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CURVATURE, GEODESICS AND THE BROWNIAN MOTION

ON A RIEMANNIAN MANIFOLD II

EXPLOSION PROPERTIES

KANJI ICHIHARA

§ 1. Introduction

Let M be an ra-dimensional, complete, connected and non compact

Riemannian manifold and g be its metric. ΔM denotes the Laplacian on M.

The Brownian motion on the Riemannian manifold M is defined to

be the unique minimal diffusion process (Xt, ζ, Px, xeM) associated with

the Laplacian ΔM where ζ(ω) is the explosion time of Xt(ω) i.e. if ζ(ώ) <

+ oo, then limXXω) = oo.

In the previous paper [3], the author has discussed recurrence and

transience of the Brownian motion X on M. This paper may be considered

to be a continuation, in which the relation between explosions of the

Brownian motion X and geodesies, curvature of the Riemannian manifold

M will be investigated. It should be remarked that Yau [7] has given a

sufficient condition for no explosion of the Brownian motion in terms of

the Ricci curvature.

Let us begin with the Brownian motion X° = (X°t, ζ°, P°X9 x e Mo) on a

model (Λf0, g0) where the model (Λf0, g0) is defined to be a Riemannian mani-

fold Rn = [0, +oo) x Sn- J given a metric dr2 + go(r)W, (r, θ) e (0, +co) x

Sn~\ See Ichihara [3] for the precise definition. Then by the same

reasoning as in Ichihara [3] Section 1, we obtain from Fellers tests for

explosions, Mckean [5],

PROPOSITION 1.1. It holds whether

p o | ζ o = + o o } = 1 o n M

or P°{ζ° = +00} = 0 on M

according as
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gQ(r)-n+1dr ^ goisY-'ds = +co or < + 0 0 .

§ 2. Tests for explosions of the Brownian motion on a Riemannian
manifold M

Let normal, minimal geodesies be defined as in Ichihara [3].

and KM denote the Ricci, and sectional curvatures respectively. K0(r),

r >̂ 0 is the radial sectional curvature of a model (Mo, g0) defined in

Ichihara [3].

Our main theorems are stated as follows.

THEOREM 2.1. // for some p e M there exists a model (Mo, g0) satisfying

the following two conditions (i) and (ii), then no explosion for the Brownian

motion X is possible, i.e.

P*{ζ= +00} = 1 on M.

( i ) For every minimal geodesic m(r): [0, £(m)) -• M, m(0) = p,

Ricj¥(m(r)) ^ (n - ΐ)K0(r) on [0, t(m)).

(ii) j+~goiry^drj'goisy-'ds = +00 .

THEOREM 2.2. Let M be simply connected. If for some peM there

exists a model (MOjgo) satisfying the following two conditions (i) and (ii),

then explosion for the Brownian motion X is sure. i.e.

Px{ζ< +00} = 1 onM.

( i ) For every normal geodesic m(r) : [0, +00) -> M, m(0) = p,

KM(m(r),X) ^K0(r) for every unit vector XeN(m(r)) on [0, +00)

(ii) ^ go(r)-n+ίdr ^goisy-'ds < +00 .

In order to prove the above theorems, we shall introduce the following
notations.

σ » = inf {t > 0\d(p, Xt(ω)) ^ p}, p>0

u,(x) = E,{e->], Σ, = {x e M\ d(p, x) < p}

where d(x, y) is the distance induced by the Riemannian metric. σ°p9 u°p

and Σ° denote the corresponding ones of the Brownian motion on a model
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(Mo, go) centered at p = the origin 0.

The following proposition will be proved in a similar way to that of

Ichihara [2].

PROPOSITION 2.1. For each p e (0, +oo), up e C 0 0 ^ ) and ΔMup — up = 0

in Σp. Furthermore in case of a model (Mo, g0)

l i m u°p(y) = 1
y~*x o

for each x e d(Σ°p), the boundary of Σ°p.

Proof of Theorem 2.1. Since Mo is rotationally symmetric about 0,

u°p(x) is a radial function, i.e.

u°p(x) = u°p(r) for x = (r, ί ) e M o .

Thus w° e C°°([0, ̂ )) satisfies

d2u°p(r) (n — X
dr2 + ^0(r) dr dr ^ W

on (0, p). Note that z/̂ (r) is, by definition, an increasing function of r.

Set ύp(x) = u°p(d(p, x)). Therefore following an argument similar to Yau

[6], Appendix, we can obtain under the assumption (i) that

ΔMup{x) ^ ΔMou%r)

for r = d(p, x) < p, in the distribution sense. Consequently

ΔMU, -UP£ ΔMQUP - up = 0 i n Σp.

S e t

Φp(x) = w,(x) - ύp(x),

then it holds that

ΔMΦP -ΦP = (ΔMu, - up) - (ΔMup - Sp) ^ 0 .

i.e.

ΔMΦP ^ ΦP in -Tp

in the distribution sense.

We shall show t h a t for each p > 0

ΦXx) ^ 0 in Σ,.
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Suppose on the contrary that with some ρ0 > 0

sup Φpo(x) > 0 .

Since (*) ΦPo is continuous in ΣPQ and

(**) lim Φn(y) ^ 0 for each x e dΣPo
y->χ
veΣpa

from Proposition 2.1, there exists a point x0 e ΣPQ such that

ΦPo(x0) = sup ΦPo(x) > 0 .
χeΣP0

Set

C = {xeΣPo\ΦPQ(x)>0}.

Denote by CXo the connected component containing the point x0 of the set

C. Then from the facts (*) and (**),

lim ΦH(y) ^ 0 for each x e dCX0.

Since ΦPo is weakly J^-subharmonic in CXo, applying the strong maximum

principle in Littman [4] we obtain

ΦPo(x) = ΦPo(x0) for each xeCxo9

which is a contradiction. Thus we have shown that for each p > 0,

Φp(x) ^ 0 i n ^ .

i.e. up(x) <J up(x) for every x e Σp.

Under the assumption (ii) in Theorem 2.1, the Brownian motion X°

on the model (Λf0, g*0) is conservative. (See Proposition 1.1.)

i.e. P°{ζ° = + oo} = 1 on M o .

Moreover

converges to

for each x = (r, θ) e Mo because σp -> ζ° as p -> +oo. Thus we see that
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lim u°p(r) = 0 for every r ^ 0 .

Hence it follows from the inequality proved above that

limup(x) = 0 for every xeM.

Since σp -> ζ as p —> + oo, we see that

0 = lim w/x) = £ye~ζ} for every x e M.

Thus we can conclude

PΛZ = +00} - 1

on M. q.e.d.

Proof of Theorem 2.2. We first note that under the assumptions expp

maps TP(M) diffeomorphically onto M as shown in Ichihara [3]. Thus we

have geodesic polar coordinates (r, 0)e(O, +00) x S71'1 centered at p.

Now define v = v(r), r ^ 1 to be the positive increasing solution:

vo =

vm(r) = Γ go(s)-n+1ds Γ
J l JO

goi) dr )

Then it can be easily seen that

v(r) £ exp {^(r)}

for every r ^ 1 and so v(r) is bounded above from the assumption (ii) of

Theorem 2.2.

Set v(x) = v(d(p, x)). Then with the geodesic polar coordinates (r, Θ)

and G(r, Θ) = Vdet(gί:j)(r, θ) where g = g^dxidx^ we have

A z(x) _ d2v(r) 1 3G(r, θ) dv(r)

By virtue of Hessian comparison theorem, Greene and Wu [1]

^ d2v(r) (n — 1) dgQ(r) dυ(r)

dr2 go(r) dr dr = d(p,x)
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Now applying Itό's formula to the function e~ιϋ{x), we obtain from the
above inequality that

υ(p)Es{e->, pp ^ r j + Ex{e'τ\ σp > r j ^ ϋ(x)

for each x e Σp — Σι where τ^ω) = mΐ{t > 0\d(p, Xt{ω)) <̂  1}. Letting p ->
+ 00, we have

u(oo)JSβ{e-S ζ < τj + Ex{e-«, ζ > r j ^ P(x) .

because σ̂, —> ζ as ^ -> + 00.
We shall show

( * ) Ex{e~τ\ τx < ζ} ^ Psfa < ζ} • 0 as d(p, x) -+ +00 .

Set

, Ψp(x) =

and

φp(x) = Px{τx < σp) for each p > 1,

Then it is easy to see that

4*& = 0 in Σp — Σi

Ί i

and

1 i

0 i

Furthermore Hessian comparison theorem [1] gives that

ΔMΨP ^ 0 in Σp - Σx.

Consequently we can deduce by virtue of the maximum principle,

φp(x) ̂  ¥p(x) x € Σp — Σx.

i.e. Pxfa < σp) ^ ψp(d(p, x)) .

Since σp->ζ as p ~> + cχ>, we get
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Γ ga(r)-^dr
C} ̂  ^f^ for d(p, x)

j
which gives the desired result (*). Thus we obtain from (*)

and so

lim P,{ζ < co} ^ Mm £y<rc} ^ 1.

By the strong Markov property

for every p > d(p, x) and hence

= lim EX{PX {ζ < + oo}} ^ ίyiim Px {ζ < + oo}} ^ 1.

This completes the proof. q.e.d.

§ 3. Some examples

In [7], Yau has shown that no explosion for the Brownian motion is
possible if the Ricci curvature of M is bounded from below by a constant.
We shall extend this result as follows.

1. If for a fixed p e M and every minimal geodesic m(r) : [0, £(m)) —>
M, τrc(0) = p,

^ - Cxr
2 - C? on [0, £(m))

with positive constants C* ί = 1, 2, then no explosion for the Brownian
motion X is possible.

Proo/. In order to prove this, it is enough to show the existence of
a model (Mo, g0) which satisfies the conditions (i) and (ii) in Theorem 2.1.

Set Ko(r) = - C,r2 - C2, r e [0, +oo) and let go(r) e C([0, +oo)) be the
unique solution of the following Jacobi equation.

= 0, ^^ ( 0 ) 1.
dr

Then the Sturm comparison theorem asserts that £0(r) > r for every r > 0.
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Thus we have obtained a model (M0,g0) satisfying (i) in Theorem 2.1.

It remains to verify the condition (ii). In order to do it, we shall

introduce the function

with a positive constant k. Define

Kι(r) = - - L - ^ J r * = - 4kV - 2k.
gi(r) dr2

For a fixed positive number r0, it is easily seen that with a sufficiently

large k

( *) Kt(r) <I K0(r) for every r^>r0

and

(**) i ^ L W ^ _ i -^L(Γ,).

Γ() rf ^ ( ) d

From the equations (dϊgiiή/dr2) = — K{(r)gi(r), i = 0, 1, we have, for

every r ΐ> r0>

0 = gι^f ^j

Hence we see from (*)

?lY = Γ (KM - κΰ(s))g0(s)gι(s)ds <s o
dS Λro Jro

Therefore it follows from (**) that

i e

ψgMψz
dr dr

dgι(r) ^ 1 dgo(r)
dr ~ g£r) dr

for every r ^ r0.

Set

G«(r) = Γ gluY^du Γ gM'-'dυ i = 0, 1
J ro J ro
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Then these functions satisfy

*θp. + Btr)<ψ. = l on[r0,+co)
dr2 dr

G4(ro) = ^ ( r 0 ) = 0
dr

where B<(r) = - 1 - d3lrl .
g(r) dr

Since B^r) ^ B0(r) on [r0, + oo) and G2 is an increasing function, we have

1 = *GM + jB,(r)i^W ^ cPG,(r) ΰ o ( r ) d ^ r ) .
dr dr dr2 dr

Solving this differential inequality, we can easily see that

G0(r) ^ G^r)

for every r ^ r0.

Thus in order to verify the condition (ii), it suffices to show

GJC+OO) = +oo .

We now compute

G t(+oo) = Γ^ dr Γ exp{~ (τι - l)^r2 + (n - l)kf}dt
J ro J ro

= Γ " dr Γ~ exp{(n - l)/jr2} exp{- (n - I)feί2}dί.
J ro J r

Using the following inequality

ί ~exp{- (n - ί)kf}dt

J)"1 (n -

^ f+β0 ((n - ϊ)kr + lY'dr = +co .
J ro

This completes the proof. q.e.d.

The next example will be shown in a way similar to the proof of

Example 1.
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2. Suppose M is simply connected and negatively curved. If for a
fixed p e M and every normal geodesic m(r) : [0, +oo) —> M, m(0) = p

KM{m(r\ •) < - Cxr
2+δ for every r^C2

with positive constants Ct, ί = 1, 2 and δ, then explosion for the Brownian
motion X on M is sure.

3. Let Sn be an embeded hypersurface in Rn+ι defined by

Xn+l — f \Xl> * * * > %n)

Suppose / is a radial function, then the Brownian motion X on Sn is
conservative

i.e. p x {ζ=+oo} = l o n S r

Proof. Since / is a radial function, using polar coordinates (r, Θ) of
jRre, we have

dx\ + + dxl + dxl+1 = dr* + i*d& + ftdr

As in Example 4 [3], we can obtain the geodesic polar coordinates (s, θ)
with

dxl+ <" +dxl + dxl+1 = dsι + go(flYdP

where

Jo

s = p(r)

and gΌ(̂ ) is the inverse function of p. i.e. s — p(go(s)).
Notice that

B (s) = 1

) ds r Vl + /ϊ

is convergent to zero as s-> +oo. Set g^s) = es, then we have

β l(s) % l .
gι(s) ds

Consequently it holds that for some r0 > 0,

B,(s) ^ J50(s) on [rβ, + oo).
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Now applying the comparison argument in page 123 we get that

(***) Γ go(u)-n+1du Γ goivY-'dv < Γ gx{uYn+xdu Γ g&Y^dv.
J ro J ro J TO J ro

It is easy to see that the right hand of the above inequality (***) is
divergent to +00 when r tends to 4- 00. Thus we have

[*°° go(r)-n+ιdr Γ go(8)n-1ds = + c o
Jro Jro

which implies Px{ζ = +00} = 1 on Sn.
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