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TWO ALGEBRAIC DEFORMATIONS OF A K3 SURFACE

DANIEL COMENETZ

Introduction

Let X be a nonsingular algebraic KS surface carrying a nonsingular
hyperelliptic curve of genus 3 and no rational curves. Our purpose is to
study two algebraic deformations of X, viz. one specialization and one
generalization. We assume the characteristic Φ2. The generalization of X
is a nonsingular quartic surface Q in P3: we wish to show in § 1 that
there is an irreducible algebraic family of surfaces over the aίϊine line,
in which X is a member and in which Q is a general member. The
specialization of X is a surface Y having a birational model which is a
ramified double cover of a quadric cone in P\ It has been observed [19]
that such a specialization exists; what we propose to show is that there
are two different ways to get to it, that is there are two non-isomorphic
irreducible algebraic families S?, £f* of surfaces over the affine line, each
having a surface Y as a member and having X as a general member. In
fact it is shown in § 3 that the "elementary operation" (cf. § 2) in the
known family £?, along a single, nonextending nodal curve R on Y (i.e.
R is a non-singular rational curve with self-intersection —2 on Y), exists
algebraically—it is always defined analytically, [3], [9]—and defines a
birational transformation η of Sf. The image &** — rjζS?) is an algebraic
family over the affine line, not isomorphic to Sf but having the same
members. We remark that, while £f and ^ * can be regarded separately
as families of polarized surfaces, in the sense of [13], the birational cor-
respondence η between them does not respect any structure of polarization
of general members; hence there is no conflict with Theorem 2 in [15],
even though η induces an isomorphism between general members X but
the graph of η does not specialize to the graph of an isomorphism between
special members Y. To establish the existence of η we apply a theorem
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of Lascu [12] about algebraic blowing-down along ruled divisors.
This result, existence of 37, is in the spirit of part of the work [3] of

Burns and Rapoport where (besides the main theorem) it is shown that
elementary operations are "the main reason for the phenomenon of non-
separatedness in the moduli of unpolarized non-ruled algebraic surfaces
over C."

In § 2 and in the Appendix we discuss algebraic elementary operations
a little more generally than is required for our example. Elementary
operations are always defined in the analytic case, as mentioned above,
but the question of existence in the algebraic case seems delicate.

The author wishes to express his sincere thanks to Igor Dolgachev
for several helpful conversations.

§ 0. Preliminaries

0.1. Here we fix notation for certain surfaces which will be used
frequently. In the first place we recall two well known ruled surfaces,
denoted Fo and F2. Let 0 = (Ppι. Fo is, equivalently, P1 X P1; P{Θ(—1)
®Θ(—Ϊ)) (or P((P(ή) φ Θ{n)), any n); SL nonsingular quadric surface in P\
F2 is, equivalently, 2 copies Uu U2 of P1 X A1 with coordinates (ζ4, zt)
i = 1, 2, identified by ζ2 = z\ζu z2 = zf1; P(0(—2)φ0); the minimal de-
singularization of a quadric cone in P3 Fo carries 2 linear pencils of
lines, or rulings, denoted by (£} and <O> where ί is a line in the pencil
<•#>. F2 carries a single ruling, denoted (£), and a nonsingular rational
nodal curve b with 6(2) = — 2. Δ denotes a curve on either surface, a
nonsingular member of Λ(£ + t')™ in the case of Fo, and of Λ(2£ + b)
on F2—Δ is a veritable conic; Δ on Fo is called the diagonal; Δ(2) = 2 in
both cases. Let Jί denote, either 0(—2)Θ0 or ^ ( - l ) θ ^ ( - l ) ; in both
cases there is**} an exact sequence 0-> O(—2) -> Jf-* (P->0 of sheaves
on P\ and the sub-invertible-sheaf 0(—2) c Jί corresponds to Δ on P(Jf).

We shall also have to deal with 2 types of K3 surfaces, denoted by
X and y. These are nonsingular, finite double coverings of Fo and F2

respectively, with nonsingular branch curve B — 4Δ. The reader may con-

*> Λ(X) denotes the complete linear system of positive divisors linearly equivalent
to a divisor X, on a variety;

**> In the 2nd case, switch to vector bundles and note that
ft ON it- -Iψ ψ 0W
Vo t) vi 0Λ0 lΛί 1/

where t denotes a non-homogeneous coordinate on P1.
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suit [16], [20], [4], [19] for numerous facts and details as to these surfaces.

They can be constructed as follows (see also the review of double covers

below).

Fix a nonsingular curve B in the complete linear system Λ(4J) on

Fn, n = 0 or 2. B is irreducible and, in the case of F2f B f] b is empty.

Let s be the section of ΘFn(4Δ) corresponding to B. (We can think of s

as being induced on Fn in P 3 by a homogeneous form of degree 4 in P\)

Now s defines an 0Fn-algebra structure «s/n in ΘFn® ΘFn(—2)f determined

uniquely by choice of s, i.e. choice of B. X is then by definition SpecFo(j/o)

and Y is SpecF2(s/2).

Suppose X and Y are so constructed as double covers. Then X

carries two complete linear pencils {E}, (E'} obtained by pulling back

<•#>, (£'} from Fo; a. general member of either pencil is a nonsingular

curve of genus 1, and every member is irreducible (since B is nonsingular).

A general member of A(E + Ef) is a nonsingular hyperelliptic curve of

genus 3 so these are the KS surfaces X mentioned in the Introduction.

Y carries one similar pencil <Z?> and 2 nodal curves R, R with π(R) = b

= π(R), where π : Y—>F2 is the covering map. R Π R is empty since π

does not ramify over b, and I(R, E) = 1 = I(R, E).

Conversely, given a K3 surface X carrying nonsingular curves E, E'

of genus 1 with I(E, Er) = 2 and every member of (E) and (E'} irreducible,

the complete linear system Λ(E + Ef) defines a finite double covering

X->F0 branched over a nonsingular curve B~AΔ, and a general member

of Λ(E + E') is a nonsingular hyperelliptic curve of genus 3. Under

similar assumptions we get a finite double cover Y-+F2 with nonsingular

branch using Λ(3E + R + R) for instance—note that the mapping defined

by A(2E + R + R) collapses R + R to a point.

In passing we mention the relation between change of branch curve

and change of surface. By a marked KS surface of type x (resp. type y)

is meant a KS surface X carrying curves E, Ef (resp. a KS surface Y

carrying curves E, i?, R) as above, together with a complete linear system

Λ(E + E') (resp. Λ(E + R + #)) on it. An isomorphism of marked surfaces

of given type must by definition preserve the linear system up to numerical

equivalence. Then one can show that there is a bijection between the

set of classes of nonsingular branch curves B on Fo (resp. on F2) modulo

biregular automorphisms of Fo (of F2), and the set of marked KS surfaces

X (resp. Y) modulo isomorphisms of the marked surfaces. We do not
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use this result, but employing it one can "count" 18 moduli for X, 17

moduli for Y. Of course a nonsingular quartic surface in P 3 depends on

19 moduli.

As to finite double covers generally, we shall need the following facts.

Some references are [25], [4], [8], [19]; we follow the last in particular.

Let S be a nonsingular variety. A finite double cover of S is a variety

X and a finite, flat, morphism p : X-+S of degree 2. An isomorphism /

between two such covers (X,p) and {X\pf) must respect the covering

morphisms, i.e. we must have p = p'°f.

Suppose S is complete. There is a bisection between the set {(X,p)}

of finite double covers of S, up to isomorphisms, and the set of pairs

{(£), s)} where D is an effective divisor on S and s is a section of (PS(2D), up

to scalar multiples of s, and linear equivalence of D and automorphisms of

S. Moreover, given (Z), s), the divisor B defined by s — 0 is the branch

locus of p. X and B are each nonsingular just when the other is.

If S is not complete, s is determined up to elements of (H°(S, (9S)*)2.

X is handily constructed as follows ([19]; [6] Π.1.3). Let (D, s) be

given, s defines an (^-linear map Θs{—D) ® #s( — D)->ΘS, that is an Θs-

algebra structure s/ on the locally free ^-module 08@08( — D) of rank

2, and the ^-algebra structure is determined uniquely up to ^-algebra

isomorphisms by choice of s. X is then Spec5(j^) and p*Θx — si.

The idea of this procedure is to find X as a divisor in the line

bundle [D], with local equations w\ = si9 where wt is a local fibre coor-

dinate in [D] and st = 0 is a local equation for B, with respect to a

suitable open cover {t/J of S.

0.2. We sometimes employ notational conventions of [26], particularly

in the following situation. Suppose / : V—> W is a mapping of varieties—

not necessarily a morphism—and X is a cycle on V, (The support of X

is simple on V by definition of a cycle.) Let Γ C V X W be the graph

of / and suppose Γ is simple on V X W. Then /(Z) denotes the algebraic

image of the cycle X, defined by f(X) = prw[Γ-(Xx W)] ([26]); when / is

a morphism this is the direct image f*(X) ([24], Ch. 5). Moreover, when-

ever Y is a cycle on W, f'KY) denotes the algebraic counter image of

the cycle Y, defined as prv[Γ-(V X Y)]; and when / is a morphism and

W is nonsingular, this is the reciprocal image /*( Y), that is the alternating

sum of cycles of the sheaves &Ό<ti((9v,f*<!}y), cf. [24].
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§ 1. Specialization of a quartic surface in P3

Let a K3 surface X be given as described in (0.1): there is a finite

flat morphism π : X—> Fo of degree 2, branching over an irreducible non-

singular curve B in the complete linear system Λ{AΔ). We begin with

finding a suitable projective model for X.

PROPOSITION 1. (a) Suppose π : Z-+ S is a finite, flat morphism of

degree 2 between a pair of complete nonsingular surfaces Z, S. Let B be

the branch curve of π on S and D a curve on S with 2D~B. Assume

that D is very ample and, when ψ — φD is the embedding defined by Λ(D),

S' = <p(S) is a surface in PN~ί on which the linear system cut by quadric

hypersurfaces in PN~ί is complete. Regard P^" 1 as a linear subvariety of

PN and let S* be a cone in PN projecting S ' from a point v not in PNί.

Then there is a quadric hypersurface W in PN such that Z is ίsomorphίc

to WS*.

(b) In the other direction, let S be a nonsingular surface embedded

in PNί so that it is protectively normal. Regard PNί as a linear subvariety

of PN and let S* be a cone in PN projecting S from a point v not in PN1;

S* is normal. Let W be a quadric hypersurface in PN not passing through

v; then W and S* intersect properly in PN; suppose that Z= W-S* is

nonsingular. The projection from v induces a finite flat morphism π : Z

-> S of degree 2; and when B is the branch curve on S we have that B

~ 2D, where D is a section of S by a hyperplane in PN~\

Proof, (a) By assumption there is a form Gf of degree 2 in PN~X

such that the homogeneous equation G' = 0 defines the curve B' = ψ{B)

on the embedded surface S' in PN~\ Assume υ — (0 : : 0: 1), say PN'X

is defined in PN by the homogeneous equation XN = 0, let G = XI — Gf,

and take W to be the quadric defined by G — 0. v is not on W. Let

Z/ = W' S* and let π' : Zf -» S' be the morphism induced by projection

from v. πf is finite ([17], p. 246) and flat (ibid. p. 432) and clearly branches

over B'. So, identifying S' and B' with S and B, we have that π : Z

-> S and τr7 : Zf -> S" are both finite double covers of S with branch locus

B; but there is just one of those up to isomorphisms (0.1).

Remark that the pointless cone S* — v is canonically identified*} with

the line bundle Θs(l) = [D] so under the hypotheses of (a) the general

s a m e transition functions serve to identify, both fibre coordinates in the
bundle, as well as generator coordinates in the cone with value oo at v.
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double-cover construction of (0.1) is realized in one projective space. For

this to be possible it is at very least necessary that B be connected, as

part (b) shows.

(b) We have to show that B ~ 2D. Let p : S* -> S be the projection

from the vertex; π is the restriction of p to Z and is a proper morphism.

Let Ks be a canonical divisor on S and let H be a section of S* by a

hyperplane in PN. A canonical divisor on S* is found directly to be

p'^Kg) — H, so by adjunction on the normal cone S* we have that Kz

— Z'(p~\K^) + H) is a canonical divisor on Z, using that Z = W S* ~

2ff. Now we can take for if a divisor p'^Hg), Hs a hyperplane section

of S in P V 1 . Then Kz = Z {p~\Ks + Hs)). Let j : Z-> S* be the injection

mapping and let q be the restriction of p to S* — u; then TΓ = #oj and

TΓ'Xiζs + i?s) = j-\q~\Ks + iίs)), [26] p. 238. Furthermore, the latter cycle

= Z (q~\Ks + Ήs)) = Z(p~\Ks + Hs)l Thus Kz = π~\Ks + Hs) so π(Kz)
= 2KS + 2HS — 2KS + 2D. But the branch curve B is linearly equivalent

to π(Kz) — 2KS (the characteristic Φ 2) so J5 — 2D.

Let a if 3 surface X and map π : X —• Fo branched over I? be given

as above. The complete linear system Λ(2J) on Fo defines a nondegenerate

embedding of Fo into P 8 ; call S this model of Fo. S is projectively normal

in P8. Regard P 8 as a linear subvariety of P 9 and let S* be a cone in

P9 projecting S from a point not in P8. Our proposition shows that there

is a quadric hypersurface W in P 9 such that X is isomorphic to W- S*.

We observe that S and S* can be taken to be rational over the prime

field. Note also that W does not contain S.

This is the desired projective model of X. It was essentially displayed

in [22] p. 253.

Next we propose to deform S* to a projective model of P3, using the

following intuitively simple procedure (cf. proof of Bezout's theorem in

[17]). Here (Yo, , Ym) denote homogeneous coordinates in Pm and Ht

is the hyperplane defined by setting Yt = 0. k is an algebraically closed

field of definition for the variety V. A is the affine line.

PROPOSITION 2. Let Vn be a nonsingular variety embedded in Pm.

Fix r < n. Assume that V and the r hyperplanes Hm_r+1, , Hm intersect

properly in Pm and that every component of Fn~r = (VΉm_r+ί9 , Hm) has

multiplicity one. Let F * denote the n-dimensional cone projecting F from

the center Z/"1 defined by setting Yo = = Ym_r = 0. Let t be a variable

quantity over k and regard t as a generic point of A over k.
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Then there exists a linear automorphism Tt of Pm, rational over k(t),

and a variety ynJrλ on Pm X A, rational over k, such that when we set

Vt = Tt(V\ then

Vtχ t = y . ( P m x f),

F * x 0 = τ^ (Pm x 0).

Proof. Define Tt by setting Zt = Yt for 0 < ί < m - r, Zό = (1/0 5̂

for 77Z — r + 1 < 7 < m.

Let M be a generic point of Vt over k(t) and define ^ n + 1 to be the

locus of M X t over the algebraically closed field k, on Pm X A. Then

^•(PT O X t) = Vt X t by Th. 6, Ch. 8 in [26].

Let {^(Y) = 0} be a set of homogeneous equations for V/k. Then

{Fμ(Y0, , Ym_r, *YTO_r+1, , tYm) = 0} is a set of homogeneous equations

for VMt\ Let G,(7; Γ) = Fμ(Y0, . . . , Ym_r, ?Ύm_r+1, , TYJ (Γ is an

indeterminate). We have that the zeros-set &({Gμ}) 3 Ψ* since Gμ(M; t)

= 0 and the Ĝ  are ^-rational polynomials. Therefore &({Gμ}, T) Z) ̂  Π

P m X 0. Since P m is complete, ^ is complete over every point of A so

f Π P m X 0 is nonempty; then any component has dimension at least n.

Now {FU(YQ, , YTO_r, 0, , 0) = 0} is a set of equations for the cone F *

in P m . Then certainly &({Gμ}, T) c F * X 0. By the hypotheses, F * is a

purely λi-dimensional cycle. Therefore each component of °Γ (Ί Pm X 0

is a component of F * X 0.

Now let F*' be a component of the cone F * ; F * ; is a cone with

center L. F * projects F from L which is disjoint from the linear span

of the base F; then projection from L defines an isomorphism of F (i.e.

F and F * have essentially the same defining equations); consequently

F' = F* 7 Π F is the uniquely determined component of F such that F * r

is the cone F 7 * projecting Ff from L. Hence, as F is defined over the

algebraically closed field k, there is a point w' in F' which is ^-rational

and lies on no component of F * except F*\

F is left pointwise fixed by Tt so Ff lies on Vt. Then υ! is a speciali-

zation of M over &(£), hence u' X ί is a specialization of J l ί x ί over £.

Therefore u' X teiΓ. We'll show that w ' x O e f . Suppose z/ has a

representative on the afϊine piece of i^ where YjφO—call it u'j. Assume

that h(up t) = 0, h being a polynomial with coefficients in k. As a poly-

nomial in t with coefficients in k[u'] = k, h vanishes identically since t

is variable over k. Then h(u;

ό, 0) = 0 too; hence u' X t-> u' X 0 ref. k,
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so ί ί ' x O e f . Hence uf X 0 e "T Π Pm X 0. By choice of ιΐ and the

result in the previous paragraph but one, the component of f Π P m X 0

containing w ' x O must be F * ' X 0. Hence F * ' X 0 is a component of

-r n pm x o.
Thus ^ . ( P m x 0) and F * X 0 have at least the same components.

To show that the coefficient of a component F * ' X 0 is unity in Ϋ~ >{Pm

X 0), we may show that f and P m X 0 are transversal at some point of

F * ' X 0 on P m X A. We compute the rank of the Jacobian matrix for

the equations induced by {T = 0, Gμ = 0} on a convenient affine piece of

P m X A: the rank should be m — n + 1. By hypothesis there is some point

z of F; where, on a suitable affine piece of P m , the rank of the Jacobian

matrix for the equations induced by {Fμ = Ym_r+1 = = Ym = 0} is

m — n + r. By rearranging [0,1, , m — r] as needed we may take the

affine piece where Yo Φ 0 (since Ym_r+1 = = Ym = 0). Set yt = YJYo.

Then, the rank \\dFμldyt\\, 1 < i < m — r, is m — 7i at z. Consequently, rank

\\dGμldyi\\, 1 < i < m — r, is m — n at (2, 0) since dGJdy^z, 0) = dFJdyt{z)

for such i. Then the rank of the matrix for the equations induced by
{T = 0, Gμ = 0} is m - n + 1 at (*, 0) e F*' x 0. This ends the proof.

COROLLARY. Let k0 be the algebraic closure of the prime field. Let

S/kQ be a nonsingular surface in P8, which is the reembedding of a quadric

surface So in P 3 by the linear system of quadrίcs in P3. Regard P 8 as a

linear subvariety of P 9 and let S* be the cone projecting S from a point v

not in P 8. Let t be as in the Proposition.

Then there is a variety Vt in P9, isomorphίc to P 3 over ko(t), and a

variety Ϋ"4 in P9 x A, rational over k0, such that Vt X t — Ψ* (P9 X t),

S* x 0 = ^ . ( P 9 x 0).

Proof. We may assume that S is contained in the hyperplane H

defined by Y9 = 0 and that υ = (0 : : 0 : 1). In the vector space of forms

of degree 2 in P3, choose a basis of forms σ09 , σQ rational over k0 so

that So is defined by σ9 = 0 in P3. Let V/kQ be the image of P 3 when it

is embedded into P 9 by the map Yt = σt, 0 < i < 9, and change σfl, , σ8

if necessary so that S is the image of So by the same map. Then V H

= S.

Define Tt by Tt(Y0, ., Y9) = (Yo, . . , Y8, (l/ί)Y9) and put Vt = Tt(V).

Then Vt is isomorphic to P 3 over ko(t). The Corollary follows when we

put m — 9, n = 3, r = 1 in the Proposition.
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Now let S/k0 be as in the Corollary. We have seen that there is a quad-
ric hypersurface W in P9 such that our KS surface X is isomorphic to W- S*.
Let k = k = def (X, W, S), let t be variable over k, and let Vt be as in
the Corollary. The Corollary shows that in fact S* is a specialization
of Vt over k, as cycles in P9/k, at least in the sense of cycles on product
varieties, [26]. W is rational over k, so (S*, W) is a specialization of
(Vt, W) over k. Then S* VFis a specialization of Vf W over k, [23] p. 104.
Since the former is irreducible and nonsingular, the latter is also. As
Vt-W = VTj\W) over k(t), Vt- W is isomorphic to a quartic surface in
P3, by definition of V as a reembedding of P3 by quadrics. Setting Q
= Vt W, we have shown all but the final sentence of the following.

THEOREM 1. Let a KS surface Xjk be given, as above, and let t be
variable over k. There exists a surface Q/k(t), isomorphic to a nonsingular
quartic surface in P3, such that X is a specialization of Q over k.

Moreover, take for basic polar curves (in the sense of [13]) on the sur-
faces a nonsingular non-hyperelliptic curve C of genus 3 on Q, and a
nonsingular hyperelliptic curve D of genus 3 on X. Then the specialization
Q -> X is a specialization of polarized surfaces.

Proof. Let U2 c V be the image of a plane in P3 by the isomorphism
P3 =Ϊ V, and set Ut = Tt(U). U H = UrH is a twisted quartic curve R
(= nonsingular rational curve spanning a P4). We may assume that
UtVtQ is isomorphic to a nonsingular quartic curve in P2, of genus 3.
In the course of the specialization of F( to <S*, Ut will specialize to a
2-dimensional cone i?* projecting R from v, by Prop. 2 (Ut is a Veronese
surface). Now QVtUt = (W P9Vt) VtUt = W-P9Ut and similarly XS*R*
= (WpsS*)'S*R* = Wp9R*. Then, by compatibility of specialization with
intersection product, we may take QVtUt for C, and X 5*i2* for D.

§2. Algebraic elementary operations

2.1. A curve R on a surface S is called a nodal curve if S is non-
singular at all points of R and R is an irreducible nonsingular rational
curve with self-intersection —2 (terminology of [3]).

Let C be a nonsingular curve, let y3 be a variety and let p : £f -* C
be a proper morphism defining a family of nonsingular surfaces. Let 0
be a point of C, rational over a field of definition for p, and suppose that
S = p'^O) carries a nodal curve i? with does not extend locally in Sf,
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that is a relative divisor in some neighborhood U of R in £f. An algebraic
elementary operation in £f along R is a birational transformation η : Sf —> ϊf*
such that ^ * carries a nonsingular rational curve i?*, 37 induces a bi-
regular isomorphism between Sf — i? and 5 *̂ — B*, and the total 37-trans-
form of any point of R is the whole curve R*. Let p* = poη-\ We have
that p*"1^) = ψp-\0) = ηS ([26] p. 238); call S* the surface p*"1^). We
shall assume as part of the definition that S* is normal. Let / be the
mapping / : S —> S* induced by .̂ Clearly JB* lies on S* and / is birational
and biregular between S — R and £* — R*. Moreover / is defined at R
and at i?*. Let us see that / is biregular at all points.

It is enough to show that, if / is not everywhere biregular, R must
be exceptional for /, i.e. the geometric image of R must be one point of
22*, since in fact i?2< —1 precludes that R be exceptional, [29] p. 76. For
this it suffices to show that if either / or f-1 is everywhere defined, then
so is the other map. For then if / is not everywhere biregular, f~λ is
not everywhere defined; hence f~ι is not defined at some closed point P*
of i?*; hence there is a component D of Γf (Ί (S X P*) of dimension 1,
on account of the normality of S* (Zariski's main theorem, [27]; cf. [26]
pp. 200, 313). D clearly projects onto R so f(R) = P* since / is defined
at R, and R is exceptional for /.

So suppose / is a morphism. Let k be a field of definition for /, R
and i?*, and let P* be a generic point of i?* over k. /-1(P*) cannot be
a closed point of R since / is a morphism, hence f~ι(P*) is a generic point
P of R over k. Then f(P) = P* so f~\P+)φP for any ^-closed point
P + of Jϊ*. Z"1 must then be finite-valued at every point of i?*, hence a
morphism by Zariski's main theorem again.

Thus / is an isomorphism and S* is nonsingular, if S* is normal.
(R could be called "a fundamental curve of 2nd kind", [27] p. 516, in Sf.)
The graph of η contains R X R*, and iϊ* is a nodal curve on S*, so
algebraic elementary operations are reflexive operations.

We shall try to perform algebraic elementary operations following the
procedure of Horikawa in [9], which we now recall.

Let Jί be the sheaf of germs of sections of the normal bundle of R
in £f. Jί is a sheaf extension of ΘR(—2) by ΘR> i.e. there is an exact
sequence 0-> ΘR(—2)-^Jf-+ ΘR-^0 of sheaves on R; the group of such
extensions is ExtJs(0Λ, ΘR{ — 2)) ̂  H\R, ΘR(—2)) which is one-dimensional
since R = P\ Hence there is just one nontrivial class of extensions; one
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sees directly (cf. (0.1)) that ΘR{ — 1) Θ0 Λ ( — 1) is a nontrivial extension so

there are two cases: either (a) Jf = ΘR{—2)® ΘR, or (b) Jί = ΘR( — 1)

0 0R( —1). Let us blow up along R in y7. Let π : 5^ -> £f be the monoidal

transformation. The exceptional surface E = P{Jί) is isomorphic (0.1) to

the ruled surface F2 in case (a), or to Fo in case (b). The sub-invertible-

sheaf ΘR{ — 2) C Jί corresponds to Δ on P(Jί), therefore the proper trans-

form of S intersects E in Δ, on Sfλ. Now Δ and b are disjoint in case (a),

hence in that case i?t = 6 is a nodal curve on the (reducible) member

PϊXO) of the family px : ^ -> C, where /?! = poπ. We may proceed to

analyse the normal bundle of R1 in S^Ί as before. If case (a) occurs again,

so does another nodal curve R2 lying on E2 in £f2 after blowing up—and

so on.

Consider the relation of the existence of this succession of nodal

curves Rn to the question whether R extends locally in ϊf. It is easy to

see that, if R extends locally then case (a) always occurs at each blowing

up. In the analytic case, Horikawa shows that the converse is true: if

R does not extend then case (b) must occur sooner or later. Indeed, in

the analytic case £f is analytically isomorphic along R to a reparametri-

zation of the "standard example" of Fo degenerating to F2, and the number

of monoidal transformations required to reach case (b) has a nice relation

to the reparametrization, [9].

But in the algebraic case we must, at least at present, simply assume

that case (b) occurs eventually when R does not extend locally in «$*.

(In the Appendix (A.I) a formal analogue of Horikawa's result is proved.)

So assume that after finitely many successive monoidal transformations

e9
?<-(9

?

1<- «- ^ n along nodal curves R, Ru R2, , Rn_ί we have a

variety ^n containing a "scaffolding" of transforms of exceptional surfaces

Eu E2, , En_u all isomorphic to F2, and "on top" an exceptional surface

E = En = Fo. Let {£) be the ruling on E (cf. (0.1)) consisting of blown-up

points of i?n_j and let (f} be the other ruling, and let p : E-> P1 be the

natural projection of E which collapses members of (f} to points of P\

We try to find a sequence of morphisms «$*«-* «^ί-i-> - > ^ * such that

^n->^ti induces p on E and ^*_!-> >¥* "dismantles the scaffold-

ing," that is blows down the transforms of En_ί,'-',E1. When such

morphisms exist, let TΓ* : £fn —> £f* be their composition and let π : Sfn -> 5f

be the composition of the first set of transformations. Then η = π*oπ~1

is an algebraic elementary operation in Sf along R.
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In what follows we shall use the results of Lascu [12] to find some
sufficient conditions for TΓ* and hence η to exist in the algebraic case.

2.2. Let X and Y be distinct irreducible surfaces embedded in a
nonsingular 3-fold V. Let C be an irreducible nonsingular curve in V, let
π : V —>V be the monoidal transformation in V along C and let E — π~\C)
be the exceptional surface in V. X and Y, being divisors, intersect pro-
perly in V; assume that C is a component of X- Y with multiplicity one,
and that every point of C is simple on X. Write X- Y = C + D. Call
X', Yf the proper transforms of X, Y in V'\ these intersect properly with
the divisor E; let A = XfE, B = YE.

PROPOSITION 3. Assumptions and notations being as above, the following
assertions are equivalent: (a) D intersects C at a single point P, simple on
D (C is nonsingular), and C and D have distinct tangents at P; (b) A and
B intersect with multiplicity one on E.

Proof. Call U the proper transform of D = X- Y — C. Let us see
first that Π = X' - Y\ Indeed, π induces an isomorphism between V' — E
and V — C, so 0 =< X' Yf — Π C E; suppose D* is an irreducible compo-
nent of Xf - Yf — Π. X and Y have distinct tangent planes at every point
of C except points of D (Ί C (criterion of multiplicity one, [26] p. 152), so
7r(Z)*) is supported by D Π C. But π induces an isomorphism on Xr since
X is nonsingular at all points of C, so in particular π cannot collapse
any curve D* on X1 to a point; hence D* = 0, so U — Xr- Yr.

Now it is clear that D intersects C at a single point, simple on Z),
with distinct tangents if, and only if, U and E intersect with multiplicity
one on V. On the other hand, AEB = (X'.E) JJ' E) = X'.(Y'.JS)
= (X' Y')E, so AEB = D'E; the proof is thereby finished.

Before deriving 2 corollaries we fix some notation for the remainder
of § 2. Let p : y -> C be a proper morphism defining an algebraic family
of nonsingular surfaces, as at the beginning of § 2, and suppose that
S = p'^O) carries a nonextending nodal curve R. Let π : Sf'-+Sf be the
monoidal transformation in S? along R and let E = ^"^i?) be the exceptional
surface. E is isomorphic either to Fo or to F2, (2.1). Call Sr the proper
transform of S in &>' and set // = p°π\ then p'-^O) = S' + JS.

Now suppose that E = Fo. Let <•#> be the ruling on £7 consisting of
blown up points of R, let <̂ 7> be the other ruling, and let Δ — Sr E be
the diagonal on E.
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COROLLARY 1. Let T be an irreducible surface in Sf and let Tr be its
proper transform in &". Assume T intersects properly with S and passes
through R. Then TS — R + D with R and D intersecting with multiplicity
one on S if, and only if, T' E is a member of the ruling (f}.

Proof By the Proposition (taking X = S), TS=R+D as stated
if, and only if, T and S intersect transversally along R and Tf E intersects
S'Έ with multiplicity one on E. On the other hand, let B = T E\
B > 0 so B is a member of (£'} if, and only if, the equations I(B, £)
= I(B, Δ) = 1 hold on E for some £ in (£). Now suppose B e (£'). Then
VE=B intersects S'Έ=Δ with multiplicity one on E. Moreover
there is £ e (£} such that B and Δ meet ί in different points. Let P be
the point of R corresponding to £. As B-J = (T'-E) J = T' £, I(B,£)
— 1 implies that P and hence R is simple on T, in fact that π induces
on T a mapping which is biregular at P' = T'•£, by [26] p. 258; and, as
B and Δ meet £ in different points, T and S have distinct tangent planes
at P. It follows that T S = i? + D as stated.

To finish the proof in the other direction we need only observe that,
if T and S intersect transversally along R then /(£, £) = 1 for at least
one ^e<7>.

We remark that, if the equivalent conclusions of the Corollary hold,
the proof shows that π induces on Tr an isomorphism to T, hence that
T is nonsingular at all points of R.

COROLLARY 2. The Corollary 1 holds also when the condition E ^ Fo

is replaced by E = F2 and the ruling <T> is replaced by the pencil b + (£).

Proof. Indeed, B = TE is a member of b + <7> if, and only if, the
equations I(B, £) = I(B, Δ) = 1 hold for some i e <̂ >. Then the proof of
Corollary 1 works here too.

Under the assumptions and notations of Corollary 1, there is a well-
defined correspondence between the members of the two rulings (£} and
<T). Namely, for each line in one ruling there is just one line in the
other ruling such that the two lines and the diagonal Δ = S' E meet all
at the same point. Thus, if P e R and £P e <7> is the corresponding
member of (£}, we may refer to Vv in (£'}: it is determined by £P- Δ = £f

p- Δ.
The proof of Corollary 1 now shows that, if P e R and TP is an irreducible
surface in 9> such that TP>S = R + D with RD = P, then
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2.3, We wish to state conditions, in terms of surfaces in Sf, which

will imply that elementary operation in £f along R is algebraic. In the

first place we recall the conditions of Lascu in our situation (Lascu [12],

Lemma 5 and Remark, p. 691). We have pf : £P -* C, where //"'(O) = S' + E

with E isomorphic either to Fo or to F29 and S' E = Δ on E. Let k be

an algebraically closed field of definition for //. Let J be the sheaf on

SP of ideals of the divisor E and let Θ(ϊ) = ΘE{Δ) on E. In &" we have

that S' + E is a fibre of the morphism p', hence the sequence 0 —> J2 ->

J —> ί*(9(ϊ) —• 0 is exact, where ί is the injection mapping of E into S?'.

Let i?* be a copy of P\ let (£) be a ruling on E, and let p : E->R* be

the natural projection of £7 to iϊ* whose fibres are members of (£).

Suppose that the following two conditions are satisfied for each ^-rational

point Pe R*: (Lj) for every element a e (9R*iP, there exists a e k{£ff), regular

at every point of ίP = p~\P), such that otoi = aop on E; (L2) there exist

sections of <f over a neighborhood of ίP in Sfr whose images in Γ(£P,

<D4p(X)) generate that 2-dimensional vector space over k. Then there exists

a proper morphism Γ* : SP -> S?*, inducing p on E and biregular elsewhere

in Sfr — E. Conversely, if such a π* exists then (Lj) and (L2) are true.

PROPOSITION 4. Lei R be a nonextending nodal curve on S in S?, and

suppose that π~\R) = E ^ Fo with rulings (£), (£') as described above.

Assume the following. (1) There is a linear pencil <X> of surfaces L in £f

such that each L intersects R properly with multiplicity one and there is a

unique member LP through each point P of R. (2) There is a linear pencil

<T> of surfaces T in 9> such that for each T, TS = R + D with R and

D intersecting with multiplicity one on S, and for each P in R there is a

unique member TP with (TP-S - R) R = P. (3) Let Le(L), Te(T).

There is a surface W in S? with W - L + T and W Π R empty.

Then the proper morphism π* : S?' —• ^ * inducing p exists as above,

hence the elementary operation in & along R is algebraic.

Proof. We have to check Lascu's conditions for members of the ruling

which are the fibres of p : E-+ i?*.

Let PeR* and a e ΘR*,P. Write div(α) = Σ atPi ~ Σ bjpj> w i t h <*i

and bj positive integers and Pi9 P3 points of i?*, and let if

t = ρ~\P^). Then

div (aop) = Σ aΆ - Σ bA' F o r e a c h Pi l e t τi 6 (τ) b e t h e surface such

that T'i'E = Si, according to the equation ( + ) ; likewise for Pj. The proper

transforms Tf of the members of <T> comprise a linear pencil (T'} in
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<Sf', because each T passes simply through R in £?, so there is a function

a 6 k(9") with div (a) = 2 axT\ - Σ bjT'j. Then aop = 50/ as functions on

E, at least up to a constant factor. The equation (+) shows that ( ϊ 7 ' )

has no base point on E, so a is regular at every point of £P = ρ~ι(P).

(L2): Let PeR* and #. = ^ ( P ) e (f). Select some P + 6 R*9 P+ Φ P, and

consider the pencil <Q> = <L> + ΓP+. For each Qe<Q>, the proper

transform Q' in ^ ' satisfies Q'E = L'E+ (T'P+) E = lP + £P+9 and the

total transform is Q' + E since Q passes simply through R in «$*. There-

fore the pencil <Q') cuts the linear series of degree 1 on the line £P.

Furthermore, when Qε(Q} there is a linear equivalence Q~W, so there

is a function / in k(S?) with div (/) = Q - W; then this /, taken in k(&"),

defines a section of J> over a neighborhood of E. Any two such /, cor-

responding to distinct members of <Q>, satisfy condition (L2).

In (A.2) we examine the case in which more than one monoidal

transformation is required for case (b) to occur (cf. (2.1)).

§ 3. Examples

In this section we give an example of an algebraic family JΓ of K3

surfaces, one of whose members carries a nonextending nodal curve, such

that the elementary operation in X along that curve is algebraic. Also

we discuss some cases of similar families in which the elementary oper-

ation is not algebraic. Here k0 denotes the algebraic closure of the prime

field, characteristic Φ 2; A is the affine line.

3.1. PROPOSITION 5. (cf. [ll], [2], [12]) (a) There is a variety Jί and

a proper morphίsm ψ : JC -» A, rational over k0, defining a family of non-

singular surfaces whose members are as follows. MQ = φ~\0) is isomorphίc

to F2 and Mx = ψ~\x) is isomorphίc to Fo when x e A, x Φ 0. (b) Jί carries

two pencils of surfaces <Γ> and <L> such that <Γ> (resp. <L» cuts the

ruling <̂ > (resp. the ruling <Ό) o n Mxy x Φ 0, and the pencil (£} + b

(resp. the ruling <^» on M09 where b is the nodal curve on M09 cf. (0.1).

(c) The normal bundle of b in Jί is ίsomorphic to Θh(—1) Θ Θh(—1). (d)

Jί contains a surface W, disjoint from 6, with W ~ T + L when Γe<Γ),

Le(L}.

Proof. Let V = P3 X A, let (XQ : Xx : X2 : Xs) be homogeneous coordi-

nates in P3 and let ί be a nonhomogeneous coordinate on A. Define a

3-fold Jί' in V by the equation X1{X1 — tX0) = X2XZ. Jίf is easily seen
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to be nonsingular except at (1 : 0 : 0 : 0; 0) where it is normal. Let

and <L'> be linear pencils of surfaces in Jί' with equations

Tλ : {X1 — tX0 = λX29 X3 = AXi}', Lλ: {Xt — tX0 = λfXz, X2 = λfX^y

where λ, λf are nonhomogeneous parameters. The natural projection V7

—> A induces a morphism πf : Jίf -> A whose fibres are isomorphic to non-

singular quadric surfaces in P\ except π'"*(()) is a quadric cone in P 3

whose vertex is v = (1 : 0 : 0 : 0). Moreover the pencils <T'> and <Z/> in

Jί' cut the two rulings on each nonsingular quadric fibre, and each pencil

cuts the one ruling on the cone (the intersection products are taken in

Jί'), Now let μ : V —> V be the monoidal transform of V with center

Ti : {Xi — X2 = 0}, let Jί be the proper transform of Jίf in V, and let μ : Jί

—>• JC be the induced morphism. μ is biregular everywhere except over

v so we consider the affine open subset U' of Jtf where Xo Φ 0, which

contains v. We set (xu x2, xS9 t) = (XJX0, XJX0, Xs/X091) and set (zu ζl9 t)

= (xjxi, x3, t), (z29 ζ2, t) = (xjx2, x2, t). Let U1 and U2 be the affine open

subsets of J( where z2 Φ 0 and zx Φ 0 respectively. Then μ~λ(JJf) is covered

by Ux U U2 and one sees easily that (zi9 ζi91) are uniformizing parameters

in Ui9 ί = 1, 2 and in fact that the parameters define isomorphisms from

Ui to A3. Moreover the parameters are related by equations z2 = zϊ1,

ζ2 = z\ζλ + tzλ. Let ψ : Jί -> A be the morphism defined by ψ = it°μ. It

follows that fibres of ψ are as asserted in (a) (cf. [11]).

Next we pull back <T7> and <Z/> via μ to get two pencils <Γ> and

<L) whose members have local equations in Ul9 U2 as follows:

Tλ: {& = ^feζ, + ί), ^2 = ^2ζ2 - ί}; U. : {̂  = / , 1 = /^} .

The nodal curve b on Mo is contained in L7Ί U U2 and is defined on Z7j

by local equations ζ1 = 0, t = 0 and on ί72 by ζ2 = 0, ί = 0. Then assertion

(b) follows by inspection at once.

With respect to the covering Uι U U2 of b by affine open sets in Jί,

the transition matrix defining the normal bundle of b is

P
taking (ζ€, ί) for local equations of b in Ui9 where zλ denotes the restriction

of zx to 6. This proves (c) (cf. (0.1)).

W in (d) may be defined as follows. Let W be the plane in P* defined



K3 SURFACE 17

by Xo = 0 and let W = W X A. W intersects properly with Jί' on V ;

set VF= W-Jίf. μ'1 is biregular at all points of W so regard Ψ as a

surface in Jί. The function xλ = Xi/X0 induced on Jί has divisor TM + LM

— W. This concludes the proof.

Fix a general quartic surface Bf in P 3 and let X, Y be the KS surfaces

determined by Br in the manner described in (0.1). Set k — def (B').

PROPOSITION 6. (a) There is a variety X and a proper morphism f: Jf

-> A, rational over k, defining a family of nonsingular KS surfaces, whose

members are as follows. Ko = f~\0) is ίsomorphίc to Y and Kx = f~\x) is

isomorphίc to X when x e A, x Φ 0. (h) Jf carries two pencils of surfaces

(<τy and <i;?> such that <«̂ "> {resp. < ^ » cuts the pencil (E) (resp. the

pencil (E'}) on Kx1 x Φ 0, and the pencil (E) + R + R (resp. the pencil

(E}) on Ko. (c) / factors through the morphism ψ of the previous Propo-

sition, i.e. there is a morphism δ : Jf -» Jί with f= φoδ; and δ is etale in

an open neighborhood of R in Jf. (d) X contains a surface Ψ~, disjoint

from R, with ir ~ F + £> when f e (<T), if e <jSf>.

Proof. Take Jί, Jίf as in the previous Proposition. Let Π be a

nonsingular quadric surface in Pz over k and define B = B/ X A, D = Π

X A in V = Pz X A. Then B and D each intersect properly with Jίr

on V; set B = B-Jί' and D = D Jίf. μ~ι is biregular at all points of

B and D so we shall regard them as surfaces in Jί. Then B and D are

irreducible nonsingular surfaces in Jί and B — 2D. These data determine

uniquely a nonsingular, flat, finite double cover δ : JΓ -> Jί with branch

locus B. In fact, JΓ = Spec^(j/) where si is the locally free (^-algebra

0urθ0ur( —Ό) with algebra structure determined by choice of JB, cf. (0.1).

We have the proper morphism ψ : Jί —> A of the previous Proposition.

Define f = φoδ. Then / is a proper morphism and, when xeA, f~\x)

= δ-Xφ-'ix)) ([26], p. 240). Write Mx = φ'\x). δ is a flat morphism,

therefore t^Όϊf3f((^jr, 5*^^) vanishes for i > 0, so the alternating sum of

cycles of the sheaves έ/Ό^ reduces to / X ^Mx. Consequently f~\x)

= Jf X ^Mx, [24]. Now Jf X , M , = Spec^(^ ® ^(P^) - Spec,^*, Θ ^

( — D-Mx)). By construction, !)„ = DMX and .R, = BMX are nonsingular

curves on M, with Bx - 2DX. Then /-(x) = S p e c * , ^ Θ ΘMχ(-Dx)) and

this is the if3 surface as stated in (a), according to (0.1).

δ is unramified and hence etale, in an open neighborhood of R in Jf.

Define pencils <iΓ> and <<̂ > in JΓ by setting *Γ = ^



18 DANIEL COMENETZ

likewise set TΓ = δ~\W). Then ίΓ ~ & + f . The counter image of bi-

cycles by δ is compatible with intersection-product, as δ is a morphism,

[26], p. 234; hence ST-KX = δ~\T-Mx) for xe A, similarly for the members

of <Jδf>. But δ~\T-Mx) = δ-\£) = E on Kx when * =£ 0; similarly for the

other cases. This concludes the proof.

PROPOSITION 7. Let f \V-+Vf be an etale covering (=finite and etale)

inducing an isomorphism on subvarieties W -> W. Suppose V, V7, W, W

are nonsingular; let N = Nv/W9 N' = Nv,/W, be the respective normal bundles.

Then (f\w)*N' is naturally identified with N. Thus N' and N are iso-

morphic as bundles on isomorphic spaces.

Proof. Since N' is supported on W, (f\w)*Nf = N' X W,W = N' X V,W

= N' X V,V X VW = (f*N')\w. Let {U?} be a finite collection of affine

open subsets of V, whose union covers W and does not meet the closed

set f'ι(W) - W. Then f(Uf) is open in V ([6], IV, 2.4.6) and the union

of the f(Uf) covers W. Let {U'a} be a finite collection of affine open

sets in V, whose union covers W, such that there are uniformizing

parameters {u'al9 , u'an} in U'a with [u'aU , u'aw\ local equations for W

in U'a, for each a; n = m + dimW = dimF. Further assume that each

U'a is contained in some f(U*M). Let Ua = f'ι(U'a) Π I7*(β), uai = f*u'ai.

Then each C7α is affine and their union covers W. Furthermore the uai

are local equations for Win Ua: indeed, let A = (Pv(Ua) and p = 7(WΠ Ϊ7«)

in A, then as / is etale, the uai generate the localization pm in Am for

every maximal ideal m Z) p in A, hence they generate p in A (Bourbaki,

Alg. Comm. §11.3).

Restriction to W of relations between the u'ai and u'βj with coefficients

in Θγf(Jϋf

a Γi U'β), determines a system oϊmXm matrices C'aβ with coefficients

in <ME7£ ΓΊ ί/; Π WO defining iV' on W7 [21]. The restriction to W of

the pullbacks of those relations, determines a system of matrices Caβ

defining f*N'\w. But these same matrices Caβ also define N because the

uai are local equations for W in Ua.

Now let Ή be a general quartic surface in P 3 over £0 and let p : JΓ

—> A be the family of ίΓ3 surfaces determined by Bf in the manner

described in Proposition 6. Let R be one of the 2 nonextending nodal

curves on Y = p"1(0).

THEOREM 2. TΛe elementary operation in X along R is algebraic.
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Proof. Propositions 6 and 7 show that the normal bundle in X along

R is isomorphic to ΘR{ — 1) Θ ΘR{ — 1). Then the theorem follows from

Propositions 6 and 4.

3.2. The elementary operation is not algebraic in some cases.

Let C be an irreducible nonsingular curve defined over an algebraically

closed field k. Let ^/έ be a variety and let p : °ll -> C be a proper

morphism, rational over k, defining an algebraic family of nonsingular

non-ruled polarized surfaces Uc. Suppose that Uo =p~1(0) carries a non-

extending nodal curve R, where 0 is a /^-rational point of C.—For instance,

take a general quartic surface in P 3 and let it specialize in P 3 so as to

acquire a straight line.5*0—Then, the elementary operation in °tt at R

cannot be algebraic if the Picard number of Uc is 1 when c is a generic

point of C over k. For, suppose it is algebraic. Then there is a proper

morphism p* : ^ * —> C defining an algebraic family of nonsingular surfaces

and a birational transformation η : °tt -> °U* with p* = p°η~\ (2.1). More-

over let T be the graph of η. Composition of projection from T with p

(or /?*) defines a proper morphism τ : T-> C and Tc — τ~\c) is the graph

of the isomorphism induced on Uc by η. But Tc specializes to To = r'^O)

and components of To include R X R*, besides the graph of an isomorphism

between Uo and C/o*, (2.1). Therefore, by Theorem 2 in [15], p* : C7* -> C

cannot be a family of polarized surfaces. Yet it must be a family of

polarized surfaces, according to Matsusaka's theorem on stability of

polarization, [14], because U* = Uc is a nonsingular algebraic surface with

Picard number 1. The only way out is that the algebraic elementary

operation in % at R does not exist.

The theorem in [14] can be proved rapidly for surfaces using an argu-

ment of M. Artin ([1], p. 330), together with the Nakai criterion for

ampleness, as follows. Let p : °U —> C be as above and suppose that when

c is a generic point of C over k, Uc = p~\c) has Picard number 1. Let

Xc be an effective generator of the divisor class group on Uc with respect

to numerical equivalence. Let Xo be a specialization of Xc over c -» 0

with respect to k. XQ lies on Uo = p "*(()); suppose that Uo carries an

irreducible curve Y with I(X0, Y) = 0. °U is an algebraic variety so there

is an affine open set W in °tt meeting Y. Now the complement of W in

fy is the support of an effective divisor D on % (if P e % — D, then

This example was shown me by Igor Dolgachev.
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oo) a<% - D for any / in k[W] but not in ΘP\ cf. [5], p. 162). D

is not a fibre of the morphism p, hence D intersects properly with such

fibres; let Do — DU0, Dc = D- Uc. Then Dc must be numerically equiva-

lent to a positive integer multiple of Xc, say Dc = rXc, so Do = rX0.

Therefore I(D0, Y) = 0 so Y must be contained in W, which is impossible.

So we have that XQ is effective and I(X0, Y) > 0 for every irreducible

curve Y. Therefore Xo defines a polarization on Uo and p : °lί -> C is a

family of polarized surfaces.

Appendix

A.I. Here we shall discuss a formal analogue of Horikawa's result

[9] about nodal curves, which was mentioned in (2.1). We conserve the

terminology and notations of (2.1): R is a nodal curve on a member

S = p"\0) of an algebraic family p : £? —> C of nonsingular surfaces over

a nonsingular curve. It is assumed that the sequence of successive

monoidal transformations Sf <— Sfx *- ^ 2 <— - along nodal curves R, Ru

R2, - - never terminates, so that the normal bundles of Rn in £fn are all

isomorphic to ΘP1®ΘP1{—2) (whence the exceptional surfaces JŜ , E2, - - •

are all copies of the ruled surface F2). Horikawa's result is that, in the

analytic case, R must then extend to a relative divisor, locally in Sf.

Given p : Sf —• C, 0 e C. Let ί be a uniformizing parameter at 0 on

C and identify ί with the family parameter Up induced on Sf. We take

a finite collection {f/J of affine open sets in ^ , whose union covers R,

such that there are uniformizing parameters {zi9 wiy t) in L̂  with Wi = 0,

ί = 0 local equations for R in Uu for each ί. Denote by At the ring

(DAW), by ^ the sheaf of ideals of R in «$*, and by α, = ^(C/*) = (^, ί)AΛ

the ideal of R Π U, in Aέ; also, set Atj = ΘjJJi D Ϊ7;), aυ = ^ ( ( 7 , 0 t/,).

PROPOSITION 8. For each n, n = 0, 1, 2, zΛere are elements w^ in

At as follows. (1) {zί9 w^, t) are uniformizing parameters in Ui for each i,

and wln) = 0, t = 0 are local equations for R in Ut. (2) wl0) = u;̂  (mod â )

and w\n+1) = rc7ίΛ> (mod a?+a). (3) T/ιere are elements u\f in AtJ such that

uinj+1) = ulf (mod a?/2), wf - u\fwin) 6 a?/2, and u\f is invertible in the local

rings ΦP on Sf for all points P in R Π J7f Π f/̂ .

Proof. For each 71 we shall define a system of polynomial expressions

Pln)(t) = ^=odis)ts+\ of degree n + 1 in t, with coefficients d\s) in A,;

observe that by definition P$n) - Pf"x) = dl»Hn+1. We set u;^ = wt - P^
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for each i. The P!-n) are to be such that, when j is different from ί, wψ

can be written so:

f =wf =

where the coefficients caβ are elements of Aiά (we suppress indices ί, j on

the caβ; they are independent of n), rf} 6 α?/2, and no terms involving pure

powers of t (i.e. no terms cOβt
β) of degree < n + 1 appear in the expression.

Furthermore c10 shall not vanish anywhere in R Γ) Ut Π Z7/.

When such P | n ) have been found, wln) will satisfy conditions (1) and

(2), and we may take u[f to be c10 + c20wln) + cnί + + clnt
n, so that

zι;$n) = uifwin) + r#\ to conclude the proof. The P^n) are to be defined

inductively, using the hypothesis about the succesive normal bundles on

nodal curves Rn. n is the number of monoidal transformations that have

proceeded step n in the induction.

Step 0. The sequence 0 -> ΘR(—2) -> Jί9!R —> ^ -> 0 of sheaves on i?

splits by hypothesis; let g : ΘR -> ̂  be a fixed splitting map. Let 0—>

[d)R(—2)] -> iV-> [(^J -> 0 be the corresponding split sequence of vector

bundles. The bundles become trivial when restricted to Ut (Ί R, as R ^ P1.

We let ωt and τ be sections of N\UiΓ]R, which are dual to residues of wi

and t in G/A/2)Ln*! ωί a n ( i Γ induce bases, and wi and ί induce affine

coordinate functions, in fibres of N\ϋiΠR. We let τr denote the global

section f(τ) of [ΘR]\ note that f{ωτ) = 0. Further let (df, 1) be the local

affine coordinates of the section g(τ') of N with respect to the basis {ωi9

τ}, where df] eΘR(Ui Π iϊ). Ut is an affine variety so there is df] in

A, = tfUUi) inducing dί0) on i? Π Ut. We set P f = dfΠ, for each ί.

We now fix a pair of indices ί, j . The ideal of the curve Rυ = R f] Ut

Π Uj in A ί ; is (wi9 t)Aυ = (wjy t)Aυ = aiS. Write wj = c1Qwt + c01ί, cαy3 e A o

(we are suppressing indices i, j on the caβ they would otherwise be written

Cίfβ). t is the family parameter so wt and Wj each induce (modulo t) local

equations for J? in S Π CΛ Π Uj9 hence c10 is an invertible element in the

local rings ΘP on Sf for all points P in i? o . Now on the open subset

Ri5 C R, the transition matrix for the bundle N, defining the change from

affine coordinates with respect to the basis {ωίf τ] to coordinates with

respect to the basis {ωj9 τ} is
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caβ = restriction of caβ to R. Since g(τf) is a section of N, (d!-0)cί0 + c01

- df>) € ai} so when we set w?> = wt - Pl0) = wt - d?H for each i (this
defines a natural substitution of coordinate functions), we obtain wf

= clow?> + rjy, with rt
(5> = *(c10df + c01 - d f ) € <• as required.

Induction Step (n > 1). Suppose now that we have found polynomials
p^-1) = Σΐ-od?H'+1 and elements w^ = wt - Pf" υ in A, such that there

is a polynomial expression with remainder for wf'^ in terms of wf'^ and

t, viz.

ii f-1) = doii;^-^ + + caβwln-1)atβ + . + clnw?-H* + rίj-",

involving no pure powers of t of degree < n, with coefficients caβ e A^

and remainder r^"1} e αj/1. Further assume that local equations for Rn_ί

in UΓ1 are w\n-iy = 0, ί = 0, where wi^H71'1 = f̂-1}, i7? = ϋ;, and ί/f

(m > 1) is the affine open set in <$fm obtained by first pulling back Of'1

to ^ m and then deleting points which lie in the proper transform of Em_^

We write rg"1} = cOn+ίt
n+1 + (other homogeneous terms of degree n + 1 in

wl71'^ and £) + r\f, with coefficients in Atj and rξj] € α^/2. Now we blow

up ^n-i along i2w_!, let ί7^ be the affine open set defined as above. Set

wψ] == w<n-i>it = wto-v/t*. Local equations for Rn in i7? are wψ^ = 0, t = 0;

furthermore, the wψ1 satisfy the relation

M M = CioU;C-3 + C θ n + i ί + .. + caβw[nHβ+an-n + + r\fltn,

when we divide the expression for wf'^ by tn. Hence the normal bundle

of Rn in yn has transition matrix

P i

in Un

% |Ί Unj Π i?w, cα/J = restriction of c^ to J?TO. Moreover by hypothesis

the sequence 0-> ΘRn{—2) -> Jf yJRn —• 0 Λ B -> 0 of sheaves on i?n splits.

It is clear by construction that regular functions on the affine curve

Rn Π Όni are induced by regular functions on R Π Ui9 hence by regular

functions in £/*. Then as earlier we find elements dln) € At with the pro-
perty that s(n) = (din)c10 + cOn+ί - df) vanishes on Rn Π U? Π U% and is

besides an element of Atj. Hence s{n) € atj. We set win> = w[nl — d\n)t
and find

w?> = clo^w> + s(π)ί + + cβ /,(^n > + dίn)t)βtβ+an-n + + r\fltn.
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Put wln) — wγΉn for each i and multiply the expression for wf} by tn.

The typical term in the expression becomes caβ(wln) + d\n)tn+v)atβ\ here

a > 1 and if a = 1 then j8 = 1. Moreover, s(n)tn+1 € α?/2. Thus we find a

polynomial expression

α;jn) = c1Qwin) + + caβwln)atβ + + cln+Mn)tn+ί + rif,

involving no pure powers of t of degree < n + 1, with coefficients caβ e Ai}

and remainder rlf e α?/2. w^ = 0, t = 0 are local equations for i?n in

U?. Finally w^ = w^ - dίnHn+1 = w, - P^~1} - dίnHn+1 so define Pf>(*)

_ p(n-Dφ j^_ d^ί7 1 4 1. This completes the induction step so the Proposition

is proved.

In the analytic case, this proof allows one to apply the arguments of

Kodaira [10], [11] to conclude that R extends locally in the family S?.

Indeed, it shows that "the obstruction ψm+i(t) vanishes for each integer

πC\ in the terminology of Kodaira, [11], where we take d = r = q — 1,

φ = N, n=l (h°(V, Φ) = h°(R, N) > 1 by our basic hypothesis), tx = t,

βx = (d(0), 1), φm = (P^\ t), ψm + 1 = {com+1r
+1}, and χ = d™F*\ Therefore

the power series Pf(ziyt) = 2]s°°=o dls){z^)ts+1 converge in a small neighbor-

hood of t = 0, [10], and the local extension of R in £f is defined by holo-

morphic equations wt — Pf = 0.

As to the formal case, let & be the completion of Sf along R ([6] I,

p. 195) and let w* be the element of the α radic completion A* = Γ(Ui Π R,

Θp) defined by the sequence {wln)}. Condition 3 of the Proposition shows

that the w* define an invertible sheaf SB of ideals of Θp, hence a divisor

9ΐ in y ([6] p. 210). Moreover (wf, t)A* = (wi9 t)Af in view of the relation

wf = Wi — Pf, for each ί, where Pf = J^"=odίs)ts+1 is an element of tAf,

by [28] §6, hence an element of (wf9t)AfΓ\(wut)Af. Likewise {wf,t} is

part of a regular system of parameters at every point of Ut Π R, so 9ΐ

and S/R "cross normally," in the sense of [7] § 3.

A.2. We conserve the terminology and notations of § 2.3. When R

is a nonextending nodal curve on S in Sf and blowing up along R produces

an exceptional surface E1 isomorphic to F2 instead of Fo, so that n > 2

in the sequence £f <- ,9P

1<— «— yn, then apparently stronger assumptions

than in Proposition 4 are needed to conclude that the elementary opera-

tion in if along R is algebraic, at least in so far as Lascu's condition (L2)

is concerned. Condition (Lλ) is easier:

Suppose that the sequence of monoidal transformations terminates
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after n steps, n > 2, and let π : yn -> ^ be the composition of the trans-

formations, π is a proper morphism. Assume that hypothesis (2) in

Proposition 4 is satisfied for S?. Let T be the proper transform of T by

π~ι. Then for each i < ft, T ^ is a member of the ruling (£} on the ίtlx

exceptional surface Et = F29 and T J£n is a member of the "other" ruling

<T> on En ^ Fo. Indeed, the intersection-product of Eί.1 and Et is the

nodal curve on the former surface and Δ on the latter, i < n, so the

Corollaries of Proposition 3 apply step by step to successive proper trans-

forms of T. Moreover the T for Tz (T) comprise a linear pencil in £fn

with no base points on any Ei9 as we saw in (2.3). Now suppose it is

possible to blow down £fn along En to S^*_l9 so that members of (£'} on

En collapse to points in SP*^. Let Ef, T* denote the transforms of Ei9

f. Then for each i, 1 < i < n — 1, f*Ef is a member of the ruling on

Ef, and the pencil <T*> has no base point on any Ef. Thus, condition

(Lj) of Lascu holds for each Ef, when the existence of the pencil <T> in

£P is assumed.

Condition (L2) will be satisfied if we make the following assumptions.

Suppose that (1) and (2) hold in Proposition 4, and replace (3) by this:

(30: For each j , 0 < j < n — 1, there exists a surface Pj c S? with P, — L

+ T, Le <L>, Te(T), and such that Po does not meet R, all P y with

j > 1 pass simply through i? on S, and successive proper transforms of

P] by the ith monoidal transformation πΐ1 : ^ . j —> ^ , for 1 < i < j , pass

simply through i?* on ^ but the proper transform of Pj into ^ does not

meet Rό on £Ĵ .

Assuming this we have by Proposition 4 that the elementary operation

in ^ n _ ! along Rn.ί is algebraic, as we may take for P, in (3) of the

Proposition, the proper transform of Pn.1 into Sfn.x. Then there is a map

7] : ^n-\-^ ^t-\\ V i s biregular everywhere except along Rn^ and the

(closure of the) graph is everywhere complete over ^*_i. η is composed

of a blowing up π'1 followed by a blowing down π* and induces an iso-

morphism on £7n-i, (2.1).

Next we have to dismantle the rest of the scaffolding. Let i be a

member of the ruling <^>n_1 on En_x in Sn. l β We can find L <= <L>, Te <Γ>

whose proper transforms L, Γ in ^ . j satisfy (L + f) En_1 — 2£0 + Rn_u

where £0 is a member of <^)n_i different from ^. By our assumptions the

proper transform Pn_x of Pn_x into ^n.x intersects ίJ^j in a curve D which

does not meet Rn.x and is linearly equivalent on En_x to 2t^ + Rn^\ since
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En_1 ^ F2, such a ϋ must intersect properly with £, and must do so with
multiplicity one. Moreover there are functions / and g in k{Sfn_u such
that div (/) = Pn_, + En.t - Pn-2 and div (g) = L + f + £ U - Pn_2. Let
/* = /o^"1, g* = goη~\ We investigate the relations between div (/*),
divfe*), and E*_i = r)(En_d- First, div(/*) = ?(div(/)) and divfe*) = V(div(g))
by ([26], p. 247). By ([26], p. 277, Th. 12b) we have that V(L) = π*(π-\L))9

η{t) = πt{π-\t)) and then, by Corollary 1 of Proposition 3, that η(L)Έ*_i
= ί0* + R*_l9 iβΓyE*^ = if, where it is η(£0). Therefore Eti'(Aiv (g*)
- £ t i ) = 24* + B*_!, and ^ - ( d i v (/*) - E*_i) = rjΦ\

Consequently, /* and g* are sections of the ideal of E*_x over a
neighborhood of ^* = J?(^) in y*^ with the properties required by condition
(L2) of Lascu. In this way we blow down all the transforms of En, En_u
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