k(τ, X) pk(λ) g(X) dλ.
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The eigenfunction expansion for Mk with respect to Ψk is more convenient

in the sense that the spectral density pk has a simpler form.

PROPOSITION 2.6.

( i )

0
(ii) pktU = nkivPk.Uv for v<k, where nk,£λ) = {(k2 - v2)(4k2 + λ2jv2)γ\

Proof, (i) Suppose the assertion (i) is true up to k — 1 (k > 1/2).

First putting Λ = [ 3P**,vft dλ for gv e C0(R)2 (1/2 < v < k), we will show that

</p, /y/> = 0 if y Φ v\ To this end note that f£τ) -> 0 as |τ" -> oo and that

(2.21)

which is an easy consequence of the fundamental relations (2.1) —(2.3).

Since </„, />) is equal to

(2.22) lim f (ΛΓ*,,., Ψk,vgvdλ)*(¥k_ίygv, dλ)dτ
A'-*, J |r|<iV

for y' < /?, there results </„, /„,) = 0 if y =̂ ̂ . Secondly, denoting by Qv

the matrix such that Qv

 t{tgιt2y , ^ fc) = '(0, 0, *gu, O , 0), we will show

that pk1 = Σί=i/2 Qv Pk1 Qv> from which (i) follows at once. In fact, for any

heC0(R)2k+1, we have

J <g(λ), Pk(X) h(λ)}dλ = <<F?g9 &? h)

= Σ ((pl'Q.P^Q.Puhydλ.
ι» = l/2 J

(ii) Now </„,/•„> = f<ίϊ fl ft, g9}dλ(v<k). The left side is equal to

ί <Jϊ£vpk~Utvg»gvydλ on account of (2.21) and (2.22). Since gveC0(R)2 is

arbitrary, (ii) has been proved. Q.E.D.

We are in a position to define closed proper subspaces D[± of L2(R)2k+1.

(2.23) Dl± = J ^ ί t e ) e L2(i?, P f c); %t±(λ)g£λ) = 0 a.e.}.

Our main result in this section is the following theorem.

THEOREM 2.2. Let Dk be a closed subspace of L2(R)2k+1 for each keZ+

+ 1/2. Then the sequence [Dk] is nontrivίal and satisfies the conditions
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(Q.I) and (Q.2) (see the beginning of §2) iff it coincides with either

or {-Dfc,+}. The sequence is said to be nontrivial if not all Dk are trivial.

Before going into the proof we shall compile some facts. To begin

with, let us introduce other fundamental systems {ζfc,u; \v\ = 1/2, , k} and

{χktV; \v\ = 1/2, , k) of the equations (2.6) and (2.6) respectively as follows.

where ζkt±k(τ,λ), being holomorphic in Dτ X C, have the following ex-

pression near σ — 0;

Xu,v = ί+ ( t.iχ f c-i fv (M < A) or χfe)V (|v| = h),

where χk,±k(τ, X), being holomorphic in Z)r X C, assume the following form

near σ — 0;

χfc,±fc = <7αfc'±fc(2] Λ:fc,±fcjWσn), xfc,±fc,o Φ 0.
Wo /

As to the definition of ζktV and χktV for fe = 1/2, see (2.7). Thanks to Lemma

A.2 [7], ζkt±k and χk)±k are well-defined up to constant multiple. It is easy

to see that ζk)V and χk>v have the form around σ = 0;

(2.24)

\n = 0

Recall the definition of the operator Rk made above Lemma 2.3.

LEMMA 2.7.

( i ) RkzktV>n = — (— ΐ)n(signv)zktVtn) Rkxk,v>n = - ( - ΐ)n(signv)xk>v>n.

( i i ) If M/ < 0 α îcί αfc}V + o:fc>v, > 0, then

<%.A*> λ)G« ζ*,Λτ, λ)} = 0 for (τ, i) e R2 and a (Re a > 0).

Proo/. ( i ) Put ^ ( σ ) = χ;^=0 zkiV>n σn and xfc),(σ) = Σn=o xk,v,n σn We

shall show that

(2.25) Rkzk>v(σ) = - (sign v)2fe>y(σ), Rkxk,v(σ) = - (sign ^)x f c,» .

Only xkiV(σ) will be discussed. The relation (2.25) holds for k = 1/2 by

Lemma 2.3. Suppose (2.25) is valid up to k. First note that Rk+1K+)1c(σ)
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Rk = - K+)k(σ), where K+tk(σ) = - 2iBk{dldσ - (k + l)cothσ} - Fjshσ,

and apply Rk+1 to both sides of an identity χk+hv = K+>kχkfV (\v\ < k) to

obtain (- σ)ak+Uv Rk+ίxk+1,Xσ) == (- σ)ak"(signv)xk>Xσ). Since ak+hv = akfV

- 1, (2.25) holds for the suffix (k + 1, v) {\v\ < k). Secondly, note that

RkK*tk(σ)Rk+ί = - K*tk{σ) and that, for \v\ = k + 1,

(2.26) Ru+iχκ+hv = cυχk+1>v.

(2.27) ^ί, f cχ f e +i,y = ^χ f e,V', 1/ = * - (signp).

Indeed, (2.26) follows from Lemma 2.3 (i) and (2.24) while (2.27) from (2.1)

and Lemma 2.5. Now applying Rk to the both sides in (2.27) and using

(2.26), we obtain cvdvσ
ak+uv xky(σ) = (signv)dv(— σ)ak>v'xktV,(σ), which yields

cv = — (sign v). The assertion (i) has been proved, (ii) Under the con-

dition in (ii) %,£*, λ)ζky(τ, ξ) takes the form Σin=oCnσ
2n+1 near a = 0.

Changing the variable τ to z = (1 + ί sh τ)/2, we deduce that the integral

<%,v Gaζky} vanishes by Proposition 1.2 (i) [7] (cf. Proof of Lemma 2.4).

Q.E.D.

The next lemma is concerned with the if part of Theorem 2.2.

LEMMA 2.8. Suppose that for any k < kf (eZ+ + 1/2)

<%,Xτ>*)G«UΛτ,ξ)> = 0, &ξ)eR2, R e α > 0 , w / < 0.

( i ) The integral vanishes even for k — kf + 1.

(ii) D{± are invariant under the selfadjoint operators Lk, Mk and the

semigroup Tt (t > 0). In particular, so are JDJ/+ 1 Ϊ ± by (i).

Proof It is clear that the linear span of {ζk>v; ± v > 0} (resp. {χktV;

± v > 0}) coincides with the one of {ψkιV; ± v > 0} (resp. {ψk>v; ± v > 0}).

We shall prove (ii) first, (ii) De

kj± are invariant under Mk. Since

(2.28) LkΨk>Xτ, λ) = {λ2/(W) - v2}Ψk,Xτ, λ)

by virtue of (2.1) — (2.3), Z)^± are invariant under Lk too. Put Iv

a\
v

λ\ξ =

(ΨkfXτ, λ) GaΨky(τ, ξ)), which is diagonal by the hypothesis. Since Γa^ξ

is diagonal, pk>v = pk>v

tX~1 is also diagonal (see the proof of Theorem 1.1

[7]). Consequently, for any h e CQ(Ry we have

r,ξ)ρ*.Λξ)r,,Λξ)h(ξ)dξ\(λ)
(2.29)

I' / I I I \

= 0 ,
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where we used the following relations;

(2.30) <8V%± Ψty = <υ±tktt,, <υ± = (1 ± 1, 1 + 1 ) ,

(2.31) T*,.P*t.r.t± = ?^,

Thus Ga sends a dense subspace ^l\(χ^± hv) e L\R, pk); hv e C^R)1} of D{,±

into Dίt±9 namely D{,± is invariant under Tt (t > 0). (i) First we shall

prove the following relations in the case vvf < 0.

(2.32) <%,»Gίζ'kyy = O,

(2.33) ( ^ Λ G : U = O>

(2.34) (%,vMkAkG'^kyy = 0,

(2.35) (%ιV G'a{2iA\ th r + C7fc/ch τ}ζfc,υ,> = 0.

For this purpose denote by A the infinitesimal operator of the semigroup

Tt (t > 0), that is, A = ί sh r, and note that /„, = ί ζky(τ, ξ) h(ξ) dξ e Dl>signv,

for any he C0(Ry on account of (2.31). Since LkχkιV = Σμ μv>0 ak>μψk>μ, the

ΪVinvariance of De

ki± implies <{LΛ %»,«}*G«Λ') = 0. Integration by parts

and the fact that Lkζky = Σ^>oak,μψk,μ yield < %,v(- G'a - 2G'βjdτ)fv,y

= 0. On the other hand, an equality G'J = AG\ - 2(1 - A2)G\, together

with the TVinvariance of Dί f ±, yields ('χk,vG"fv,y = 0. Now letting Λ

converge to the Dirac measure supported at ξ in the now proved equality

CXk,vGaf^y = 0, we obtain (2.32). We can safely change the order of

integration and the limiting procedure by Lemma 2.2. Starting with

<(M* Xu,v)*Gafv,y = 0, we can verify (2.33) similarly. For the proof of (2.34),

it suffices to substitute (Mfcχfcυ)* for z%ktV in (2.33) and integrate by parts.

It follows from (2.33) and (2.34) that <ίχfcfy{AfcGίMfc - MkAkG'a}ζkyy = 0,

where { } takes the form 2iA\G'a' + G'aUJchτ, since AkVk - VkAk = Uk.

We must show that A\ G" can be replaced by G« th τ = AG2

a. To this end

notice that AkG
f

a leaves D{^± invariant in virtue of (2.33). Consequently,

since (α - A){AkGJ = A\(l - A2

α)G
3

α, it follows that ('x^AKX - A2)Glfv,y

= 0 for the above-mentioned /,/. The last equality yields (s

tχk}VA\,{l — A2)

xGlζkyy = 0. Since G'J = AG\ - 2(1 - A2)G3

α, we can replace A\G'J by

G^thτ in the above { }. (2.35) has been proved. Secondly, to complete

the proof of (ii), we shall show

(2.36) Cz* + 1 >, λ)Gaζk+iy(τ> ?)> = 0, w/<0.

In view of Lemma 2.7, we may assume ak+hv + ak+iy < 0. Hence χk+1)V =
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K+fkχk,v and ζk+ίfV> = K+tkζky. Integrating by parts in the left side of

(2.36), we arrive at

(2.37) <%+ι,vGaζk+1>v,y = <ϊχklVG'βBkK+tkζkιV.y .

Note that G'aBkK+k is equal to

G'a{2i(k + lyd/dv + (AkMk) + (2iA\thτ + UJ chτ)}

- 2ί(k + ΐ)3(a - AY1 A .

Now the right side of (2.37) vanishes on account of (2.32), (2.33) and

(2.35), together with the TΓinvariance of D£,±. Q.E.D.

The next lemma is concerned with the only if part of Theorem 2.2.

LEMMA 2.9.

( i ) %,±i/2,o s*,±i/2fo Φ 0 (see (2.24)).

(ii) For any (λ, ξ) e R2 and v, vf (vv' > 0), there exists an α(Re a > 0)

such that <tψk,Xτiλ)Gaψky(τ,ξ)y Φ 0.

Proof. Let us define zkt± and xk>± both in Λf2fc+lfl so that they are

proportional to zkt±lβt0 and xkf±1/2,o respectively;

zkt± = xfci± = *(1, + 1) for & = l / 2 ,

(2.38) ^ + 1 > ± = {2(~ 2k - 1/2 ± i,)Bfc - Yk}zki± ,

xk+u± = {- 2 ( - 2fe - 1/2 ± iτj)Bk - Ϋk}xki± .

Then (i) is an immediate consequence of the following recursion formula;

(2.39) % + l t ± zk+u± = -8(k+ ΐ)(2k + 1)(± iη - fe)(± i 9 - Λ - 1/2)%,^,,, .

To prove (2.39), by the very definition of xkt± and zkt± we have

(2.40) <xk+lι± zk+ί>± = % , ± [ - 4/32

±p + I)2 - A\) + 2^±(2AΪ + 3)

+ Uk - VI + 4(k + I)2 + (k + 1)A\ - 4(k + Vfi{β + ΐ)]zk>± ,

where β± = — 2k — 1/2 ± i^. At this stage observe that ψkt±k — Σ±y>o

aktVζktV and ̂ &>±fc = Σ ± , > O ^ , J M with akt±1/2akt±1/2 φ 0 in view of Lemma

2.5 and the definitions of ψkt±k and φj.i±fc. Consequently, the equations

{Lk + k2- ?l(Ak*)}Wk>k = 0 (see (2.28)), (Mfc - λ)Ψk>k = 0 and (M, - λ)tkΛ

= 0 imply

(2.41) {- ( - k + 1/2 ± i 9 ) ( - fe - 1/2 ± iη) + k(k + 1) + ^ + 1)
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(2.42) {- 2( - k + 1/2 ± ίη)Ak - Vk}zk>± = 0,

(2.43) {2( - k + 1/2 ± i?)Afc - Vk}xk>± = 0

respectively. Recalling that Uk = AkVk — V^A*, it follows from (2.42) and

(2.43) that both ιxk,±Ukzkj± and txk,±V\zk>± are proportional to txki±A\zkj±.

Now (2.41) yields

l x k l ± A l z k i ± = k ( l ± 2ίv)/{4( - k + l ± i η ) Y x k l ± z t l ± ,

which enables us to rewrite the right side of (2.40) as (2.39). (ii) It is

not difficult to show, by Lemma 2.5 and the definition of ψkιV and ψk>v,

that ψttV = σak^v)1/%Σn=*eic,»,nσn) with e f c f y f 0oc*M B l g n y ) 1 / 2 f 0 and that ψk>v =

σβfcl(βlgIιy)1/2(Σ?-oe*.v.»^n) with ek)V>0ocχkΛsisav)1/2ι0. Assume y i / > 0. Then

'$*,&> *)Ψ*Λτ> ?) t a k e s t ]^e form <72αA;'(sisnυ)1/2 ( Σ ^ o cw σπ) near <7 = 0, where

c0 φ 0 by (i). On the other hand, if (tψk,vGaψky) vanishes identically in

{Re a > 0}, then ιψkfV{τ, λ)ψky{τ, ξ)J{z(l - zψ\ as a function of z = (1 +

i sh τ)/2, is holomorphic in {Re z < 1} by Proposition 1.2 (ii) [7], which is

absurd in view of Lemma 1.1 [7]. Thus ^k,vGaψkfVf} can not vanish

identically. Q.E.D.

We return to the

Proof of Theorem 2.2. We devide the proof into six parts.

1) The sequence {Dit±} fulfils the conditions (Q.I) and (Q.2).

First, the condition (Q.I) is satisfied by Theorem 2.1 and Lemma 2.8.

Secondly, we shall prove that K+ik Dki± c Di+u± F ° r this purpose it

suffices to show that, for any / = \¥ktVpkfVrVi±hdλ lying in H2(R)2k+1,

^u,iK+ikf= (gk+lt1,)(v'= 1/2, •••,£+ 1) with gk+lry = ίvy,nίi l fyr l, i±Λ. Inte-

gration by parts yields the desired gk+ιy on account of the formula

K*)kΨk+ίy = (1 - δk+lιV.)nkliyΨky due to (2.21). Finally, the inclusion

relation Kΐtk.xD{i± C Di_i>± can be shown in a similar manner.

2) Kΐ^LXR)2**1 is dense in L\R)2k~\

This statement is an easy consequence of Proposition 2.6 and (2.21).

3) Let D be a closed subspace of L2(i?)2fc+3 such that it is invariant

under Tt or T_t (t > 0) and that K+ikL\Rγk+ί c D. Then D = L2(R)2k+\

To be definite, let Tt (t > 0) leave D invariant. Assuming / = (/„) e D\

we shall show / = 0. We have, for any φeCo(R)2k+\

The first equality implies that fv(\v\ < k) is absolutely continuous. Inte-
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grating by parts in the second equality and using the first one, we obtain

(Bkf, G'aφ} = 0. Therefore fv(\»\<k) vanishes. Now the first equality

yields / = 0.

4) If Όr = L2(R)2k'+1 for some k', then Dk = U(R)2k+1 for all k.

Indeed, Dk = L2(R)2k+1 for any k > k' by 3) and for any k < k' by 2).

5) If Όv = {0} for some £', then Dk = {0} for all A.

To prove this, consider a sequence {JD£}, each member of which is

surely invariant under the selfadjoint operators Lk, Mk and the semigroup

T-t (t > 0). This sequence satisfies the condition (Q.2) too. To verify this,

it is enough to note that, Dk and D^ being /^-invariant, Dk Π H2(R)2k+1

and Dk Π H2(R)2k+1 axe dense in Dfc and D^ respectively. Applying 2) and

3) to {!>£}, we conclude that Dk = {0}.

6) Let {23Λ} be a nontrivial sequence satisfying the conditions (Q.I)

and (Q.2). Then {Dk} = {!£,_} or {D*kt+}.

To begin with, note that Dk is a proper subspace of L2(R)2k+1 for any

A by 4) and 5). In particular Dk = D*kt_ or DJ}+ for k = 1/2 on account

of Theorem 2.1. Assuming that the latter is the case for definiteness, we

shall show that Dk = Diy+ for all k. To this end denote by / t h e identity

operator on L2(R)21c+\ and by Pkv (v — 1/2, , k) the orthogonal projection:

L2(jR)2fe+1 _̂  U ψκv pkvgdλ; g e u(R9 Pk,ή. Suppose Dk, = D'k,,+ for any hf<k
(k > 1/2). As one can see easily, K+tJc_1Di_li+ is dense in (I — Pkk)Di+,

in particular (/ — Pkik)D{t+ C Dj. by the condition (Q.2). We claim that

J9£)+ C Dfc. For this proof, recall Lemmas 2.8 and 2.9, by which we have

wiτ, ξ)} = 0 for any α (Re α > 0) ,

r, λ)Gβfψktl/2(τ9 £)> ^ 0 for some α' (Re α' > 0).

Consequently there are an α! in {Reα: > 0} and an / in PkΛ/2Dk>+ such

that Gβ,/€ DJ, + and P ί f f c Gβ,/ ̂  0. For example, f(τ) = | r f c j l / 2(τ, f) Λ(f) d$

with h e C0(Ry such that 0ψk)k(τ, λ) Gα, ί ψk)U2(τ, ξ) h(ξ) dξ\ Φ 0. The support

of !Fk Pkk Gα,f is R, because $Fk Pk>k Gα,f is real analytic on R. Therefore

it is clear that the closed linear span of {[exp UMk]Pkk Gα//; t e R} coincides

with Pktk Dl+. Since Pkfk Gα,f belong to Dl+ (Ί Dk and (I - Pk>k)Dl+ c Dk9

we conclude that Z)£ + c Dk. Next, assuming he Dkθ(I — Pkk)Dii+, we

will show that hePk,kDk, in other words, Z>fc = PkkDk 0 ( / - PkJC)Dii+.

Since Dkθ (I — Pkk)De

ki+ is Lfc-invariant, we may assume JιeH2(R)2k+1.

Note that PΛ)V/ι lies in the domain of Lfc, because Pfc(V commutes with Lk.
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Now if ?,*_! Pk)k h = 0. Using this equality, we will show that (I — Pk>k)h

= 0. In fact, for any / in DjU,+ Π H2(Rfk-1 we have

0 = ( i ^ . J , h) = </, JΓ*,^ Λ> = </, JBΓΪ.̂ CΓ - Pfc;fc)/*> .

By the induction hypothesis there results K%fk_t(I — Pk,k)h = 0, which

yields (I - Pk>k)h = 0, since J ^ ( I - PΛffc)& = 0. Thus Dk = Pfc,fcDfc © ( I -

Pk,k)Di%+. Finally, we shall prove that Pk}kDk = Pfcf*JD*f+ by showing the

following equality;

(2.44) *sfc, +(Λ) f ?T* k(τ, X) Ga h(τ) dτ = 0 for (i, « ) e J ? X { R e α : > 0 } ,

where h stands for the same as above. Suppose the integral in (2.44)

does not vanish for some (λ\ a'). Then, since the integral is a real analytic

function of λ, it is not equal to zero a.e. on R for the a\ In particular

det(rfci +(X), f Ψtk{τ, λ) Gα, h{τ) dτ\ Φ 0 a.e. on R.

PkιkDk being Mfc-invariant, it follows that

In view of Lemma 2.9, for any (λ, ξ) e R2 and v(< Λ — 1) there exists an

a (Re # > 0) such that

%M)<FU*> λ) Gaψ*.-*(τ, £)> = <^*f-v(τ, )̂ Gσψ4,.fc(τ, f)> Φ 0 .

Consequently there exists an fe PkkDk(c:D]c) such that PkvGaf& PktVDί,+,

which contradicts the fact Dfc = Pfc)fcDfc Θ (I - Pk,k)Di,+. Thus (2.44) holds.

Q.E.D.

By Proposition 2.6 and (2.21), it is not hard to see that, for

/ = Σ f Φ*t, P*,> rβ,+ K dλ, hve C0(Ry ,
v = l/2 J

we have

= Σ
l/2

v = l/2 J
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§ 3. Invariant subspaces common to Lk>£, Mkti and Tt (t > 0) in

L\R)2k+\ keZ+

The purpose of this section is to determine all nontrivial sequence

{Dh}kez+ satisfying the conditions (Q.I) and (Q.2) (see the beginning of § 2)

in the case (£, ε) = (£, 0) with either £ = - 1/2 + iη or - 1 < £ < - 1/2.

Throughout § 3 it is assumed that keZ+ and £ = — 1/2 + iη (η > 0) or

— 1 < £ < — 1/2. Our reasoning will follow almost the same line as in

§ 2, except that the eigenfunction expansion for Lfc as well as for Mk will

be used. This is because in the orthogonal decomposition

(3.1) L2(R)2k+1 = Ker Mk Θ (Ker Mky

KerM fc is infinite dimensional, for it contains K+tk-r 'Kk0C^(R)\

Let θk(τ, λ) e M2k+1)4k+2 and Φk(τ, λ) e M2k+ί>2k be solutions of the following

equations respectively;

(3.3) (Af,. - ^)Φfc = 0 , Φfc(0, ^) = J2 f c,

where Φk(τ, X) denotes the matrix obtained by deleting the 0-th row of

Φk(τ, λ) (the 0-th row of Ak is equal to 0). Since Lk + d2/dτ2 + A\ is a

multiplication by an integrable function, the spectral matrix Σk for Lk

relative to the generalized eigenfunction θk has a spectral density σk on

R+ [5, Theorem 15] which fulfils the following conditions i) — iϋ) (cf. [2,

p. 264]).

i) σk is an M£k

+

+1-valued continuous function on i?+.

ii) A map ik : L2(R)2k+ί -> L\R+f σk) defined by

(3.4) ik f(λ) - l.i.m. f θt(τ, λ) f(τ) dτ
N-+™ J \τ\<N

is an onto partial isometry, whose inverse ik~
1\U(R+,dk)->L2(R)2k+ι is

given by

(3.5) i t g(τ) = l.i.m. f §t(τ, X)σk(X) g(λ) dλ .

iii) ikLki^g(λ) = ig(λ) if λg(λ) belongs to U(R+,δk).
As to the eigenfunction expansion for Mk, there exists a spectral

density pκ on R* satisfying the following conditions iv)~vi) [5, Theorem

14].

iv) ρk is a Mg^-valued continuous function on i?*.
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v) A map # , : L2(R)2k+1 -• D(R*, pt) defined by

(3.6) βkf(λ) = l.i.m. f Φ*(τ, λ)f{τ) dτ

is an onto isometry with Ker # f c = Ker Mk. The inverse # ^ x is given by

(3.7) &? g(τ) = l.i.m. ί Φk(τ, X) pk(λ) g(λ) dλ .
JV-oo J iV-i<M|<JV r

vi) Jf fc Mk #?g(λ) = λg(λ) if λg(λ) lies in L2(i?*, βk).

All closed, proper invariant subspaces common to Lo and Tt (t > 0)

is known [7, Theorem 1.1]. To define these subspaces again, denote by

{ζo,Xτ9λ); \v\ = 1/4} a fundamental system of an equation (Lo — λ)ζ = 0,

each member of which, being holomorphic in Dτ X C, is assumed to have

the following form near σ = 0;

Co.v = W Σ * M f » * n ) if ZΦ ~ l / 2 ,

(3.8) CO,,Λ = W έ ) )

CO.-IΛ = Co.i

In the above α0p±1/4 = 1/2 ± (̂  + 1/2) and ô,,,o = 1. Put ζ0 - (ζo,-1/4, CcvO,

and define X0(λ) e M2 and sOf±(Λ), rOt±(^)6 Aί2>1 by

(3.9) ζo(r, Λ) = ^0(r, ̂ XoO), sOf± = ^o υ± , ro,± =

where v± = J(l ± 1, 1 + 1) or (̂0, 2) according as t Φ — 1/2 or not. Now

we define closed proper subspaces D^± of L2(R)X by

(3.10) Ώi%± = /o- 1 ^ e L2(i?+, *o); %,± g(λ) = 0 a.e.}.

PROPOSITION 3.1. Let Do be a closed proper subspace of U(R). Then

DQ is invariant under the selfadjoint operator Lo and the semigroup Tt(t > 0)

iff Do coincides with one of De

Oi±.

Let us introduce a fundamental matrix Θk = (θkf0, θkΛ, , θk)k) of the

equation (Lk — λ)θ = 0 in order to reduce the spectral density σk to a

simpler one;

θo = Co, θk>v = K+ik_, θk_Uv(0 < v < k) o r θk>k (v = k ) ,
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where θktk(τ, λ), being holomorphic in Dτ X C, satisfies K%fk.xθktk = 0 too

(notice that the £-th row of θktk (k> 1) is a solution of a 4-th order

differential equation). Set

(3.11) θk(τ, λ) = θk(τ, λ)Yk(λ) , σk = 7 fc <τfc Y* .

Then #fc and S^1 give rise to an onto partial isometry Sk : L2(J?)2fc+1 ->

L2(R+,σk) and its inverse ^ : L\R+,σk)-> L2(R)2k+ί;

(3.12) *»/(*) = Li.m. f 0*(τ, J)/(τ) dτ ,

(3.13) c?,-1 ̂ (τ) = l.i.m. f θk(τ, X) σk(λ) g{λ) dλ .

The eigenfunction expansion for Lk relative to θk has an advantage, be-

cause we have

PROPOSITION 3.2.

(TkfO\A) I I

( i ) σk(λ) = σ* l ( .

. 0 ' σk>k(X)
( i i ) σk>v = mk)Vσk_1>v, where mktV{λ) = {A(k2 - v2){k2 + v2 + X)}-1

Proof. The proof follows the same development of that of Proposition

2.6, using Lemma 3.3 and an equality

which is an easy consequence of the fundamental relations (2.1)—'(2.3).

Q.E.D.

LEMMA 3.3.

( i ) Fix positives λ0 and ε. Then there are positives d and K such

that

&(*, Λ)| + |0£(τ, Λ)l < K on AΠ{|Re r| > 1} ,

&(*, )̂l + \θ'k(τ, Λ)\ < Keφl on R X {\λ - λo\ < δ}.

(ii) Assume θk(τ, X) e M2k+U4k+2 satisfies the equation (Lk — X)θk = 0

z îί/i initial value ^θ^ ^)r=o = Λfc+2 ΓΛβTi ίΛe statement (i) /ioZds /or ^fc.

Proof. Put £fc = ^ ^ ^ %) and V(r) = {2 - k(k + 1) - ^(^ + l)}/ch2r +

iί7 fcth/chr. Then
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As is known ([5, § 3], for example), there are M4Λ+2-valued continuous

functions T±(X) on {Re λ > 0, ± Im λ > 0} such that

V^ϊ^;
0

0
where J n (n > 1) means the diagonal matrix (Q71 _ J ) e l 2 r Denote by

J5±(^) the above matrix, and put θk>± = T^A. Then 0fc>± satisfies an equ-

ation θ'kt± = (B± + R±)θkι± for R± = Γ ± ( y o) 2 7 * 1 ' F r o m n o w o n w e c a n

argue as in the proof of Lemma 2.2. Q.E.D.

The subspace KerM fc in D(R)2k+1 can be identified with L\R+, σki0) in

a sense.

LEMMA 3.4. Ker Mk = δk-
1L\R+, σk>0),

where L2(R+,σk>0) is regarded as a subspace of L2(R+,σk).

Proof. First we claim that Lk has no eigenvalues. To prove this

assertion by induction, assume it to be true up to k — 1 (k > 0), and let

(Lk - λ)f = 0 for some fe H2(R)2k+1\{0}. Then {Lk_x - λ)K*ik_J = 0, which

implies, by the induction hypothesis, that K*fk_J= 0. Thanks to (2.3),

M2

kf= 4k\k2 + λ)f. If λ Φ - k2, then fe (Ker Mky, hence, rewriting the

equality in L2(R*, pk), f = 0. This is absurd. On the other hand, if λ =

- k2, then Mlf=0, which means /eKerM f c , since MJe (Ker Mk)
L Π

Ker Mk = {0}. As will be shown later (Lemma 3.13), an /lying in H2(R)2k+ϊ

satisfies a condition that K%k_if= Mkf— 0 iff / = 0. Thus Lk has no

eigenvalues. Secondly, we shall show that Ker Mk c (ok~
1L2(R+9 σk>0) to

conclude the proof, for the opposite inclusion is trivial on account of the

relation Mkθki0 = 0, which is due to (2.1). Suppose the inclusion relation

holds up to k — 1 (k > 0). Then it follows from (2.1), (2.3) and Proposition

3.2 that, for any fe H2(R)2k+1 (Ί Ker Affc, (4k' + 4k2Lk) / l ies in S^LXR^ σk>Q)r

in particular in $k~
λL\RJr, σk). Since Lk has no eigenvalues, there results

fe^LXR^σjc). Now using M\θkfV = - 4v2(v2 + λ)θkfV, it can be easily

shown that fe Si1 L2(R+,σk,0). Since H2(R)2k+1 Π KerM fc is dense in the

Lfc-invariant subspace KerΛffc, the desired inclusion relation holds for k.

Q.E.D.
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For our later use, set (v = ± 1/4)

cck,v = - k + 1/2 + (sign v) {£ + 1/2),

ζk,v = ψfc,v = K+,k-l' ' 'K+,θζθ,v9 ^fc,0 = (Ψfc.-l/^Ψfc.l/Jί

(3.14) χk>v = ψk>v = # + , * _ ! • UL + tOζθfy > ^ , 0 = (ψ*.-I/4> ^fc.I/*) >

P*,o = ^,o on JR+ while ρkt0 = 0 on R\R+ ,

f̂c.o = w>k,o on R+ while nki0 — 0 on R\R+.

Next, we intend to reduce the spectral density ρk for Mk to a simpler

one by the aid of another generalized eigenfunction Ψ1}k. For this pur-

pose some preliminary considerations are necessary. Let ζ = ι{ζk, , ζ_fc)

and χ = %*., ,χ_fc) be solutions of the following equations (λ Φ 0);

(3.15) (Mk ~λ)ζ = O, (335) (Mk -λ)χ = O.

Then ζv (resp. χυ) can be represented in terms of ζk (resp. χk) and its

derivatives;

k — v k — v — m

(3.16) C.M=Σ Σ
0 0

(3.16) Σ
0

Furthermore, it is not hard to verify that ζk and χk satisfy 2£-th order

differential equations of the following form respectively;

2k

(u.17) 2_J σ &k 2k-n\σ> Λ) ζjf = U , Ok o = 1 ,
71 = 0

2k

(3.17) Σ *" δ..«-.(ff, ^) Z?' = 0, 6,,, = 1,
fc = 0

where 6 λ n and έ f c n are holomorphic in Dr X C and bkin(0, X) and fefc,w(0, Λ)

are independent of ^. Conversely, if ζfc and χfc solve (3.17) and (3.17)

respectively, then ζ and χ defined by (3.16) and (3.16) satisfy (3.15) and

(3.15) respectively.

LEMMA 3.5. The set of indicial roots of the equation (3.17) at σ — 0

is {ak>v; v = ± 1, ± 2, , K), where

a^v = - k - 3/2 + (sign v)(£ + 1/2 + 2v).

The same is true for the set of indicial roots of (3.17).

For the proof we require the following lemma.
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LEMMA 3.6. Let ζ and χ be solutions of (3.15) and (3.15) respectively.

Then ζ and χ solve

(3.18) ΛΓ?|fc-iC = O, (3.18)

respectively, iff ζk and χk satisfy certain differential equations of the form

(3.19) Σ °n ck)2-n(σ, X) ζ£»> = 0 , ck>0 = 1 .

(3Γί9) Σ σn ck,2-n(σ, λ) χ£»> = 0 , cfc,0 - 1,

where ck>n and ckfΊl, being holomorphίc in Dτ X C, satisfy the following

condition.

a(a — 1) + ckl(0, λ)a + cfc)2(0, λ) = (a — ccki_^)(a — ak>1)

= α(αr - 1) + cfc|1(0, λ)a + c,,2(0, λ) .

Proof. Even though some involved calculation is needed, the proof

of the only if part is straightforward. To prove the if part, note that

when Iff,*.! is regarded as a linear map sending solutions of (3.15) into

those of (3.15) with suffix h - 1, dim (Ker K*tk^) > 2. The only if part

means dim (Ker K*yk_ϊ) < 2. Now that dim (Ker K*ik_^ = 2, any solution

ζk of (3.19) gives a solution ζ of (3.18) defined by the formula (3.16).

Q.E.D.

Proof of Lemma 3.5. It suffices to prove the lemma in the case ί Φ

— 1/2, for bk>n(0, λ) and 6fc,n(0, λ) are continuous in ί. We will treat only

(3.17). When k — 1, the lemma holds by Lemma 3.6. Assume it to be

valid up to k - 1 (k > 1). Then (3.15) has solutions {ζ,,y; 1 < \v\ < k - 1}

such that

where (ζktV)k denotes the £-th row of ζkίV. One can verify this statement

inductively, using Lemma A.I [7] and (2.1). By Lemma A.I ak)V (1 < \v\

< k — 1) is an indicial root of the equation (3.17). We claim that all

indicial roots of (3.17) are simple. Otherwise, denote by a a multiple

root. Then by Lemma A.I there exists a solution ζ of (3.15) such that

(0* = σa(\ogσ + σh(σ, logσ)). In particular {K%ik_1ζ)k_1 = σa~ι (alogσ + b

+ σh(σ, logff)), where αoc(α — αfc>_,)(α — akΛ) and boca + k + 1/2. Since

no solution of (3.17) with suffix k — 1 contains the logarithmic term, it
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follows that a — ak t±1. In this case, since b Φ 0, one of ak t ± 1 — 1 is an

indicial root of (3.17) by Lemma A.I, which contradicts the induction

hypothesis. Now denote by a the one of unknown roots. Again by Lemma

A.I there exists a solution ζ of (3.15) such that (ζ)k = σa(l + σh(σ, log σ)).

In- particular {K%fk_1ζ)k_1 = σa~ι (a + σh(σ, logσ)). Since a Φ 0, it follows

that a belongs to {1 + ak_Uυ; 1 < \v\ < k — l}\{aky, 1 < \v\ < k — 1}, namely

a = 1 + ak-u±ik-x) = αr*,±*. Q.E.D.

Now we are in a position to define a fundamental system {ΊK,V; 1 ^

M < k} of (3.15)

(3.20) or = h),

where the fe-th row (ψkt±k)k satisfies (3.19) and is a holomorphic function

on Dτ X C assuming the following form near σ — 0;

,±fc,o,fc = 1 if I Φ - 1/2

Put rfc,υ = (ψk,.v9 ψkj and r i>fc = (¥kίU . . . , y fc f t), and define

M2k by

(3.21) p1)k = Zfc ̂ fc Z* .

Then βk and ^fc1 give rise to an onto partial isometry &r

ί>k: L2(R)2k+1

U{R*, Pίtk) and its inverse &£ : i*(jB*, ftit) -> L2(R)2k+1;

1 ( f c/« = Li.m. f 5Γ*fc(r,

ί i^(r) = l.i.m. ί
N-+oo J N-l

(3.22)

(3.23)

Now, repeating the argument in the proof of Proposition 2.6 and using

Lemma 3.8 below, we obtain

PROPOSITION 3.7.

( i ) &,*(*) =

0

0

pkA*).
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(ii) Pkι, = /»*„/!>,.,„ for 1 < v < k, where nk,XX) = {(k2-S)(4k2+λ2IS)}-1.

Recall the definition of Ψifi and pkΛ in (3.14), and put

Ψ" = V° * {k = 0 ) OΓ <?*•» W*J (k > 0 ) '
PJC = Ô)o (A = 0) or ^.o Θ pltk (k > 0).

We can safely write L\R, ρk) in place of L2(i?*, /?fc). Keeping this remark

in mind, let us define an onto isometry 3sr

k : L2(R)2k+1 -+ L2(R, ρk) and its

inverse JΓ^ 1 as follows;

(3.25) 3FJ{ΐ) = l.i.m. f r?(r, ^)/(r) dτ ,

(3.26) ^g(λ) = Li.rn. f r,(r, Jl) pk(λ) g(X) dλ .

By Propositions 3.2 and 3.7 and Lemma 3.4 one should find no difficulty

in verifying that J^k and ϊFi1 are well-defined and have presupposed

properties. As to the estimates of solutions of the equations (3.15) and

(3.15), we have

LEMMA 3.8.

( i ) Fix Λo e JR* and ε > 0. Then there exist positives δ and K such

that

\Φk(τ,λ0)\<K on A n { | R e τ | > l } ,

\Φk(τ, X)\ < Ke^ on Rx {\λ - λo\ < δ}.

In particular the 0-th row of Φk(τ, λQ) tends to zero as τ —> ±oo.

(ii) Let χk(τ, X) e M2k+U2k be a solution of (3.15) with χfc(0, X) — I2k.

Then (i) holds for χk. See (3.3) for the definition of Φk and χk.

(iii) Fix λoe{\lmλ\ < l/4\{0}. Then there exist positives δ and K such

that \Φk(τ, λ)\ < Ke[τ[/8 on R X {\λ - λo\ < δ}.

Proof. Note that Φk satisfies certain differential equation Φ'k —

V(τ, λ)Φk. Hence the argument in the proof of Lemma 2.2 is available to

prove (i) and (iii). The proof of (ii) is quite similar. Q.E.D.

We intend to define closed subspaces De

k,± of L2(i?)2fc+1 by the aid of

a fundamental system {ψk)V; 1 < \ι>\ < k} of the equation (3.15);

(3.27) ψk,v = K+tk^φk.lιV (1 < \v\ < k) or ψk,v (\v\ = k),

where the A-th row (ψk>±k)k satisfies (3.19) and is a holomorphic function

on Dτ X C with the following form;
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^,n,uΛ , ek,±k,0,κ = lif£φ-ll2,

/
ekιkι0>k = )

if ^ = - 1 / 2 .

Put ?rfcfP == (ψΛ,^,ψ fc,v)(l < v < k), and define Xk(λ)eM2 and s

e M2tl by

rfc,,(r, i) = rfc,fc(r, ^) Xfc(^) for (τ, λ) e R X R* ,

(3.28)
sk,± — Λk V± ,

_ / 0 1\

where ϋ± = '(1 + 1 , 1 ; 1) or '(0, 2) according as £ Φ — 1/2 or not. Then

recalling the definition of s0>± and r0>± in (3.9), set

(3.29) Dί,± = ^ϊHfev) € L2(i2, ft); %t± gv = 0 a.e. for x; = 0,1, . , k].

We are now ready to state our main theorem in this section.

THEOREM 3.1. Let Dk be a closed subspace of L2(R)2k+1(ke Z+). Then
the sequence {Dk}k6Z+ is a nontriυial one satisfying the conditions (Q.I) and

(Q.2) iff it coincides with either {Dl,..} or {D£

ki+} (see Theorem 2.2 for the

definition of a nontriυial sequence).

For the proof we prepare some lemmas. Let {ζfc>υ(τ, λ); 1 < \v\ < k) and

{Xk,Xτ> *); 1 < M < }̂ be new fundamental systems of the equations (3.15)

and (3.15) respectively, whose definition runs as follows.

(3.30) C*f- = ^ + f * - i C * - i f . ( l ^ M < * ) or ζfcf.(M = Λ),

where the £-th component (ζkt±k)k, being holomorphic in Dτ X C, assumes

the form

(C*,±*)* = σαfc'±fc(f; zkt±t,nιkσ
n) , zkf±ktQtk = 1 if I Φ - 1/2,

\w = 0 /

if / = - 1/2.
\ζk,k)k == σ ' ( Z-i Zk,k,n,kσ ) >( Z-i

( 3 ^ χ t i, = ^+,». I χ,.,,. (1 < |v| < Λ) or χ4i, (M = k) ,

where the ̂ -th component (χk,±k)k, being holomorphic in Dτ X C, has the

form
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\Xk,±k)k — O ( 2-J Xk,±k,n,kG I 5 Xk,±k,Q,k — 1 it £ φ \\Δ ,

( 00 \

2-ί Xk,-k,n,kσ I > Xk,k,O,k = =

7 I if ί = - 1/2 .

In view of (3.8), (3.16) and (3.16), ζtι, and χfc,v (|v| = 1/4,1, •, &) have the

following expression near σ = 0; when & Φ — 1/2,

(3.31) ζt>, = ff *"(f: «,,„,, σ ) , χt>, = *•*••(£ «,..,„ σ") ,

while in the case t = — 1/2, ζfc)υ and χfciV (v > 0) having the form as above,

ζfc>_v and χkf_v (v > 0) have the following form

(3 32) ζ fc'"υ = σak%v(z*>-»

We note that zkf-V)Q = zkfVt0 and xfc,_v>0 = Xk,v,o if ^ = — 1/2. The operator

Rk has been introduced just before Lemma 2.3.

LEMMA 3.9.

( i ) RkzktVtn = ( - l)nzk)V>n , i?fc xfc(V,n = ( - 1)» xfc,v,n ,

where v = ± 1/4, ± 1, , ± k or 1/4,1, , k according as & Φ — 1/2 or

not.

(ii) <<χfc,v(τ, λ) Ga ζk,Λτ, f)> = 0 /or (J, f ) e i ί * X R* and a(Rea> 0),

i/ one of the following two conditions is satisfied;

( 3 3 3 ) i Φ - 1/2 , M/ < 0, ^fc,v + a*,,, > - 1,

^ = - 1/2 , », i/ > 0 , ak,v + aky > - 1.

0/ course λ or ξ should be positive according as \v\ — 1/4 or |i/| = 1/4.

Proof. Put * f c » = ΣίT-0 Zk,v,n σn and xfc)V = ΣΓ=o xfc(v,n σTC (0 < v < k if

^ = — 1/2). We shall show that

(3.34) Rk zkι£σ) = zkt£σ), (3.34) Rk xkfV = xkt£σ).

Only the proof of (3.34) for v > 0 will be given. First, let v = 1/4. Since

RkLk(σ)Rk = Lfc(σ) by Lemma 2.3, 2?oζo,v °° Co,, In particular Rozo>£σ) =

C2rO)P(<τ) for some constant c. Thus c = 1, since 2Ofl>fol. Suppose (3.34)

is true up to k for v — 1/4. Keeping in mind that Rk+ίK+tk(σ)Rk =

— K+fk(σ), let i?fe+1 operate to the both sides of ζfc+1,v = K+>kζktV to obtain
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( - ί)ak+^σak+1-Rk+ίzk+ltV(σ) = - ( - l)β* "Cfc+lfϊ,. Therefore (3.34) holds for

v = 1/4. Secondly, let v > 1. Since RkMk{σ)Rk = Mk(σ), there exists a

constant cx such that Rxz1Λ{σ) = c ^ f a ) . As one can verify easily, -R^.o

= zulfQ, which yields d = 1. As in the case v = 1/4, (3.34) with suffix

(k + 1, v) holds if (3.34) is true. It remains, therefore, to prove that

RkZk+i,k+ι(σ) = 2*+i,jfe+i(ff) under the condition t h a t (3.34) is valid for any

v>l. Since RkK*,k{σ)Rk+1 = - K*ιt(σ), the equality Rk+ίzk+ίίk+ί(σ) =

ck+1zk+Uk+1(σ), together with #*, f c ζ f c + 1 , f c + 1 oc ζfc>fc, yields c f c + 1 ( - l ) e f c + 1 ' * + 1 iT* 4

X C*+i,*+i = — (— l)αfc'fcJ^ί,fcζA;+i,fc+ij namely cfc+1 = 1. This completes the

proof of (i). (ii) To begin with, on an additional condition ak>v + aky >

— 1, ιχkXτ, λ) ζky(τ9 ξ) can be expanded as 2^= oc nσ 2 n + 1 by virtue of (i).

Consequently the integral in question vanishes by Proposition 1.2 (i) [7],

Now we may assume that ak>v + aky = — 1. Again by (i) it is enough

to show that *#*,„,<)^'.o = 0. Note that zkt±1/it0 and xkt±1/i>o are proportional

to zkj±h0 and xk>±ί>0 respectively, since so they are when k = 1. Without

loss of generality, let |ρ|, |ι/| > 1. It is clear that %fPfO«*,p'fo = 0 for fe = 1.

Assume that this equality holds up to k — 1 (k > 1). Since αfc,_fc + tffc>Jb

= 2/2 — 3, either χk)V = -!£"+,»„! χfc«lfl, or ζfcj]/ = if+,fc-iζfe_i,^. For the sake of

definiteness suppose the latter is the case. Then by Lemma 3.10 below

the coefficient of σ'1 of lxktVZky is equal to the corresponding one of
t(tK+,lc_1χkiV)ζk_iy, which can be represented as t{Σ'μaμχk_ί>μ)ζk_ίίV,. Here

Σμ stands for 2ϋί"=v-i or Σ?=i-i according as v < 0 or v > 0. By the

induction hypothesis %,„,(> 2*,*',o = 0. Q.E.D.

LEMMA 3.10. Let C and D be constant matrices in Mp>q9 and x(σ)

(resp. z(σ)) be MpΛ (resp, MqΛ)-valued functions of the form

x(σ) - σa(Σ xn σ
n) , z(σ) = σ^Σs *n Λ with a + β = 0 .

Then the coefficient of σ'1 of tx(σ)(Cdjdσ + Dσ'^ziσ) is equal to the co-

efficient of σ'1 of <{(- 'Cdjdσ + Ί f e - ^ W } ^ ) .

Proof. This is because ιxQ(βC + D)z0 = >{(- a'C + tD)x0}z0. Q.E.D.

The next lemma is concerned with the if part of Theorem 3.1.

LEMMA 3.11. Assume that, for any (λ, ξ) ei?*xi2*, a(Rea>0) and

v, vr with either w/ < 0 or v, vf > 0 according as £ Φ — 1/2 or not, the

following equality holds for any k < k' ( e Z+);

(3.35) <tχ».,(t^)σ.C».Xr,f)>=0.
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( i ) The equality (3.35) holds even for k = k' + 1.

(ii) D{,± (k < k') are invariant under the selfadjoint operators Lk and

Mk and the semigroup Tt (t > 0). In particular so are D^+ 1 ) ± by (i).

To be precise, in (3.35) λ or ξ should be positive according as \v\ = 1/4

or |ι/| = 1/4.

Proof. The proof is much like that of Lemma 2.8, and will be

sketched briefly, (ii) Using relations LkΨk>0(τ, λ) = λΨk)Q(τ, λ) and LkΨk>v(τ, X)

= {λ2l(4v2) — v2}ΨkίV(τ, λ), we can show that Lk and Mk leave Z)£j± invariant.

It remains to prove the T rinvariance of De

ki± (t > 0). By the assumption

the integral (ΨkfV(τ, X) Ga Ψk,Λτ, £)> (v, 1/ = 0, , jfe) takes the form ( ®)

or (* ί ) according as ^ ^ — 1/2 or not. Consequently a matrix / ,

= pt.XλyX^λ) turns out to be of the form (Q ^ j o r ί ) according as

£Φ -1/2 or not (cf. the proof of Theorem 1.1 [7]). Now it follows that,

for any hv, e C0(R*y (C0(R+y for i/ = 0) and a(Rea> 0), the integral

t.^(τ, f) ft,^(f) r^

vanishes. This means that Ga sends a dense set of Dki± into De

k>±. In

other words ϊ^ (t > 0) leaves D^ ± invariant, (i) Thanks to Lemma 3.9,

it suffices to prove {tχk+ι,vGaζk+1^} = 0 on the additional condition that

χk+Uv = K+>kχkfV and ζk+ίfV, = K+fkζktV,. This can be done as in the proof

of Lemma 2.8, since the exact analogues to (2.32) ~ (2.35) hold. Q.E.D.

The following lemma is concerned with the only if part of Theorem

3.1.

LEMMA 3.12.

( i ) When £ Φ - 1/2, ' x ^ t . o ^ i . o ^ 0. If £ = - 1/2, then txk,±ί>0 X

zk>±ί>0 = 0 while (%t-lto zkΛ,Q)(txk>UQyk,_liQ) φ 0.

(ii) For any (λ, ξ) e R* X i?* and v, vf with vυr > 0 or vvr < 0 according

as £ Φ — 1/2 or not, there exists an a (Re a > 0) such that (tψk,v(τ,λ)GaX

ψky(τ, ξ)} does not vanish. To be more precise, λ or ξ should be positive

according as \v\ = 1/4 or \v'\ = 1/4.

Proof, (i) We observed before that zlι±1/it0 oc zu±h0 and xu±ί/i>0 oc

xlj±1)0. Let us define sequences {zki±}kez+ and {xk,±}kez+ so that zkt± and

xk>± axe proportional to zkί±lt0 and xkt±lt0 respectively (k > 0) by the following

recursion formulas;
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(3 36) **+ l l ± = [ 2 { ~ 2k ~ 1 / 2 ± { ί

**+i.* = [ - 2{ - 2k - 1/2 ± (£ ± > >

Then, repeating the argument in the proof of (2.39), we obtain

'x A'z - - ("* ~ k>2 + k(k + ί> + Hi + 1) + 1/4 ,
(3.37) — — 2 + 4 ( « ± - *

l)(α± - Λ)(α± - Λ -

where a± = ±(6 + 1/2). Now it is clear that txkt± zk:± = 0(& > 0) iff £ =

— 1/2. In case £ — — 1/2, let {yt} and {yt} be sequences defined by

(3 38) y^ i + 2(2k 1/2)25* F,}yfc + 2 B A , ya = 0,

&•. = { - 2( - 2A; - 1/2)5, - Ϋk}yk - 2Bkxk, yo = O,

where zk = zkt± and xfc = xkt±. Since yfc oc y^_10 and yk oc y,.,^ (^ > 0), it

is enough to show the following relations (3.39) and (3.40).

(3.39) W - ~ 4 « * + l)<2* + ir*rf.|
Λ + 2 4fe(fe + l)(2fc + l ) 2 % e J ^

(3.40) (%

From now on we shall be concerned with ιykzk, for the same argument

is applicable to 'xkyk. By the definition of yk and zk, we have

%+i z*+i = %[ ~ 4{(k + I)2 - A\}(2k + 1/2)2

(3.41) + (4k + l)(YΐBt - BkYk) + YfYJar,

- %[ - 4{(k + I)2 - Al}(2k + 1/2) - 254yjat,.

At this stage, notice that

Y*Bk - BkYk = - (2ft + S)Uk, BkYk = (ft

= - vi + 4(ft + i)(fe + 2)A, - 4(ft + iy

Furthermore, xk,yk and zk satisfy the following relations;

(3.42) {2( - ft + 1/2)A, - Ϋk}yk + 2Akxk = 0,

(3.43) {2( - ft + 1/2)A, + Vk}zk = 0,

(3.44) {& + 1/4 + k(k + 1) + ^ + 1) - 2AI + Uk}zt = 0.

Indeed, (3.42)~ (3.44) follows from the equalities (Mk - λ)χkΛ = 0, (Mk - X)ζktl

= 0 and (Lk — X)ζkΛ/i = 0 respectively. Since Uk = AHVk — VkAk and since
ιxkA\zk = 0 (ft > 1) by (3.37), it follows from (3.42) and (3.43) that %Ukzk
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oc %Alzk. Now (3.44) yields ιykA\zk = - k{4(k - I)}"1 %zk (k > 1). Ex-

pressing the right side of (3.41) in terms of ιykzk and ιykA\zk, we get (3.39).

Finally, it is not hard to verify (3.40) directly, (ii) We shall give the

proof in the case ί — — 1/2. The other case is easier to deal with. For

the sake of definiteness assume v < 0 < i/. Then

ψfc.v = Σ QμXk.μ > ψ*,v' = Σ i a μ ζk,μ >
μ<0 μ>0

where only one element of {α_i/4, α_J and {α1/4, α j vanishes. Therefore, in

the neighborhood of σ = 0 S^ψ*,,,/ takes the form σ2 α Λ α(clogσ + σh{a,

logσ)) ( c ^ O ) by virtue of (i). In particular F(z) = ^ fc,y(r, ^)ψfc>v,(τ, £)/

Vz(l — z), as a function of 2 = (1 + i sh τ)/2, can not be holomorphic in

{ R e z < l } by Lemma 1.1 (ii) [7]. On the other hand, if <ίψJfcιV Ga ψkιV,}

vanishes identically in {Re a > 0}, it follows from Proposition 1.2 (ii) [7]

that F is holomorphic in {Re z < 1}, which is a desired contradiction.

Q.E.D.

We return to the

Proof of Theorem 3.1. We devide the proof into six parts as in the

proof of Theorem 2.2. Since there arises no difficulty anew until the last

step 6), it suffices to show that a nontrivial sequence {Dk} satisfying the

conditions (Q.I) and (Q.2) coincides with one of {Dk^}. For the sake of

definiteness, assume & = — 1/2. Pkv (v = 0, 1, , h) now denotes the

orthogonal projection: L2(i?)2fc+1-> if ΨktVpk>vgdλ; geL2(R, PktV)\. By Propo-

sition 3.1 Dk = Z>£,+( = Dl_) for k = 0. We shall show that Dk = D^+ on

the condition that Dk, = D*k,9+ for any k' < k(k> 0). Since K+ιk_ιDk_lt+

is dense in ( I - Pk>k)Dl+9 the condition (Q.I) yields (I- Pktk)Dίt+ C Dk.

In addition, by Lemmas 3.9 and 3.12 we have

<*$*.*(*, *) Ga ψfc,1/4(τ, ί)> = 0 for any a (Re a > 0) ,

CK-fcfo λ) Gaψk>ί/i(τ, ί)> Φ 0 for some α' (Re cί > 0) .

These facts imply the existence of an element / in Pk)QDli+ such that

Pk,kGa,f Φ 0 for the above αr. Since &kPk,kGa,f(λ) is anti-holomorphic

in {|Im λ\ < l/4}\{0} by Lemma 3.8 (iii), the closed linear span of {[expitMk]

χPk)kGa,f\ teR} coincides with P fc f fcD^+. Now Dky+ c Dk in view of the

fact that Pkfk Ga,fe Dk,+ Π Dk and (I - Pk,k)Dl+ Π ΰ f c. As in the proof of

Theorem 2.2, Dk = Pfc)fcDfc Θ (I - Pfc)fe)jDl,+. To conclude the proof, we shall

show Pk>kDk = PktkDit+ by checking the following equality for h in PkkDk.
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(3.45) %t+(X) J Ψ*k{τ, X) Ga h(τ) dτ = 0, (λ, a) e R* X {Re a > 0} .

In fact, if the left side in (3.45) does not vanish for some (λ, a), then

P*,uDk = Hwktkpktkgdλ;geL%R,pkfkj\ (see the proof of Theorem 2.2).

Moreover, Lemma 3.12 ensures existence of an a! (Re oί > 0) such that

= J • Gu.

where vf = 1/4 or ι> according as v = 0 or v > 0. Using this fact, it can

be easily shown that there is an / i n PktkDk such that PkvGa,f ^PkvD
β

k^.

This contradicts the decomposition Dfc = PkkDk Θ (I — Pkik)Dii+. Hence

(3.45) holds and we have proved that Dk = D£)+. Q.E.D.

The following lemma has been used in the proof of Lemma 3.3.

LEMMA 3.13. Let f — Kficfa-u * * •>/-&) == (fv) be absolutely continuous

on R with fk e L\R) (k > 1). // / satisfies

(3.46) Mkf=0 and K*ιk_ίf=0,

then f = 0.

Proof. Thanks to the first equality in (3.46), we can represent fk_x

and /jb_2 in terms of fk and its derivatives. Now the second equality yields

a differential equation of fk; f"k + 2kthτf'k - (k + £){k - & - l)Λ/ch2 τ = 0.

By the change of variable z = (1 + i sh τ)/2, h{z) = fk(τ) satisfies

(3.47) Λ" + W+l)(z-H2)h, (k+i)(k-*-Dh = 0 .
V ^ ^ 1 ) {2φl)} 2

Since the set of indicial roots at z = 0 is { - (fc + ^)/2, - (k - £ - l)/2},

a solution of (3.47) which is holomorphic in a punctured vicinity of z = 0

is a trivial one. The set of indicial roots at z = oo is {0, 2k}. If /fc = 0,

then / = 0 by the first equality in (3.46). To complete the proof, we shall

show that h is a nontrivial holomorphic function in a punctured vicinity

of z = 0 unless fte = 0. If fkφ0,h takes the form ^"2fc(Σn=oC^-n)(co ψ 0)

in some region {|2| > if}. This is because |Λ(3)|2d|2|/\/2:(l — « ) < oo for
J c

C = {1/2 + iy yeR}. Since /ι is continuous on the line C by the assump-

tion on fk, h is holomorphic in a punctured vicinity of z = 0. Q.E.D.
At the end of this section we remark that
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Ίe-l r

(3.48) v=oJ

v ' k f

v = 0 J

where

(*>P*>rv + hvdλ (KeC0(R*y for v = 0, ., k).

Indeed, (3.48) is clear by virtue of Propositions 3.2 and 3.7.

§ 4. F+-invariant subspaces for the representation (t/^% φ Λ )

In this section all P+-invariant, closed proper subspaces in ^ ' s will be

determined. Throughout this section we assume (£, ε) Φ (0,0). It has

been established in §§2 — 3 that the sequences {Dί,±}kez++ε satisfy the

conditions (Q.I) and (Q.2) and that there are no other such nontrivial

sequences (Theorems 2.2 and 3.1). Regarding DJt± as a subspace of

Wfo == L2CR)2fe+1, set

(4.1) <%•= Σ Σ Θ J ί r ; 1 ! ) ! , ,

where J'£μ : ^^. ; -> Wi;; is an onto isometry defined by (1.10). Theorem

4.1, together with Theorem 1.1, is our main result in this paper. As to

the representation ©TOι/, of G, see [12, § 11].

THEOREM 4.1. Let Si be a closed proper subspace of $ Λ s . Then @ is

P^-invariant iff it coincides with either 3fιi* or S)^ε.

THEOREM 4.2. The representations of SL(2, C) realized in ^ e decompose

into irreducible ones as

(4.2) Σ θf@© 2 T O + 1,,<fy if ε = 1/2,

(4.3) Γ <B0,pdp® Σ ® \*®t,,, dp if e = 0.
J R+ n-ieZ+ JR

Remark. It is known [1] that the representation of SL(2, C) in φ Λ e

is unitary equivalent to the 2-multiple of the representation (4.2) or (4.3)

according as ε = 1/2 or ε = 0.

Proof of Theorem 4.1. The proof of the only if part is quite the same

as that of the proof of Theorem 1.1. We shall, therefore, show that ^i ' ε
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are P+-invariant. Put &&t± = ^fc" l β ί ,± a n d ^*',± = Σ ϊ — * ® ̂ fc,± T h e n

®ί\'μ,+ i s invariant under Uiy'(t, 0, 0, 0, e) (t > 0) by Proposition 1.1 and

Theorem 3.1. In addition &k\
ε

± is S£7(2)-invariant, for H3 and iϊ_ leave it

invariant by (1.8). Therefore it is enough to show that E7/iβ(0, ω6(t)) keeps

3d*£ invariant. To this end put

t)kμ = D2(R)k+ί/2 (keZ+ + 1/2) or U(R+) Θ L\Rf (k e.

Then a map I±tk§μ : D{tμt± -> Dkffl defined by

I±,k,μ(r

v,± hk,μ)V) — (hk,P,Wr*± pk,vr

v,±)

is an onto isometry. Put further

where 2]*,/. = Σ*ez++. Σ ί - - * Now in terms of S^k and 7±jfc>// we can de-

fine onto isometries «^Λε : D£^ε -> D£^ε and /i'e : Di'£ -> β e in a trivial manner.

Denote by Dε

c a dense set {(Λfc>/1>υ) e De; hk>μ,v e CQ(R*y or CΌCR+)1 according

as p > 0 or v = 0, hkjμ,υ = 0 for sufficiently large k}. Then ^ ; c = (Γ^^^ε

X J ' Ό ' ^ i l i e s i n ^ e domain of F 3 by Lemma 1.2. Moreover, Fs@^% c

^i ' e in virtue of Lemma 1.2, (2.45) and (3.48). To prove that U£e(0, ωδ(t))

leaves Q)^ invariant, it is enough to show that Fz restricted to @eι\c is

essentially self adjoint [7, Lemma 2.4]. To complete the proof we shall

show that the image (Fz — z)3f^\c is dense in &ι& for any z (Im z Φ 0).

For this purpose, set

Fz>± = (Γg &^J'^FJίΓϊ&^J'*)-1 restricted to Dε

c,

and let us show that the image (F 8 i ± — z)D'e is dense in Dε. By virtue

of Lemma 1.2, (2.45) and (3.48), we have the following relations for an

h = {hk,,μ>y) e Dε

c with hk/,μfy = 0 for (&', /i;, p') ̂  (Λ, //, y), where K and y'

run in Z+ + ε and {ε, ε + 1, , ̂ } respectively.

In case v > 0,
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ΦJι)k',μ>y(X) = 0 otherwise.

In case v = 0,

(4.5)

(Fzh)k,^y(λ) = 0 otherwise.

In the above F3 = F3>±. From now on we assume ε = 0 for the sake of

deίiniteness. Let / = (fk,μJ € ΰ ε be orthogonal to the image CF3 — z)Dε

c.

Then it can be easily seen that

(4.6)

^ ^ ! V ! W T 1 / α) - ° a e on

( 4 7 )

X {(* + I)2 + (-|Γ)1}]1/1A+i,,,vW = 0 a.e. on R.

Applying the corollary of Proposition 1.6 in the cases (m, p) — (0, 2V λ )

and (m, /?) = (2ι>, 2/v) to (4.6) and (4.7) respectively, we obtain

/tf/lfo0) = 0 a.e. on R+, and ?te,μtXX) = 0 a.e. on Λ( l < v < k)

respectively. This means that / = 0. We have shown that F3 restricted

to &g\0 are essentially selfadjoint in <3e^ε. Q.E.D.

Proof of Theorem 4.2. Let @ί\'μt± be as in the proof of Theorem 4.1,
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and only the case ε — 0 will be discussed. Note first that @ί\*kt± = i^i\k

(Ί^i' e (see (1.7) for the definition oΐiTfa). Moreover &k%± θ F+@i>lltk_lt±

= Jίy1 UΦ*,*Pk,*rkt±h;rkt±heLXR,pktk)y In fact, the latter, say J^y1

X PktkD
i

kt±9 contains the former on account of (2.48) and (3.48), while the

former contains the latter, because, for any feH2(R)2k+ίf]Diί± and h in

®*-i,*-i,± as well as in the domain of F+, we have

(ΆyΊ, F+h} = (F.Jiy'f, h) oc (K*>k_J, Jί^^h) = 0,

that is, because the former contains a dense subset Jiy1(H2(Ryk+1Γ\Dkt±)
of Jίy1 PkkDki±. Now the following unitary equivalence relations are
easy to verify.

(4.8) A\&0%± ~ LoΛDi,* ~ ί@ λdλ.
J B +

(4.9) Δ'\(&&t±ΘF+9i>lUk_1,±) ~ MkJPk>kDl± -Pλdλ.
JR

In view of a general method to decompose a unitary representation of G
into irreducible ones, (4.8) and (4.9) means that the representations in
9'* (e = 0) contain

<®o,Pdp and ®2k,μdp
J R

respectively [6, § 3]. Q.E.D.
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