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MAPPINGS INTO SMOOTH PROJECTIVE

ALGEBRAIC VARIETIES
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§ 1. Introduction

The famous Picard theorem states that a holomorphic mapping /: C
—• P\C) omitting distinct three points must be constant. Borel [1] showed
that a non-degenerate holomorphic curve can miss at most n + 1 hyper-
planes in Pn(C) in general position, thus extending Picard's theorem (n = 1).
Recently, Fujimoto [3], Green [4] and [5] obtained many Picard type theo-
rems using BoreΓs methods for holomorphic mappings. In [3] and [4],
they proved that a holomorphic mapping /: Cm -> Pn(C) omitting any n + 2
hyperplanes in general position must have the image lying in a hyperplane,
especially Green showed that the same result holds under the condition
that hyperplanes are distinct. Furthermore, in [5] he proved that a holo-
morphic mapping / of Cm into a projective algebraic variety V of dimension
n omitting n + 2 non-redundant hypersurface sections must be algebraically
degenerate. On the other hand, in the equidimensional case, Carlson and
Griffiths [2] obtained a generalization of Nevanlinna's defect relation for
holomorphic mappings of Cn into an ra-dimensional smooth projective
algebraic variety V. By their results, a holomorphic mapping /: Cn->
Pn(C) having the Nevanlinna's deficiency δ(D) = 1 for a hypersurface D C
Pn(C) of degree ^ n + 2 with simple normal crossings, must be degenerate
in the sence that Jf = 0 on C\ While, Noguchi [6] obtained an inequality
of the second main theorem type for holomorphic curves in algebraic
varieties, thus a holomorphic curve / in an algebraic variety V which has
the Nevanlinna's deficiency δ(Σ) = 1 for hypersurfaces Σ with some condi-
tions in V must be algebraically degenerate. In this paper, we shall show
that for n+2 ample divisors {D^H with normal crossings, any holomorphic
mapping of Cm into an n-dimensional smooth projective algebraic variety
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which has δ(Dj) = 1 (j = 1, , n + 2) must be algebraically degenerate.

Hence a holomorphic mapping of Cn into Pm(C) with δ(Hj) = 1 (j = 1, •,

n + 2) for hyperplanes {ffjjjiϊ in Pn(C) in general position must be linearly

degenerate. Our method is different from that of Fujimoto and Green.

The authors express their thanks to Professor T. Katsura for his helpful

conversations.

§2. Notation and terminology

Let z = (zu - - , zm) be the natural coordinate system in Cm. We set

IIzll2 = Σ?-i*i2* B{r) = {seC» |i|2:|| < r}, 3B(r) - {*eC»| | |z | | = r}, d< =

( V ^ M T Γ X S - 3), 7 = ddc log ||z||2, ηk = η Λ- Λη (fe-times) and σ = dc log ||2:||2

Λ ί?TO_i.

For a divisor Z)( $ 0) in Cm, we write

n(D, t) = f 9 m M and iVφ, r) = ί" n(D, t)(dt/t) .
jDf)B(t) JO

Let V be an n-dimensional smooth protective algebraic variety and L

a line bundle over V. Let {£7α} be an open covering of V such that the

restriction L\Ua is trivial. Then L is determined by the 1-cocycle {faβ}

which are nowhere vanishing holomorphic functions in Ua D Uβ satisfying

faβ = faγ.fγβ in Ua Π Uβ (Ί Ur A metric h in L is given by positive C°°

functions λα in Ua, where ha = \faβ\
2hβ in £/„ Π 17̂ . The curvature form ω

of h is given by α> = ωL = dde log ha which represents the first Chern class

Cj(L) of L. A holomorphic line bundle L on V is said to be positive, if

L has a metric & whose curvature form is everywhere positive definite.

Let f be a holomorphic mapping of Cm into V. Let L be a positive

line bundle over V and h SL metric in L. We define

Tf(L,r)=\r(dtlt)\ Λ
JO J^(i)

and call it the characteristic function of / with respect to L, where /*ω

denotes the pull-back of the form ω = ddc log h under /.

(*) We note that Tf(L, r) is independent of the choice of a metric h

in L up to O(l)-term. (See Carlson and Griffiths [2], p. 537).

A holomorphic section φ = {φa} of L -> V is given by holomorphic

functions 0α in £7α where φa = / β ^ in Z7α Π 17̂ . For a section 0, its norm

|0| is given by \φ\2 = |0α|
2/^« in ί7Λ which is well defined on V. A holo-



HOLOMORPHIC MAPPINGS 211

morphic line bundle whose sections defines a projective embedding is called
very ample.

Let Γ(V, Θ(L)) denote the space of holomorphic sections of the line
bundle L on V and \L\ denote the complete linear system of effective di-
visors on V given by the zeros of a holomorphic section of L —> V, i.e.

\L\ = {(φ)\φeΓ(V,Φ(L))},

where (φ) denotes the divisor given by the zeros of φ.
Let De\L\ be an effective divisor given by the zeros of a holomorphic

section φeΓ(V,Φ(L)) with \φ\^l on V. Assume that φ(f(z)) =έ 0. We
define the proximity function of D by

m(D, r) = ί log (l/\φ\\f(z)))σ(z) (^ 0) .
J 3B(r)

Carlson and Griffiths [2] proved the following:

THEOREM A (Carlson-Griffiths). Let De \L\ and f:Cm-*Vbea holo-
morphic mapping such that all components of f*D are divisors. Then

N(f*D, r) + m(D, r) = T/L, r) + 0(1) ,

where 0(1) depends on D but not on r.
In the case where /*Z) passes through the origin, the definition of

N(f*D, r) must be modified by means of Lelong numbers.
In the case that V is an ^-dimensional complex projective space Pn(C),

Stoll [7] and Vitter [8] proved the Nevanlinna's second main theorem for
meromorphic mappings of Cm into Pn(C) in the following form.

THEOREM B (Stoll, Vitter). Let f: Cm -> Pn(C) be a meromorphic map-
ping such that f(Cm) is not contained in any hyperplane in Pn(C). Let H
be the hyperplane bundle over Pn(C) and Hu , Hqe\H\ distinct hyper-
planes in general position in Pn(C). Then

(q-n- ϊ)Tf(H, r)<± iV(/*ff,, r) + Sir) ,

where S(r) <I O(log(r Tf(H, r))) for r-» oo outside a set of finite Lebesgue
measure.

For a divisor De\L\ on V, we define the deficiency of D by

r) = 1 - lim sup (N(f*D9 r)/Tf(L, r)).
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Let f be a holomorphic mapping of Cm into a smooth projective alge-
braic variety V such that f(Cm) is not contained in any divisor belonging
to \L\. Let JO,, , D$ (Djβ \L\) be divisors on V given by the zeros of
holomorphic sections φu , φt, φs = {£,„} 6 Γ(V, Θ(L)) with |0,| <£ 1 (/ =
1, , ί) and the system (φu , 0,) has no common zeros on V. Then the
function h — {ha}, ha = Σy=i î «P *s a positive C°° function on V and satisfies
ha = \faβ?hβ in Ϊ7α Π t/̂ . Hence we may take Λ as a metric in L.

Note that, if ψγ and ψ2 are two holomorphic sections of L —• V, then
its ratio ψi/ψ2 is a global meromorphic function on V.

By Theorem A, we have

T;(L, r) = N(f*Dt, r) + m(Dt, r) + 0(1)

(1) = N(f*Dit r) + f log (hMz))l\Φu\\f(z)))o{z) + 0(1)

0(1).ί
J dB(r)

% 3. Statement of results

Let V be a smooth projective algebraic variety of dimension n and
L - ^ F a fixed positive line bundle over V. We shall prove the following
theorem which yields an algebraic degeneracy of holomorphic mappings
into V under some conditions on the Nevanlinna's deficiencies.

THEOREM. Let f:Cm->Vbe a holomorphic mapping of Cm into V.
Let Du , Dn+21 Ds e \L% (l3 e Z+), be divisors on V such that δφj) = 1
0' = 1, .- , Λ + 2) and

( 2 ) Q s u p p l y = 0 for every {ji9 . - Jn+1} c {1, , n + 2} .

/ musί 6e algebraically degenerate.

Here ί(Z),) = 1 - lim sup,.,. (N(f*Dj, r)ITf(I/', r)) for Dj e \V>\ and Z+

denotes the set of all positive integers.
We note that the condition (2) is satisfied for divisors {D^tl with

normal crossings.

COROLLARY. Let Slf -—,Sn+2 be hypersurfaces with Γfkt\SJk = 0 in
Pn(C) for every {jl9 ,;TO+1} c {1, , n + 2}. Then any holomorphic map-
ping f: Cm -> Pn(C) which has δ(Sj) = 1 0* = 1, , n + 2) is algebraically
degenerate.
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Remark. In this theorem, the condition (2) can not be replaced by a

condition that Dl9 , Dn+2 are non-redundant, i.e.

supp Dj ςzt U supp Dt for any j .

EXAMPLE. We consider a holomorphic curve /: C'-> P\C) given by

/ = (1, e\ zez) and four hyperplanes H5 = {w — (wί9 w29 w3) e P\C)\wό = 0}

(j = 1, 2, 3) and HA = {we P\C)\ w3- w2 = 0}. Then we see that N(f*Hj9 r)

= 0 for j = 1, 2 and N(f*Hj9 r) = oίΓ/fl", r)) for j = 3, 4 and hence £(#,)

= 1 for j = 1 to 4. But / is not algebraically degenerate.

Remark. We can construct an example of a non-constant holomorphic

curve in P\C) which satisfies the conditions of the theorem for not all

hyperplanes in P\C).

§4. Two lemmas

In order to prove the theorem, we shall use the following two lemmas:

LEMMA 1. Let L->V be a very ample line bundle over V and ψl9 ,

Ψn+i, Ψj = {Ψja} £ Γ(V9 Θ(L)) holomorphic sections satisfying

n+l

Q supp Dj = 0 ,

where Dj — (ψj) (j == 1, , n + 1). Then ψu , ψn+1 are algebraically

independent over C.

LEMMA 2. Let ψl9 , ψn+29 ψjeΓ(V9(9(L)) be holomorphic sections of

a very ample line bundle L -> V such that

( 3 ) Π s u p p D j k = 0 for every {jl9 . ,jn+ι} c {1, , n + 2} ,

where D3k - (ψifc) (k = 1, ., n + 1). Lei Λfch, . , ψn+2) = 2 } = 1 β, = 0 6e

an algebraic relation of an irreducible homogeneous polynomial of degree k

in ψ's among ψu , ψn+2. Then

{p e V\R3l(p) = . . . = RJS_XP) = 0} = 0

/or euery {Λ, ••,;,_!} c {1, , s}.

Proo/ o/ Lemma 1. Let ζ0, , C* be a basis of global holomorphic

sections of L. Since L is very ample, the mapping ΦL = (ζ0, , ζ^) gives

a projective embedding of V into P^(C). We identify V with ΦL(V). By
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means of this embedding, we can identify L with the restriction of the

hyperplane bundle H over PN(C) to V. Hence for each ψ3 e Γ(V9 Θ{L)) there

exist global holomorphic sections ψj e Γ(PN(C)9 0(H)) such that ψj\v = ψj.

We set (ψj) = D3 (j = 1, , n + 1). Hence the dimension of the

algebraic subvarieties

Vjk = supp Dj Π supp Dk Π V

in V is not less than (n — 1) + (N — 1) — iV = n — 2, that is, dim Vifc ^

τι — 2. Similarly, we see that the dimension of

vJki = vJ1t n supp A n v

is not less than n — 3. Repeating the same argument as above, we have

dim (supp Djt Π - - - Π supp Djn) > 0 ,

that is,

supp Dh Π Π supp Djn Φ 0 .

Suppose that ψi, , ψ»+i have an algebraic relation i? of homogeneous

polynomial of degree k in ψl9 , ψn+ί represented by

Then we see that co...o* = 0, since ψn+ι(p) Φ 0 for a point p e V with ΨΊ(P)

= = ψn(p) = 0. Thus the term ψl+1 is not contained in the relation

R. Similarly, we find that none of the terms ψf, , ψl+1 belongs to R.

We next consider the curve ϋ? = {pe Vlψ^p) = = ψn_i(p) = 0}.

For any point p e S£, we see

(4) Σ co...oίnin+1ψi^ψtγ~O onse.

We may assume that all co...ίnίn+1 are not zero. Then we can rewrite (4)

in the form

on Se9 where τk = min ik (k = n9n+ϊ) and ^n,Λ + 1 = k - (rn + rn + 1), (Φ 0).

Since ψn ψn + 1 ^ 0 on J£f, we obtain

ΨΪW+1 + + d..0**ψ£» n + 1 = 0 on J2? - {(ψn = 0)u(ψn+1 = 0)} .

By Riemann's extension theorem,
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(5) ψfrr* + + C;..0**Ψ^+ I Ξ o on se.

We now take a point p n e J*f with ψn(pn) = 0. Then we see ψn+1(pn) = 0

by (5). This is a contradiction. Thus any co...oίnίn+1 equals to zero, that is,

no terms ψn* Ψί+i1 a r e contained in R. Similarly, we see that no terms

ψik-ψie are involved in R for any ik9 ie. We next consider the subvarieties

= = 4 ( p ) = . . . = &(p) = = ψn+1(p) = 0}

and

= = ^h(p) = . = ψn+1(p) = 0},

where the Λ over the ψj means that this terms is to be omitted. Then

the similar argument to the above implies that no terms of products of

three ψ's are involved in R. Repeating the above argument, we have the

fact that all coefficients cίl...ίn+1 in R are equal to zero, that is, ψu , ψn+1

are algebraically independent. This completes the proof of Lemma 1.

Proof of Lemma 2. From the condition (3), the mapping Ψ: V-> Pn+ί(C)

given by VBp »-> (ψi(p), •••, Ψn+ 2(p))ePn + 1(C) is well defined and holo-

morphic. By Remmert's proper mapping theorem, Ψ(V) is an analytic

subset of Pn+ί(C), hence it is algebraic in Pn+ί(C). We note that any n + 1

ψ's in ψl9 - - , ψn+2 are algebraically independent by Lemma 1. Then using

.elimination theory, we see that Ψ(V) is an irreducible hypersurface R in

Pn+1(C). We write the R in Pn+ί(C) as

( 6 ) R(xu -- ,xn+2)= 2 ] aix...iM& x£ +y = 0

for a homogeneous coordinate system (xu , xw+2) in Pn+ί(C).

We now consider the point (1,0, , 0)eP r e + 1(C). Then we see

(1, 0, , 0) 0 R from the hypothesis (3) in ψl9 , ψn+2.

Thus we see akO...o Φ 0. Similarly, we have

0Ofc...o Φ 0, , Oo...0* 9^ 0 .

Thus we can rewrite (6) in the form

where αίxj, , #n+2) are the remainder terms of R. Hence we obtain
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R(Ψi, *, Ψn+2) = akO...oψϊ + + αo...o*ψ£+2 + a(Ψ» , ψn+2)

= Λ, + . + Rn+2 + Rn+Z + + R., (say),

where iί, = αo...^...oψy and αo...^...o 9̂  0 (J = 1, , n + 2). Therefore we

see {p e F | i ^ ( p ) = = JR i M(p) = 0} = 0 for every {ju . . . , Λ _ J C {1, . •., s}

by means of {pe V\Rtι(p) = . - . . = Rin+1(p) = 0} = 0 for every ft, , in+1}

C {1, , n + 2} and s ^ n + 2. This completes the proof of Lemma 2.

§ 5. Proof of Theorem

By the definition of divisors {Dj}, there exist holomorphic sections φs

e Γ(V, 0(L'')) such that ^ = (^) and \φj\ ̂  1 for j = 1, . , n + 2. Let

4) = Z.c./n. (^j, , £n+2) and ̂  = iV 0̂ for some Ne Z+ so that the line bundle

U becomes very ample. We set φ5 = φfK Then ^^ belongs to Γ( V, (P(L0)

(j = 1, . . . , n + 2), and {φjlφi} are global meromorphic functions on V.

Since V has a transcendence degree ra, there exists a relation .R of an

irreducible homogeneous polynomial in φl9 , φn+2. We write

( 7 ) % -,UΞΣSί = 0.

Then for every {jΊ, - -yj,^} C {1, , s}, (Rjι9 , Rj,^) has no common

zero points by Lemma 2 (say, {Rly , i?s_i}), since L̂  is a very ample line

bundle over V and supp ((^)) = supp ((<^)). Furthermore, it is clear that

Rj eΓ(V,Θ(Ld)) for some deZ+. We set h = Σ*Ά\Rs?- Then Λ is a positive

C°° function with ha = \faβ\
2hβ, where Ld = {faβ}. Thus Λ is a metric in the

line bundle Ld -> V. We note that from (*) and the definition of Tf(L, r),*

(8) TAL\r) = d-Tf(L,r)

for any choice of a metric h in ZΛ From (1) and (8), we have

( 9 ) Tj(L', r) = f log (/*Λ/|/*Λil> + W * ( « Λ r) + 0(1) ,\

where (Rj) denotes the divisor in V given by the zeros of Rj9 f*(R3) denotes

the pull back divisor of (R5) in Cm and f*Rj is the pull back of the section

Rj under /.

Now we consider a holomorphic mapping from Cm into P9~\C) with

the representation F = ( / * # , , — , / * # * _ , ) : CW->P*- 2(C). Let H be the

hyperplane bundle over PS~\C). Taking the Fubini-Study metric in JBΓ,

we see from Theorem A
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(10) TP(H, r) = f log ( g I f*R,lf*Ri?)<r + W Φ Λ r) + 0(1).

Hence from (9) and (10), we have

TF(H, r) = Tf{H\ r) + 0(1).

We now consider the following s hyperplanes Hu , Hs in PS~\C) in
general position; for a homogeneous coordinate system t = (tί9 , ίt_,) in
P-2(C), Hi = {ί € P*"2(C)|tj = 0} 0' = 1, , s - 1) and Hβ - {t e P-χC)\ΣϊΛ h
= 0}. The hypothesis 5(2),) = 1 - lim sup^. N(f*Dj9 r)/Tj(L\ r) = 1 implies
that

iV(F*^, r) = Off N(f*Dt, r)) = of f Γ^L'S r)) = o(ΓF(F, r))

for j = 1, , s — 1 and

N(F*HS, r) = iV(/*(i?s), r) = o(ΪV(£r, r)) .

Suppose first that F is rational. Note that F is rational if and only
if TF(H, r) = O(log r). Then N(F*Hj, r) = o(Γ^£r, r)) implies that F(CW)
Π fl^ = 0 (j = 1, , s). Thus f^Rj/f^Ri Φ 0 and is rational on Cm, and
hence it is constant on Cm. Thus f*Rj — c/*!?* = 0 for some constant c,
that is, f(Cm) lies in the hypersurfaces Rj — cRt = 0 in V for i, j = 1, - , s.

Finally, we assume that F is transcendental. Suppose that F is not
linearly degenerate. Using Theorem B with s = q and n = s — 2, we have

, r) ̂  o(T(#, r)) + O(log (r 7V(iy, r)))

for r -> oo outside a set of finite Lebesgue measure. This is absurd. Thus
F is linearly degenerate, that is, there exist constants (c,, ,cs_ϊ)eC*-1

— {0} such that

cj*R, + + c^pR,^ = 0 .

Hence the image /(Cm) lies in the hypersurface given by

cxRx + + C..A.J = 0 .

Therefore / is algebraically degenerate. This completes the proof of the
theorem.

Remark. The theorem holds for a meromorphic mapping of Cm into a
smooth projective algebraic variety V.
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