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ON THE HOLOMORPHICAL CLASSIFICATION

OF SPACES OF HOLOMORPHIC GERMS

JORGE ARAGONA

Introduction

Let K be a compact set in a complex metrizable locally convex space
E and F a complex Banach space. The study of the space of holomorphic
germs 3f(K; F) endowed with the Nachbin topology $*ω was undertaken
by several authors. In particular by Chae [Ch] when E is a Banach space;
by Mujica [Mu] and Aviles [A-Mu] when E is a metrizable locally convex
space subject to some supplementary conditions and F = C; also by Soraggi
[S], Wanderley [W] and more recently by Bierstedt and Meise [Bi-Me]. The
point of view adopted in those works was, in a way, the "linear classifi-
cation" of the spaces Jf (K; F). In fact, in those papers results are
obtained furnishing information about the behavior of the spaces 3^{K\ F)
with respect to the following properties: bornological, barreled, complete,
(DF), Montel, Schwartz, Silva, nuclear, metrizable, etc. On the other
hand, bounded and relatively compact subsets of the spaces J^(K; F) are
studied and these results are applied to obtain properties of holomorphic
mappings. This work is a contribution to the study of the "holomorphic
classification" of the spaces Jί? (K; F), that is, we obtain results which give
information about the behavior of these spaces with respect to the follow-
ing properties: holomorphically bornological (hbo), holomorphically barreled
(hba), holomorphically infrabarreled (hib) and holomorphically Mackey (hM),
introduced in [Nl], [N2] and [BMN].

We now describe briefly the content of this work.
In § 0 we collect the basic definitions, notations and conventions of

terminology that we shall use in the following sections.
In § 1 we introduce the polynomially bornological (pbo), polynomially

barreled (pba), polynomially infrabarreled (pib) and polynomially Mackey
(pM) spaces. These properties are intermediate between the properties hbo,
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hba, hib, hM and bornological, barreled, infrabarreled and Mackey, respec-
tively. The study of the relations between these polynomial properties and
the corresponding holomorphic properties leads up naturally to the concepts
of Z)-holomorphy (and property (D)) and Z)*-holomorphy (and property (D*)).
Interest in the polynomial properties is based on two facts. On the one
hand, as we prove in § 4, the spaces ^f{K\ F) have these properties. On
the other hand—since we have got to reconstitute the holomorphical prop-
erties (hbo, hba, hib) starting from the corresponding polynomial properties
and properties (D) and (D*)—we can express the properties "hbo", "hba"
and "hib" as a union of more simple properties which, seemingly, should
simplify the problem of the holomorphic classification of the spaces £? (K F).
This section ends with the introduction of holomorphically semibornological
spaces.

In § 2, after several results, we prove that a polynomially bornological
space E is holomorphically bornological if and only if (J4?(U; F); ^~O) is
complete for all equilibrated open subsets U of E and all complete Hausdorff
locally convex spaces F. Combining these results with another one from
§ 1, we get the principal results of this section (Theorem 2.6).

In § 3 we prove that the Montel (resp. infra-Montel) property implies
property (D*) (resp. (D)). From these results we deduce several relations
between the Montel properties and the holomorphically significant prop-
erties, for spaces having polynomially significant properties.

In §§1, 2 and 3 the exposition is for arbitrary locally convex spaces.
It is only in § 4 that we consider the problem of the holomorphic

classification of the spaces 2tf (K F). In this section, to avoid complicated
notations on spaces of germs, we study, from the view point of holomorphic
classification, the Cauchy regular inductive limits which is a class of locally
convex spaces with the principal structural properties of the spaces of
holomorphic germs usually studied. We prove that every Cauchy regular
inductive limit is polynomially bornological and polynomially barreled. We
prove also that, for a Cauchy regular inductive limit, properties (D) and
(D*) are equivalent. These results combined with several results of the
preceding sections, lead to the main result of this paper (Theorem 4.6) which
states that for a Cauchy regular inductive limit E properties "hbo", "hba",
"hib", (D), (D*), "Montel", "infra-Montel", "completeness of (jf(U;F);ST0)
for all non-void open subsets U of E and all complete Hausdorff locally
convex spaces F" and several others properties, are equivalent.
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We conclude this work, in § 5, with a collection of results concerning
particular cases.

This paper is a condensed version of the author's doctoral dissertation
at Universidade de Sao Paulo, Brasil passed on July 1977. The author is
deeply grateful to his research adviser Professor Leopoldo Nachbin for the
constant encouragement and help during the investigation and preparation
of this thesis. Special thanks are due to Professors Mario Carvalho Matos
and Jorge Mujica for their advice, help and stimulating discussions on my
thesis subject.

§ 0. Preliminaries

We shall use freely the notations and terminology of [BMN] and [Nl].
Unless stated otherwise, we shall adhere to the following conventions. E
and F denote complex locally convex spaces and U is a non-void open
subset of 2?. The set of all continuous seminorms on E is denoted by
CS(E); if ae CS(E), r is a positive real number and ξeE, we denote by
Ba,r(ξ) (resp. Bafr(ξ)) the open (resp. closed) ar-ball of center ξ and radius r
in E. We denote by Ea the vector space E seminormed by or 6 CS(E), by
E/a the normed space associated with Ea and by ά the norm on E[a.

If / is a set and F is a seminormed space, we denote by £°°(I; F) the
seminormed space of all bounded mappings of I into F.

We denote by J^(U; F) the vector space of all holomorphic mappings
of U into F and by H(U; F) the space 3f(U;F) Π Fu, where F denotes
a fixed completion of F.

A mapping /: U-+ F is said to be algebraically holomorphic if the
restriction /1 U Π S is holomorphic for all finite dimensional subspaces S
intersecting U, where S is endowed with its natural (Hausdorff) topology.
We denote by jPa(U; F) the vector space of all algebraically holomorphic
mappings of U into F, by J^C(U; F) the vector subspace of JίfJJJ; F) of
those mappings which are bounded on the compact subsets of U and by
HC(U;F) the vector space Jίfc(U;F) Π Fu. We denote by 2?h{U\F) the
vector subspace of Jfc(U; F) of those mappings which are hypoholomorphic,
that is, algebraically holomorphic mappings which are continuous on the
compact subsets of U.

ΊfmeN,we denote by ^a(
mE; F) the vector space of all m-homogeneous

polynomials of E into F. We denote by &c(
mE; F) the vector subspace of

0>JCE\ F) of those polynomials which are bounded on the compact subsets
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(or equivalently, on the bounded subsets) of E. We denote by &h(
mE; F)

the vector subspace of &>c(
mE; F) of those polynomials which are hypo-

holomorphic, that is, m-homogeneous polynomials of E into F which are

continuous on the compact subsets of E. We denote by ^(mE; F) the

vector space of all continuous m-homogeneous polynomials of E into F.

If meN, we denote by ^a8(
mE; F) the vector space of all symmetric

m-linear mappings of E into F and by ^8(
mE; F) the vector subspace of

J£as(
mE; F) of all continuous symmetric m-linear mappings of E into F.

If fe Jf(U; F)y we use the usual notations for the differential operators

defined by the coefficients of the Taylor series of / in points of U:

; F) ι—> dmfe Jf(U; 0>(mE; F))

; F) ι—• dmfe jf(U; Se^E\ F))

When feJfa(U;F)9 we use the notation dmf (resp. dmf) instead of dmf

(resp. d»/).

Given a space S? of mappings of U into F which are bounded on the

compact (resp. finite dimensional compact) subsets of U, we denote by ^"0

(resp. ^o/) the topology on S? of uniform convergence on compact (resp.

finite dimensional compact) subsets of 17. If β e CS(F) and K is a compact

(resp. finite dimensional compact) subset of U9 the ^-continuous (resp.

^Όj-continuous) seminorm on S? defined by β and K is denoted by \\'\\β,κ,

that is,

\\f\\β,κ = suv{β(f(x))\xeK}.

A mapping /: U-+F is amply bounded if βof is locally bounded for

every βe CS(F); more generally, a collection 2C of mappings of U into F

is amply bounded if the collection β o SC is locally bounded for every β e

CS(F). We denote by <stf@(U; F) the set of all amply bounded subsets of

Fu.

When F = C we let JP(U) stand for JP(U; C), 0>(mE) stand for 0>(mE; C)

and sta(U) stand for si&{JJ\ C\ etc.

The closed absolutely convex hull of a subset X of E is denoted by

A locally convex space E is said to be holomorphically bornological

if, for every U and every F, we have Jf (U; F) = 3fc(U; F).

A locally convex space E is said to be holomorphically barreled (resp.

holomorphically infrabarreled) if, for every U and every F, each collec-
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tion X c ji?(U; F) is amply bounded if (and always only if) X is ^ V
bounded (resp. ^-bounded).

A locally convex space E is said to be holomorphically Mackey if,
for every U and every F, each mapping /: U—> F belongs to H(U; F) if (and
always only if) / is weakly holomorphic, that is, ψo/e^(t/) for every ψ

We use the following abbreviations of properties of a complex locally
convex space: B = Baire, S = Silva, sm = semimetrizable, hbo = holo-
morphically bornological, hba = holomorphically barreled, hib = holo-
morphically infrabarreled, hM = holomorphically Mackey. We have the
following implications for the above properties, which we shall use freely
(see [BMN]):

B

S
" ^ hbo

s m ^

§ 1. Polynomial classification of locally spaces. Z)-holomorphic and
D*-holomorphic mappings

In this section we introduce the polynomially significant properties,
properties (D) and (D*), hypoholomorphic and holomorphically semi-
bornological spaces. We shall show that the holomorphically significant
properties can be expressed in terms of the polynomially significant prop-
erties and properties (D) and (D*).

DEFINITION 1.1. A mapping feJ^c(U;F) is said to be D-holomorphic
if dmf(ξ) e &(mE; F) for all m e N and all ξe U. We denote by 3fD(U; F)
the vector space of all D-holomorphic mappings of U into F. A locally
convex space E has the property (D) if

for every U and every F.
We shall use the abbreviation: D — property (D).

DEFINITION 1.2. £ is a hypoholomorphic space if, for every U and
every F, the identity
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jt>(U; F) = Jfh(U; F)

holds. E is a polynomially hypoholomorphic space if, for every meN and

every F, the identity

&>(mE; F) = &h(
mE; F)

holds.

We shall use the abbreviations: h = hypoholomorphic and ph = polyno-

mially hypoholomorphic.

PROPOSITION 1.3. For every U and every F, we have

; F) c jPD(U; F) c jfh(U; F) c Jfc(U; F).

Hence, we have the following implications between the properties hbo, h

and D:

hbo = > h = Φ D .

Proof. It is enough to show that tfΏ{JJ\F) c jfh(U;F). Given fe

J^D(U; F), a compact set K c C7 and ξ eK we prove that /1 if is continuous

at ξ. We first assume that F is a Hausdorff space. Fix p > 1, there exists

α e CS(JS) such that V = BaΛ/p(ξ) c U, (1 - Λ)f + to 6 17 for all J e C such

that 1̂1 < p and all x e V. If βe CS(E), by Taylor's remainder formula, for

all xe V Π if and all weiV,

M

mί

pm(p-

where

M = sup {/3(/((l - Λ)f + to))|«6^" and μ| = p}
Hence, / is continuous since p > 1. For an arbitrary .F, let F be the

Hausdorff space associated with F and let q:F-+F be the quotient map-

ping. By the preceding case, we have J^D(U;F) c 34?h(U;F). Given fe

J?D(U;F) it is clear that qofeJfD(U;F), hence qofeJfh(U\F) which
implies that feJPh(U\F). In fact, fix a compact set K c C7, £ e i£ and a

closed neighborhood V of /(£) in ί7, Vo = g( V) is a neighborhood of q(f(ξ)),

hence we can find a neighborhood W of ξ in if such that (q°f)(W) C Vo,

whence f(W)dV=V.

Remark. If a complex locally convex space E is a £-space then i? is

hypoholomorphic and hence has the property (D).
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PROPOSITION 1.4. If E is a hypoholomorphic space, then (jί?(U; F); ^0)

is complete, if F is complete.

Proof. If F is complete, the space (J^C(U; F); ^ 0 ) is complete. Since

jeh(U; F) is closed in (jec(U; F); jr0) it follows that (jf h(U; F); <r0) is com-

plete. Since E is a hypoholomorphic space we have J^(U; F) = ^fh(U; F).

DEFINITION 1.5. A given E is said to be a polynomially bornological

space if, for every meN and every F, the identity

0>(mE; F) = 0>c(
mE; F)

holds.

We shall use the abbreviation: pbo = polynomially bornological.

PROPOSITION 1.6. For a given E the following conditions are equivalent:

( i ) E is holomorphίcally bornological]

(ii) E is hypoholomorphic and polynomially bornological',

(iii) E has property (D) and is polynomially bornological.

Proof. Clearly, every holomorphically bornological space is polynomi-

ally bornological, hence Proposition 1.3. implies that (i) :=> (ii) =Φ (iii). We

shall prove that (iii) => (i). Given U and fe^fc{U;F), where we assume

that F is Hausdorff, if if is a compact subset of E and ξ e U, there is p

> 0 such that ξ + λxe U for all λeC such that \λ\ < p and all xeK.

Hence by Cauchy's integral formula, we have for meN

dmf(ξ)(K) c -^-Γα{/(f + λx)\xeK and \λ\ = p}.

Since E is polynomially bornological, it follows that

dmf(ξ) e 0>(mE; F)

for all meN and all ξeU, which implies that feJf(U;F), since E has

the property (D). The case of an arbitrary F follows from this as in

Proposition 1.3.

PROPOSITION 1.7. For a locally convex space E the following conditions

are equivalent:

( i ) E is hypoholomorphic;

(ii) E has property (D) and is polynomially hypoholomorphic.

Proof. The implication (i) =̂> (ii) follows from Proposition 1.3. To show
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that (ii) => (i), given U and feJfh(U;F), where we suppose that F is

Hausdorff, if ξ e U and K is a compact subset of E, there is p > 0 such

that f + Λxe U for all 2 e C such that \λ\ < p and all xeK. Hence by

Cauchy's integral formula, if m e TV, β e CS(F) and ηeK, for all JC 6 K we

have

Since

L = {| + to|jceiί and \λ\ = p)

is a compact subset of U, it follows that / 1 L is uniformly continuous, hence

for a given s > 0 there is α € CS(E) such that

y .zeL and

Hence, for all x e BaΛ/p{η) a K we have

which proves that

dmf(ξ) e ^(mE; F), for all m e N and all ξ e U,

since 2£ is polynomially hypoholomorphic. The property (D) of E implies

then fe#P(U\ F). The case of an arbitrary F follows from this.

DEFINITION 1.8. A given E is said be a polynomially infrabarreled

space if, for all m e N and all F, each collection X c ^(mE; F) which is

bounded on all compact subsets of E is equicontinuous (or equivalently,

amply bounded).

We shall use the abbreviation: pib = polynomially infrabarreled.

LEMMA 1.9. Let E be a polynomίally ίnfrabarreled space and let X C

J^(U; F) be a collection bounded on all compact subsets of TJ. Then, for

all ξ e U and all meN, the set

is amply bounded.

Proof. It is enough to show that XnΛ is bounded on all compact

subsets of E. Let K be a compact set in E, then there exists p > 0 such
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that ξ + λxe U for all λeC such that \λ\ < p and all xeK. Hence by
Cauchy's integral formula, we have

dmf(ξ)(κ) L

where

Bf = Γa{f(ζ + J*)l W = P and xe K) .

It follows that

U H 4

Since 9£ is bounded on the compact set

{£ + λx\\λ\ = p and xeK}

the set

X=Γα{f(ξ + λ*)\\λ\ = p9 xel

is bounded in F, thus the relation

fear

implies that

U dmf(ξ)(K) = {dmf(ξ)(x) I x e K and fe %} c -^-X.

PROPOSITION 1.10. For α locally convex space E the following conditions
are equivalent:

( i ) E is holomorphically infrabarreled;
(ii) E has property (D) and is polynomially infrabarreled.

Proof, (i) φ (ii): It is sufficient to prove that E has property (D).
Given U, ξ eU and fe J^D(U; F) where we assume that F is Hausdorff, we
shall prove that there exists a neighborhood V of ξ in U such that /1 V
is continuous. Fix p > 1, then there is αe CS(E) such that V = BaΛ/p(ξ)
C [7, (1 — Λ)£ + λr 6 [7, for all A 6 C such that |Λ| < p and all x e V and

Σ
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for every xeV and every meN. Hence the set X = {fm|meN}9 where

for all m e TV we set

fm: x e VF—> Σ -^/(fX* - f) 6 JF\

is bounded in (^(V; F); JΌ). Since E is holomorphically infrabarreled, it

follows that $C is equicontinuous. Since lim^,*, fm(x) = f(x) for every x e V,

the set 3Γ(x) = {/m(x) | m e N} is relatively compact in F for all JC e V.

Hence, by Ascoli's theorem, X is a relatively compact set in (^(V; F) ; ^Ό)

It follows that the elementary filter associated with the sequence (fm)meN

has an adherent point getf(V;F), which implies that

β(f(x) - g(x)) = 0 for all x e V and all β e CS(F) .

Since F is Hausdorίf, it follows that f\ V = g, hence fe3f(U; F). The case

of an arbitrary F follows from this.

(ii) =r>(i): Let J be a bounded set in (H(U); <T0), we shall show that

SC is locally bounded. Consider the mapping

It is known that

Since E is polynomially infrabarreled, Lemma 1.9 implies that dmf#(ξ) is

locally bounded, hence continuous, for every ξe U and every meN, which

proves that

Property (D) of E then implies that /, 6 ^f(C7; £°°(&))9 thus fs is locally

bounded, that is, X is locally bounded.

COROLLARY 1.11. For a polynomially bornological space E the following

conditions are equivalent:

( i ) E is holomorphically bornological;

(ii) E is holomorphically infrabarreled;

(iii) E is hypoholomorphic;

(iv) E has property (D).

Proof In view of Proposition 1.6 we have (i) ζ=$ (iii) & (iv). The

implication (ii) => (iv) follows from Proposition 1.10 and it is known that

(i) =» (ϋ).
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Now we shall prove a statement corresponding to Proposition 1.10 for

holomorphically barreled spaces. We shall need the following definitions.

DEFINITION 1.12. A given E is said to be a polynomially barreled

space if, for all m e N and all F, each collection & C ^(mE; F) which is

bounded on all finite dimensional compact subsets of E is equicontinuous

(or equivalently, amply bounded).

We shall use the abbreviation: pba = polynomially barreled.

DEFINITION 1.13. A mapping fe Jfa(U; F) is said to be D*-holomorphic

if dmf(ξ) e 0>(mE; F) for all m e N and all ξeU. We denote by J^D*(U; F)

the vector space of all jD*-holomorphic mappings of U into F. A locally

convex space E has property (D*) if

for every U and every F.

We shall use the abbreviation: D* = property (D*)

Clearly we have: D* = φ D .

LEMMA 1.14. Let E be a polynomially barreled space and let 2£ c

3Ί?(U; F) be a collection bounded on all finite dimensional compact subsets

of U. Then, for all ξ eU and all meN, the set

is amply bounded.

Proof. The argument is a minor modification of the proof of Lemma

1.9.

PROPOSITION 1.15. For a given E the following conditions are equivalent:

( i ) E is holomorphically barreled;

(ii) E has property (D*) and is polynomially barreled.

Proof. The argument is similar to the proof of Proposition 1.10.

DEFINITION 1.16. A given E is said to be a strongly polynomially

barreled space, if for all meN and all F, each collection % C 0>(mE; F)

which is bounded on all finite subsets of E is equicontinuous (or equiva-

lently, amply bounded).

We shall use the abbreviation: spba = strongly polynomially barreled.

Clearly we have: spba = > pba .
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The following result furnishes a class of polynomially bornological
spaces and a class of strongly polynomially barreled spaces.

PROPOSITION 1.17. (a) If E is barreled, bornological and (DF), then E
is polynomially bornological.

(b) // E is barreled and (DF), then E is strongly polynomially barreled
and hence polynomially barreled.

Proof, (a) Given F, meN and Pe^c(
mE;F), there exists Ae

^as(
mE; F) such that A = P. We shall prove that A is continuous. Since

E is (DF) and barreled, it is enough to show (see [G], Ch. IV, § 3, No. 2,
Corollary 1 of Theorem 2) that A is separately continuous and since A is
symmetric, it suffices to show that A is continuous in the first variable.
That is, fix α2, , am in E then we must show that the linear mapping

uixeEi > A(x, α2, ,am)eF

is continuous. Since E is bornological, it is enough to prove that u is
bounded, which follows from the polarization formula and the fact that P
is bounded on bounded sets.

(b) Given F, meN and a collection & c 0>(mE; F) such that & is
bounded on all finite subsets of E, we shall show that 3t is equicontinuous.
Consider the set

f = {Ae<&s(
mE; F)\ A e # } .

Then, by the polarization formula and since 9t is bounded on all finite
subsets of E, it follows that X is bounded in ^8(

mE; F) for the topology
of simple convergence. Therefore (see loc. cit.), X is equicontinuous hence
# is equicontinuous.

DEFINITION 1.18. E is said to be a locally holomorphically infrabar-
reled space if, for all U, all F and all collections X C 3f(U; F) which are
bounded on the compact subsets of U, the set

sr\K={g\K\ge£}

is an equicontinuous subset of %(K F) for every compact subset K of U.
We shall use the abbreviation: lhib = locally holomorphically infrabarreled.

PROPOSITION 1.19. For a given E the following conditions are equivalent:
( i ) E is locally holomorphically infrabarreled',
(ii) E satisfies Definition 1.18 in the case F — C;
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(iii) For all U, a collection X c Jf(U) is J"abounded if and only if
X is J" ̂ precompact

Proof. Clearly (i) φ (ii). We shall prove that (ii) ==> (i). Given U and
F, let X be a bounded subset of (jf?(U; F); 3ΓQ). Fix a compact set K C
C7, β e CS(F) and consider the set

Then, is clear that the set

χ(ψ) = {ψof\fe%- and ψeW}

is a bounded subset of (Jf(U); f Q ) . By (ii) it follows that

X(ψ)\K={h\K\heX(W)}

is an equicontinuous subset of tf(K). Hence, for ξ eK, there exists a
neighborhood V of ξ in K such that

\g(x) - g(ξ)\ < 1 for all xe V and all ge&(W)\K.

By the Hahn-Banach theorem we have

sup {β(f(x) - /(£)) I fe % and x e V}

= sup {|ψ(f(x) - f(ξ))\\fe I ^ e

whence £(/(*) - /(£)) < 1 for all JC e V and all fe&.
(ii) => (iϋ): Let f be a bounded subset of (^(t7);^ 0). By (ii), for

every compact subset K of U, the set

is an equicontinuous subset of ^(K) and, since the set

is boiinded for every x e K, by Ascoli's theorem, X \ K is a relatively com-
pact subset of tf(K). On the other hand, it is clear that ^ 0 coincides
with the projective topology on 34?(U) for the family of linear mappings

—>f\KeV(K)

where K describes the set of all compact subsets of U. Therefore, since
pκ{X) = XIK is a precompact subset of ^(K) for every compact subset K
of [7, it follows that X is a precompact subset of (J^(U); έΓ0).

(iii) => (ii): Let f be a bounded subset of (jf(U); &Ό). Then by (iii),
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X is a precompact subset of (^(U) ^Ό), whence X \ K = pκ{X) is a rela-

tively compact subset of ^(K) for every compact subset K of U. By Ascoli's

theorem, X\K is equicontinuous for every compact subset K of U.

PROPOSITION 1.20. If E is hypoholomorphic and locally holomorphically

infrabarreled, then E is holomorphically infrabarreled.

Proof. Given U and a bounded subset X of (J^(U); <T0), consider the

mapping

fx' xeUi—• te(*)),6, e &~(β).

Since E is locally holomorphically infrabarreled it follows that

Hence

since E is hypoholomorphic. It now follows that fx is locally bounded, i.e.

X is locally bounded.

Let U be a non-void open set in a locally convex space E and let F

be a locally convex space. We denote by

the complex vector space of all algebraically holomorphic mappings of U

into F which are sequentially continuous. With this notation we set:

DEFINITION 1.21. A given E is said to be a holomorphically seπύ-

bornological space if, for all U and all F, the identity

holds.

We shall use the abbreviation: hsb = holomorphically semibornological.

For given E, F and U, we have tfh(U; F) C jesc(U; F). On the other

hand, if every compact set in E is sequentially compact, then Jfsc(U; F)

C J^XU F). Hence, by Proposition 1.3, we get:

PROPOSITION 1.22. Let E be a locally convex space such that every

compact set in E is sequentially compact Then, for all U and F, we have

; F) c j/rD(U; F) c Jfh(U; F) c jfsc(U; F) c J^C(U; F).

As a consequence, in E, we have the following implications
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hbo ==> hsb = > h ==> D .

PROPOSITION 1.23. Given E, F and U, the following are true:

(a) If fe 3fc(U; F), then dmf(ξ) e^c(
mE; F) for all meN and ξeU.

(b) // E is polynomially bornological, we have

jfD(U; F) = jfh(U; F) = Jfc(U; F).

(c) If E is polynomially bornological and every compact set in E is sequen-

tially compact, we have

^D(U; F) = jeh(U; F) = sfsc(U; F) = jfre{U; F).

Proof. The first assertion is contained in the proof of Proposition 1.6

and the second assertion follows from (a) and Proposition 1.3. The last

assertion follows from (b) and Proposition 1.22.

PROPOSITION 1.24. For a polynomially bornological space E the follow-

ing conditions are equivalent:

( i ) E is holomorphically bornological;

(ii) E is holomorphically infrabarreled;

(iii) E is hypoholomorphic;

(iv) E has property (D).

// every compact set in E is sequentially compact, the above conditions are

equivalent to the following one:

( v ) E is holomorphically semibornological.

Proof. Apply Corollary 1.11, and Proposition 1.23 (c).

EXAMPLE. Let X be an infinite dimensional complex Banach space,

let Y = CiN) be endowed with the locally convex direct sum topology and

let E = X X Y be the locally convex product space. Since E is barreled,

bornological and (DF), Proposition 1.17 implies that E is polynomially

bornological and strongly polynomially barreled (hence polynomially bar-

reled). On the other hand (see [BMN], Example 18) E is not holomorphically

bornological. Thus we have the following:

(a) E is a polynomially bornological space which is not a holomorphically

bornological space. By Proposition 1.6 it follows that E does not have

property (D).

(b) E has not property (D*), since D* =̂> D.

(c) E is not a holomorphically infrabarreled space, by Proposition 1.10.
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(d) E is a strongly polynomially barreled space which is not holomorphic-
ally barreled (by (b) and Proposition 1.15).

(e) E is a polynomially infrabarreled space which is not holomorphically
infrabarreled.

Remark. If E is a holomorphically infrabarreled space which is not
a holomorphically bornological space, then, by Proposition 1.6 and Propo-
sition 1.10, E has property (D) and it is not a polynomially bornological
space.

§2. Holomorphical classification and approximation properties

The starting point of this section is the proof, with some hypothesis,
that the completion of (Jf(U; F); jr0) is (Jtfh(U; F); jrQ) for every ξ-
equilibrated open subset U of E and every complete Hausdorff locally convex
space F. We apply these results to find, for polynomially bornological
spaces, new equivalent conditions involving holomorphically significant
properties and completeness of (jf(ϊ7; F); $"Q). In the sequel, we denote by

(JP(U; F);

the completion of the locally convex space (̂ f (U; F); &Ό).

LEMMA 2.1. Let U be a ξ-equilibrated open subset of a locally convex
space E and let F be a Hausdorff locally convex space. We suppose that
the following condition is satisfied:

For every meN, every P e ^h(
mE; F), every β e CS(F), every compact

(*) subset K of E and every ε > 0, there exists feJf(E;F) such that
\\P-f\\β)K<ε.

Then, 3P(E;F) and 2f(U;F) are dense in (jeh(U; F); 3Γ0) and hence, if F
is complete, we have:

(sf(U; F); 3Γ^ = (jfh(U; F); ^0).

Proof. Given ge^h(U;F), a compact subset K of U, βeCS(F) and
ε > 0, since U is ξ-equilibrated, for all x e U we have

g(x) = Σ -V^m£(f)(* ~ f) > uniformly on K .
m=0 m\

Hence there exists v e N such that
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β(g(x) - t -\$mg(ξ)(x - ζ)) < β/2 , for all x e K.
m=0 ml

Let δ be a real number such that 0 < δ < 1 and δ(l — δ)"1 < e/2. Since
iϊΓ — ί = {̂  — fl^cβ ϋΓ} is compact in E and, by Cauchy's integral formula
we have

dmg(ξ) e ^h(
mE; F) for all m e iV ,

the hypothesis (*) implies that there exists a finite sequence (fm)0^m^ in
^f (#; F) such that

fm rd
mg(ξ)\\ <δm , for all m = 1, 2, - , v

ml \\β*κ-ξ

fo-.xeEi—>g(ξ)eF.

Clearly, the mapping

is holomorphic and it is easy to see that

\\g ~ f\\β,κ <

which proves that j^(E; F) is dense in (Jfh(U; F); &~0)9 hence 2f(U; F) is
also dense in (jPh(U; F); έΓ0). The proof of Proposition 1.4 shows that
ffiniU; F); J~Q) is complete if F is complete whence the statement about
the completion follows.

COROLLARY 2.2. Let U be a ξ-equilibrated open subset of a locally con-
vex space E and let F be a Hausdorff locally convex space. We suppose
that the following condition is satisfied:

( * ) 0>(™E; F) is dense in (0>h(
mE; F); 3ΓQ) for all meN.

Then, je(E;F) and Jf(U;F) are dense in (Jfh(U; F); JΓ0) and hence, if F
is complete, we have

(X{U; F); sr*Y = (tfh(U; F); ̂ 0 ) .

Proof. In view of the hypothesis (*) we can choose the sequence
fo> fn •• -,fv which appear in the proof of Lemma 2.1 such that fm e 0>(mE; F)
for all m = 0,1, , v.

COROLLARY 2.3. Let U be a ξ-equilibrated open subset of a polynomially
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hypoholomorphic space E (see Definition 1.2) and let F be a Hausdorff locally

convex space. Then je(E;F) and jf(U;F) are dense in (Jfh(U;F);&*ώ

and hence, if F is complete, we have

(*(U; F); «Tor = (*h(U; F); ̂ 0) .

Proof. The hypothesis (*) of Corollary 2.2 is trivially fulfilled in

this case.

Since 0>(mE; F) c &h(
mE\ F) c ^c(

mE; F) for all E, F and meN, we

have pbo => ph, hence from Corollary 2.3 we get:

PROPOSITION 2A. Let Ube a ξ-equilibrated open subset of a polynomially

bornological space E and let F be a Hausdorff locally convex space. Then

3P(E; F) and je(U; F) are dense in (Jί?h(U; F); 3Γ,) and hence, if F is com-

plete, we have

; F); ̂ 0Y = (tfh(U; F); ̂ 0 ) .

In the following two results, the expression

" t / i s equilibrated"

signifies that there exists ξ e U such that U is ξ-equilibrated.

PROPOSITION 2.5. For a polynomially bornological space E, the follow-

ing conditions are equivalent:

( i ) E is holomorphically bornological;

(ii) (^(U; F); ̂ 0) is complete for every non-void open subset U of E

and every complete Hausdorff locally convex space F;

(iii) (jf(U; F);f0) is complete for every equilibrated open subset U of

E and every complete Hausdorff locally convex space F;

(iv) E is holomorphically Mackey and (j^(U); ^ 0 ) is complete for every

equilibrated open subset U of E.

Proof. The implications (i) => (ii) :=> (iii) and (i) => (iv) are trivial. We

shall prove that (iii) => (i). By Corollary 1.11 it is enough to show that

E is hypoholomorphic. Condition (iii) and Proposition 2.4 imply that

(1) je(U;F)^^h(U;F)

for every equilibrated open subset U of E and for every complete Hausdorff

locally convex space F. This implies that (1) is valid for any non void

open subset U of E. So it remains to show only that (1) is valid for all



HOLOMORPHIC GERMS 103

F. Let U and F be arbitrary, let F be the Hausdorff completion of F and

let j:F-+F be the canonical map. Given fe^JJJ F) it is clear that

jofe Jfh(U; F) = J4?(U; F) and hence / is amply bounded and therefore fe

2ί?(U; F). Finally we shall prove that (iv) => (i). The preceding argument

show that E is "scalarly hypoholomorphic" (that is, E satisfies Definition

1.2 in the case F = C) since (jf(U); <T0) is complete for any equilibrated

open subset U of E. Hence, since E is holomorphically Mackey it follows

that E is hypoholomorphic.

THEOREM 2.6. For a polynomially bornological space E, the following

conditions are equivalent:

( i ) E is holomorphically bornological;

(ii) E is holomorphically infrabarreled;

(iii) E is hypoholomorphic;

(iv) E has property (D);

( v ) (J4?(U; F);^O) is complete for every non-void open subset U of E

and every complete Hausdorff locally convex space F;

(vi) (J^(U; F); <J~0) is complete for every equilibrated open subset U of

E and every complete Hausdorff locally convex space F;

(vii) E is holomorphically Mackey and (J4?(U); 3Γ^ is complete for every

equilibrated open subset U of E;

If, in addition, every compact set in E is sequentially compact; the above

conditions are equivalent to the following:

(viii) E is holomorphically semίbornological.

Proof. Apply Proposition 1.24 and Proposition 2.5.

EXAMPLE 1. Let E be a metrizable distinguished locally convex space.

The strong dual Er

h of E is barreled, bornological and (DF), hence Propo-

sition 1.17 implies that Er

h is polynomially bornological and strongly poly-

nomially barreled. Hence, for E'b, the conditions (i) — (vii) of Theorem 2.6

are equivalent.

EXAMPLE 2. A particular case of Example 1 are the (^JΓ^)-spaces

studied in [D] (a given E is said to be a (^J^^-space if E is the strong

dual of a Frechet-Montel space) since every Montel space is distinguished.

It follows that a (^JΓ^)-space is polynomially bornological and strongly

polynomially barreled. Proposition 1 of [D] shows that every (β!FJ£)~

space is a β-space, hence hypoholomorphic and, therefore, for such spaces

the equivalent conditions of Theorem 2.6 hold.
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§3. The Montel properties

The Montel properties were introduced by Matos [M] (see also [BMN]).

In this section we show that for spaces with polynomially significant

properties there are several equivalent conditions involving Montel prop-

erties, properties (D) and (£)*) and holomorphically significant properties.

DEFINITION 3.1. A given E has the Montel property (resp. infra-Montel

property) if, for every U and every F, we have that each collection X c

H(U; F) is relatively compact for J~Q if and only if X is bounded on every

finite dimensional compact (resp. compact) subset of £7, and X(x) C F is

relatively compact for every x e U.

In the sequel, the expression "JS has property (M)" (resp. " £ has property

(iM)99) signifies that E has the Montel (resp. infra-Montel) property.

PROPOSITION 3.2. If a locally convex space E has property (iM) then

E has property (D).

Proof. We follow the proof and notation of Proposition 1.10, (i) =Φ> (ii)

until we prove that ^ = {/m|meiV} is bounded in (J^(V; F); ^ 0 ) , and

hence X is bounded in (H(V; F); Sr0). Since limn^fm(x) = f(x) for all x

e V, it follows that X(x) is relatively compact in F for all xeV. Since

E has property (iM), we have that X is relatively compact in H(V; F) for

«̂ Ό, which implies that X is relatively compact in &(V;F) for J~o. From

this point, the proof continues as in Proposition 1.10, (i) =̂> (ii).

COROLLARY 3.3. For a polynomially infrabarreled space E (see Defini-

tion 1.8) the following conditions are equivalent:

( i ) E is holomorphically infrabarreled;

(ii) E has property (iM);

(iii) E has property (D).

Proof The implication (i) => (ii) is known (see [BMN], Proposition 63);

that (ii) => (iii) is clear from Proposition 3.2 and that (iii) => (i) follows from

Proposition 1.10.

COROLLARY 3.4. For a polynomially bornological space E (see Definition

1.5) the following conditions are equivalent:

( i ) E is holomorphically bornological;

(ii) E has property (iM);

(iii) E has property (D).
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Proof. The implication (i) => (ii) is clear, that (ii) => (iii) follows from

Proposition 3.2 and (iii) ^ (i) follows from Proposition 1.6.

PROPOSITION 3.5. If a locally convex space E has property (M) then E

has property (D*) (see Definition 1.13).

Proof. The argument is similar to the proof of Proposition 3.2.

COROLLARY 3.6. For a polynomially barreled space E (see Definition

1.12) the following conditions are equivalent:

( i ) E is holomorphically barreled;

(ii) E has property (M);

(iii) E has property φ * ) .

Proof. The implication (i) => (ii) is known (see [BMN], Proposition 58),

that (ii) iφ (iii) is clear by Proposition 3.5 and (iii) ^> (i) follows from Prop-

osition 1.15.

§4. Holomorphically significant properties of Cauchy regular
inductive limits

In this section we introduce the Cauchy regular inductive limits which

are a particular kind of locally convex spaces that embodies an extensive

class of spaces of germs as is showed by several examples. We prove that

every Cauchy regular inductive limit is polynomially bornological and

strongly polynomially barreled. The main result of this section (Theorem

4.6) establishes that in a Cauchy regular inductive limit E, properties

"holomorphically bornological", "holomorphically barreled", "holomorphi-

cally infrabarreled", "MonteΓ, "infra-Montel", (D), (D*), "completeness of

(jf(U; F); y~0) for all non-void open subsets U of E and all complete

Hausdorff locally convex spaces F" and other properties are equivalent.

Let (Em)meN be an increasing sequence of complex Banach spaces.

Denote by E the vector space union of the sequence (Em) endowed with

the inductive topology for the inclusions Em c E. Given meN and X c

Em let & be a filter on X. The filter & is said to be £7m-Cauchy (resp.

^-convergent) if SF is a Cauchy filter (resp. convergent filter) for the

uniform structure induced on X by Em. The filter IF is said to be Έ-

Cauchy (resp. E-convergent) if 2F is a Cauchy filter (resp. convergent filter)

for the uniform structure induced on X by E.

The inductive limit E — lim Em is said to be a Cauchy regular inductive
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limit (see [Mu], Definition 1.5) if, for every bounded subset B of E, there

exists meN such that B is contained and bounded in Em9 and, further-

more, every filter on B is £J-Cauchy if and only if it is l?m-Cauchy.

NOTATION. In the sequel, unless otherwise stated, the notation

E = lim Em

denotes a Cauchy regular inductive limit where (Em) is an increasing se-

quence of (complex) Banach spaces and E is the union of the sequence

(Em). We suppose also that E, endowed with the inductive topology for

the inclusions Em c E, is a Hausdorff locally convex space. For all meN,

the continuous inclusions Em c Em+1 and Em c E are denoted by j m and im

respectively and we suppose that \\jm\\ = 1.

EXAMPLE 1. Every complex Banach space is clearly a Cauchy regular

inductive limit.

EXAMPLE 2. I f l and Y are complex Banach spaces and K is a com-

pact subset of X, then the space

of holomorphic germs on K with values in Y endowed with the Nachbin

topology &~ω, is a Cauchy regular inductive limit (see [Ch], Proposition 3.2

and Proposition 3.8).

EXAMPLE 3. If X is a metrizable and quasi-normable locally convex

complex space and K is a compact subset of X, then the space

of holomorphic germs on K with complex values, endowed with the Nachbin

topology J~ω, is a Cauchy regular inductive limit (see [A-Mu], Theorem 2).

EXAMPLE 4. Let (Xm)meN be an increasing sequence of (complex)

Banach spaces, X ^ ^JmeN Xm and suppose that X = l i m X w is a strict

inductive limit (i.e. Xm has the induced topology of Xm+ί, for all meN).

Then from Dieudonne-Schwartz theorem (see [H], Ch. 2, § 12) it follows

that X is a Cauchy regular inductive limit.

LEMMA 4.1. Let B be a bounded set in a Cauchy regular inductive limit

E = limEm. Then, there exists meN such that B is contained and bounded
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in Em and, furthermore, E and Em induce the same topology on B, hence B

is metrizable. In particular, every compact subset of E is sequentially com-

pact

Proof. Since E is a Cauchy regular inductive limit, there exists m e

N such that B is contained and bounded in Em, and furthermore, the

condition on filters on B holds. Let <Γ (resp. ^m) be the topology induced

on B by E (resp. Em); clearly y < ZΓm. Suppose B closed in Em, fix any

x e B and denote by rΓ(x) (resp. ^m(x)) the filter of ^-neighborhoods (resp.

.^-neighborhoods) of x. Since B is closed, the condition on filters on B

implies that rΓ(x) Z) ̂ m (x), hence <Γ > y m . The case of an arbitrary B

follows from this.

PROPOSITION 4.2. Let E = lim Em be a Cauchy regular inductive limit.

Then:

(a) E is barreled, bornological, (DF) and quasi-normable.

(b) If K is a compact subset of E, there exists meN such that E and Em

induce the same topology on K and hence K is metrizable.

(c) E is complete.

Proof, (a) Since E is an inductive limit of Banach spaces, it follows

that E is barreled, bornological and (DF). Hence E is quasi-normable

since E is infrabarreled.

(b) Follows from Lemma 4.1.

(c) Since E is a (DF)-space it is enough to show that E is quasi-

complete. Let IF be a Cauchy filter on a bounded closed subset X of E.

Since E is a Cauchy regular inductive limit, there exist meN such that

X is bounded and closed in Em, and furthermore, every .E-Cauchy filter

on X is a £Jm-Cauchy filter. It follows that «f is a E^-Cauchy filter,

hence IF is Em-convergent, whence IF is U-convergent.

Remark. The inductive limit E = lim Em is said to be a compactly

regular inductive limit if, for every compact subset K of E, there exist

meN such that K is contained and compact in Em. It is known that Eis

a compactly regular inductive limit if and only if E is a Cauchy regular

inductive limit.

THEOREM 4.3. Let E = lim Em be a Cauchy regular inductive limit.

Then:

(a) E is polynomίally bornological (see Definition 1.5).
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(b) E is strongly polynomially barreled and hence polynomially barreled (see

Definition 1.12 and Definition 1.16).

(c) E is locally holomorphically infrabarreled (see Definition 1.18).

Proof. The statements (a) and (b) follows from Proposition 4.2 (a) and

Proposition 1.17. We shall prove the statement (c). Given U and F, let

% be a ^-bounded subset of Jf(U; F). If if is a compact subset of U,

there exists meN such that K is contained and compact in Um = U Π Em.

Since the set Xm = {f | Um \ fe %} is a ^-bounded subset of ^(£7 m ; F) and

Em is locally holomorphically infrabarrelled, it follows that &m \ K = X \ K

is equicontinuous.

LEMMA 4.4. If E = lim 2£TO is α Cauchy regular inductive limit, then

for every U and every F, we have (see Definition 1.1 and Definition 1.13)

tfjJU; F) = JTD(U; F) .

Proof Let fe JfD*(U; F) and let K be a compact subset of U. There

exists m e iV such that K is contained and compact in Um = [7 Π £Jm. Let

/m = /I ̂  then the relations

dnfm(ξ) = a•/(£) o im , for all n e TV and all ξ e Um

imply that fmeMp

D*(Um; F). Since £Jm is holomorphically barreled, by

Proposition 1.15 it follows that fmejf(Um;F), hence f(K) = fm(K) is

bounded in F.

LEMMA 4.5. For a Cauchy regular inductive limit E the following con-

ditions are equivalent:

( i ) E is holomorphically bornological;

(ii) E is holomorphically barreled;

(iii) E has property (D*).

Proof. (i)=>(ii): By Proposition 1.6, E has property (D), hence by

Lemma 4.4 E has property (D*). By Theorem 4.3 (b), E is polynomially

barreled, hence (ii) follows from Proposition 1.15. For (ii) => (iii) apply

Proposition 1.15. That (iii) => (i) is clear since (D*) :=> (D) and E is poly-

nomially bornological by Theorem 4.3 (a).

Now we can prove the main result of this paper.

THEOREM 4.6. For a Cauchy regular inductive limit E the following

conditions are equivalent:
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( i ) E is holomorphically bornological;

( ii ) E is holomorphically barreled;

( i i i ) E is holomorphically infrabarreled;

( i v ) E has property (D);

( v ) E has property (D*);

( v i ) E is holomorphically semibornological (see Definition 1.21);

(vii) E is hypoholomorphic;

(viii) (j>ίf(U; F);^Ό) is complete for every non-void open subset U of E

and every complete Hausdorff locally convex space F;

( i x ) (jf(U; F);^o) is complete for every equilibrated open subset U

of E and every complete Hausdorff locally convex space F;

( x ) E is holomorphically Mackey and (^(U) ^Ό) is complete for

every equilibrated open subset U of E;

( xi) E has property (M) (see Definition 3.1);

(xii) E has property (iM) (see Definition 3.1).

Proof. Since by Theorem 4.3 (a), E is polynomially bornological and

every compact subset of E is sequentially compact (by Proposition 4.2 (b))

the equivalences

(i) 4=φ (iii) 4=φ (iv) ̂ => (vi) 4=^ (vii) <=Φ (viii) φ=> (ix) φ=φ (x)

follow from Theorem 2.6. By Lemma 4.5 we have (i) £=) (ϋ) 44 (v). Finally

Theorem 4.3 (a) (resp. (b)) and Corollary 3.4 (resp. Corollary 3.6) imply

that (i) φ (xii) (resp. (ii) & (xi)).

PROPOSITION 4.7. For a Cauchy regular inductive limit E = lim Em,

the following conditions are equivalent:

( i ) E is a Silva space;

(ii) E is a Schwartz space;

(iii) E is a Montel space.

Proof, (i) :=> (ii): Since E is Hausdorff and quasi-normable, it is

enough to show that every bounded subset of E is precompact. Given a

bounded subset L of E, there exists meN such that L is contained and

bounded in Em, hence, if we denote by B the unit ball of Em, there exists

r > 0 such that rL c B. From (i) it follows that jm(rL) = rjm(L) — rL is

relatively compact in Em+l9 whence L is a precompact subset of E.

(ii) φ (iii): Let L be a bounded subset of E. By (ii), L is a precom-



110 JORGE ARAGONA

pact subset of E, hence L is a relatively compact subset of E, since E is
complete by Proposition 4.2, (c).

(iii)=>(i): It is enough to show that there exists a subsequence
(EmXeN of (Em)meN such that the inclusions ht: Emi -> Emί+1 are compact
for all ieN. We take m0 = 0 and suppose mu - —,ms are defined such
that m«, < mi < < ms and such that the inclusions ht are compact for
i = 0,1, , s - 1. Let JB be the unit ball in Ems, then the set in£B) = JB
is bounded in E, hence by (iii), B is relatively compact in E. It follows
that there exists peN, p> ms such that B is contained and relatively
compact in Ep. We define then ms+ί = p.

EXAMPLE 5. An infinite dimensional complex Banach space is a trivial
example of a Cauchy regular inductive limit which satisfies the equivalent
conditions of Theorem 4.6 but which is not a Silva space.

EXAMPLE 6. Let X be a metrizable Schwartz locally convex complex
space and let if be a compact subset of X. Then (Jίf(K); ̂ J is a Silva
space (see [Bi-Me] and [A-Mu]). Since X is in particular quasi-normable,
(^f(K); ^ω) is a Cauchy regular inductive limit, hence this space is an
example of a Cauchy regular inductive limit which satisfies the equivalent
conditions of Theorem 4.6.

EXAMPLE 7. We shall show that there exist Cauchy regular inductive
limits which are not holomorphically bornological. For this we consider
the following example (see [BMN], Example 18). Let XQ be an infinite
dimensional complex Banach space and let (Xm)m>ι be the sequence defined
by Xm = C for all m > 1. We set

E = © Xm and Em = © Xt , for all m e N .
0 i 0

©
m=0

We consider every Em equipped with its natural Banach structure and
we endow E with the locally convex direct sum topology. It is easy to
see that this topology on E coincides with the inductive topology for the
sequence of inclusions

i«: (*o, '-',xn)eEn ι—> (xQ, , xn9 0, 0, •) e E .

By using well-known properties of locally convex direct sums, it follows
that E = lim Em is a Cauchy regular inductive limit. On the other hand,

this space is not holomorphically bornological, as is proved in [BMN],
Example 18.
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We shall end this section with a characterization of Cauchy regular

inductive limits which are not metrizable.

DEFINITION 4.8. We say that a Cauchy regular inductive limit E =

lim Em is proper if Em Φ E for all meN.

Clearly a proper Cauchy regular inductive limit is not a normed

space. Indeed, assume that E is normed, then by Proposition 4.2 (c), E

is actually a Banach space. Since E is a proper Cauchy regular inductive

limit it follows that, for all meN, the inclusion im:Em->E is not sur-

jective. Hence, by the open mapping theorem, Em is meager in E for all

meN and since E is the union of the sequence (Em) it follows that E is

the union of a sequence of rare sets. This is a contradiction.

PROPOSITION 4.9. For a Cauchy regular inductive limit E = lim Em the

following conditions are equivalent:

( i ) Em Φ E for all meN (i.e. E is proper);

(ii) There exists a subsequence (Emi) of (Em) such that Emi Φ Emi+1

for all ie N;

(iii) E is not metrizable.

Proof. The implications (i) :=> (ii) and (iii) =̂> (i) are trivial. For (ii)

:φ (iii) apply de Mackey countability condition.

§5. Miscellaneous results

Our first objective in this section is to find a sufficient condition on

a Cauchy regular inductive limit so that it is not holomorphically born-

ological. We shall need the following lemma.

LEMMA 5.1. Let U be a non-void open subset of a locally convex space

E, let F be a locally convex space, let fe^fD(U;F) and ξeU. Then, the

following conditions are equivalent:

( i ) f is continuous at ξ;

(ii) f is amply bounded at ξ;

(iii) For every 8 e CS(F), there exists a e CS(E), a Φ 0 such that,

a) 1/τn! dmf(ξ)e0>(mEa; Fβ), for all meN.

Proof. That (i) =̂> (ii) is clear. We shall prove that (ii) => (iii). Assume

first that F is Hausdorff. Given β e CS(F), since / is amply bounded at

ξ, there exists a e CS(E), a Φ 0 such that
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BaΛ(ξ) and S = sup {β(f(x)) [ a(x - f) < 1} < oo .

Since ξ + λte Batί(ξ) for all Λ e C, |J| < 1 and all t e Ba>1(0), by the Cauchy
integral formula we have

V
m!

< S for all m e N ,

which proves (a) and (b) in this case. Assume now that F is arbitrary.
Let F be the Hausdorff space associated which F and let q: F—• F be the
canonical map, then we have

Given βe CS(F), let /3e CS(F) be the seminorm defined by ~β°q = β, then
by the preceding case, associated to /} and /, we can find a e CS(E) such
that

1
ml

E«; Fβ) , for all m e N

and

sup
N I m!

which implies the statements (a) and (b).
(iii) ^ (i): Fix any β e CS(F). We denote by r: Fβ -> F/jS the canonical

map and we denote by /3 the norm induced by β on F/β. Let g = r©/.
By (iii) there exists a e CS(E) such that

ml

and

S = sup
meiV

-dmg(ξ)

for all m e N

. < oo .

Since ge JfD(U; F/β), if V is a ί-equilibrated neighborhood of ξ in Ϊ7, we
have

g(x) = Σ
ml

- ί) , pointwise in V.

Given ε > 0, let r be a real number such that 0 < r < 1 and Sr(l — r)"1

< ε, then for all x e JBβ,r(£) Π V, we get
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β(f(χ) - f(ξ)) = β(g(χ) - g(ξ)) < Σ< Σ ml

< Sr(l - r)"1 < β .

PROPOSITION 5.2. Let E = lim iζ, 6β α proper Cauchy regular inductive

limit and denote by Bv

r the open ball of center 0 and radius r in the space

Ev for all veN. Assume that the following conditions is fulfilled:

( * ) There exists a normed space G, there exists a sequence {Pm)meN where

Pm e0>(mE; G) for all meN and there exists r > 0 such that:

(a) The series

is pointwise convergent for every xe Bv

r and all v e N.

(b) For every a e CS(E) we have

sup| |P m | | α =oo .
meN

Then9 E is not holomorphically bornological.

Proof. We shall construct an open subset W of E and a D-holomorphic
mapping / of W into G such that / is discontinuous. Since \\jv\\ = 1 for
all veN we have Bv

r c Bv

r

+1 for all veN. Hence V, the union of the se-
quence (Bv

r)veN, is a neighborhood of 0 in E, we set W = V. Clearly the
series

Σ
0

Pm(x)
)

is pointwise convergent for all xeV, hence we can define a mapping

/ r x e W i — > j ] P m ( * ) e G .
ra = 0

We shall show that / is algebraically holomorphic. Let S be a finite
dimensional linear subspace of E, then there exists k e N such that S c
Ek. Fix £ e W Π S, it is enough to prove that there exists an open
neighborhood A of ξ in W Π S such that / | A e ^(A; G). Clearly, there
exists 7z > k such that £ e B*. Consider, for all v e N9 the mapping

gv:xeB;ι—• f; (Pm|Ev)(x)e G .
m=0
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Hypothesis (a) implies gv e Jf(Bv

r; G) for all v e TV. Since Bn

r Π S and W Π

S are open sets in S containing ξ, the set

A = Bn

r n w n s

is an open set in S containing ξ and, since

it follows that fe J?a(W; G). Next we set Wv = W Π Ev for all v e TV and

we shall show that

fv = f\Wve ^(Wv; G) , for all v e N .

Fix any v e TV. Since fe jea(W; G) we have fv e ^a(W; G) and, since Wv is

a connected open set in Ev, by a classical theorem of Zorn, it is enough

to show that the set X of points of continuity of /„ in Wv is non-void.

Indeed, this results follow from the two statements:

gv e ^(B;; G) and f\ W Π Rr = gv\ W Π Bj

which proves that 0 Φ W Π Bv

r a X. Hence /e ^cίVF; G). Indeed, if K is

a compact subset of W, there exists v e TV such that K is contained and

compact in Wv = W Π £?,. Since /, = / | VF, e Jf (Wv; G) it follows that /(if)

is bounded. We shall show finally that / is discontinuous. By the uni-

queness of the Taylor expansion, we have

Pm = - J L > / ( 0 ) , for all meTV.

Hence, given a e CS{E), a ΦQ, hypothesis (b) implies

sup
mβiV ml

= oo

which implies, by Lemma 5.1, that fejf(W; G).

In the following result we denote by

the space 0>(mE) endowed with the inductive topology defined by the

identity maps id: 0>(mEa) -+0>(mE). We denote jf(K) (resp. Jf(K; Y)) the

locally convex space (^r(K);^ω) (resp. (34?(K; Y); yj) of holomorphic

germs on K with complex values (resp. with values in Y), endowed with

the topology &*9.
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PROPOSITION 5.3. Let E be a locally convex space, let K be a compact

subset of E and assume that Jf(K) is holomorphίcally bornological. Then:

(a) ^(("S)), is holomorphίcally bornological for all meN.

(b) // E is metrizable and distinguished, then the strong dual Ef

h of E is

holomorphically bornological.

Proof, (a) The space {^(mE))t is a quotient of 3tf(K) (see [A-Mu],

Proposition 1), hence this statement follows from the fact that every

quotient of a holomorphically bornological space is holomorphically born-

ological.

(b) The assumption on E implies that E'h is isomorphic to E- =

{^E))i (see [A-Mu], Corollary of Proposition 1), hence the result follows

from (a).

PROPOSITION 5.4. Let X be a complex normed space, let Y be a com-

plex Banach space and let K be a compact subset of X. Then, the follow-

ing conditions are equivalent:

( i ) JP(K; Y) is a Silva space;

(ii) X and Y are finite dimensional spaces.

Proof. That (ii) =Φ (i) is well-known, so it remains to show that (i) =>

(ii). The hypothesis implies that Jf (K; Y) is a semi-Montel space, hence

the Banach space J£(X; Y) is also a semi-Montel space since J£(X; Y) is a

closed subspace of Jf(K; Y) (see [Ch], Proposition 7.2).

If U is a non-void open subset of a complex locally convex space E

and F is a complex Banach space, we denote by

JP-(U; F)

the complex Banach space of all bounded holomorphic mappings of U into

F.

LEMMA 5.5. Let E be a complex metrizable locally convex space and

let F be an infinite dimensional complex Banach space. Assume that U

and V are non-void open subsets of E such that V c U. Then the restric-

tion map

j:fe 3f~(U; F)ι—>f\ Ve Jf~(V; F)

is not compact.

Proof. Let B be the open unit ball of tf?°°(Ϊ7; F) and assume that j is

compact. Fix any ξ e V, then it is clear that the mapping
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uιfe#~(y;F)\—>f(ξ)eF

is linear and continuous. Since j is compact, j(B) is relatively compact

in J^°°(V;F)9 hence the set

is relatively compact in F. On the other hand, the composed map

υ=uoy.fstf-{U\F)\—>f{ξ)eF

is linear, continuous and surjective and v(B) = B(ξ). By the open mapping
theorem, it follows that i; is open, hence B(ξ) is open in F. This is a
contradiction, since F is infinite dimensional.

PROPOSITION 5.6. Let K be a compact subset of a metrizable complex
locally convex space E and let F be an infinite dimensional complex Banach
space. Then 34?(K; F) is not a Silva space.

Proof. Since E is metrizable, K has a decreasing countable basis of
open neighborhoods (Um)meN and

Assume that 3f(K F) is a Silva space. Then, there exists an increasing
sequence (Bp)peN of complex Banach spaces such that the following state-
ments are fulfilled:

( I ) Jf (K; F) is the union of the sequence (Bp).
(II) The topology 2Γω on tf (K; F) is the inductive topology defined

by the inclusions Bp <=—> tf?(K; F) (p e N).
(III) For all p e N, the inclusion ip: Bp =—• Bp+1 is compact.
By a well-known result of Grothendieck (see [Mu], Proposition 1.4)

for every m e N there exist p =pmeN and a continuous linear mapping
up such that the following diagram

tf~(JJm;F)
π

commutes. The same argument applied to Bp+1 shows that there exists
n 6 N and a continuous linear mapping v such that the following diagram
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commutes. Since the sequence (Jf°°(Uv; F))veN is increasing, we may as-
sume that n> m. Hence we have a restriction map

and a commutative diagram of linear continuous mappings:

Up

; F)

Bυ

Bp+ι

Hence, we have j = vnoipo up and, since ip is compact, it follows that j
is compact. This is a contradiction, in view of Lemma 5.5.
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