# MODULAR FORMS OF DEGREE $n$ AND REPRESENTATION BY QUADRATIC FORMS II 

## YOSHIYUKI KITAOKA

Let $S^{(m)}, T^{(n)}$ be positive definite integral matrices and suppose that $T$ is represented by $S$ over each $p$-adic integer ring $Z_{p}$. We proved arithmetically in [3] that $T$ is represented by $S$ over $Z$ provided that $m$ $\geq 2 n+3$ and the minimum of $T$ is sufficiently large. This guarantees the existence of at least one representation but does not give any asymptotic formula for the number of representations. To get an asymptotic formula we must employ analytic methods. As a generating function of the numbers of representations we consider the theta function

$$
\theta(Z)=\sum_{G \in M_{m, n}(Z)} \exp (2 \pi i \sigma(S[G] \cdot Z))
$$

where $Z^{(n)}=X+i Y=Z^{\prime}, \operatorname{Im} Z=Y>0$, and $\sigma$ denotes the trace. Put $N(S, T)=\#\left\{G \in M_{m, n}(Z) \mid S[G]=T\right\}$; then we have

$$
\theta(Z)=\sum_{T} N(S, T) \exp (2 \pi i \sigma(T Z))
$$

$\theta(Z)$ is a modular form of degree $n$ and we decompose $\theta(Z)$ as $\theta(Z)=E(Z)$ $+g(Z)$, where $E(Z)$ is the Siegel's weighted sum of theta functions for quadratic forms in the genus of $S$. Put

$$
\begin{aligned}
& E(Z)=\sum a(T) \exp (2 \pi i \sigma(T Z)), \\
& g(Z)=\sum b(T) \exp (2 \pi i \sigma(T Z))
\end{aligned}
$$

Then $a(T), T>0$, is given by

$$
\pi^{n(2 m-n+1) / 4} \prod_{k=0}^{n-1} \Gamma((m-k) / 2)^{-1}|S|^{-n / 2}|T|^{(m-n-1) / 2} \prod_{p} \alpha_{p}(T, S),
$$

and it is easy to see that the constant term of $g(Z)$ vanishes at every cusp. Now it may be expected that

[^0]$$
N(S, T)=a(T)+b(T)
$$
gives an asymptotic formula. In fact, for $n=1$, this is the case if $m \geq 5$, and $m=4$ with some restrictions on $T$. (For $n \geq 2$, see [4, 9]). To get an asymptotic formula, it is sufficient to prove
(i) $b(T)|T|^{-(m-n-1) / 2}$ tends to zero,
(ii) $\prod_{p} \alpha_{p}(T, S)>\kappa(S)(>0)$ for every $T$ if $T$ is locally represented by $S$.

In the former part of this paper we prove (i) for $n=2$. More precisely, we prove the following:

Let $g(Z)=\sum b(T) \exp (2 \pi i \sigma(T Z))$ be a modular form of degree 2, weight $k\left(\in \frac{1}{2} Z\right)$ with level such that the constant term of $g(Z)$ vanishes at every cusp. Then we have, if $k>3$

$$
b(T)=O\left(m(T)^{(3-k) / 2}|T|^{\mid-3 / 2}\right) \quad \text { for } T>0,
$$

if $m(T)(=$ the minimum of $T)$ is sufficiently large.
We use the generalization of the Farey dissection due to Siegel. But his method is rather rude for our aim. It was effective for $T$ close to scalar matrices [9, 13]. Hence we improve it although it is technical. It may be regarded as an establishment of a generalization of quite standard applications of the circle method. In the latter part we prove (ii) in case of $m \geq 2 n+3$, which is the best possible condition so that (ii) holds. Combining with the former analytic result, we have an asymptotic formula of $N(S, T)$ for $n=2, m \geq 7$. Finally, we discuss some questions.
1.1. We denote by $\boldsymbol{Z}, \boldsymbol{R}$, and $\boldsymbol{C}$ the ring of rational integers, the field of real numbers, and the field of complex numbers. For a ring $A, M_{m, n}(A)$ is the set of $m \times n$ matrices with entries in $A$. If $X \in M_{m, n}(A)$, then $X^{\prime}$ is the transposed matrix. If $X \in M_{m, m}(C)$, then $\sigma(X)$ is the trace, and for $Y \in M_{m, n}(C)$ we put $X[Y]=Y^{\prime} X Y$.

For a positive definite matrix $P \in M_{m, m}(R)$ we put $m(P)=\min _{0 \neq a \in M_{m},(Z)} P[a]$. $1_{n}$ is the unit matrix of order $n, J_{n}=\left(\begin{array}{cc}0 & 1_{n} \\ -1_{n} & 0\end{array}\right)$ and we put

$$
\begin{aligned}
& \Gamma^{(n)}=\left\{X \in M_{2 n, 2 n}(Z) \mid J_{n}[X]=J_{n}\right\}, \\
& H^{(n)}=\left\{Z=X+i Y \mid X, Y \in M_{n, n}(\boldsymbol{R}), Z^{\prime}=Z, \operatorname{Im} Z=Y>0\right\} .
\end{aligned}
$$

For a natural number $q$, we put

$$
\Gamma_{0}^{(n)}(q)=\left\{\left.M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma^{(n)} \right\rvert\, C \equiv 0 \bmod q\right\} .
$$

$\Gamma^{(n)}$ acts discontinuously on $H^{(n)}$ by the mappings $Z \rightarrow M\langle Z\rangle=(A Z+B)$ $(C Z+D)^{-1}, M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. We denote by $\mathscr{F}^{(n)}$ the fundamental domain $\Gamma^{(n)} \backslash H^{(n)}$ described in [11] and in Theorem on p. 169 in [6]. If $Z=X+$ $i Y \in \mathscr{F}^{(n)}$, then there exists a positive number $\lambda_{n}$ such that $m(Y)>\lambda_{n}$.

A complex valued function $f(Z)$ on $H^{(n)}$ is called a modular form of degree $n$, level $q$ and weight $k$ if
(i) $f(Z)$ is an analytic function on $H^{(n)}$,
(ii) for every $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{(n)}(q)$,

$$
(f \mid M)(Z)=f(M\langle Z\rangle)|C Z+D|^{-k}=v(M) f(Z),
$$

$v(M)$ being the multiplicator corresponding to $M$ with $|v(M)|=1$, and
(iii) for every $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma^{(n)},(f \mid M)(Z)$ has a Fourier expansion of the form

$$
(f \mid M)(Z)=\sum_{\substack{T \geq 0 \\ T \in M_{n, n}(Z)}} a(M, T) \exp (2 \pi i \sigma(T Z) / q(M)),
$$

where $q(M)$ is a natural number dependent on $M$.
If $a(M, 0)$ in the condition (iii) vanishes for every $M \in \Gamma^{(n)}$, then we say that the constant term of $f(Z)$ vanishes at every cusp.
1.2. We give examples of modular forms which are important in this paper.

Let $S \in M_{m, m}(Z)$ be a positive definite matrix whose diagonal entries are even. Let $q$ be a natural number such that $q S^{-1} \in M_{m, m}(Z)$ and its diagonal entries are even. We put

$$
\theta_{S}^{(n)}(Z ; X, Y)=\sum_{G \in M_{m}, n}(Z)
$$

where $Z \in H^{(n)}, X, Y \in M_{m, n}(C)$.
Then $\theta_{S}^{(n)}(Z ; 0,0)$ satisfies the conditions (i), (ii) for $k=m / 2$ ([1]). For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma^{(n)}$ with $|C| \neq 0$ it is easy to see, by using Lemma 2 in [1],

$$
\begin{aligned}
& |C Z+D|^{-m / 2} \theta_{S}^{(n)}(M\langle Z\rangle ; 0,0)=\sum_{\substack{G_{1} \in M, n, n \\
G_{1} \bmod 2(C)}} \exp \left(\pi i \sigma\left(S\left[G_{1}\right] A C^{-1}\right)\right) \\
& \cdot|S|^{-n / 2} \sqrt{-1}{ }^{-m n / 2} 2^{-m n}|C|^{m / 2-m n} \theta_{S^{-1}}^{(n)}\left(4^{-1}|C|^{-2}(C Z+D) C^{\prime} ;-2^{-1}|C|^{-1} G_{1}, 0\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \theta_{S^{-1}}^{(n)}\left(4^{-1}|C|^{-2}(C Z+D) C^{\prime} ;-2^{-1}|C|^{-1} G_{1}, 0\right)
\end{aligned}
$$

It is known (p. 205 in [6]) that every $M \in \Gamma^{(n)}$ can be written as $M=$ $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\left(\begin{array}{cc}0 & \tilde{\tilde{S}}^{n} \\ -1_{n} & \text { S }\end{array}\right),|C| \neq 0, \tilde{S} \in M_{n, n}(Z)$. Combining the above formula with

$$
\begin{aligned}
& |-Z+\tilde{S}|^{-m / 2} \theta_{S^{-1}}^{(n)}\left(16|C|^{2}|S|^{2}(-Z+\tilde{S})^{-1}\left[C^{\prime}\right] ; 0,\left(-8|C|^{2}|S|\right)^{-1} N\right) \\
& =\sqrt{-1}^{m n / 2} \cdot 4^{-m n}|S|^{-m n+n / 2}|C|^{-m n-m} \theta_{S}^{(n)}\left(-\left(16|C|^{2}|S|^{2}\right)^{-1}(-Z+\tilde{S})\left[C^{-1}\right] ;\right. \\
& \left.\left(-8|C|^{2}|S|\right)^{-1} N, 0\right),
\end{aligned}
$$

it is easy to see that $\theta_{S}^{(n)}(Z, 0,0)$ satisfies the condition (iii) and the constant term of $\theta_{S}^{(n)}(Z, 0,0)$ depends only on the genus of $S$, and hence the constant term of $\theta_{S}^{(n)}(Z, 0,0)-\theta_{S_{1}}^{(n)}(Z, 0,0)$ vanishes at every cusp if $S_{1}$ belongs to the genus of $S$.
1.3. Lemma. Let $f(Z)=\sum_{\substack{T>0 \\ T \in M, n \\ M_{n}(Z)}} a(T) \exp (2 \pi i \sigma(T Z))$ converge absolutely on $H^{(n)}$, and assume $a(T)=0$ if $\mathrm{rk} T<\nu(0<\nu \leq n)$. If $Y=\operatorname{Im} Z$ runs over a fixed Siegel domain $\subseteq$ with $m(Y)>\varepsilon(>0)$, then we have, for some $\kappa>0$,

$$
f(Z)=O\left(\exp \left(-\kappa \sigma\left(Y_{\nu}\right)\right)\right)
$$

where $Y_{\nu}$ is the upper left $\nu \times \nu$ submatrix of $Y$.
Proof. Let $\nu \leqq h \leqq n$ and put

$$
\alpha(h)=\sum_{\mathrm{rk}} \sum_{h=h}|\alpha(T)| \exp (-2 \pi \sigma(T Y))
$$

If $Y \in \mathbb{S}, m(Y)>\varepsilon$, then there exists $\varepsilon^{\prime}>0$ such that $Y>\varepsilon^{\prime} 1_{n}$, and then as p.p. $184 \sim 185$ in [6] we have

$$
\alpha(h)<\kappa_{1} \sum_{\mathrm{rk} T=h} \exp (-\pi \sigma(T Y))
$$

where $\kappa_{1}$ and $\kappa_{2}, \cdots$ occurring hereafter are positive numbers depending only on $\varepsilon$, S and $f(Z)$. Decompose $T$ as

$$
T=\left(\begin{array}{cc}
T_{1}^{(h)} & 0 \\
0 & 0
\end{array}\right)[U], \quad\left|T_{1}\right| \neq 0, \quad U \in G L(n, Z)
$$

and here we assume that $T_{1}$ is any fixed representative of equivalence classes. If $T=\left(\begin{array}{cc}T_{2} & 0 \\ 0 & 0\end{array}\right)[V]$ is another decomposition, then we have $T_{1}=T_{2}$ and $U V^{-1}=\left(\begin{array}{ll}W_{1}^{(h)} & 0 \\ W_{3} & W_{4}\end{array}\right), T_{1}\left[W_{1}\right]=T_{1} . \quad$ Hence we have

$$
\begin{aligned}
\alpha(h) & <\kappa_{1} \sum_{\left\{T_{1}^{(h)}\right\rangle>0} \sum_{U \in\left\{\left\{\begin{array}{l}
1_{4}^{n} 0 \\
k_{*}^{0}
\end{array}\right) \in G L(n, Z)\right\} \backslash G L(n, Z)} \exp \left(-\pi \sigma\left(\left(\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right)[U] \cdot Y\right)\right) \\
& =\kappa_{1} \sum_{\left\langle T_{1} 1>0\right.} \sum_{F} \exp \left(-\pi \sigma\left(T_{1} \cdot Y[F]\right)\right),
\end{aligned}
$$

where $\left\{T_{1}\right\}$ means that $T_{1}$ runs over representatives in some Siegel domain of equivalence classes of positive definite integral matrices, and $F$ runs over the set $\left\{F \in M_{n, h}(Z) \mid\right.$ primitive $\}$. Let $t_{1}, \cdots, t_{n}$ be diagonal entries of $T_{1}$. Then we have $T_{1} \cup\left(\begin{array}{lll}t_{1} & & \\ & & \\ & & t_{h}\end{array}\right)$, and the class number of positive definite integral matrices of determinant $\left|T_{1}\right|$ is $O\left(\left|T_{1}\right|^{a}\right)$ for some $a>0$. Hence

$$
\begin{aligned}
& \alpha_{h}<\kappa_{2} \sum_{\substack{t_{i} \geq 1 \\
1 \leq i \leq h}}\left(t_{1} \cdots t_{h}\right)^{a} \sum_{F} \exp \left(-\kappa_{3} \sigma\left(\left(\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & t_{h}
\end{array}\right) \cdot Y[F]\right)\right) \\
& <\kappa_{4} \sum_{\substack{i_{2} \geq 1 \\
1 \leq i \leq h}} \sum_{F} \exp \left(-\kappa_{5} \sigma\left(\left({ }^{t_{1}} \cdot \begin{array}{l} 
\\
\\
\\
\\
\\
\\
\\
t_{h}
\end{array}\right) \cdot Y[F]\right)\right)<\kappa_{6} \sum_{F} \exp \left(-\kappa_{5} \sigma(Y[F])\right) \\
& <\kappa_{6} \sum_{1 \leq i_{1}<\ldots<\ldots<n} \sum_{p i p \leq n} \sum_{G} \exp \left(-\kappa_{5} \sigma(Y[G])\right),
\end{aligned}
$$

where $G$ runs over the set $\left\{G=\left(g_{i j}\right) \in M_{n, h}(Z) \mid \sum_{j=1}^{h} g_{2 j}^{2} \neq 0\right.$ iff $i=i_{k}$ for $k=1, \cdots, p\}$. If we put $Y=\left(y_{i j}\right), y_{i i}=y_{i}$, then $Y \cap\left(\begin{array}{l}y_{1} \\ \\ \\ \\ \\ \\ \\ y_{n}\end{array}\right)$ implies

$$
\begin{aligned}
& \sum_{G} \exp \left(-\kappa_{5} \sigma(Y[G])\right)<\sum_{\Sigma_{k=1}^{h} g_{i j, k}^{2} \neq 0} \exp \left(-\kappa_{7} \sum_{j=1}^{p} y_{i_{j}}\left(\sum_{k=1}^{n} g_{i j, k}^{2}\right)\right) \\
& =\prod_{j=1}^{p}\left(\sum_{\Sigma_{k=1}^{h} g_{k}^{2} \neq 0} \exp \left(-\kappa_{7} y_{i_{j}} \sum_{k=1}^{n} g_{k}^{2}\right)\right)<\prod_{j=1}^{p}\left(\sum_{g=1}^{\infty}(2 \sqrt{g}+1)^{h} \exp \left(-\kappa_{7} y_{i j} g\right)\right) \\
& \quad<\kappa_{8} \prod_{j=1}^{p} \exp \left(-\kappa_{9} y_{i_{j}}\right)<\kappa_{8} \exp \left(-\kappa_{10} \sigma\left(Y_{p}\right)\right)<\kappa_{8} \exp \left(-\kappa_{10} \sigma\left(Y_{\nu}\right)\right)
\end{aligned}
$$

Q.E.D.
1.4. Put $\Gamma^{(n)}(\infty)=\left\{\left.\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma^{(n)} \right\rvert\, C=0\right\}$ and let $N_{q}$ be representatives of the right cosets of $\Gamma^{(n)}$ modulo $\Gamma^{(n)}(\infty)$, i.e.,

$$
\Gamma^{(n)}=\bigcup_{q=0}^{\infty} \Gamma^{(n)}(\infty) N_{q}, \quad N_{0}=1_{2 n}
$$

We can normalize $N_{q}, q \geq 1$, as follows: Putting $N_{q}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$,

$$
(C, D)=\left(\left(\begin{array}{cc}
C_{1}^{(h)} & 0 \\
0 & 0
\end{array}\right) U^{\prime},\left(\begin{array}{cc}
D_{1}^{(h)} & 0 \\
0 & 1_{n-h}
\end{array}\right) U^{-1}\right),
$$

where $\left|C_{1}\right| \neq 0, U \in G L(n, Z)$.
If we put $U=\left(F^{(n, h)}, *\right)$, then the coset $\Gamma^{(n)}(\infty) N_{q}, q \geq 1$, corresponds bijectively to $C_{1}^{-1} D_{1} \in$ the set of rational symmetric matrices of degree $h$
and $F G L(h, Z), 1 \leq h \leq n$. (p. 160 and p. 166 in [6]).
Let $\mathscr{F}^{(n)}$ be a fundamental domain $\Gamma^{(n)} \backslash H^{(n)}$ in 1.1 and put

$$
\begin{aligned}
& \mathscr{G}^{(n)}=\sum_{M \in \Gamma^{(n)}(\infty)} M\left\langle\mathscr{F}^{(n)}\right\rangle \\
&=\bigcup_{U, S}\left(\mathscr{F}^{(n)}[U]+S\right)\left(U \in G L(n, Z), S=S^{\prime} \in M_{n, n}(Z)\right), \\
& \text { and } \quad \mathscr{G}_{q}=N_{q}^{-1}\left\langle\mathscr{G}^{(n)}\right\rangle .
\end{aligned}
$$

If $X+i Y \in \mathscr{G}^{(n)}$, then $m(Y)>\lambda_{n}$ for some positive constant $\lambda_{n}$. We introduce the "dissection" due to Siegel. Let $T^{(n)}$ be a positive definite matrix and put

$$
\begin{aligned}
& E^{*}=\left\{X+i T^{-1} \mid X=\left(x_{i j}\right), \quad 0 \leq x_{i j}=x_{j i}<1\right\} \subset H^{(n)}, \\
& D_{q}=E^{*} \cap \mathscr{G}_{q}, \quad E_{q}^{*}=D_{q}-\left(D_{0} \cup \cdots \cup D_{q-1}\right), \\
& \text { and } \quad E_{q}=\left\{X \mid X+i T^{-1} \in E_{q}^{*}\right\} .
\end{aligned}
$$

Then we have $\left\{X=\left(x_{i j}\right) \mid 0 \leq x_{i j}=x_{j i}<1\right\}=\bigcup_{q=0}^{\infty} E_{q}$ (finite and disjoint). If $m(T)$ is sufficiently large, then $D_{0}$ is empty. When $N_{q}, q \geq 1$, corresponds to $R^{(h)}, F^{(n, h)} G L(h, Z)$, we put $E(F, R)=E_{q}$.
1.5. Hereafter we confine ourselves to the case of $n=2$.

Let $f(Z)=\sum_{\text {hall-integral }}^{T Z 00} 0$ some level and weight $k\left(\in \frac{1}{2} Z\right)$ and assume that the constant term of $f(Z)$ vanishes at every cusp. Our aim is to prove

Theorem. If $T^{(2)}$ is positive definite and $m(T)$ is sufficiently large, then we have

$$
a(T)=O\left(m(T)^{(3-k) / 2}|T|^{k-3 / 2}\right) \quad \text { for } k>3 .
$$

We prove this in 1.5 and 1.6. By definition of a modular form, we have $|a(T)|=|a(T[U])|$ for every $U \in G L(2, Z)$. Hence we may assume that

$$
\left.T=\left(\begin{array}{cc}
t_{1} & 0 \\
0 & t_{2}
\end{array}\right)\left[\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right)\right], \quad t_{1} / t_{2} \leq 4 / 3, \quad|u| \leq 1 / 2
$$

Then we have $T \cup\left(\begin{array}{ll}t_{1} & \\ & t_{2}\end{array}\right)$ and $m(T) \cup t_{1}$. Moreover we assume that $t_{1}$ is sufficiently large. We fix such a $T$ and use the dissection for $T$ in 1.4 in this and the next section. Since $t_{1}$ is sufficiently large, we have $D_{0}=\phi$. By using the dissection for $T$, we have

$$
\begin{aligned}
a(T) & =\exp (4 \pi) \int_{X \bmod 1} f\left(X+i T^{-1}\right) \exp (-2 \pi i \sigma(T X)) d X \\
& =\exp (4 \pi) \sum_{q=1}^{\infty} \int_{E_{q}} f\left(X+i T^{-1}\right) \exp (-2 \pi i \sigma(T X)) d X
\end{aligned}
$$

where $d X=d x_{1} d x_{2} d x_{3}, \quad X=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{2} & x_{3}\end{array}\right)$.
Here $E_{q}$ is empty for sufficiently large $q$. From the definition of $(f \mid M)(Z)$ in the condition (ii) follows that

$$
f(Z)=|C Z+D|^{-k}\left(f \mid M^{-1}\right)(M\langle Z\rangle) \quad \text { for } M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma^{(2)},
$$

and the number of functions $f \mid M, M \in \Gamma^{(2)}$, up to the constant multiples with the absolute value $=1$, is finite. Hence from Lemma follows that for $X \in E_{q}$,

$$
\left|\left(f \mid N_{q}^{-1}\right)\left(N_{q}\left\langle X+i T^{-1}\right\rangle\right)\right|<\kappa_{1} \exp \left(-\kappa_{2} m\left(\operatorname{Im} N_{q}\left\langle X+i T^{-1}\right\rangle\right)\right),
$$

where $\kappa_{1}, \kappa_{2}$ are positive constants independent of $q$, since $N_{q}\left\langle X+i T^{-1}\right\rangle$ $\in \mathscr{G}^{(2)}$, and hence $m\left(\operatorname{Im} N_{q}\left\langle X+i T^{-1}\right\rangle\right)>\lambda_{2}$.

We put

$$
\alpha(F, R)=\int_{E(F, R)}\left\|C\left(X+i T^{-1}\right)+D\right\|^{-k} \exp \left(-\kappa_{2} m\left(\operatorname{Im} M\left\langle X+i T^{-1}\right\rangle\right)\right) d X
$$

where $N_{q}=M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ corresponds to $R, F$. It is clear that $|a(T)|<$ $\exp (4 \pi) \kappa_{1} \sum_{R, F} \alpha(F, R)$.

Suppose $\operatorname{rk} F=2$. Then we can take $1_{2}$ as $F$, and as in [13] we have, for $k>3$,

$$
\sum_{R} \alpha\left(1_{2}, R\right)<\kappa_{3} m(T)^{(3-k) / 2}|T|^{k-3 / 2}
$$

1.6. Let $N_{q}=M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right), q \geq 1$, and assume $|C|=0$. Then we may assume $(C, D)=\left(\left(\begin{array}{cc}c_{1} & 0 \\ 0 & 0\end{array}\right) U^{\prime},\left(\begin{array}{ll}d_{1} & 0 \\ 0 & 1\end{array}\right) U^{-1}\right), c_{1}>0, \quad U \in G L(2, Z)$. Then we have

$$
\left.\operatorname{Im} M\left\langle X+i T^{-1}\right\rangle=\left(\begin{array}{cc}
\left(a_{1}+a_{1}^{-1}\left(q_{1}+r\right)^{2}\right)^{-1} & 0 \\
0 & a_{1}^{-1}|T|^{-1}
\end{array}\right)\left[\begin{array}{cc}
c_{1}^{-1} & q^{\prime} \\
0 & 1
\end{array}\right)\right]
$$

where $T^{-1}[U]=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right), r=c_{1}^{-1} d_{1}, X[U]=\left(\begin{array}{ll}q_{1} & q_{2} \\ q_{3} & q_{4}\end{array}\right), q^{\prime}=a_{1}^{-1} a_{2}\left(q_{1}+r\right)-q_{3}$. Put $P=P\left(q_{1}, q_{3}\right)=\left(\begin{array}{cc}\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} & 0 \\ 0 & a_{1}^{-1}|T|^{-1}\end{array}\right)\left[\left(\begin{array}{cc}\left(c_{1}^{-1}\right. & a_{1}^{-1} a_{2} q_{1}-q_{3} \\ 0 & 1\end{array}\right)\right]$.

Suppose $m(P)>\lambda_{2}$. Then we show that $\left|u_{1,1}\right|<\kappa_{5}$ where $U=\left(u_{i, j}\right)$ and $\kappa_{5}$ is a positive absolute constant, and that if $m(P)=P\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$, then $b_{2} \neq 0$. Since $3 m(P)^{2} / 4 \leq|P|$ for a positive definite matrix $P$ of degree 2, we have

$$
3 \lambda_{2}^{2} / 4<\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} a_{1}^{-1}|T|^{-1} c_{1}^{-2}<a_{1}^{-2}|T|^{-1}
$$

Put $F=\binom{f_{1}}{f_{2}}=$ the first column of $U$. Then $T \cup\left(\begin{array}{ll}t_{1} & \\ & t_{2}\end{array}\right)$ implies

$$
a_{1}=T^{-1}[F]>\kappa_{3}\left(\begin{array}{cc}
t_{1}^{-1} & \\
t_{2}^{-1}
\end{array}\right)[F]=\kappa_{3}\left(t_{1}^{-1} f_{1}^{2}+t_{2}^{-1} f_{2}^{2}\right) \quad \text { and } \quad|T|>\kappa_{4} t_{1} t_{2}
$$

Hence $3 \lambda_{2}^{2} / 4<a_{1}^{-2}|T|^{-1}$ implies

$$
3 \lambda_{2}^{2} / 4<\kappa_{3}^{-2}\left(t_{1}^{-1} f_{1}^{2}+t_{2}^{-1} f_{2}^{2}\right)^{-2} \kappa_{4}^{-1} t_{1}^{-1} t_{2}^{-1}<\kappa_{3}^{-2} \kappa_{4}^{-1} t_{1} t_{2}^{-1} f_{1}^{-4}
$$

if $f_{1} \neq 0$, and then $\left|f_{1}\right|<\kappa_{5}$ since $t_{1} \mid t_{2} \leq 4 / 3$. Next we assume that $m(P)$ $=P\left[\begin{array}{l}1 \\ 0\end{array}\right]=c_{1}^{-2}\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1}$. Then $m(P)>\lambda_{2}$ implies $c_{1}^{-2}\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1}>\lambda_{2}$. On the other hand $3 m(P)^{2} / 4 \leq|P|$ implies

$$
3 c_{1}^{-4}\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-2} / 4<\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} a_{1}^{-1}|T|^{-1} c_{1}^{-2},
$$

and then $3 c_{1}^{-2}\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} / 4<a_{1}^{-1}|T|^{-1}$.
Hence we have $3 \lambda_{2} / 4<a_{1}^{-1}|T|^{-1}<\kappa_{3}^{-1} \kappa_{4}^{-1}\left(t_{1}^{-1} f_{1}^{2}+t_{2}^{-1} f_{2}^{2}\right)^{-1} t_{1}^{-1} t_{2}^{-1}$. This yields $4 \kappa_{3}^{-1} \kappa_{4}^{-1} \lambda_{2}^{-1} / 3>t_{1} t_{2}\left(t_{1}^{-1} f_{1}^{2}+t_{2}^{-1} f_{2}^{2}\right)>t_{2}$ or $t_{1}$. This is a contradiction if $t_{1}(\cup m(T))$ is sufficiently large.

Since

$$
\begin{aligned}
\left\|C\left(X+i T^{-1}\right)+D\right\| & =\left\|\left(\begin{array}{cc}
c_{1} & 0 \\
0 & 0
\end{array}\right)\left(X[U]+i T^{-1}[U]\right)+\left(\begin{array}{ll}
d_{1} & 0 \\
0 & 1
\end{array}\right)\right\| \\
& =c_{1}\left|q_{1}+r+i a_{1}\right|
\end{aligned}
$$

we have

$$
\alpha(F, r)=c_{1}^{-k} \int_{E(F, r)}\left(\left(q_{1}+r\right)^{2}+a_{1}^{2}\right)^{-k / 2} \exp \left(-\kappa_{2} m\left(P\left(q_{1}+r, q_{3}\right)\right)\right) d X
$$

where $F$ is the first column of $U$ as above.
If $\left(\begin{array}{ll}q_{1} & q_{2} \\ q_{3} & q_{4}\end{array}\right),\left(\begin{array}{ll}q_{1} & q_{2} \\ q_{3} & q_{4}+n\end{array}\right) \in E(F, r)[U],(n \in Z)$, then $n=0$ follows. Since $d X=d q_{1} d q_{3} d q_{4}$, we have

$$
\begin{aligned}
\sum_{r_{0} \equiv r \bmod 1} \alpha\left(F, r_{0}\right) & <c_{1}^{-k} \sum_{n \in Z} \int_{E(F, r+n)}\left(\left(q_{1}+r+n\right)^{2}+a_{1}^{2}\right)^{-k / 2} \\
& \times \exp \left(-\kappa_{2} m\left(P\left(q_{1}+r+n, q_{3}\right)\right)\right) d q_{1} d q_{3} d q_{4} \\
& <c_{1}^{-k} \int_{S}\left(q_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \exp \left(-\kappa_{2} m\left(P\left(q_{1}, q_{3}\right)\right)\right) d q_{1} d q_{3} d q_{4}
\end{aligned}
$$

where $S=\left\{\left(q_{1}, q_{3}, q_{4}\right) \in \boldsymbol{R}^{2} \times[0,1) \left\lvert\,\left(\begin{array}{cc}q_{1}-r-n & q_{3} \\ q_{3} & q_{4}+m\end{array}\right)\left[U^{-1}\right] \in E(F, r+n)\right.\right.$ for some $m, n \in \boldsymbol{Z}\}$. Note that if $\left(q_{1}, q_{3}, q_{4}\right),\left(q_{1}, q_{3}+n, q_{4}\right) \in S$, $(n \in \boldsymbol{Z})$, then $n=0$, and that for $\left(q_{1}, q_{3}, q_{4}\right) \in S$ we have $m\left(P\left(q_{1}, q_{3}\right)\right)>\lambda_{2}$.

For a natural number $b_{2}$, we denote by $S\left(b_{2}\right)$ the set

$$
\left\{\left(q_{1}, q_{3}, q_{4}\right) \in S \left\lvert\, m\left(P\left(q_{1}, q_{3}\right)\right)=P\left(q_{1}, q_{3}\right)\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right. \text { for some } b_{1} \in \boldsymbol{Z}\right\}
$$

Then we have $S=\bigcup_{0_{2}=1}^{\infty} S\left(b_{2}\right)$ and

$$
\sum_{r_{0} \equiv r \bmod 1} \alpha\left(F, r_{0}\right)<c_{1}^{-k} \sum_{b_{2}=1}^{\infty} \int_{S\left(b_{2}\right)}\left(q_{1}^{2}+a_{1}^{2}\right)^{-k / 2} \exp \left(-\kappa_{2} P\left(q_{1}, q_{3}\right)\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right) d q_{1} d q_{3} d q_{4}
$$

where $b_{1}$ is an integer such that $m\left(P\left(q_{1}, q_{3}\right)\right)=P\left(q_{1}, q_{3}\right)\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] . \quad b_{1}$ depends on $q_{1}, q_{3}$. Since $P\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} b_{2}^{2}\left(c_{1}^{-1} b_{1} b_{2}^{-1}+a_{1}^{-1} a_{2} q_{1}-q_{3}\right)^{2}+a_{1}^{-1}|T|^{-1} b_{2}^{2}$ and $b_{1}$ is an integer such that $\left|c_{1}^{-1} b_{1} b_{2}^{-1}+a_{1}^{-1} a_{2} q_{1}-q_{3}\right| \leq\left(2 c_{1} b_{2}\right)^{-1}$. Hence for fixed $q_{1}, q_{4}$ we have

$$
\begin{aligned}
& \int_{\left(q_{1}, q_{3}, q_{1}\right) \in S\left(b_{2}\right)} \exp \left(--\kappa_{2} P\left(q_{1}, q_{3}\right)\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right) d q_{3} \\
& \quad \leq c_{1} b_{2} \int_{\left|q_{3}\right| \leq\left(2 c_{1} b_{2}\right)-1} \exp \left(-\kappa_{2}\left(\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} b_{2}^{2} q_{3}^{2}+a_{1}^{-1}|T|^{-1} b_{2}^{2}\right)\right) d q_{3} \\
& \quad<c_{1} b_{2} \int_{R} \exp \left(-\kappa_{2}\left(\left(a_{1}+a_{1}^{-1} q_{1}^{2}\right)^{-1} b_{2}^{2} q_{3}^{2}+a_{1}^{-1}|T|^{-1} b_{2}^{2}\right)\right) d q_{3} \\
& = \\
& c_{1} b_{2} \exp \left(-\kappa_{2} a_{1}^{-1}|T|^{-1} b_{2}^{2}\right) \sqrt{\pi} \kappa_{2}^{-1 / 2} \sqrt{a_{1}+a_{1}^{-1} q_{1}^{2}} b_{2}^{-1} \\
& \quad<c_{1} \kappa_{2}^{-3 / 2} \sqrt{\pi} a_{1}|T| b_{2}^{-2} \sqrt{a_{1}^{-1}} \sqrt{a_{1}^{2}+q_{1}^{2}} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\sum_{r_{0} \equiv r \bmod 1} \alpha\left(F, r_{0}\right) & <c_{1}^{1-k} \kappa_{2}^{-3 / 2} \sqrt{\pi}|T| \sum_{b_{2}=1}^{\infty} b_{2}^{-2} \sqrt{a_{1}} \int_{R}\left(a_{1}^{2}+q_{1}^{2}\right)^{(1-k) / 2} d q_{1} \\
& <\kappa_{8} c_{1}^{1-k}|T| a_{1}^{5 / 2-k}<\kappa_{9} c_{1}^{1-k} t_{1} t_{2}\left(t_{1}^{-1} f_{1}^{2}+t_{2}^{-1} f_{2}^{2}\right)^{5 / 2-k}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\sum_{F, r} \alpha(F, r) & <\kappa_{9} \sum_{c_{1}=1}^{\infty} c_{1}^{2-k} t_{1} t_{2} \sum_{\substack{\left(f_{1}, f_{2}\right)=1 \\
\mid f_{1} \ll}}\left(t_{1}^{-1} f_{1}^{2}+t_{2}^{-1} f_{2}^{2}\right)^{5 / 2-k} \\
& <\kappa_{10} t_{1} t_{2}\left(t_{1}^{t-5 / 2}+t_{2}^{k-5 / 2} \sum_{f_{2} \neq 0}\left|f_{2}\right|^{5-2 k}\right)<\kappa_{11} t_{1} t_{2}^{k-3 / 2} \\
& <\kappa_{12} m(T)^{5 / 2-k}|T|^{k-3 / 2} \quad \text { if } k>3 .
\end{aligned}
$$

Combining the estimate in 1.5 , we complete the proof.

Remark. A result in [4] suggests that there is room for improvement of the Siegel's method of the estimate of $\sum_{n} \alpha\left(1_{2}, R\right)$ in 1.5.
2. In this part we study local densities of quadratic forms. It is necessary to show that the expected main term of the representation numbers of quadratic forms is the real one. Terminology and notation are generally those from [7].
2.1. Let $p$ be an odd prime.

Lemma 1. Let $M, N$ be quadratic spaces over $Z /(p)$ and $\operatorname{dim} M=m$ $>2, \operatorname{dim} N=n<m$, and assume that $M$ is regular and that there is an isometry from $N$ to $M$. Decompose $N$ as $N=N_{0} \perp \operatorname{rad} N$ and put $t=\operatorname{dim}$ $N_{0}, \varepsilon=\left((-1)^{(m-t) / 2} d N_{0} d M / p\right)$ (Legendre symbol), if $m \equiv t \bmod 2$, where we put $d N_{0}=1$ if $N_{0}=\{0\}$. Then we have

$$
\begin{aligned}
& p^{n(n+1) / 2-m n} \times\{\text { the numbers of isometries from } N \text { to } M\} \\
& \quad=\prod_{i=1}^{a}\left(1 \pm p^{-r_{i}}\right) \times \begin{cases}2 & \text { if } m-2 n+t=0, \\
1+\varepsilon p^{-1} & \text { if } m-2 n+t=2, \\
1 & \text { otherwise },\end{cases}
\end{aligned}
$$

where $2 \leq r_{i} \leq b$ and $a, b$ are smaller than the number depending only on $m=\operatorname{dim} M$.

Proof. For quadratic spaces $K, L$ over $Z /(p)$, we denote by $A(K, L)$ the number of isometries from $K$ to $L$. By the assumption there is an isometry from $N_{0}$ to $M$. Hence we have $M \cong N_{0} \perp M_{1}$ for some regular quadratic space $M_{1}$, and $\operatorname{rad} N$ is represented by $M_{1}$. It is easy to see $A(N, M)=A\left(N_{0}, M\right) A\left(\operatorname{rad} N, M_{1}\right)$. Put $\delta=\left((-1)^{m / 2} d M / p\right)$ if $m$ is even. Then it is known ([10])

$$
p^{t(t+1) / 2-m t} A\left(N_{0}, M\right)=\left\{\begin{array}{c}
\left(1-\delta p^{-m / 2}\right)\left(1+\varepsilon p^{(t-m) / 2}\right) \prod_{k=1}^{t / 2-1}\left(1-p^{-(m-2 k)}\right) \\
m \equiv t \equiv 0 \bmod 2 \\
\left(1-\delta p^{-m / 2}\right) \prod_{k=1}^{(t-1) / 2}\left(1-p^{-(m-2 k)}\right) \\
m \equiv t+1 \equiv 0 \bmod 2, \\
\left(1+\varepsilon p^{(t-m) / 2}\right) \prod_{k=1}^{(t-1) / 2}\left(1-p^{-(m+1-2 k)}\right) \\
m \equiv t \equiv 1 \bmod 2 \\
\prod_{k=1}^{t / 2}\left(1-p^{-(m+1-2 k)}\right) \\
m \equiv t+1 \equiv 1 \bmod 2
\end{array}\right.
$$

As on p.p. $119 \sim 120$ we have

$$
\begin{aligned}
& p^{-(m-t)(n-t)+(n-t)(n-t+1) / 2} A\left(\operatorname{rad} N, M_{1}\right) \\
& \quad= \begin{cases}\prod_{i=0}^{n-t-1}\left(1-p^{-(2 i+m-2 n+t+1)}\right) & m-t \equiv 1 \bmod 2, \\
\prod_{i=0}^{n-t-1}\left\{\left(1-\varepsilon p^{-(m-2 n+t) / 2-i-1}\right)\left(1+\varepsilon p^{-(m-2 n+t) / 2-i}\right)\right\} & m-t \equiv 0 \bmod 2\end{cases}
\end{aligned}
$$

Since $\operatorname{dim} M_{1} \geq 2 \operatorname{dim} \operatorname{rad} N$ implies $m-2 n+t \geq 0, p^{t(t+1) / 2-m t} A\left(N_{0}, M\right)$ is equal, up to the factors $1 \pm p^{-r}(r \geqq 2)$, to

$$
A_{1}= \begin{cases}1+\varepsilon p^{(t-m) / 2} & m \equiv t \bmod 2, \\ 1 & m \not \equiv t \bmod 2,\end{cases}
$$

and $p^{-(m-t)(n-t)+(n-t)(n-t+1) / 2} A\left(\operatorname{rad} N, M_{1}\right)$ is equal to

$$
A_{2}= \begin{cases}1-p^{-(m+t-2 n+1)} & m \not \equiv t \bmod 2 \\ \left(1-\varepsilon p^{-(m-t) / 2}\right)\left(1+\varepsilon p^{-(m-t) / 2+n-t}\right) & m \equiv t \bmod 2\end{cases}
$$

If $m-2 n+t=0$, then $M_{1}$ is a hyperbolic space and $\varepsilon=1$ and $A_{1}=1$ $+p^{n-m}, A_{2}=2\left(1-p^{n-m}\right)$. If $m-2 n+t=2$, then $A_{1}=1+\varepsilon p^{1+n-m}$ and $A_{2}=\left(1-\varepsilon p^{1+n-m}\right)\left(1+\varepsilon p^{-1}\right)$ and $m-n-1=n+1-t \geq 1$. If $m-2 n$ $+t \equiv 0 \bmod 2$ and $m-2 n+t \neq 0,2$, then $m-2 n+t \geq 4$ and $(m-t) / 2$ $\geq 2$, $(m-t) / 2-n+t \geq 2$. If $m-2 n+t \equiv 1 \bmod 2$, then $A_{1}=1$ and $m+t-2 n+1 \geq 2$. These complete the proof.

Remark. If $m \geq 2 n+3$, then $m-2 n+t \neq 0,2$.
2.2. Let $p$ be a prime and $M, N$ regular quadratic lattices over $Z_{p}$ with rk $M=m$, rk $N=n$ and $n M, n N \subset 2 Z_{p}$. For any quadratic lattice the letters $Q, B$ denote the quadratic form and the bilinear form $(Q(x)=$ $B(x, x)$ ).

Put

$$
\begin{aligned}
A_{p^{t}}(N, M)= & \left\{u: N \rightarrow M / p^{t} M \mid B(u x, u y) \equiv B(x, y) \bmod p^{t} \text { for } x, y \in N\right\}, \\
B_{p^{t}}(N, M)= & \left\{u: N \rightarrow M / p^{t} M \mid Q(u x) \equiv Q(x) \bmod 2 p^{t} \text { for } x \in N \text { and } u\right. \\
& \text { induces an injective mapping from } N / p N \text { to } M / p M\}, \\
C_{p^{t} t}(N, M)= & \left\{u: N \rightarrow M / p^{t} M^{*} \mid Q(u x) \equiv Q(x) \bmod 2 p^{t} \text { for } x \in N \text { and } u\right. \\
& \text { induces an injective mapping from } N / p N \text { to } M / p M\} .
\end{aligned}
$$

It is known ([10]) that $2^{-\delta_{m}, n}\left(p^{t}\right)^{n(n+1) / 2-m n} \# A_{p^{t}}(N, M)$ is independent of $t$ if $t$ is sufficiently large, and we denote the value by $\alpha_{p}(N, M)$

Lemma 2. $\lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# B_{p^{t} t}(N, M)$

$$
=p^{n \circ \operatorname{ord}_{p} d M}\left(p^{T}\right)^{n(n+1) / 2-m n} \# C_{p^{r}}(N, M),
$$

where $T$ is a natural number such that $p^{T-1} \mathfrak{n} M^{\#} \subset 2 Z_{p}$.
Proof. Since $n M \subset 2 Z_{p}$ implies $M^{*} \supset M$, there is a canonical mapping $\varphi$ from $B_{p^{t}}(N, M)$ to $C_{p^{t}}(N, M)$. If $\varphi\left(u_{1}\right)=\varphi\left(u_{2}\right)$ for $u_{1}, u_{2} \in B_{p^{t}}(N, M)$, then $\left(u_{1}-u_{2}\right)(x) \in p^{t} M^{\#}$ for $x \in N$ and $p^{-t}\left(u_{1}-u_{2}\right) \in \operatorname{Hom}\left(N, M^{\#} / M\right)$. Conversely for $v \in \operatorname{Hom}\left(N, M^{*} / M\right), u \in B_{p^{t}}(N, M)$ we put $\tilde{u}=u+p^{t} v$. Suppose $t \geq T$; then $p^{t-1} \mathfrak{n} M^{\#} \subset 2 Z_{p}$ and it implies $p^{t-1} M^{\#} \subset M$, and then $\tilde{u} \in C_{p^{t}}(N, M)$. It is easy to see that $\varphi$ is surjective since we may assume that $u \in C_{p t}(N, M)$ is isometry for $t \geq T$ by virtue of Satz in $\S 14$ in [5]. Thus we have

$$
\# C_{p^{\imath}}(N, M)=\# B_{p^{t} t}(N, M) /\left[M^{\#}: M\right]^{n}=\# B_{p t}(N, M) p^{-n \operatorname{ord}_{p} d M}
$$

By the same "Satz", $\left(p^{t}\right)^{n(n+1) / 2-m n} \# C_{p t}(N, M)$ is independent of $t$ if $t \geq T$.
Q.E.D.

We put

$$
\begin{aligned}
d_{p}(N, M) & =2^{-\delta_{n}, m} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# B_{p^{t}}(N, M) \\
& =2^{-\delta_{n}, m} p^{n o \mathrm{or}_{p} d M}\left(p^{T}\right)^{n(n+1) / 2-m n} \# C_{p^{r}}(N, M),
\end{aligned}
$$

where $T$ is a natural number such that $p^{T-1} \mathfrak{n} M^{\#} \subset 2 Z_{p}$. The set of values $d_{p}(N, M)$ for any fixed lattice $M$ is a finite set. If $M$ is unimodular and $p \neq 2$, then we can take 1 as $T$ and $\# C_{p}(N, M)=$ the number of isometries from $N / p N$ to $M / p M$ over $Z_{p} /(p)$.

Hilfssats 17 in [10] implies immediately the following
Lemma 3. $\quad \alpha_{p}(N, M)=2^{n \delta_{2}, p} \sum_{Q_{p} N \supset N_{0} \supset N}\left[N_{0}: N\right]^{n-m+1} d_{p}\left(N_{0}, M\right)$,
where $M, N$ are regular quadratic lattices over $Z_{p}$ and $\operatorname{rk} M=m$, $\operatorname{rk} N=n$.
2.3. Let $N$ be a free lattice over $\boldsymbol{Z}_{p}$ with rk $N=n$. Then the number $A(n, s)$ of the lattices containing $N$ with index $p^{s}$ is equal to $\sum p^{\Sigma_{i=2}^{n}(i-1) e_{i}}$, where the summation with respect to $e_{i}$ is over all $n$-tuples ( $e_{1}, \cdots, e_{n}$ ) of non-negative integers which satisfy $\sum_{i=1}^{n} e_{i}=s$ and it is easy to see $p^{(n-1) s} \leq A(n, s) \leq\left(1-p^{-1}\right)^{1-n} p^{(n-1) s}$.

Proposition 4. Let $M$ be a regular quadratic lattice over $Z_{p}$ with $\mathfrak{n} M \subset 2 Z_{p}$. Then there is a positive constant $\kappa(M)$ such that

$$
\alpha_{p}(N, M)<\kappa(M)
$$

for any regular quadratic lattice $N$ over $Z_{p}$ with $\mathrm{rk} M>2 \mathrm{rk} N$.
Proof. From Lemma 2 follows that

$$
\sup _{N} 2^{\mathrm{rk} N \cdot \delta_{2}, p} d_{p}(N, M)=\kappa_{1}(M)<\infty,
$$

where $N$ runs over regular quadratic lattices. Put $n=r k N, m=r k M$ and assume $m>2 n$; then from Lemma 3 follows

$$
\begin{aligned}
\alpha_{p}(N, M) & <\kappa_{1}(M)\left(\sum_{s=0}^{\infty} A(n, s) p^{s(n-m+1)}\right) \\
& <\kappa_{1}(M)\left(1+\left(1-p^{-1}\right)^{1-n} \sum_{s=1}^{\infty} p^{s(2 n-m)}\right) \\
= & \kappa_{1}(M)\left(1+\left(1-p^{-1}\right)^{1-n}\left(1-p^{2 n-m}\right)^{-1} p^{2 n-m}\right)=\kappa(M) . \text { Q.E.D. }
\end{aligned}
$$

Remark. Let $n<m \leq 2 n$. There exist regular quadratic lattices $N_{t}$, $M$ with rk $N_{t}=n$, rk $M=m$ such that

$$
\alpha_{p}\left(N_{t}, M\right) \rightarrow \infty \quad \text { as } t \rightarrow \infty .
$$

Proposition 5. Let $M$ be a regular quadratic lattice over $Z$ with $n M$ $\subset 2 Z$. Then there is a positive constant $\kappa(M)$ such that

$$
\prod_{p} \alpha_{p}\left(Z_{p} N, Z_{p} M\right)<\kappa(M)
$$

for any regular quadratic lattice $N$ over $Z$ with $\operatorname{rk} M \geq 2 \mathrm{rk} N+3$.
Proof. Put rk $M=m$ and rk $N=n$ and let $p$ be an odd prime such that $Z_{p} M$ is unimodular. Then for each regular lattice $K$ over $Z_{p}$ with rk $K=n$ we have

$$
d_{p}\left(K, Z_{p} M\right)=p^{n(n+1) / 2-m n} \# C_{p}\left(K, Z_{p} M\right) .
$$

On the other hand,

$$
\begin{aligned}
& 1+\left(1-p^{-1}\right)^{1-n}\left(1-p^{2 n-m}\right)^{-1} p^{2 n-m} \\
&=\left(1-p^{2 n-m}\right)^{-1}\left\{1+p^{2 n-m}\left(\left(1-p^{-1}\right)^{1-n}-1\right)\right\} \\
& \quad<\left(1-p^{2 n-m}\right)^{-1}\left(1+p^{2 n-m}\right)
\end{aligned}
$$

if $p$ is sufficiently large. Hence, by virtue of Lemma 1 , the product of the constants $\kappa\left(Z_{p} M\right)$ in Prop. 4 over $\left\{p \neq 2 \mid Z_{p} M\right.$ : unimodular converges if $m \geq 2 n+3$. By virtue of Prop. 4 we have $\prod_{p \mid 2 d M} \alpha_{p}\left(Z_{p} N, Z_{p} M\right)<\prod_{p \mid 2 d M}$ $\kappa\left(Z_{p} M\right)$.

Remark. Let $M$ be a regular quadratic lattice over $Z$. If rk $M=2 n$
$+2, n \in Z$, then there exist regular lattices $N_{t}$ over $Z$ with $\mathrm{rk} N_{t}=n$ such that

$$
\prod_{p} \alpha_{p}\left(Z_{p} N_{t}, Z_{p} M\right) \rightarrow \infty \quad \text { as } t \rightarrow \infty
$$

From this follows that for a modular form $f(Z)=\sum a(T) \exp (2 \pi i \sigma(T Z))$ of degree $n$, weight $k=n+1, a(T)=O\left(|T|^{k-(n+1) / 2}\right)$ does not hold in general (c.f. [4]).
2.4. Lemma 6. Let $M$ be a maximal quadratic lattice over $Z_{p}$ with rk $M=m$. If $N$ is a regular quadratic lattice over $Z_{p}$ with $\operatorname{rk} N=n$, $\mathfrak{n} N \subset \mathfrak{n} M$, and $m \geq 2 n+3$, then $N$ is primitively represented by $M$.

Proof. We may assume $\mathfrak{n} M=Z_{p}$ and let $M \cong \perp_{k}\left\langle 2^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle \perp M_{0}$, where $M_{0}$ is an anisotropic $Z_{p}$-maximal lattice. From $m=2 k+\operatorname{rk} M_{0} \geq$ $2 n+3$ and rk $M_{0} \leq 4$ follows that $2(n-k) \leq \mathrm{rk} M_{0}-3 \leq 1$ and then $n \leq k$. Any element in $Z_{p}$ is primitively represented by $\left\langle 2^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$. Hence we have only to show that $\left\langle 2^{a-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle,\left\langle 2^{a-1}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\right\rangle$ are primitively represented by $\perp_{2}\left\langle 2^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$. Let $v_{1}, \cdots, v_{4}$ be a basis of $\perp_{2}\left\langle 2^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$ such that $Q\left(\sum x_{i} v_{i}\right)=x_{1} x_{2}+x_{3} x_{4}$. Put $z_{1}=v_{1}, z_{2}=v_{1}+2^{a} v_{2}-2^{a} v_{3}+v_{4}$, and $w_{1}$ $=v_{1}+2^{a} v_{2}, w_{2}=2^{a} v_{2}+v_{3}+2^{a} v_{4}$, then $\left(B\left(z_{i}, z_{j}\right)\right)=2^{a-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(B\left(w_{i}, w_{j}\right)\right)=$ $2^{a-1}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Thus $N$ is primitively represented by $\perp_{n}\left\langle 2^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$ and hence by $M$.
Q.E.D.

Lemma 7. Let $M, N$ be regular lattices over $Z_{p}$ and assume that $\mathfrak{n} M$ $\subset 2 Z_{p}$ and $N$ is represented by $M$. Let $E$ be an orthogonal summand of $N$, that is, $N=E \perp N_{1}$ for some sublattice $N_{1}$ of $N$, and $E_{1}, \cdots, E_{k}$ sublattices of $M$ which are representatives of sublattices of $M$ isometric to $E$ modulo the orthogonal group of $M$. Denote by $K_{i}$ the orthogonal complement of $E_{i}$ in $M$. Then we have

$$
\alpha_{p}(N, M) \geqq \sum_{i=1}^{k} \alpha_{p}\left(E, M ; E_{i}\right) \alpha_{p}\left(N_{1}, K_{i}\right),
$$

where $\alpha_{p}\left(E, M ; E_{i}\right)=\lim _{t \rightarrow \infty}\left(p^{t}\right)^{e(e+1) / 2-e m} \sharp\left\{u: E \rightarrow M / p^{t} M u: E \rightarrow M:\right.$ isometry $\left.) ~ \begin{array}{rl}v u E=E_{i} \text { for some } \\ v & v \in O(M)\end{array}\right\}$
and here $e=\mathrm{rk} E, m=\mathrm{rk} M$.
Proof. The existence of $\alpha_{p}\left(E, M ; E_{i}\right)$ is proved as usual, noting that
regular sublattices $L_{i}=\boldsymbol{Z}_{p}\left[v_{i, 1}, \cdots, v_{i, n}\right]$ of a regular quadratic lattice $L$ over $Z_{p}$ are transformed by $O(L)$ if $\left(B\left(v_{1, h}, v_{1, j}\right)\right)=\left(B\left(v_{2, h}, v_{2, j}\right)\right)$ and $v_{1, h}$, $v_{2, h}$ are sufficiently close for every $h$. Suppose that $t$ is sufficiently large. If $u_{1}, u_{1}^{\prime}$ are isometries from $E$ to $M$ such that $v u_{1} E=v^{\prime} u_{1}^{\prime} E=E_{i}$ for some $v, v^{\prime} \in O(M)$ and $u_{2}, u_{2}^{\prime}$ are isometries from $N_{1}$ to $K_{i}$, then $u=u_{1} \perp v^{-1} u_{2}$, $u^{\prime}=u_{1}^{\prime} \perp v^{\prime-1} u_{2}^{\prime}$ are isometries from $N$ to $M$. Suppose that $u \equiv u^{\prime} \bmod p^{t} M$ and $u_{1}, u_{1}^{\prime}$ (resp. $u_{2}, u_{2}^{\prime}$ ) are representatives of $A_{p^{t}}(E, M)$ (resp. $A_{p^{t}}\left(N_{1}, K_{i}\right)$ ). Then we have $u_{1} \equiv u_{1}^{\prime} \bmod p^{t} M$ and so $u_{1}=u_{1}^{\prime}, v=v^{\prime}$. Hence $u_{2} \equiv u_{2}^{\prime} \bmod$ $p^{t} M$. Since $K_{i}$ is a direct summand of $M$, we have $u_{2} \equiv u_{2}^{\prime} \bmod p^{t} K_{i}$ and so $u_{2}=u_{2}^{\prime}$. Hence we complete the proof.
Q.E.D.

Proposition 8. Let $M, N$ be regular quadratic lattices over $Z_{p}$ with $\mathfrak{n} M \subset 2 Z_{p}$ and assume that $N$ is represented by $M$. Then there exists a positive constant $\kappa(M)$ such that

$$
\alpha_{p}(N, M)>\kappa(M) \quad \text { if } \operatorname{rk} M \geq 2 \operatorname{rk} N+3
$$

Proof. Let $M_{0}$ be a maximal lattice in $M$ with $\mathfrak{n} M_{0}=\left(p^{a}\right)$. Suppose $\mathfrak{n} N \subset \mathfrak{n} M_{0}$. Then $N$ is primitively represented by $M_{0}$ by virtue of Lemma 6. Hence we have $\alpha_{p}\left(N, M_{0}\right) \geq d_{p}\left(N, M_{0}\right) \geq k\left(M_{0}\right)>0$ by Lemmas 2, 3 . Denote by $\varphi$ the canonical mapping from $M_{0} / p^{t} M_{0} \rightarrow M / p^{t} M$. Since $\varphi u_{1}$ $=\varphi u_{2}$ for $u_{i} \in A_{p^{t}}\left(N, M_{0}\right)$ implies $\left(u_{1}-u_{2}\right)(x) \in p^{t} M$ for $x \in N$, we get

$$
\# A_{p^{t}}\left(N, M_{0}\right) \leq \# A_{p^{t}}(N, M) \#\left\{u: N \rightarrow p^{t} M / p^{t} M_{0}\right\} .
$$

Thus we have $\alpha_{p}\left(N, M_{0}\right) \leq \alpha_{p}(N, M)\left[M: M_{0}\right]^{n}(n=\operatorname{rk} N)$, and then $\alpha_{p}(N, M)$ $\geq \alpha_{p}\left(N, M_{0}\right)\left[M: M_{0}\right]^{-n} \geq \kappa\left(M_{0}\right)\left[M: M_{0}\right]^{-n}$. Now we come back to the general case and assume that $M$ has the minimal rank so that the proposition is false. Suppose that $N_{i}$ is represented by $M$ and rk $N_{i}=\mathrm{rk} N$ and $\alpha_{p}\left(N_{i}, M\right) \rightarrow 0$ as $i \rightarrow \infty$. By the former part we may assume $\mathfrak{n} N_{i} \Varangle \mathfrak{n} M_{0}$. Let $N_{i}=N_{1}^{(i)} \perp \cdots \perp N_{t_{i}}^{(i)}$ be the Jordan splitting such that $N_{j}^{(i)}$ is $p^{a(i)}$ modular and $0 \leq a_{1}^{(i)} \leq \cdots \leq a_{t i}^{(i)} . \mathfrak{n} N_{i} \Varangle \mathfrak{n} M_{0}$ implies $a_{1}^{(i)}<a$. Since the number of $p^{c}$-modular lattices $K$ such that $0 \leq c<a$ and rk $K \leq \mathrm{rk} N$ is finite up to isometry, we may assume that $N_{1}^{(i)} \cong L$ for every $i$ and rk $L$ $<\operatorname{rk} N$, taking a subsequence. Applying Lemma 7, there exist sublattices $L_{i}, K_{i}$ of $M$ with $\mathrm{rk} K_{i}=\mathrm{rk} M-\mathrm{rk} L$ such that

$$
\alpha_{p}\left(N_{i}, M\right) \geqq \sum_{h} \alpha_{p}\left(L, M ; L_{h}\right) \alpha_{p}\left(N_{i}^{\prime}, K_{h}\right)
$$

where $N_{i}^{\prime}$ is the orthogonal complement of $N_{1}^{(i)}$ in $N_{i}$. Since rk $K_{n}$ $\left(2 \mathrm{rk} N_{i}^{\prime}+3\right) \geq 0$ and $\alpha_{p}\left(N_{i}^{\prime}, K_{h}\right)>\kappa\left(K_{h}\right)(>0)$ if $N_{i}^{\prime}$ is represented by $K_{h}$,
we have a contradiction.
Q.E.D.

Remark. If $n<m \leq 2 n+2$, then there exist regular quadratic lattices $M, N_{i}$ over $Z_{p}$ with rk $M=m$, rk $N_{i}=n$ such that

$$
0<\alpha_{p}\left(N_{i}, M\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

Proposition 9. Let $M$ be a regular quadratic lattice over $Z$ with $\mathrm{n} M \subset 2 Z$. Then there exist a positive constant $\kappa(M)$ such that

$$
\prod_{p} \alpha_{p}\left(Z_{p} N, Z_{p} M\right)>\kappa(M)
$$

for any regular quadratic lattice $N$ over $Z$ if rk $M \geq 2 \operatorname{rk} N+3$ and $Z_{p} N$ is represented by $\boldsymbol{Z}_{p} M$ for every prime $p$.

Proof. Let $p$ be an odd prime such that $Z_{p} M$ is unimodular. Then from $\alpha_{p}\left(Z_{p} N, Z_{p} M\right) \geq d_{p}\left(Z_{p} N, Z_{p} M\right)=p^{n(n+1) / 2-m n} \# C_{p}(N, M)(n=\mathrm{rk} N, m=$ rk $M$ ) and Lemma 1 follows that there is a positive constant $\kappa_{1}$ such that

$$
\prod_{p} \alpha_{p}\left(Z_{p} N, Z_{p} M\right)>\kappa_{1},
$$

where $p$ runs over the set $\left\{p \neq 2 \mid Z_{p} M\right.$ : unimodular $\}$. Prop. 8 completes the proof.
Q.E.D.

Remark. Let $m>n$ be natural numbers. Let $M$ be a regular quadratic lattice over $Z$ with rk $M=m$ and denote by $P$ the set of primes $p$ such that $p \neq 2$ and $Z_{p} M$ is unimodular. Then there exists a positive constant $\kappa(M)$ such that

$$
\prod_{p \in P} \alpha_{p}\left(Z_{p} N, Z_{p} M\right)>\kappa(M) \prod_{p \in P(N)}\left(1+\varepsilon_{p} p^{-1}\right)
$$

if $N$ is a regular quadratic lattice over $Z$ with $r k=n$ such that $Z_{p} N$ is primitively represented by $Z_{p} M$ for each $p \in P$.

Here $\varepsilon_{p}, P(N)$ are defined as follows:
For $p \in P, \boldsymbol{Z}_{p} N / p \boldsymbol{Z}_{p} N$ becomes a quadratic space over $\boldsymbol{Z} /(p)$. Decompose $Z_{p} N / p Z_{p} N$ as $Z_{p} N / p Z_{p} N=\left(Z_{p} N / p Z_{p} N\right)_{0} \perp \operatorname{rad} Z_{p} N / p Z_{p} N$ and put $t_{p}=\operatorname{dim}$ $\left(Z_{p} N / p Z_{p} N\right)_{0}$. Then, by definition, $p \in P(N)$ iff $m-2 n+t_{p}=2$

$$
\varepsilon_{p}=\left(\frac{(-1)^{m-n-1} d\left(Z_{p} N / p Z_{p} N\right)_{0} d M}{p}\right)
$$

Since $t_{p}=n$ if $Z_{p} N$ is unimodular, $P(N)$ is a finite set if $m>n+2$.

Assume $m=2 n+2$. If $n Z_{p} N \subset Z_{p}$, then $Z_{p} N$ is primitively represented by $Z_{p} M$ for $p \in P$ as in the proof of Lemma 6 since the Witt index of $\boldsymbol{Q}_{p} M \geq n$. Since $p \in P(N)$ implies $t_{p}=0$ and $n \boldsymbol{Z}_{p} N \subset p \boldsymbol{Z}_{p}$, we have $\prod_{p \in P(N)}\left(1+\varepsilon_{p} p^{-1}\right) \geq \prod_{p \mid n N}\left(1-p^{-1}\right) \gg(n N)^{-\varepsilon}$ for any $\varepsilon>0$ if $n N \subset \boldsymbol{Z}$.
3. Theorem. Let $M$ be a positive definite quadratic lattice over $Z$ with $\mathfrak{n} M \subset 2 Z$ with rk $M=m \geq 7$. Let $N$ be a positive definite quadratic lattice with rk $N=2$ and suppose that $Z_{p} N$ is represented by $Z_{p} M$ for every prime $p$. Then we have:

The number of isometries from $N$ to $M$

$$
\begin{aligned}
= & \frac{\pi^{m-1 / 2}}{\Gamma(m / 2) \Gamma((m-1) / 2)} \cdot \frac{(d N)^{(m-3) / 2}}{d M} \cdot \prod_{p} \alpha_{p}\left(Z_{p} N, Z_{p} M\right) \\
& +O\left(m(N)^{(3-m / 2) / 2} \cdot d N^{(m-3) / 2}\right) \quad \text { for } m \geq 7
\end{aligned}
$$

when $m(N)=\min _{0 \neq x \in N} Q(x)$ is sufficiently large.
Proof. Let $M_{i}$ be representatives of classes in gen $M$ and $S_{i}$ the corresponding matrix to $M_{i}$. Put $\theta_{i}(Z)=\theta_{S_{i}}^{(2)}(Z, 0,0)$ (in 1.2.). Then the constant term of $\theta_{i}(Z)-\theta_{1}(Z)$ vanishes at every cusp. Put $E(Z)=M\left(S_{1}\right)^{-1}$ $\sum\left|O\left(S_{i}\right)\right|^{-1} \theta_{i}(Z)$, where $M\left(S_{1}\right)^{-1}=\sum\left|O\left(S_{i}\right)\right|^{-1}$. Then the constant term of $\theta_{1}(Z)-E(Z)$ vanishes at every cusp. From the Siegel formula and Theorem in 1.5. follows our theorem.
Q.E.D.

Remark. The formula in Theorem gives an asymptotic one when $m(N)$ tends to infinity by virtue of Prop. 9.
4. We discuss here questions about local densities and representations of quadratic forms.

The most fundamental one is
(a) to evaluate the density $\alpha_{p}(N, M)$.
(b) Let $M$ be a regular quadratic lattice over $Z_{p}$.

When does the set of accumulation points of $\left\{\alpha_{p}(N, M) \mid N\right.$ : regular sublattice of $M$ with a fixed rank\} contain 0 and/or $\infty$ ?
(c) We proved in [3];

Let $M, N$ be positive definite quadratic lattices over $\boldsymbol{Z}$, and assume that $Z_{p} N$ is represented by $Z_{p} M$ for every $p$. Then $N$ is represented by $M$ if $m(N)$ is sufficiently large and rk $M \geq 2 \mathrm{rk} N+3$. Our results here seem to suggest that rk $M \geq 2$ rk $N+3$ is the best possible condition. The counter-example may be found in the sequence $\left\{N_{t}\right\}$ such that $\Pi \alpha_{p}\left(Z_{p} N_{t}\right.$,
$\left.Z_{p} M\right) \rightarrow 0$. We can only give the following example in case of $\mathrm{rk} M=$ rk $N+3$.

Let $p_{1}<\cdots<p_{n+1}$ be primes $\equiv 1 \bmod 24$ and $M=\left\langle p_{1}\right\rangle \perp \cdots \perp\left\langle p_{n+1}\right\rangle$ $\perp\langle 3\rangle \perp\langle 3\rangle$ and $N_{t}=\left\langle p_{1}^{t}\right\rangle \perp \cdots \perp\left\langle p_{n-1}^{t}\right\rangle \perp\left\langle 3^{2 t}\right\rangle$ be positive definite quadratic lattices over $Z$. Then $Z_{p} N_{t}$ is represented by $Z_{p} M$ for every prime $p$ and $m\left(N_{t}\right)=3^{2 t} \rightarrow \infty$, but $N_{t}$ is not represented by $M$ over $\boldsymbol{Z}$.
(Proof. It is easy to see that $N_{t}$ is represented by $M$ over $Z_{p}$. Suppose that there is an isometry $u$ from $N_{t}$ to $M$. Since $\left\langle p_{1}^{t}\right\rangle \perp \cdots \perp\left\langle p_{n-1}^{t}\right\rangle \cong$ $\perp_{n-1}\langle 1\rangle$ over $Z_{3}$, and any sublattice of $Z_{3} M$ which is isometric to $\perp_{n-1}\langle 1\rangle$ is mapped to $Z_{3}\left(\left\langle p_{1}\right\rangle \perp \cdots \perp\left\langle p_{n-1}\right\rangle\right)$ by an isometry of $Z_{3} M$, the orthogonal complement of $u\left(\left\langle p_{1}^{t}\right\rangle \perp \cdots \perp\left\langle p_{n-1}^{t}\right\rangle\right)$ in $M$ is isometric to $\langle 1\rangle \perp\langle 1\rangle \perp\langle 3\rangle$ $\perp\langle 3\rangle$ over $Z_{3}$. Hence we have $u\left\langle 3^{2 t}\right\rangle=Z \cdot 3^{t} x$ for $x \in M$, and then $Q(x)$ $=1$. This is a contradiction.)
(d) Let $m, n$ be natural numbers with $m \geq n+2, M$ a positive definite quadratic lattice over $Z$ with $\operatorname{rk} M=m, \mathfrak{n} M \subset 2 Z$ and $N_{p}^{0}$ a regular quadratic sublattice of $Z_{p} M$ with rk $N_{p}^{0}=n$ for $p \mid 2 d M$. If a positive definite quadratic lattice $N$ over $Z$ with rk $N=n$ satisfies the following conditions 1) $\sim 5$ ), then is $N$ represented by $M$ ?

1) $Z_{p} N \cong N_{p}^{0}$ for $p \mid 2 d M$,
2) $Z_{p} N$ is represented by $Z_{p} M$ for every prime $p$,
3) the corresponding matrix to $N$ is sufficiently large in an appropriate sense,
4) $\Pi \alpha_{p}\left(Z_{p} N, Z_{p} M\right)>\kappa$ for any fixed positive constant $\kappa$,
5) $N$ is not a spinor exceptional lattice for $M$ in case of $m=n+2$.

Analytically it is (almost in case of $m=n+2$ ) sufficient to show the following
(d') Let $f(Z)=\sum a(T) \exp (2 \pi i \sigma(T Z))$ be a modular form of degree $n$ and weight $k\left(\in \frac{1}{2} Z\right)$, and assume that $k \geq n / 2+1$, and the constant term of $f(Z)$ vanishes at every cusp. Then does $a(T)|T|^{(n+1) / 2-k}=o(1)$ hold for $T>0$ ? In case of $k=n / 2+1$ we restrict $T$ by the condition that $|2 T|$ is not numbers of form $a b^{2}$ where $a, b$ are integers and a divides $2 \times$ (the level of $f(Z)$ ).

When $k$ is sufficiently large and even, it is known ([4] and a letter from S. Raghavan) that $a(T)|T|^{(n+1) / 2-k}=O\left(m(T)^{-\bullet}\right)(\varepsilon>0)$.

The condition 4) may be weakened:
Suppose $n=1$, and consider the following condition $1^{\prime}$ ) weaker than 1)
$\left.1^{\prime}\right) Z_{p} N \cong N_{p}^{0}$ for $p$ such that $Z_{p} M$ is anisotropic.

Then for $m \geq 31^{\prime}$ ), 2) imply
$\left.4^{\prime}\right) \quad \prod_{p} \alpha_{p}\left(Z_{p} N, Z_{p} M\right)>\kappa(M, \varepsilon)(d N)^{-6}$ for ${ }^{m}$ positive ${ }^{-T}$ constant $\kappa(M, \varepsilon)$ and any small number $\varepsilon>0$.
When $m=4$, the condition $1^{\prime}$ ), 2), 3) imply the representation of $N$ by $M$ since for each cusp form $f(z)=\sum c_{k} \exp (2 \pi i k z)$ we know $c_{k}=O\left(k^{1 / 2+\iota}\right)$, $\varepsilon>0$. When $m=3$, via an arithmetic approach of Linnik, Malyshev, Peters [8] it is shown under generalized Riemann hypotheses that 1'), 2), 3 ), $5^{\prime}$ ) imply the representation of $N$ by $M$. Here the condition $5^{\prime}$ ), which is stronger than 5), is as follows:
$\left.5^{\prime}\right) \quad d N \neq a b^{2}(a, b \in Z, a \mid 2 d M)$.
Let $A$ be a matrix corresponding to a positive definite ternary lattice $M$. Put $\theta(z)=\theta_{2 A}^{(1)}(z, 0,0)=\sum a(n) \exp (2 \pi i n z)$ and decompose it as $a(n)=b(n)$ $+c(n)$ where $b(n)$ (resp. $c(n)$ ) is a Fourier coefficient of Eisenstein series (resp. a cusp form) as usual. It is known, by the Siegel formula, that $b(n) \geq \kappa(M) h(-4 n|A|)$ where $\kappa(M)$ is a positive constant and $h(-4 n|A|)$ is the class number of primitive positive definite binary quadratic forms with discriminant $-4 n|A|$ if we assume $\left.1^{\prime}\right)$, 2 ). If, hence, $c(n)=O\left(n^{1 / 2-\varepsilon}\right)$ $(\varepsilon>0)$ for $n \neq a b^{2}(a, b \in Z, a \mid$ the level of $A)$, then the conditions $\left.1^{\prime}\right), 2$ ), 3 ), $5^{\prime}$ ) imply the representation of $N$ by $M$. Recent developments of the theory of modular forms of weight $3 / 2$ show: for a fixed square-free $t$ such that $t \nmid$ the level of $A, c\left(t n^{2}\right)=O\left(n^{1 / 2+\varepsilon}\right)(\varepsilon>0)$ holds. Hence $a\left(t n^{2}\right)=b\left(t n^{2}\right)$ $+c\left(t n^{2}\right)$ gives an asymptotic formula as $n \rightarrow \infty$ if we assume the conditions $1^{\prime}$ ), 2), 3).

## References

[1] A. N. Andrianov and G. N. Maloletkin, Behavior of theta series of degree $N$ under modular substitutions, Math. USSR Izvestija, 9 (1975), 227-241.
[2] J. S. Hsia, Recent developments in number theory, Arithmetic theory of integral quadratic forms, Proc. of the conference at Queen's Univ. (to appear).
[3] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132-141.
[4] Y. Kitaoka, Modular forms of degree $n$ and representation by quadratic forms, Nagoya Math. J., 74 (1979), 95-122.
[5] M. Kneser, Quadratische Formen, Vorlesungs-Ausarbeitung, Göttingen (1973/4).
[6] H. Maaß, Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag (1971).
[7] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag (1963).
[ 8 ] M. Peters, Darstellungen durch definite ternäre quadratische Formen, Acta Arith., 34 (1977), 57-80.
[ 9 ] S. Raghavan, Modular forms of degree $n$ and representation by quadratic forms, Ann. of Math., 70 (1959), 446-477.
[10] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-606.
[11] - Einführung in die Theorie der Modulfunktionen $n$-ten Grades, Math. Ann., 116 (1939), 617-657.
[12] -, Einheiten quadratischer Formen, Abh. Math. Sem. Univ. Hamburg, 13 (1940), 209-239.
[13] , On the theory of indefinite quadratic forms, Ann. of Math., 45 (1944), 577622.
[14] V. Tartakowskij, Die Gesamtheit der Zahlen, die durch eine positive quadratische Formen $F\left(x_{1}, \cdots, x_{s}\right)(s \geq 4)$ darstellbar sind, Izv. Akad. Nauk SSSR, 7 (1929), 111-122, 165-196.

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan


[^0]:    Received October 28, 1980.

