IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS OF THE POINCARÉ GROUP WITH RESPECT TO THE POINCARÉ SUBSEMIGROUP, I

HITOSHI KANETA

§ 1. Introduction

Since E. Wigner set up a framework of the relativistically covariant quantum mechanics, several aspects of unitary representations of the Poincaré group have been investigated (see [8], [16]). In this paper it will be shown that some unitary representations of the Poincaré group are irreducible, even if they are restricted to the Poincare semigroup (Theorem 1, 2 and 3). As a result of the argument we shall also give the irreducible decomposition of induced representations $\underset{S U(1,1) \dagger S L(2, C)}{\text { Ind } \pi}$ (see § 3, cf. [3]). Here the Poincaré group P means a semi-direct product between R_{4} and $S L(2, C)$ with the multiplication

$$
(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x+g^{-1^{*}} x^{\prime} g^{-1}, g g^{\prime}\right) \quad \text { for } x, x^{\prime} \in R_{4} \text { and } g, g^{\prime} \in S L(2, C),
$$

where $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is identified with the matrix $\left(\begin{array}{cc}x_{0}-x_{3} & x_{2}-i x_{1} \\ x_{2}+i x_{1} & x_{0}+x_{3}\end{array}\right)$ and g^{*} shows the adjoint of the matrix g. The Poincare semigroup P_{+} is the subsemigroup $\left\{(x, g) \in P: x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} \geqslant 0, x_{0} \geqslant 0\right\}$.

We have not yet succeeded in proving that any irreducible unitary representations of P are irreducible with respect to P_{+}, but in a lower dimensional case we have the following.

Theorem 1. Every irreducible unitary representation of the 2dimensional space-time Poincaré group $P(2)$ is irreducible too as the representation restricted to its Poincaré subsemigroup. Here $P(2)$ is the semi-direct product between \boldsymbol{R}_{2} and $\left\{\left(\begin{array}{cc}e^{t / 2} & 0 \\ 0 & e^{-t / 2}\end{array}\right): t \in \boldsymbol{R}\right\}$ with the same multiplication as P under the identification $\left(x_{0}, x_{3}\right) \rightarrow\left(\begin{array}{cc}x_{0}-x_{3} & 0 \\ 0 & x_{0}+x_{3}\end{array}\right)$.

[^0]The semigroup is just $\left\{(x, g): x_{0}^{2}-x_{3}^{2} \geqslant 0, x_{0} \geqslant 0\right\}$.

§ 2. Main theorems

Let us define a bilinear form \langle,$\rangle between \boldsymbol{R}_{4}$ and \hat{R}_{4} by $\langle x, \hat{x}\rangle=$ $x_{0} \hat{x}_{0}-x_{1} \hat{x}_{1}-x_{2} \hat{x}_{2}-x_{3} \hat{x}_{3}$. By abuse of symbol, \langle,$\rangle stands also for the$ similar bilinear form on \boldsymbol{R}_{4} or \hat{R}_{4}. Defining the action of $G=S L(2, C)$ on \hat{R}_{4} by $x \cdot g=g^{*} x g$ (recall the identification), we obtain the well known diagram:

G-orbits	fixed points	little groups
$V_{M}^{ \pm}=\left\{\langle\hat{x}, \hat{x}\rangle=M^{2}, \hat{x}_{0} \gtrless 0\right\}$	$\pm M\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$S U(2)$
$V_{0}^{ \pm}=\left\{\langle\hat{x}, \hat{x}\rangle=0, x_{0} \gtrless 0\right\}$	$\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	$E(2)=\left\{\left(\begin{array}{ll}e^{i \theta} & 0 \\ \zeta & e^{-i \theta}\end{array}\right)\right\}$
$V_{i M}=\left\{\langle\hat{x}, \hat{x}\rangle=-M^{2}\right\}$	$M\left(\begin{array}{rl}-1 & 0 \\ 0 & 1\end{array}\right)$	$S U(1,1)=\left\{\left(\begin{array}{ll}\frac{\beta}{\beta} & \bar{\alpha}\end{array}\right):\|\alpha\|^{2}-\|\beta\|^{2}=1\right\}$
$V_{0}=\left\{\langle\hat{x}, \hat{x}\rangle=0, \hat{x}_{0}=0\right\}$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$S L(2, C)$

M : positive number.
Furthermore there exists a well known correspondence between an irreducible unitary representation of P and a triplet (ω, G_{0}, π), where ω stands for one of G-orbits and π denotes an irreducible unitary representation of the little group G_{0}. More precisely, denote \mathscr{S}_{π} the representation space of π and ν_{ω} the G-invariant measure on the homogeneous space ω $=G_{0} \backslash G$ and let $\mathscr{S}_{2}{ }^{\omega, \pi}$ be a Hilbert space consisting of \mathscr{S}_{π}-valued measurable functions on P such that

$$
\begin{equation*}
f\left(\left(x, g_{0}\right)\left(x^{\prime}, g^{\prime}\right)\right)=e^{i\left\langle x, x^{\prime}\right\rangle} \pi\left(g_{0}\right) f\left(x^{\prime}, g^{\prime}\right) \quad \text { for } g_{0} \in G_{0} \tag{1}
\end{equation*}
$$

where \hat{x} is a fixed point with the little group G_{0},

$$
\begin{equation*}
\int_{\omega}\|f(x, g)\|_{\mathfrak{F}_{\pi}}^{2} d \nu_{\omega}<\infty \tag{2}
\end{equation*}
$$

Then the irreducible unitary representation of P corresponding to the triplet (ω, G_{0}, π) say $U^{\omega, \pi}$ is realized on $\mathscr{S}^{\omega, \pi}$ by the formula

$$
\begin{equation*}
U^{o, \pi}(x, g) f\left(x^{\prime}, g^{\prime}\right)=f\left(\left(x^{\prime}, g^{\prime}\right)(x, g)\right) . \tag{3}
\end{equation*}
$$

Theorem 2. Irreducible unitary representations of the Poincaré group corresponding to one of the orbits $V_{M}^{ \pm}, V_{0}^{ \pm}$and V_{0} are irreducible as the representation of the Poincaré subsemigroup.

Proof. Let (U, \mathfrak{F}) be an irreducible unitary representation of P. If it is reducible with respect to P_{+}, there exists a non-trivial closed subspace $D \subset \mathfrak{F}$ such that $U_{t} D \subsetneq D$ for any $t>0$, where U_{t} denotes $U((t, 0,0,0), e)$. Put $D_{+}=D \ominus \bigcap_{t>0} U_{t} D$ and $\mathscr{S}_{+}=\overline{\bigcup_{t} U_{t} D_{+}}$. Then D_{+}is an outgoing subspace of \mathfrak{S}_{+}in the sense that
(i) $U_{t} D_{+} \subset D_{+} \quad$ for all $t>0$,
(ii) $\bigcap_{t} U_{t} D_{+}=0$,
(iii) $\bigcup_{t}^{t} \overline{U_{t} D_{+}}=S_{c} \neq\{0\}$.

In view of Sinai's theorem (Theorem 3.1 in chap. 2 [11]) the restriction $\left(U_{t}, \mathfrak{S}_{+}\right)$, which is a unitary representation of R, is unitarily equivalent to some multiple of the regular representation of \boldsymbol{R}. Consequently the representation (U_{t}, \mathscr{F}_{2}) of \boldsymbol{R} must contain at least one regular representation of R. On the other hand, making use of (1) and (3) and putting $g^{\prime}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$, we can verify easily that

$$
U_{t} f\left(x^{\prime}, g^{\prime}\right)=e^{i t_{t} M\left(\left.|\alpha|\right|^{2}+|\beta| 2\right) / 2} f\left(x^{\prime}, g^{\prime}\right),
$$

where ε denotes one of constants $\pm 1, \pm M^{-1}$ and 0 . This implies that the spectrum of the selfadjoint operator $\left.i U_{t}^{\prime}\right|_{t=0}$ has either upper or lower bounds. In particular the representation U_{t} never contains the regular representation.
Q.E.D.

We turn now to the representations corresponding to the orbit $V_{i M}$. Since each of them is specified by an irreducible unitary representation of the little group $G_{0}=S U(1,1)$, we summarize those representations after Vilenkin (§ 2 in chap. VI [17]). All of them can be obtained from algebraic representations on closed subspaces D of C^{∞}-functions $C^{\infty}(T)$. on the 1-dimensional torus T. We denote the inner product by (,).

Theorem 3. Irreducible unitary representations of the Poincaré group P given by the so-called discrete series representations $\pi^{ \pm}(\ell, 0)$ and $\pi^{ \pm}(\ell, 1 / 2)$ of $G_{0}=S U(1,1)$ and the orbit $V_{i M}$ are also irreducible even if they are restricted to the subsemigroup P_{+}.

We shall give the proof of Theorem 3 as well as Theorem 1 in the following § 5 .

representations π	$\pi\left(g_{0}\right) f\left(e^{\text {tV }}\right)$ for $g_{0}=\left(\begin{array}{ll}\frac{\alpha}{\beta} & \frac{\beta}{\bar{\alpha}}\end{array}\right)$	D	the values of ($e^{i \psi \psi}, e^{i \psi \psi}$) or $\left(e^{-i \psi \psi}, e^{-i \nu \psi}\right)$
$\pi_{(6,0)} \quad \ell=-1 / 2+i \rho, \rho \geqslant 0$	$I_{0}=\left\|\beta e^{i \psi}+\bar{\alpha}\right\|^{2 t} f\left(\frac{\alpha e^{i \psi}+\bar{\beta}}{\beta e^{i \psi}+\bar{\alpha}}\right)$	$C^{\infty}(T)$	1
$\pi_{(6,1 / 2)} \quad \ell=-1 / 2+i \rho, \rho>0$	$I_{1 / 2}=\left\|\beta e^{i \psi}+\bar{\alpha}\right\|^{2 \tau-1}\left(\beta e^{i \psi}+\bar{\alpha}\right) f\left(\frac{\alpha e^{i \psi}+\bar{\beta}}{\beta e^{i \psi}+\bar{\alpha}}\right)$	$C^{\circ}(T)$	1
$\pi_{(,, 0)} \quad-1<\ell<-1 / 2$	I_{0}	$C^{\infty}(T)$	$\frac{\Gamma(\ell-\nu+1)}{\Gamma(-\ell-\nu)}$
$\pi_{(f, 0)}^{+} \quad \ell=-1,-2, \cdots$	I_{0}	$\sum_{\nu \geq-1} a_{\nu} e^{i \omega \psi}$	$\frac{\Gamma(\ell+\nu+1)}{\Gamma(-\ell+\nu)}$
$\pi_{(t, 1 / 2)}^{+} \quad \ell=-1 / 2,-3 / 2, \cdots$	$I_{1 / 2}$	$\sum_{\nu \geq-l+1 / 2} a_{2} e^{i \psi \psi}$	$\frac{\Gamma(\ell+\nu+1 / 2)}{\Gamma(-\ell+\nu-1 / 2)}$
$\pi_{〔(, 0)}^{-} \quad \ell=-1,-2, \cdots$	I_{0}	$\sum_{\nu \geqslant-\varepsilon} a_{e} e^{-i \nu \psi}$	$\frac{\Gamma(\ell+\nu+1)}{\Gamma(-\ell+\nu)}$
$\pi_{(l, 1 / 2)}^{-} \quad \ell=-1 / 2,-3 / 2, \cdots$	$I_{1 / 2}$	$\sum_{\nu \geq t-1 / 2} a_{2} e^{-i \nu \psi}$	$\frac{\Gamma(\ell+\nu+3 / 2)}{\Gamma(-\ell+\nu+1 / 2)}$

§ 3. Decomposition of unitary representations of $S L(2, C)$

We begin with reviewing the irreducible unitary representations of $S L(2, C)$ after Naimark [12]. Throughout this section G stands for $S L(2, C)$. For an integer m denote by $L_{m}^{2}(S U(2))$ a subspace of $L^{2}(S U(2))$ consisting of functions φ satisfying

$$
\varphi(\gamma u)=e^{-i m t} \varphi(u) \quad \text { for } \gamma=\left(\begin{array}{cc}
e^{+i t / 2} & 0 \\
0 & e^{-i t / 2}
\end{array}\right) .
$$

The irreducible representations $S_{m, \rho}(m \in \boldsymbol{Z}, \rho \in \boldsymbol{R})$ has a realization on $L_{m}^{2}(S U(2)):$

$$
V(g) \varphi(u)=-\frac{\alpha(u g)}{\alpha(u \bar{g})} \varphi(u \bar{g})
$$

where $\alpha(g)=\left|g_{22}\right|^{i \rho-m-2} g_{22}{ }^{m}$ and $u \bar{g}$ denotes a unitary representative of the coset Kug with $K=\left\{\left(\begin{array}{cc}\lambda^{-1} & \mu \\ 0 & \lambda\end{array}\right): \lambda>0, \mu \in C\right\}$. Meanwhile the irreducible representation $D_{\sigma}(0<\sigma<2)$ has a realization on the Hilbert space \mathscr{S}_{σ} in which a subspace B_{0} of bounded functions belonging to $L_{0}^{2}(S U(2))$ is dense:

$$
V(g) \varphi(u)=-\frac{\alpha(u g)}{\alpha(u \bar{g})} \varphi(u \bar{g}) \quad \text { for } \varphi \in B_{0},
$$

where $\alpha(g)=\left|g_{22}\right|^{-\sigma-2}$. We put

$$
\begin{aligned}
\omega_{1}(t) & =\left(\begin{array}{ll}
\cos t / 2 & i \sin t / 2 \\
i \sin t / 2 & \cos t / 2
\end{array}\right) & \omega_{2}(t) & =\left(\begin{array}{cc}
\cos t / 2 & -\sin t / 2 \\
\sin t / 2 & \cos t / 2
\end{array}\right) \\
\omega_{3}(t) & =\left(\begin{array}{lll}
e^{i t / 2} & 0 & \\
0 & e^{-i t / 2}
\end{array}\right) & \omega_{4}(t) & =\left(\begin{array}{cc}
\operatorname{ch} t / 2 & \operatorname{sh} t / 2 \\
\operatorname{sh} t / 2 & \operatorname{ch} t / 2
\end{array}\right) \\
\omega_{5}(t) & =\left(\begin{array}{ll}
\operatorname{ch} t / 2 & i \operatorname{sh} t / 2 \\
-i \operatorname{sh} t / 2 & \operatorname{ch} t / 2
\end{array}\right) & \omega_{8}(t) & =\left(\begin{array}{cc}
e^{t / 2} & 0 \\
0 & e^{-t / 2}
\end{array}\right) .
\end{aligned}
$$

We now introduce linear operators associated with a unitary representation (T, \mathfrak{F}) of G. Define

$$
\begin{aligned}
\omega_{j} & =\left.\frac{d}{d t}\right|_{t=0} T\left(\omega_{j}(t)\right) \quad \text { for } j=1,2, \cdots, 6, \\
H_{ \pm} & =i \omega_{2} \pm \omega_{1}, \quad H_{3}=i \omega_{3}, \quad F_{ \pm}=i \omega_{5} \pm \omega_{4}, \quad F_{3}=i \omega_{6} \\
\Delta_{o} & =-\left(H_{+} H_{-}+H_{-} H_{+}+2 H_{3}^{2}\right) / 2, \\
\Delta & =\left(F_{+} F_{-}+F_{-} F_{+}+2 F_{3}^{2}\right) / 2+\Delta_{0}-1, \\
\Delta^{\prime} & =\left(H_{+} F_{-}+H_{-} F_{+}+F_{+} H_{-}+F_{-} H_{+}+4 H_{3} F_{3}\right) / 2 .
\end{aligned}
$$

More precisely, since the operator Δ_{o} (resp. Δ and Δ^{\prime}) is essentially selfadjoint with domain $\left\{\right.$ finite sum of $\int_{S U(2)} \varphi_{i}(u) T(u) f_{i} d u: \varphi_{i} \in C^{\infty}(S U(2))$, $\left.f_{i} \in \mathscr{S}\right\}$ \} (resp. $\left\{\right.$ finite sum of $\left.\left.\int_{G} \varphi_{i}(g) T(g) f_{i} d g: \varphi_{i} \in C_{0}^{\infty}(G), f_{i} \in \mathscr{S}\right\}\right\}$) ([14]), we shall use the same letters for their selfadjoint extensions. We denote the domain of an operator A by D_{A}. Then $D_{H \pm}$ (resp. $D_{F \pm}$) is the intersection $D_{\omega_{1}} \cap D_{\omega_{2}}$ (resp. $D_{\omega_{4}} \cap D_{\omega_{5}}$). Clearly $i \omega_{j}$ is a selfadjoint operator with domain $D \omega_{j}$.

Remark. A homomomorphism Λ from G onto the proper Lorentz group defined by $\Lambda(g) x=g^{*-1} x g^{-1}$ for $x \in \boldsymbol{R}_{4}$ (recall the identification in §1) satisfies

$$
\begin{array}{lll}
\Lambda\left(\omega_{1}(t)\right)=a_{2}(-t), & \Lambda\left(\omega_{2}(t)\right)=a_{1}(t), & \Lambda\left(\omega_{3}(t)\right)=a_{3}(t), \\
\Lambda\left(\omega_{4}(t)\right)=b_{2}(-t), & \Lambda\left(\omega_{5}(t)\right)=b_{1}(t), & \Lambda\left(\omega_{6}(t)\right)=b_{3}(t) .
\end{array}
$$

We refer subgroups $a_{i}(t)$ and $b_{i}(t)$ to [12] where a homomorphism $\tilde{\Lambda}(g) x$ $=g x g^{*}$ is used.

We write down explicitly a canonical basis of the representations $S_{m, \rho}$ and D_{q}.

Lemma 1. A canonical basis of the representation $S_{m, \rho}$ is given by $\left\{\varphi_{p, m, p}^{k}: p=-k,-k+1, \cdots, k\right.$ and $\left.k=m / 2, m / 2+1, \cdots\right\}$, where

$$
\varphi_{p, m, \rho}^{k}(u)=\sqrt{2 k+1}\left(\prod_{\nu=m / 2}^{k} \frac{(2 i \nu+\rho)}{\sqrt{4 \nu^{2}+\rho^{2}}}\right) C_{m / 2, p}^{k}(u) .
$$

A canonical basis of the representation D_{σ} is given by $\left\{\varphi_{p, \sigma}^{k}: p=-k,-k+1\right.$, \cdots, k and $k=0,1, \cdots\}$, where

$$
\varphi_{p, o}^{k}(u)=\sqrt{2 k+1}\left(\prod_{\nu=1}^{k} \frac{i(2 \nu+\sigma)}{\sqrt{4 \nu^{2}-\sigma^{2}}}\right) \sqrt{\frac{\sigma}{2 \pi}} C_{0, p}^{k}(u) .
$$

The function $C_{\mu, \nu}^{k}$ on $S U(2)$ is defined by

$$
\begin{aligned}
C_{\mu, \nu}^{k}(u)=(-1)^{2 k-\mu-\nu} \sqrt{\frac{(k-\mu)!(k+\mu)!}{(k-\nu)!(k+\nu)!}} \sum_{\alpha}\binom{k-\alpha}{\alpha}\binom{k+\nu}{k-\mu-\alpha} \\
\times u_{11}^{\alpha} u_{12}^{k-\mu-\alpha} u_{21}^{k-\nu-\alpha} u_{22}^{\mu+\nu+\alpha}
\end{aligned}
$$

where α ranges from $\max (0,-\mu-\nu)$ up to $\min (k-\mu, k-\nu)$.
Proof. See § 11 and $\S 12$ of [12]. Since we use the homomophism Λ, the canonical basis above differs a little from the one cited in [12].

It seems convenient to reparametrize these representations of G as follows:

$$
\left(T_{m, \lambda}, \mathfrak{S}_{m, \lambda}\right)= \begin{cases}S_{m, \lambda} & \text { for } m \geqslant 1 \\ S_{0,2 \sqrt{\lambda}} & \text { for } m=0, \lambda \geqslant 0 \\ D_{2 \sqrt{-\lambda}} & \text { for } m=0,-1<\lambda<0 \\ \text { unit representation for } m=0, \lambda=-1\end{cases}
$$

Thus the representation $\left(T_{m, 2}, \mathfrak{S}_{2,2}\right)$ has the canonical basis $f_{\nu, m, \lambda}^{k}$ in accordance with Lemma 1 and it holds that

$$
\Delta=-\left(\frac{m}{2}\right)^{2}+\lambda, \quad \Delta^{\prime}=-\frac{m}{2} \lambda .
$$

Furthermore, putting $\ell_{0}=\{(0, \lambda):-1 \leqslant \lambda\}$ and $\ell_{m}=\{(m, \lambda): \lambda \in \boldsymbol{R}\}$ for positive integer m, we can identify the dual space \hat{G} with a Borel subset $\sum_{m \geqq 0} \ell_{m}$ in \boldsymbol{R}_{2} (18.9.13 [4]).

Lemma 2. Denote $\left\{f_{\nu, m, \chi}^{k}\right\}$ the canonical basis of the representation $\left(T_{m, 2}, \mathfrak{S}_{m, n}\right)$ then it holds that
(i) $\Delta_{o} f_{\nu, m, 2}^{k}=-k(k+1) f_{\nu, m, \lambda}^{k}$
(ii) $H_{3} f_{\nu, m, \lambda}^{k}=\nu f_{\nu, m, 2}^{k}$
(iii) $F_{+} f_{k, m, \lambda}^{k}=\sqrt{(2 k+1)(2 k+2)} C_{k+1, m} f_{k+1, m}^{k+1}$, where

$$
C_{k+1, m}=\left\{\begin{array}{l}
i \sqrt{\left\{(k+1)^{2}-\left(\frac{m}{2}\right)^{2}\right\}\left\{(k+1)^{2}+\frac{\lambda^{2}}{4}\right\} /\left\{4(k+1)^{2}-1\right\}} /(k+1) \\
i \sqrt{\left\{(k+1)^{2}+\lambda\right\} /\left\{4(k+1)^{2}-1\right\}} \quad \text { for } m=0
\end{array} \quad \text { for } m \geqslant 18 \quad .\right.
$$

(iv) Put $f_{\nu, m, 2}^{k}=0$ for $k=0,1 / 2,1,3 / 2, \cdots$ and $|\nu|=0,1 / 2,1, \cdots$ unless $\nu=-k,-k+1, \cdots, k$ and $k=m / 2, m / 2+1, \cdots$. Then the function $\left(T_{m, \lambda}(g) f_{\nu, m, \lambda}^{k}, f_{\nu^{\prime}, m, \lambda}^{k^{\prime}}\right)_{m, \lambda}$ on $G \times \hat{G}$ is measurable.
(v) As $t \rightarrow 0$, the norm

$$
\left\|\frac{T_{m, 2}\left(\omega_{j}(t)\right) f_{\nu, m, 2}^{k}-f_{\nu, m, \lambda}^{k}}{t}-\omega_{j} f_{\nu, m, \lambda}^{k}\right\|_{m, \lambda}
$$

converges to zero uniformly on any compact set of $\{(0, \lambda):-1<\lambda<0\}$, $\{(0, \lambda): \lambda \geqslant 0\}$ and ℓ_{m} with positive integer m.

Proof. A canonical basis has properties (i), (ii) and (iii). Assume that $g=\left(g_{i j}\right) \in G, \quad u \in S U(2), \quad\left(\begin{array}{cc}-\frac{\beta}{\beta} & \frac{\beta}{\alpha}\end{array}\right) \in S U(2),\left(\begin{array}{cc}\delta^{-1} & \mu \\ 0 & \delta\end{array}\right) \in K$ and that $\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \frac{\beta}{\alpha}\end{array}\right) g=\left(\begin{array}{cc}\delta^{-1} & \mu \\ 0 & \delta\end{array}\right) u$, then we have (see $\S 11.1$ in [12])

$$
u_{22}=\left(-\bar{\beta} g_{12}+\bar{\alpha} g_{22}\right)\left\{\left|-\bar{\beta} g_{11}+\bar{\alpha} g_{21}\right|^{2}+\mid-\bar{\beta} g_{12}+\bar{\alpha} g_{22}{ }^{2}\right\}^{-1 / 2} .
$$

Hence $\alpha(u g) / \alpha(u \bar{g})$ is given by

$$
\begin{aligned}
& \left\{\left|-\bar{\beta} g_{11}+\bar{\alpha} g_{21}\right|^{2}+\left|-\bar{\beta} g_{12}+\bar{\alpha} g_{22}\right|^{2}\right\}^{-1+(i \rho-m) / 2} \quad \text { for } S_{m, \rho} \\
& \left\{\left|-\bar{\beta} g_{11}+\bar{\alpha} g_{21}\right|^{2}+\left|-\bar{\beta} g_{12}+\bar{\alpha} g_{22}\right|^{2}\right\}^{-1-\sigma / 2} \quad \text { for } D_{\sigma}
\end{aligned}
$$

Consequently $V(g) \varphi_{p, m, \rho}^{k}(u)$ and $V(g) \varphi_{p, \sigma}^{k}(u)$ are $C^{\infty}-$ functions on $G \times S U(2)$ $\times \boldsymbol{R}$ and $G \times S U(2) \times(0,2)$ respectively. Recalling that the inner products of the representation space of $S_{m, \rho}$ and D_{σ} are of the form

$$
\begin{aligned}
(\varphi, \varphi)_{m, \rho} & =\int_{S U(2)}|\varphi(u)|^{2} d u \\
(\varphi, \varphi)_{\sigma} & =\pi \iint_{S U(2) \times S U(2)} \Phi\left(u^{\prime} u^{\prime \prime-1}\right) \varphi\left(u^{\prime}\right) \overline{\varphi\left(u^{\prime \prime}\right)} d u^{\prime} d u^{\prime \prime}
\end{aligned}
$$

respectively, where $\Phi(u)=\left|u_{21}\right|^{-2+\sigma}$, we easily verify (iv). Since $V(g) \varphi(u)$ is smooth, (v) is clear.
Q.E.D.

Thanks to Lemma 2 (especially to (iv)), for a σ-finite measure on G we can define a unitary representation $\int_{\hat{G}}^{\oplus} T_{m, 2} d \sigma$ on the Hilbert space
$\int_{\hat{G}}^{\oplus} \mathscr{S}_{m, 2} d \sigma$. To decompose a unitary representation of G is, by definition, to determine a sequence of mutually singular σ-finite measures $\left\{\sigma_{1}, \sigma_{2}\right.$, $\left.\cdots, \sigma_{\infty}\right\}$ on the measurable space \hat{G} so that the representation is unitarily equivalent to the representation (T, H) defined by

$$
T=\int_{\hat{\theta}}^{\oplus} T_{m, 2} d \sigma_{1} \oplus[2] \int_{\hat{\theta}}^{\oplus} T_{m, 2} d \sigma_{2} \oplus \cdots \oplus\left[\boldsymbol{K}_{0}\right] \int_{\hat{\theta}}^{\oplus} T_{m, 2} d \sigma_{\infty}
$$

on the Hilbert space

$$
\mathfrak{S}=\int_{\hat{G}}^{\oplus} \mathfrak{S}_{m, \lambda} d \sigma_{1} \oplus[2] \int_{\hat{G}}^{\oplus} \mathfrak{S}_{m, 2} d \sigma_{2} \oplus \cdots \oplus\left[\mathcal{K}_{0}\right] \int_{\hat{G}}^{\oplus} \mathfrak{S}_{m, 2} d \sigma_{\infty}
$$

where the cardinal number in the bracket indicates the multiplicity. We shall search for a procedure to determine the measure σ_{i} up to the usual equivalence.

Lemma 3. For $k=0,1 / 2,1, \cdots$, let W_{k} be the space of solutions of the equations

$$
\begin{equation*}
H_{3} f=k f, \quad \Delta_{o} f=-k(k+1) f \tag{4}
\end{equation*}
$$

with respect to the representation (T, \mathfrak{F}) above. Denote $\sigma_{i}^{(m)}$ the restriction $\sigma_{i} \mid \ell_{m}$. Then we have unitary equivalences among selfadjoint operators:

$$
\begin{aligned}
& \Delta \mid W_{0} \simeq \int_{[-1, \infty)}^{\oplus} \lambda d \sigma_{1}^{(0)} \oplus[2] \int_{[-1, \infty)}^{\oplus} \lambda d \sigma_{2}^{(0)} \oplus \cdots \oplus\left[\boldsymbol{K}_{0}\right] \int_{[-1, \infty)}^{\oplus} \lambda d \sigma_{\infty}^{(0)}, \\
& \Delta^{\prime} \mid W_{k} \ominus F_{+} W_{k-1} \simeq \int_{R}^{\oplus}(-k) \lambda d \sigma_{1}^{(2 k)} \oplus {[2] \int_{R}^{\oplus}(-k) \lambda d \sigma_{2}^{(2 k)} } \\
& \oplus \cdots \oplus\left[\mathbf{K}_{0}\right] \int_{R}^{\oplus}(-k) \lambda d \sigma_{\infty}^{(2 k)} .
\end{aligned}
$$

Proof. Without loss of generality we may assume that all measures except for σ_{1} are zero measures. Rewrite $\sigma_{1}=\sigma$. We claim
1°

$$
W_{k}=\left\{\int_{\hat{G}}^{\oplus} a(2 k, \lambda) f_{k, m, \lambda}^{k} d \sigma: \int_{\hat{G}}|a|^{2} d \sigma<\infty\right\} .
$$

Indeed, set

$$
\tilde{W}_{k}=\left\{\int_{\hat{G}}^{\oplus} \sum_{\nu=-k}^{k} a_{\nu}(m, \lambda) f_{\nu, m, \lambda}^{k} d \sigma: \int_{\hat{G}}\left|a_{\nu}\right|^{2} d \sigma<\infty \text { for each } \nu\right\} .
$$

We will show that the restriction $\Delta_{o} \mid \tilde{W}_{k}$ is equal to $-k(k+1)$. To this end define $f(\varphi)$ for $f=\int_{\hat{G}}^{\oplus} f_{m, \lambda} d \sigma \in \tilde{W}_{k}$ and φ in $C^{\infty}(S U(2))$ by $f(\varphi)=$
$\int_{S U(2)} \varphi(u) T(u) f d u \in \tilde{W}_{k}$. Denoting Δ_{o}^{r} and $\Delta_{o}^{m, 2}$ the operator Δ_{o} corresponding to the left regular representation of $S U(2)$ and the restriction $T_{m, 2} \mid S U(2)$ respectively, for $h=\int_{\hat{\theta}}^{\oplus} h_{m, 2} d \sigma$ we have

$$
\begin{aligned}
\left(\Delta_{o} f(\varphi), h\right) & =\int_{S U(2)} d u\left(\Delta_{o}^{r} \varphi(u)\right)(T(u) f, h) \\
& =\int_{\hat{G}} d \sigma \int_{S U(2)} d u\left(\Delta_{o}^{r} \varphi(u)\right)\left(T_{m, \lambda}(u) f_{m, \lambda}, h_{m, \lambda}\right)_{m, \lambda} \\
& =\int_{\hat{G}} d \sigma\left(\Delta_{o}^{m, \lambda} f_{m, \lambda}(\varphi), h_{m, 2}\right)_{m, \lambda} \\
& =-k(k+1)(f(\varphi), h),
\end{aligned}
$$

as desired. Since the set $\left\{f_{\nu, m, \lambda}^{k}: \nu=-k,-k+1, \cdots, k\right.$ and $k=m / 2, m / 2$ $+1, \cdots\}$ is an orthonormal basis in the Hilbert space $\mathscr{S}_{m, 2}, \mathfrak{S}_{\mathrm{I}}$ is a direct sum of \tilde{W}_{k} 's. Thus W_{k} is a subspace of \tilde{W}_{k}. From (v) of Lemma $2 f=$ $\int_{\hat{\sigma}}^{\oplus} \sum_{\nu=-k}^{k} a_{\nu}(m, \lambda) f_{\nu, m, \lambda}^{k} d \sigma$ in \tilde{W}_{k} satisfies

$$
H_{3} f=\int_{\hat{a}}^{\oplus} \sum_{\nu=-k}^{k} \nu a_{\nu} f_{\nu, m, 2}^{k} d \sigma=k f
$$

which implies that a_{ν} is equal to zero a.e. unless $\nu=k$, proving 1°. Next step is to show
2°

$$
W_{k} \ominus F_{+} W_{k-1}=\left\{\int_{\ell_{2 k}}^{\oplus} a(2 k, \lambda) f_{k, 2 k, \lambda}^{k} d \sigma: \int_{\ell_{2 k}}|a|^{2} d \sigma<\infty\right\}
$$

To see this, define $W_{k, m}=\left\{\int_{\ell_{m}}^{\oplus} a(m, \lambda) f_{k, m, \lambda}^{k} d \sigma: \int_{\ell_{m}}|a|^{2} d \sigma<\infty\right\}$. Since W_{k} is a direct sum of $W_{k, m}$'s with non-negative integers $m=2 k, 2 k-2, \ldots$ and since the closure $\overline{F_{+} W_{k-1, m}}$ coincides with $W_{k, m}$ due to (iii) and (v) of Lemma 2, 2° is now clear. Finally we verify
3°

$$
\begin{gathered}
\Delta \int_{\ell_{0}}^{\oplus} a(0, \lambda) f_{0,0, \lambda}^{0} d \sigma=\int_{\ell_{0}}^{\oplus} \lambda a(0, \lambda) f_{0,0, \lambda}^{0} d \sigma, \\
\Delta^{\prime} \int_{\ell_{2 k}}^{\oplus} a(2 k, \lambda) f_{k, 2 k, \lambda}^{k} d \sigma=\int_{\ell_{2 k}}^{\oplus}(-k) \lambda a(2 k, \lambda) f_{k, 2 k, \lambda}^{k} d \sigma,
\end{gathered}
$$

provided the members on the right side belong to \mathfrak{K}. Indeed we can argue as we showed that $\Delta_{o} \mid \tilde{W}_{k}=-k(k+1)$ in 1°. Now $1^{\circ}, 2^{\circ}$ and 3° yield the Lemma.
Q.E.D.

The following lemma is also useful.

Lemma 4. The restriction $\Delta^{\prime} \mid W_{k}$ and $\Delta^{\prime} \mid \overline{F_{+} W_{k}}$ are unitarily equivalent selfadjoint operators.

Proof. As mentioned in the proof of Lemma 3, the closure $\overline{F_{+} W_{k}}$ is a direct sum of $W_{k+1, m}$'s with non-negative integers $m=2 k, 2 k-2, \cdots$. The following isometry from W_{k} onto $\overline{F_{+} W_{k}}$ transforms the first operator to the second one:

$$
\sum_{m=2 k, 2 k-2, \ldots} \int_{\ell_{m}}^{\oplus} a(m, \lambda) f_{k, m, \lambda}^{k} d \sigma \rightarrow \sum_{m=2 k, 2 k-2, \ldots} \int_{\ell_{m}}^{\oplus} a(m, \lambda) f_{k+1, m, \lambda}^{k+1} d \sigma
$$

Q.E.D.

To sum up, given a unitary representation of $S L(2, C)$, one can decompose it into irreducible ones if one could specify the space W_{k} (call it the space of the k-th heighest weight vectors) and carry out the spectral decomposition of selfadjoint operators $\Delta \mid W_{0}$ and $\Delta^{\prime} \mid W_{k} \Theta F_{+} W_{k-1}$.

§4. The space of the \mathbf{k}-th heighest weight vectors W_{k}

Let $U^{i M, \pi}$ denote an irreducible unitary representation of the Poincaré group P associated with the hyperboloid of one sheet $V_{i M}$ and an irreducible unitary representation π of $S U(1,1)$ (see $\S 2$). In this section we shall first solve the equation (4), then determine the spectral type of selfadjoint operators $\Delta \mid W_{0}$ and $\Delta^{\prime} \mid W_{k}$ of the restriction $U^{i M, \pi} \mid S L(2, C)$. From now on G and G_{0} stand for $S L(2, C)$ and $S U(1,1)$ respectively.

We begin with specifying the representation $U^{i M, \pi}$ of $P . \quad V_{i M}=$ $\left\{y=\left(\begin{array}{ll}y_{0}-y_{3} & y_{2}-i y_{1} \\ y_{2}+i y_{1} & y_{0}+y_{3}\end{array}\right): \operatorname{det} y=-M^{2}\right\}$ in \hat{R}_{4} is a G-homogeneous space with the invariant measure $d \mu(y)=d y_{1} d y_{2} d y_{3} /\left|y_{0}\right|$. Let p be the projection from G onto $V_{i M}$ defined by $p(g)=g^{*} \hat{x} g$, where \hat{x} denotes the fixed point $M\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$. For u in $S U(2)$ let s_{u} be a measurable section from $V_{i M}$ into G such that $p \circ s_{u}=$ identity and that

$$
\begin{equation*}
s_{u} \circ p(\langle\tau, \theta, \varphi\rangle)=\langle\tau, \theta, \varphi\rangle u \quad \text { for }(\tau, \theta, \varphi) \in R \times(0, \pi) \times(0,2 \pi), \tag{5}
\end{equation*}
$$

where $\langle\tau, \theta, \varphi\rangle$ stands for the matrix $\omega_{6}(\tau) \omega_{2}(\theta) \omega_{3}(\varphi)$. We fix s_{u} once for all. Then the representation $U^{i M, \pi}$ has the following realization $U^{\pi, u}$ on the Hilbert space $\mathscr{S}^{\pi}=L^{2}\left(V_{i M}, \mathscr{F}_{\pi}, \mu\right)$ for each $u \in S U(2)$:

$$
\begin{equation*}
U^{\pi, u}(x, g) f(y)=e^{i\left\langle x^{\prime}, \hat{x}\right\rangle} \pi\left(g_{0}\right) f(y \cdot g), \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
s_{u}(y)(x, g)=\left(x^{\prime}, g_{0}\right) s_{u}(y \cdot g) \quad \text { with } g_{0} \in G_{0} \tag{7}
\end{equation*}
$$

By the aid of the isometry $I_{u}: \tilde{\mathfrak{F}}^{\pi}(G)=\left\{\tilde{f} \in L^{2}\left(G, \mathfrak{F}_{\pi}, \mu\right): \tilde{f}\left(g_{0} g\right)=\pi\left(g_{0}\right) \tilde{f}(g)\right.$ for $\left.g_{0} \in G_{0}\right\} \rightarrow \mathscr{S}^{\pi}$ such that $\tilde{f}\left(s_{u}(y)\right)=I_{u} \tilde{f}(y), U^{\pi, u}$ is transformed to $U^{\pi, v}$ by $I_{v} I_{u}^{-1}$.

We proceed, assuming the representation π to be $\pi_{(e, 0)}^{+}$. Other cases can be treated in the same way. Setting

$$
Y=\left\{p\left(\omega_{6}(\tau) \omega_{2}(\theta) \omega_{3}(\varphi)\right):(\tau, \theta, \varphi) \in R \times(0, \pi) \times(0,2 \pi)\right\} \subset V_{i M},
$$

for $u \in S U(2)$ define a dense subspace $\mathfrak{S}_{\mathcal{C}^{\pi, u}}$ of \mathscr{S}^{π} :

$$
\mathfrak{S}_{c}^{\pi, u}=\left\{f \in C_{0}^{\infty}(Y \cdot u \times T): f\left(y, e^{i \psi}\right)=\sum_{\nu \geqslant-\ell} f_{\nu}(y) e^{i \nu \psi}\right\} .
$$

We note that for f in $\mathscr{S}_{C_{0}^{\pi}, u}^{(6)}$ takes the form

$$
U^{\pi, u}(0, g) f\left(y, e^{i \psi}\right)=\left|\beta e^{i \psi}+\bar{\alpha}\right|^{2} \ell f\left(y \cdot g, \frac{\alpha e^{i \psi}+\bar{\beta}}{\beta e^{i \psi}+\bar{\alpha}}\right)
$$

provided $s_{u}(y) g=g_{0} s_{u}(y \cdot g)$ with $g_{0}=\left(\begin{array}{ll}\frac{\alpha}{\beta} & \frac{\beta}{\alpha}\end{array}\right) \in G_{0}$. Since the section s_{u} is smooth on $Y \cdot u$ as well as the map $(y, g) \rightarrow y \cdot g$, there exists a relatively compact neighborhood U of the unit element of G such that for $f \in \mathcal{S}_{0}^{\pi, u}$, the function $U^{\pi, u}(0, g) f\left(y, e^{i \psi}\right)$ belong to $C^{\infty}(U \times Y \cdot u \times T)$. This observation leads to

Lemma 5. The domain of $\omega_{j}^{\pi, u}$ includes $\mathfrak{S}_{\substack{\pi \\ \pi}}$ for all j and the restriction $\omega_{j}^{\pi, u} \mid \mathfrak{h}_{0}^{\pi, u}$ is a differential operator with C^{∞}-coefficients.

Now that $\omega_{j}^{\pi, u}$ is a continuous transformation of $\mathfrak{S}_{\mathcal{C}_{1}^{\pi, u}}$ with the relative topology of $C_{0}^{\infty}(Y \cdot u \times T)$, we define the dual operator $\hat{\omega}_{j}^{\pi, u}$ by the following

$$
\left\langle\hat{\omega}_{j}^{\pi, u} \hat{f}, f\right\rangle=\left\langle\hat{f}, \omega_{j}^{\pi, u} f\right\rangle
$$

where $\hat{f} \in\left(\mathfrak{S}_{0}^{\pi, u}\right)^{\prime}$ and $f \in \mathfrak{S}_{0}^{\pi}{ }^{\pi}, u$. Regarding \mathscr{S}^{π} as a subspace of the dual space $\left(\mathcal{S}_{0}^{\pi, u}\right)^{\prime}$, we claim

Lemma 6.
(i) $\omega_{j}^{\pi, u} \subset-\hat{\omega}_{j}^{\pi, u}$.
(ii) Assume that f belongs to $\mathfrak{S}_{0}^{\pi, u}$ and $\operatorname{Supp} f \subset Y \cdot v$ for some $v \in S U(2)$. Then $f^{v}=I_{v} I_{u}^{-1} f$ belongs to $\mathscr{S}_{0}^{\pi, v}$ and satisfies

$$
\left(\omega_{j}^{\pi, u} f, h\right)=\left(\omega_{j}^{\pi, v} f^{v}, h^{v}\right) \quad \text { for any } h \in \mathscr{S}_{C^{\pi}} .
$$

(iii) The intersection $D_{\Delta_{0}^{\pi}, u} \cap D_{\Delta \pi, u} \cap D_{\Lambda^{\prime} \pi, u}$ includes $S_{S_{0}^{\pi}, u}^{\pi}$. Further-
more, it holds that (the indexes π and u are omitted)

$$
\begin{aligned}
& \Delta_{o} \subset \sum_{i=1}^{3}\left(\hat{\omega}_{j}\right)^{2}, \quad \Delta \subset \sum_{i=1}^{3}\left(\hat{\omega}_{i}\right)^{2}-\sum_{j=4}^{6}\left(\hat{\omega}_{j}\right)^{2}-1, \\
& \Delta^{\prime} \subset-\left(\hat{\omega}_{1} \hat{\omega}_{4}+\hat{\omega}_{4} \hat{\omega}_{1}+\hat{\omega}_{2} \hat{\omega}_{5}+\hat{\omega}_{5} \hat{\omega}_{2}+2 \hat{\omega}_{3} \hat{\omega}_{6}\right) .
\end{aligned}
$$

Proof. Since $\omega_{j}^{\pi, u}$ is antihermitian, (i) follows. We note that $f^{v}(y)$ $=\pi\left(g_{0}\right) f(y)$ provided $s_{v}(y)=g_{0} s_{u}(y)$ with $g_{0}=\left(\begin{array}{cc}\frac{\alpha}{\beta} & \frac{\beta}{\alpha}\end{array}\right) \in G_{0}$, namely

$$
f^{v}\left(y, e^{i \psi}\right)=\left|\beta e^{i \psi}+\bar{\alpha}\right|^{2 \ell} f\left(y, \frac{\alpha e^{i \psi}+\bar{\beta}}{\beta e^{i \psi}+\bar{\alpha}}\right) .
$$

Since g_{0} is smooth on $Y \cdot u \cap Y \cdot v, f^{v}$ has a representative in $\mathscr{S}_{0}^{\pi, v}$. Now (ii) is evident. As to (iii) we deal only with $\Delta^{\pi, u}$. It suffices to prove

$$
\begin{aligned}
& \Delta^{\pi, u} \int_{G} \varphi(g) U^{\pi, u}(0, g) f d g \\
& \quad=\int_{G} \varphi(g) U^{\pi, u}(0, g)\left[\sum_{i}\left(\omega_{i}^{\pi}, u\right)^{2}-\sum_{j}\left(\omega_{j}^{\pi, u}\right)^{2}-1\right] f d g
\end{aligned}
$$

for $\varphi \in C_{0}^{\infty}(G)$ and $f \in \mathfrak{S}_{0}^{\pi, u}$ [14]. To this end we will show that for $\psi \in C_{0}^{\infty}(G)$ and $h \in \mathfrak{S}_{6}^{\pi, u}$

$$
\begin{align*}
& \left(\Delta^{\pi, u} \int \varphi(g) U^{\pi, u}(0, g) f d g, \int \psi\left(g^{\prime}\right) U^{\pi, u}\left(0, g^{\prime}\right) h d g^{\prime}\right) \\
& =\left(\int \varphi(g) U^{\pi, u}(g)\left[\sum_{i}\left(\omega_{i}^{\pi, u}\right)^{2}-\sum_{j}\left(\omega_{j}^{\pi, u}\right)^{2}-1\right] f d g,\right. \tag{9}\\
& \left.\quad \int \psi\left(g^{\prime}\right) U^{\pi, u}\left(0, g^{\prime}\right) h d g^{\prime}\right) .
\end{align*}
$$

A diffeomorphism $q: V_{i M} \rightarrow \boldsymbol{R} \times S_{2}$ defined by

$$
\begin{equation*}
q(y)=\left(y_{0}, y_{1} /\left(\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}, \quad y_{2} / \sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}, \quad y_{3} / \sqrt{\left.\left.y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)\right)}\right.\right. \tag{10}
\end{equation*}
$$

maps $Y \cdot u$ onto $\boldsymbol{R} \times S_{2}^{u}$. We note that each S_{2}^{u} is dense and open in the unit sphere S_{2} and that the union $\cup_{u \in S U(2)} S_{2}^{u}$ covers the sphere. Observing that for given $a, a^{\prime} \in G$ and $y, y^{\prime} \in V_{i M}$ there exists $w \in S U(2)$ such that $\left\{y, y^{\prime}, y^{\prime} \cdot a^{\prime-1} a\right\} \subset Y \cdot w$, we can show inductively that there exist a finite covering $\left\{U_{\alpha}\right\}$ of $\operatorname{Supp} \varphi$, finite covering $\left\{U_{\alpha \beta}\right\}$ of $\operatorname{Supp} \psi$, finite covering $\left\{Y_{\alpha \beta \gamma}\right\}$ of $\operatorname{Supp} f$, finite covering $\left\{Y_{\alpha \beta \gamma \delta}\right\}$ of $\operatorname{Supp} h$ and $w_{\alpha \beta r^{\delta}} \in S U(2)$ such that each member is relatively compact and that

$$
Y_{\alpha \beta \gamma} \cup Y_{\alpha \beta \gamma \delta} \cup Y_{\alpha \beta \gamma \delta} \cdot U_{\alpha \beta}^{-1} U_{\alpha} \subset Y \cdot w
$$

Denote $\chi_{\alpha}, \chi_{\alpha \beta}, \chi_{\alpha \beta \gamma}$ and $\chi_{\alpha \beta \gamma \delta}$ the partition of unity associated with the coverings above. Now the left side of (9) is equal to

$$
\begin{aligned}
\int d g \varphi & (g)\left(f, U^{\pi, u}\left(g^{-1}\right) \Delta^{\pi, u} \int \psi\left(g^{\prime}\right) U^{\pi, u}\left(g^{\prime}\right) h d g^{\prime}\right) \\
& =\int d g \varphi(g)\left(f, \Delta^{\pi, u} U^{\pi, u}\left(g^{-1}\right) \int \psi\left(g^{\prime}\right) U^{\pi, u}\left(g^{\prime}\right) h d g^{\prime}\right) \\
& =\int d g \varphi(g)\left(f, \Delta^{\pi, u} \int \psi\left(g^{\prime}\right) U^{\pi, u}\left(g^{-1} g^{\prime}\right) d g^{\prime}\right) \\
& =\int_{\alpha, \beta, r, \delta} \int d g \varphi \chi_{\alpha}\left(f \chi_{\alpha \beta r}, \Delta^{\pi, u} \int \psi \chi_{\alpha \beta} U^{\pi, u}\left(g^{-1} g^{\prime}\right) h \chi_{\alpha \beta \gamma \delta} d g^{\prime}\right) .
\end{aligned}
$$

Putting $w=w_{\alpha \beta \gamma \delta}$ we rewrite the $\alpha \beta \gamma \delta$-term above as

$$
\int d g \varphi \chi_{\alpha}\left(\left(f \chi_{\alpha \beta \gamma}\right)^{w}, \Delta^{\pi, w} \int \psi \chi_{\alpha \beta} U^{\pi, w}\left(g^{-1} g^{\prime}\right)\left(h \chi_{\alpha \beta \gamma \delta}\right)^{w} d g^{\prime}\right) .
$$

Since $\chi_{\alpha}(g) \int \psi \chi_{\alpha \beta} U^{\pi, w}\left(h \chi_{\alpha \beta \gamma \delta}\right)^{w} d g^{\prime}$ belongs to $\mathfrak{S}_{\varepsilon}^{\pi}{ }^{\pi}, w$, it holds that

$$
\begin{aligned}
& \Delta^{\pi, w} \chi_{\alpha}(g) \int \psi \chi_{\alpha \beta} U^{\pi, w}\left(h \chi_{\alpha \beta \gamma \delta}\right)^{w} d g^{\prime} \\
& \quad=\chi_{\alpha}(g)\left[\sum_{i}\left(\omega_{i}^{\pi, w}\right)^{2}-\sum_{j}\left(\omega_{j}^{\pi, w}\right)^{2}-1\right] \int \psi \chi_{\alpha \beta} U^{\pi, w}\left(h \chi_{\alpha \beta \gamma \delta}\right)^{w} d g^{\prime}
\end{aligned}
$$

On account of Lemma 5 and (ii) of Lemma 6 the $\alpha \beta \gamma \delta$-term is equal to

$$
\int d g \varphi \chi_{\alpha}\left(\left[\sum_{i}\left(\omega_{i}^{\pi, u}\right)^{2}-\sum_{j}\left(\omega_{j}^{\pi, u}\right)^{2}-1\right] f \chi_{\alpha \beta \gamma}, \int \psi \chi_{\alpha \beta} U^{\pi, u}\left(h \chi_{\alpha \beta \gamma \delta}\right) d g^{\prime}\right)
$$

from which (9) follows.
Q.E.D.

We now derive the concrete forms of the restrictions to $\mathfrak{S}_{0}^{\pi, e}$ of $\omega_{i}, H_{i}, F_{i}, \Delta_{o}, \Delta$ and Δ^{\prime} with respect to the representation ($U^{\pi, e}, \mathscr{F}_{c}{ }^{\pi}$). After tedious computation we obtain the following. The underlined terms disappear for nonspinor irreducible unitary representations $\pi_{(\varepsilon, 0)}$ and $\pi_{(\varepsilon, 0)}^{ \pm}$of $S U(1,1)$.

$$
\begin{gathered}
p\left(\omega_{6}(\tau) \omega_{2}(\theta) \omega_{3}(\varphi)\right)=\left(\begin{array}{cl}
-e^{\tau} \cos ^{2} \theta / 2+e^{-\tau} \sin ^{2} \theta / 2 & \operatorname{ch} \tau \sin \theta e^{-i \varphi} \\
\operatorname{ch} \tau \sin \theta e^{i \varphi} & -e^{\tau} \sin ^{2} \theta / 2+e^{-\tau} \cos ^{2} \theta / 2
\end{array}\right), \\
\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=(-\operatorname{sh} \tau, \operatorname{ch} \tau \sin \theta \sin \psi, \operatorname{ch} \tau \sin \theta \cos \varphi, \operatorname{ch} \tau \cos \theta), \\
d \mu=\operatorname{ch}^{2} \tau \sin \theta d \tau d \theta d \varphi, \\
\omega_{1}=\sin \varphi \partial_{\theta}+\cot \theta \cos \varphi \partial_{\varphi}-\frac{\cos \varphi}{\sin \theta} \partial_{\psi}+\frac{i \cos \varphi}{2 \sin \theta},
\end{gathered}
$$

$$
\begin{aligned}
& \omega_{2}=\cos \varphi \partial_{\theta}-\cot \theta \sin \varphi \partial_{\varphi}+\frac{\sin \varphi}{\sin \theta} \partial_{\psi}-\frac{i \sin \varphi}{2 \sin \theta}, \\
& \omega_{3}=\partial_{\varphi}, \\
& \omega_{4}=-\sin \theta \cos \varphi \partial_{\tau}-\operatorname{th} \tau \cos \theta \cos \varphi \partial_{\theta}+\frac{\operatorname{th} \tau \sin \varphi}{\sin \theta} \partial_{\varphi} \\
& +\left(-\operatorname{th} \tau \cot \theta \sin \varphi-\frac{\cos \theta \cos \varphi \sin \psi+\sin \varphi \cos \psi}{\operatorname{ch} \tau}\right) \partial_{\psi} \\
& +\frac{\ell(\cos \theta \cos \varphi \cos \psi-\sin \varphi \sin \psi)}{\operatorname{ch} \tau} \\
& +\frac{i(\cos \theta \cos \varphi \sin \psi+\sin \varphi \cos \psi)}{2 \operatorname{ch} \tau}+\frac{\operatorname{th} \tau \cot \theta \sin \varphi}{2}, \\
& \omega_{5}=\sin \theta \sin \varphi \partial_{\tau}+\operatorname{th} \tau \cos \theta \sin \varphi \partial_{\theta}+\frac{\operatorname{th} \tau \cos \varphi}{\sin \theta} \partial_{\varphi} \\
& +\left(-\operatorname{th} \tau \cot \theta \cos \varphi+\frac{\cos \theta \sin \varphi \sin \psi-\cos \varphi \cos \psi}{\operatorname{ch} \tau}\right) \partial_{\psi} \\
& +\frac{\ell(-\cos \theta \sin \varphi \cos \psi-\cos \varphi \sin \psi)}{\operatorname{ch} \tau} \\
& +\frac{i(-\cos \theta \sin \varphi \sin \psi+\cos \varphi \cos \psi)}{2 \operatorname{ch} \tau}+\frac{\operatorname{th} \tau \cot \theta \cos \varphi}{2}, \\
& \omega_{6}=\cos \theta \partial_{\tau}-\operatorname{th} \tau \sin \theta \partial_{\theta}-\frac{\sin \theta \sin \psi}{\operatorname{ch} \tau} \partial_{\psi}+\frac{\ell \sin \theta \cos \psi}{\operatorname{ch} \tau} \\
& +\frac{i \sin \theta \sin \psi}{2 \operatorname{ch} \tau}, \\
& H_{+}=e^{-i \varphi}\left(i \partial_{\theta}+\cot \theta \partial_{\varphi}-\frac{1}{\sin \theta} \partial_{\psi}+\frac{i}{2 \sin \theta}\right), \\
& H_{-}=e^{+i \varphi}\left(i \partial_{\theta}-\cot \theta \partial_{\varphi}+\frac{1}{\sin \theta} \partial_{\psi}-\frac{i}{2 \sin \theta}\right), \\
& H_{3}=i \partial_{\varphi}, \\
& F_{+}=e^{-i \varphi_{\varphi}}\left[-\sin \theta \partial_{\tau}-\operatorname{th} \tau \cos \theta \partial_{\theta}+\frac{i \operatorname{th} \tau}{\sin \theta} \partial_{\varphi}\right. \\
& +\left(-i \operatorname{th} \tau \cot \theta-\frac{\cos \theta \sin \psi+i \cos \psi}{\operatorname{ch} \tau}\right) \partial_{\psi} \\
& +\frac{\ell(\cos \theta \cos \psi-i \sin \psi)}{\operatorname{ch} \tau}+\frac{i \cos \theta \sin \psi-\cos \psi}{2 \operatorname{ch} \tau} \\
& \left.-\frac{\operatorname{th} \tau \cot \theta}{2}\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& F_{-}=e^{i \varphi} {\left[\sin \theta \partial_{\tau}+\operatorname{th} \tau \cos \theta \partial_{\theta}+\frac{i \text { th } \tau}{\sin \theta} \partial_{\varphi}+(-i \operatorname{th} \tau \cot \theta\right.} \\
&\left.+\frac{\cos \theta \sin \psi-i \cos \psi}{\operatorname{ch} \tau}\right) \partial_{\psi}-\frac{i \cos \theta \sin \psi+\cos \psi}{2 \operatorname{ch} \tau} \\
&\left.-\frac{\operatorname{th} \tau \cot \theta}{2}+\frac{\ell(-\cos \theta \cos \psi-i \sin \psi)}{\operatorname{ch} \tau}\right], \\
& F_{3}= i\left[\cos \theta \partial_{\tau}-\operatorname{th} \tau \sin \theta \partial_{\theta}-\frac{\sin \theta \sin \psi}{\operatorname{ch} \tau} \partial_{\psi}+\frac{\ell \sin \theta \cos \psi}{\operatorname{ch} \tau}\right. \\
&\left.+\frac{i \sin \theta \sin \psi}{2 \operatorname{ch} \tau}\right], \\
& \Delta_{0}= \partial_{\theta}^{2} \\
&+\frac{1}{\sin ^{2} \theta} \partial_{\varphi}^{2}-\frac{2 \cot \theta}{\sin \theta} \partial_{\varphi} \partial_{\psi}+\frac{1}{\sin ^{2} \theta} \partial_{\psi}^{2}+\cot \theta \partial_{\theta} \\
&+\frac{i \cot \theta}{2 \sin \theta} \partial_{\varphi}-\frac{i}{2 \sin \sin ^{2} \theta} \partial_{\psi}-\frac{1}{4 \sin ^{2} \theta}, \\
& \Delta^{\prime}=- 2 \partial_{\tau} \partial_{\psi}+\frac{2 \cos \psi}{\operatorname{ch} \tau} \partial_{\theta} \partial_{\psi}+\frac{2 \sin \psi}{\operatorname{ch} \tau \sin \theta} \partial_{\varphi} \partial_{\psi}-\frac{2 \cot \theta \sin \psi}{\operatorname{ch} \tau} \partial_{\psi}^{2}+i \partial_{\tau} \\
&+\left(\frac{\ell \sin \psi}{\operatorname{ch} \tau}-\frac{i \cos \psi}{\operatorname{ch} \tau}\right) \partial_{\theta}+\left(-\frac{2 \ell \cos \psi}{\operatorname{ch} \tau \sin \theta}-\frac{i \sin \psi}{\operatorname{ch} \tau \sin \theta}\right) \partial_{\varphi} \\
&+2\left(\frac{\ell \cot \theta \cos \psi}{\operatorname{ch} \tau}-\operatorname{th} \tau+\frac{i \cot \theta \sin \psi}{\operatorname{ch} \tau}\right) \partial_{\psi} \\
&+\left(-\frac{i \ell \cot \theta \cos \psi}{\operatorname{ch} \tau}+\frac{\cot \theta \sin \psi}{\operatorname{ch} \tau}+i \operatorname{th} \tau\right), \\
& \Delta m-\left(\partial_{\tau}^{2}+2 \operatorname{th} \tau \partial_{\tau}+\frac{\ell(\ell+1)}{\operatorname{ch}^{2} \tau}+1\right)+S .
\end{aligned}
$$

We remark that the differential operator S does not contain any terms of the form $S(\tau, \theta, \varphi, \psi) \partial_{\tau}^{j}(j=0,1,2)$.

We are ready to solve the equation (4). Consider the following equation

$$
\begin{equation*}
-i \hat{\omega}_{3} f=k f, \quad \sum_{i=1}^{3} \hat{\omega}_{i}^{2} f=-k(k+1) f, \quad f \in \mathfrak{S}_{\mathrm{C}}^{\pi}(k=-\ell,-\ell+1, \cdots) \tag{11}
\end{equation*}
$$

and denote \hat{W}_{k} the space of solutions (in (11) we omitted the indexes π and e for the sake of simplicity). Lemma 6 implies that W_{k} is the intersection of $\hat{W}_{k}, D_{H_{3}}$ and $D_{\Lambda_{0}}$.

Lemma 7. An \hat{f} belongs to \hat{W}_{k} if and only if f is of the form:

$$
\begin{equation*}
\hat{f}\left(\tau, \theta, \varphi, e^{i \psi}\right)=\sum_{\nu \geqslant-\ell}^{k} \sum_{i=1,2} f_{\nu, i}(\tau) Q_{\nu, i}(\cos \theta) e^{-i k \varphi+i \nu \psi}, \tag{12}
\end{equation*}
$$

where $f_{\nu, i}$ belongs to $L^{2}\left(R, \operatorname{ch}^{2} \tau d \tau\right)$ and $\left\{Q_{\nu, i}(z): i=1,2\right\}$ span the space of solutions in $L^{2}((-1,1))$ of the equation:

$$
\begin{equation*}
\left[\left(1-z^{2}\right) \partial_{z}^{2}-2 z \partial_{z}-\frac{k^{2}+\nu^{2}+2 k \nu z}{1-z^{2}}+k(k+1)\right] Q(z)=0 \text { on }(-1,1) \tag{13}
\end{equation*}
$$

For the proof we need
Lemma 8. Assume that k ranges $0,1 / 2,1, \cdots$ and that $k+\nu$ is an integer. Then the equation (13) has no solutions in L^{2} for $|\nu|>k$, while the bounded solution of (13) is proportional to $P_{k, \nu}^{k}(z)$ for $|\nu| \leqslant k . \quad P_{k, \nu}^{k}$ is defined by

$$
P_{k, \nu}^{k}(z)=\frac{i^{k-\nu}}{2^{k}} \sqrt{\frac{(2 k)!}{(k-\nu)!(k+\nu)!}}(1-z)^{(k-\nu) / 2}(1+z)^{(k+\nu) / 2} .
$$

Proof of Lemma 8. A similar statement can be found in chap. 3, sec. 4 [17]. That $P_{k,-\nu}^{k}$ is a bounded solution of (13) is known. By the change of variable $t=(z+1) / 2$, the solution of (13) may be written as

$$
\begin{aligned}
& P\left(\begin{array}{ccc}
-1 & 1 & \infty \\
-|k-\nu| / 2 & -|k+\nu| / 2 & -k \\
|k-\nu| / 2 & |k+\nu| / 2 & k+1
\end{array}\right)=P\left(\begin{array}{cccc}
-1 & 1 & \infty & \\
\alpha & \gamma & \beta & z \\
\alpha^{\prime} & \gamma^{\prime} & \beta^{\prime} &
\end{array}\right) \\
& \quad=P\left(\begin{array}{llll}
0 & 1 & \infty \\
\alpha & \gamma & \beta & t \\
\alpha^{\prime} & \gamma^{\prime} & \beta^{\prime}
\end{array}\right)=t^{\alpha}(1-t)^{r^{\prime}} P\left(\begin{array}{cccc}
0 & 1 & \infty \\
0 & 0 & \alpha+\beta+\gamma & t \\
\alpha^{\prime}-\alpha & \gamma^{\prime}-\gamma & \alpha+\beta^{\prime}+\gamma
\end{array}\right) \\
& \quad=t^{\alpha}(1-t)^{r} P\left(\begin{array}{cccc}
0 & 1 & \infty & \\
0 & 0 & a & t \\
1-c & c-a-b & b
\end{array}\right) .
\end{aligned}
$$

If $c<1$, equivalently $k \neq \nu$, then $t^{\alpha}(1-t)^{r} F(a, b, a+b-c, 1-t)$ and $t^{a}(1-t)^{c-a-b} F(c-a, c-b, c-a-b+1,1-t)$ are linearly independent solutions around $t=1$, where $F(a, b, c, t)$ denotes the hypergeometric function. Checking the behavior of them around $t=0$ and 1 [5], one verifies the lemma for $k \neq \nu$. If $c=1, w_{1}=P_{k,-k}^{k}$ is a solution. As is well known, a linearly independent solution w_{2} has the form

$$
c_{-1} w_{1}(z) \log (z+1)+\sum_{n=0} c_{n}(z+1)^{n} \quad \text { with } c_{-1} c_{0} \neq 0
$$

This function is unbounded around $z=-1$.
Q.E.D.

Proof of Lemma 7. Expand $\hat{f}: \hat{f}\left(y, e^{i \psi}\right)=\sum_{\nu \geqslant-\ell} \hat{f}_{\nu}(y) e^{i \nu \psi}$. For $h(\tau, \theta, \varphi, \psi)$ $=h_{1}(\tau) h_{2}(\theta) h_{3}(\varphi) e^{i \nu \psi}$ with $h_{i} \in C_{0}^{\infty}$ we have

$$
\left(-i \hat{f}, \omega_{3} h\right)=k(\hat{f}, h),
$$

from which it follows that $\hat{f}_{\nu}(y)$ is of the form $f_{\nu}(\tau, \theta) e^{-i k \varphi}$ with $f_{\nu} \in L^{2}(R$ $\left.\times(0, \pi): \operatorname{ch}^{2} \tau \sin \theta d \tau d \theta\right)$. Furthermore f satisfies

$$
\begin{aligned}
0= & \left(f,\left[\Delta_{o}+k(k+1)\right] h\right)=\left(f,\left[\partial_{\theta}^{2}+\cot \theta \partial_{\theta}+\frac{1}{\sin ^{2} \theta} \partial_{\varphi}^{2}-\frac{2 \nu \cot \theta}{\sin \theta} \partial_{\varphi}\right.\right. \\
& \left.\left.-\frac{\nu^{2}}{\sin ^{2} \theta}+k(k+1)\right] h\right) \\
= & \left\|e^{i \nu \psi}\right\|^{2}\left(e^{-i k \varphi}, h_{3}\right)\left(f_{\nu},\left[\partial_{\theta}^{2}+\cot \theta \partial_{\theta}-\frac{k^{2}+\nu^{2}+2 k \nu \cos \theta}{\sin ^{2} \theta}\right.\right. \\
& \left.+k(k+1)] h_{1} h_{2}\right) .
\end{aligned}
$$

Putting $G_{\nu}(\tau, \cos \theta)=f_{v}(\tau, \theta)$, we conclude that $G_{\nu}(\tau, z)$ is a weak solution, consequently, a smooth solution of (13) for a.e. τ. Thus f must have the desired expression. Conversely if f is of the form (10), it satisfies (11) because h 's finite linear combinations form a dense set in $\mathfrak{S}_{0}^{\pi, e}$. Q.E.D.

Lemma 9. Assume f in \mathfrak{S}^{π} to be of the form

$$
\begin{equation*}
f\left(\tau, \theta, \varphi, e^{i \psi}\right)=\sum_{\nu \geqslant-\ell}^{k} f_{\nu}(\tau) P_{k,-\nu}^{k}(\cos \theta) e^{-i k \varphi+i \nu \psi} \tag{14}
\end{equation*}
$$

for some integer k and f_{ν} in $C_{0}^{\infty}(\boldsymbol{R})$. Then f belongs to domains of $\omega_{j}, \Delta_{o}, \Delta$ and $\Delta^{\prime}(j=1,2, \cdots, 6) . \quad F$ belongs to W_{k}, too.

Proof. We may suppose $f=f_{\nu} P_{k,-\nu}^{k} e^{-i k \varphi+i \nu \psi}$. We will show that there exists an \tilde{f} in $\mathscr{S}^{\pi}(G)$ such that

$$
\begin{equation*}
\tilde{f}\left(\omega_{8}(\tau) u, e^{i \psi}\right)=f_{\nu}(\tau) t_{-\nu,-k}^{k}(u) e^{i \nu \psi}, \quad I_{e} \tilde{f}=f \tag{15}
\end{equation*}
$$

(see below (7) for the definition of $\mathscr{S}_{\varepsilon}{ }^{\pi}(G)$ and I_{e}), where $t_{m, n}^{t}(u)$ is the (m, n) matrix element corresponding to an irreducible unitary representation of $S U(2)$ (chap. 3 [17]). It suffices to prove

$$
\begin{equation*}
f_{\nu}\left(\tau^{\prime}\right) t_{-\nu,-k}^{k}\left(u^{\prime}\right) e^{i \nu \psi}=\pi\left(g_{0}\right)\left(f_{\nu}(\tau) t_{-\nu,-k}^{k}(u) e^{i \nu \psi}\right) \tag{16}
\end{equation*}
$$

assuming that $\omega_{6}\left(\tau^{\prime}\right) u^{\prime}=g_{0} \omega_{6}(\tau) u$. As one verifies easily, the condition implies that $\tau^{\prime}=\tau$ and $g_{0}=\omega_{3}(t)$ for some t. Thus it holds that

$$
t_{-,-k}^{k}\left(u^{\prime}\right)=e^{i \nu t} t_{-\nu,-k}^{k}(u), \quad \pi\left(g_{0}\right) e^{i \nu \psi}=e^{i \nu(t+\psi)}
$$

which proves (16). Take a compact set B of the hyperboloid $V_{i M}$ so that any $f \circ s_{u}(u \in S U(2))$ vanishes on the complement B^{c}, then find a finite covering $\left\{Y_{\alpha}\right\}$, the partition of unity and a finite set $\left\{u_{\alpha}\right\} \subset S U(2)$ satisfying Supp $\chi_{\alpha} \subset Y \cdot u_{\alpha}$. Since $I_{u_{\alpha}} I_{e}^{-1} f \chi_{\alpha}=\left(\tilde{f} \cdot s_{u_{\alpha}}\right) \chi_{\alpha}$ belongs to $\mathscr{S}_{\hat{0}}^{\pi, u_{\alpha}}, D_{\Delta \pi, u_{\alpha}}$, for example, contains it due to Lemma 6. This in turn implies that $f \chi_{\alpha}$, hence f itself, belongs to the domain of $\Delta^{\pi, e}$. Recalling $W_{k}=\hat{W}_{k} \cap D_{H_{3}}$ $\cap D_{\Lambda_{0}}$, we complete the proof.
Q.E.D.

Finally we solve the equations (4).
Proposition 1. The space of k-th heighest weight vectors W_{k} for the representation $U^{\pi, e} \mid S L(2, C)$ with $\pi=\pi_{(e, 0)}^{+}$is as follows:

$$
\begin{aligned}
W_{k}=\left\{\sum_{\nu \geqslant-\ell}^{k} f_{\nu}(\tau) P_{k,-\nu}^{k}(\cos \theta) e^{-i k \varphi+i \nu \psi}: f_{\nu} \in\right. & \left.\boldsymbol{L}^{2}\left(\boldsymbol{R}, \operatorname{ch}^{2} d \tau\right)\right\} \\
& \text { for } k=-\ell,-\ell+1, \cdots \\
=\{0\} & \text { otherwise } .
\end{aligned}
$$

Proof. Since $U^{\pi, e}(0,-e)=I, W_{k}$ is a null space provided k is a half integer. On account of Lemma 9 and closedness of H_{3} and Δ_{o}, W_{k} includes the right side above. Keeping Lemma 7 in mind and assuming that

$$
f\left(\tau, \theta, \varphi, e^{i \psi}\right)=\sum_{\nu \geqslant-\ell}^{k} f_{\nu}(\tau) Q_{\nu}(\cos \theta) e^{-i k \varphi+i \nu \psi},
$$

where $Q_{\nu}(z)$ is a L^{2}-solution of (13) which is independent of $P_{k,-\nu}^{k}(z)$, we will show the opposite inclusion. By Lemma $8, Q_{\nu}$ is either identically zero or unbounded arround -1 or 1. From (8) we see that $f^{u}=I_{u} \circ I_{e}^{-1} f$ has the form:

$$
f^{u}\left(\tau, \theta, \varphi, e^{i \psi}\right)=\sum_{\nu \geqslant-\ell}^{k} f_{\nu}(\tau) Q_{\nu}\left(\cos \theta^{\prime}\right) e^{-i k \varphi^{\prime}+i \nu t+i \nu \psi}
$$

provided $\omega_{8}(\tau) \omega_{2}(\theta) \omega_{3}(\varphi) u=\omega_{6}\left(\tau^{\prime}\right) \omega_{3}(t) \omega_{2}\left(\theta^{\prime}\right) \omega_{3}\left(\varphi^{\prime}\right)$. Since f^{u} belongs to $\hat{W}_{k}^{\pi, u}$, it satisfies

$$
\begin{equation*}
\sum_{i=1}^{3}\left(\hat{\omega}_{i}^{\pi}, u\right)^{2} f^{u}=-k(k+1) f^{u} . \tag{17}
\end{equation*}
$$

Put $Q_{\nu}^{u}(\theta, \varphi)=Q_{\nu}\left(\cos \theta^{\prime}\right) e^{i k \varphi^{\prime}+i \nu t}$. Assume that $Q_{\nu}(z)$ is unbounded around 1 and that for a positive constant a $a^{-1}<\left|f_{v}(\tau)\right|<a$ on a non-null set B_{v}. In other words we assume that $f_{\nu}(\tau) Q_{\nu}(\cos \theta) e^{-i k \varphi}$, as a function on Y, is not essentially bounded around $y=(-\operatorname{sh} \tau, 0,0,1)$. Let $u \in S U(2)$ be so chosen that $q \circ p\left(\omega_{6}(\tau) \omega_{1}(\pi / 2) \omega_{3}(\pi) u\right)=y$ (see (10) for q). By the assumption
$f_{\nu}(\tau) Q_{\nu}^{u}(\theta, \varphi)$ is not essentially bounded on $B_{\nu} \times(\pi / 2-\varepsilon, \pi / 2+\varepsilon) \times(\pi-\varepsilon$, $\pi+\varepsilon$). We will conclude the proof showing that $\sin \theta Q_{\nu}^{u}(\theta, \varphi)$ must be a smooth function on $(\pi / 2-\varepsilon, \pi / 2+\varepsilon) \times(\pi-\varepsilon, \pi+\varepsilon)$. To this end choose an open neighborhood U_{1} of a point of $(0, \pi) \times(0,2 \pi) \times T$ and an open neighborhood U_{2} of the unit element of $S U(2)$ so that the map: $\left(\theta, \varphi, e^{i \psi}, u_{2}\right)$ $\rightarrow\left(\theta, \varphi, e^{i 2(\psi+t)}\right)$ defined by $\omega_{2}(\theta) \omega_{3}(\varphi) u_{2}=\omega_{3}(t) \omega_{3}\left(\theta^{\prime}\right) \omega_{3}\left(\varphi^{\prime}\right)$ is smooth on $U_{1} \times U_{2}$ and that for each $\left(\theta, \varphi, e^{i \psi}\right) \in U_{1}$ the map: $u_{2} \rightarrow\left(\theta^{\prime}, \varphi^{\prime}, e^{i(\psi+t)}\right)$ from U_{2} into $(0, \pi) \times(0,2 \pi) \times T$ is a diffeomorphism. It turns out that the restriction $\omega_{i}^{\pi, u} \mid S_{\sum_{0}^{\pi, u}}$ is of the form

$$
\omega_{i}^{\pi}, u=\left(a_{i 1} \partial_{\theta}+a_{i 2} \partial_{\varphi}+a_{i 3} \partial_{\psi}\right),
$$

where $a_{i j}(i, j=1,2,3)$ are real-valued C^{∞}-functions depending only on (θ, φ) with $\operatorname{det}\left(a_{i j}\right) \neq 0$. Now it is not difficult to see that $\sum_{i}\left(\hat{\omega}_{i}^{\pi}, u\right)^{2}$ is an elliptic differential operator with C^{∞}-coefficient and that each $f_{\nu} Q_{\nu}^{u} e^{i \nu \psi}$ satisfies (17), from which the smoothness of $\sin \theta Q_{\nu}^{u}(\theta, \varphi)$ follows. Q.E.D.

We summarise the k-th heighest weight vectors W_{k} for the representations $U^{\pi, e}$.

π	ℓ	$W_{k}(\neq\{0\})$	k
$\pi_{(e, 0)}$	$\ell=-1 / 2+i \rho, \rho \geqslant 0$	$\sum_{\nu=-k}^{k} f_{\nu} P_{-\nu} e^{-i k \varphi+i_{\nu} \psi}$	$0,1, \cdots$
$\pi_{(\ell, 1 / 2)}$	$\ell=-1 / 2+i \rho, \rho>0$	$\sum_{\nu=-k}^{k} f_{\nu} P_{-\nu} e^{-i k \varphi+i(\nu+1 / 2) \psi}$	1/2, 3/2, \cdots
$\pi_{(\ell, 0)}$	$-1<\ell<-1 / 2$	$\sum_{\nu=-k}^{k} f_{\nu} P_{-\nu} e^{-i k \varphi+i \nu \varphi}$	0,1, \cdots
$\pi_{(e, 0)}^{+}$	$\ell=-1,-2, \cdots$	$\sum_{\nu=-\ell}^{k} f_{\nu} P_{-\nu} e^{-i k \varphi+i \nu \psi}$	$-\ell,-\ell+1, \cdots$
$\pi_{(e, 1 / 2)}^{+}$	$\ell=-1 / 2,-3 / 2, \cdots$	$\sum_{\nu=-\ell}^{k} f_{\nu} P_{-\nu} e^{-i k \varphi+i(\nu+1 / 2) \psi}$	as above
$\pi_{(e, 0)}^{-}$	$\ell=-1,-2, \cdots$	$\sum_{\nu=\ell}^{-k} f_{\nu} P_{-\nu} e^{-i k \varphi+i \nu \psi}$	as above
$\pi_{(e, 1 / 2)}^{-}$	$\ell=-1 / 2,-3 / 2, \cdots$	$\sum_{\nu=\ell}^{-k} f_{\nu} P_{-\nu} e^{-i k \varphi+i(\nu+1 / 2) \psi}$	as above

(Here we put $P_{-\nu}=P_{k,-\nu}^{k}$)

Denote W_{k}^{0} a subspace of W_{k} consisting of functions expressible as (14). Making use of formulas (chap. 3, sec 4 [17])

$$
\begin{gather*}
\partial_{\theta} p_{m, n}^{k}(\cos \theta)=\frac{i}{2}\left(\sqrt{(k+n+1)(k-n)} P_{m, n+1}^{k}(\cos \theta)\right. \tag{18}\\
\left.+\sqrt{(k+n)(k-n+1)} P_{m, n-1}^{k}(\cos \theta)\right), \\
i(m-n \cos \theta) P_{m, n}^{k}(\cos \theta)=\frac{\sin \theta}{2}\left(\sqrt{(k+n)(k-n+1)} P_{m, n-1}^{k}(\cos \theta)\right. \\
\left.\quad-\sqrt{(k-n)(k+n+1)} P_{m, n+1}^{k}(\cos \theta)\right),
\end{gather*}
$$

and calculating formally, we see that

$$
\begin{align*}
& \Delta^{\prime}\left(\sum_{\nu \geqslant-\ell}^{k} f_{\nu} P_{k,-\nu}^{k} e^{-i k \varphi+i \nu \psi}\right)=\sum_{\nu \geqslant-\ell}^{k}\left[-2 i \nu\left(\partial_{\tau}+\operatorname{th} \tau\right) f_{\nu}\right. \tag{20}\\
& \quad-(\ell+\nu+1) \sqrt{(k+\nu+1)(k-\nu)} \frac{f_{\nu+1}}{\operatorname{ch} \tau} \\
& \left.\quad+(\ell-\nu+1) \sqrt{(k-\nu+1)(k+\nu)} \frac{f_{\nu-1}}{\operatorname{ch} \tau}\right] P_{k,-\nu}^{k} e^{-i k \varphi+i \nu \psi} .
\end{align*}
$$

Similarly, applying the formulas (18) (19) and

$$
\begin{gathered}
\sin \theta P_{k,-\nu}^{k}=-2 i \sqrt{\frac{(k-\nu+1)(k+\nu+1)}{(2 k+1)(2 k+2)}} P_{k+1,-\nu}^{k+1}, \\
\sin ^{2} \frac{\theta}{2} P_{k,-\nu+1}^{k}=-\sqrt{\frac{(k+\nu)(k+\nu+1)}{(2 k+1)(2 k+2)}} P_{k+1,-\nu}^{k+1}, \\
\cos ^{2} \frac{\theta}{2} P_{k,-\nu-1}^{k}=\sqrt{\frac{(k-\nu)(k-\nu+1)}{(2 k+1)(2 k+2)}} P_{k+1,-\nu}^{k+1}
\end{gathered}
$$

we obtain

$$
\begin{align*}
& F_{+}\left(\sum_{\nu \gg-\ell}^{k} f_{\nu} P_{k,-\nu}^{k}, e^{-i k \varphi+i \nu \psi}\right) \\
& =\frac{1}{\sqrt{(2 k+1)(2 k+2)}} \sum_{\nu \geqslant-\ell}^{k+1}[2 i \sqrt{(k-\nu+1)(k+\nu+1)} \\
& \quad \times\left(\partial_{\tau}-k \operatorname{th} \tau\right) f_{\nu}+(\ell+\nu+1) \sqrt{(k-\nu)(k-\nu+1)} \frac{f_{\nu+1}}{\operatorname{ch} \tau} \tag{21}\\
& \left.\quad+(\ell-\nu+1) \sqrt{(k+\nu)(k+\nu+1)} \frac{f_{\nu-1}}{\operatorname{ch} \tau}\right] \\
& \quad \times P_{k+1,-\nu}^{k+1} \nu^{-i(k+1) \varphi+i \nu \psi} .
\end{align*}
$$

Since f in W_{k}^{0} is C^{∞}-function on $V_{i M}$, the formal calculus can be justified.

Set $c_{\nu}=\left\|e^{i \nu \psi}\right\|_{\pi}$. The isometry J_{k} from W_{k} onto $\sum_{\nu \geqslant-\ell}^{k} \oplus L^{2}(R)$ defined by

$$
\begin{equation*}
\sum_{\nu \geqslant-\ell}^{k} f_{\nu} P_{k,-\nu}^{k} e^{-i k \varphi+i \nu \varphi} \rightarrow\left(\sqrt{\frac{2}{2 k+1}} c_{\nu} f_{\nu}(\tau) \operatorname{ch} \tau\right) \tag{22}
\end{equation*}
$$

transforms $\Delta^{\prime} \mid W_{k}^{0}$ to \dot{L}_{k}^{π} :

$$
\begin{equation*}
\dot{L}_{k}^{\pi}=-2 i(\nu) \partial_{\tau}+\frac{1}{\operatorname{ch} \tau} V \tag{23}
\end{equation*}
$$

where $(\nu)=\left[\begin{array}{lllll}k & & & & \\ & k-1 & & & \\ & & \ddots & & \\ & & & \nu & \\ & & & \ddots & \\ & & & & -\ell\end{array}\right]$ and V is an hermitian matrix whose
$(\nu, \nu+1)$ component is equal to $-\sqrt{(-\ell+\nu)(\ell+\nu+1)(k+1+1)}$. Since the symmetric operator $\dot{L_{k}^{\pi}}$ is essentially selfadjoint with domain $\sum_{\nu \geqslant-\ell}^{k} C_{0}^{\infty}(\boldsymbol{R})$ [7], we denote L_{k}^{π} its selfadjoint extension. Now the following proposition is selfexplanatory.

Proposition 2. For the representation $\pi=\pi_{(\varepsilon, 0)}^{+}$the restriction $\Delta^{\prime \pi, e} \mid W_{k}$ is unitarily equivalent to L_{k}^{π} provided $k=-\ell,-\ell+1, \cdots$.

Similarly we have
Proposition 3. For the representation $\pi=\pi_{(\ell, 0)}$ either with $\ell=-1 / 2$ $+i \rho(\rho \geqslant 0)$ or with $-1<\ell<-1 / 2$, the restriction $\Delta^{\pi, e} \mid W_{0}$ is unitarily equivalent to L_{0}^{π} which is the selfadjoint extension of a symmetric operator $\dot{\dot{L}_{0}^{\pi}}$ on $L^{2}(R)$ with domain $C_{0}^{\infty}(\boldsymbol{R})$:

$$
\begin{equation*}
\dot{L_{0}^{\pi}}=-\partial_{\tau}^{2}-\frac{\ell(\ell+1)}{\operatorname{ch}^{2} \tau} \tag{24}
\end{equation*}
$$

For a Borel set B of R and σ-finite measure σ on B, let $\int_{B}^{\oplus} \lambda d \sigma$ denote the λ-multiplication operator in $L^{2}(B, \sigma)$.

Proposition 4. (i) For the representation $\pi=\pi_{(,, 0)}^{+} L_{k}^{\pi}$ is unitarily equivalent to $[k+\ell+1] \int_{R}^{\oplus} \lambda d \lambda$. (ii) For the representation $\pi=\pi_{(e, 0)}$ either
$\ell=-1 / 2+i \rho(\rho \geqslant 0)$ or with $-1<\ell<-1 / 2, L_{0}^{\pi}$ is unitarily equivalent to [2] $\int_{R_{+}}^{\oplus} \lambda d \lambda$.

Proof. Applying the result of [7], we obtain (i). We note that L_{0}^{π} is a Schrödinger operator with a so-called short range potential. So (ii) is a direct consequence of Agmon [1] and Kato [9].
Q.E.D.

Proposition 5. For the representation $\pi=\pi_{(e, 0)}^{+}, \Delta^{\prime \pi, e} \mid W_{k} \ominus F_{+}^{\pi, e} W_{k-1}$ is unitarily equivalent to $\int_{R}^{\oplus} \lambda d \lambda$ provided $k=-\ell,-\ell+1, \cdots$.

Proof. Lemma 4 and (i) of Proposition 4 yield the proposition.
Q.E.D.

For the representation $\pi=\pi_{(,, 0)}$ with $\ell=-1 / 2+i \rho(\rho \geqslant 0)$ or with $-1<\ell<-1 / 2 L_{\hbar}^{\pi}$ is unitarily equivalent to [2k] $\int_{R}^{\oplus} \lambda d \lambda \oplus\left[\boldsymbol{K}_{0}\right] \int_{\{0\}}^{\oplus} \lambda \delta(d \lambda)$ for any positive integer k, where δ denotes the Dirac measure. In order to show that $\Delta^{\prime \pi, e} \mid W_{k} \ominus F_{+}^{\pi, e} W_{k-1}$ is unitarily equivalent to [2] $\int_{R}^{\oplus} \lambda d \lambda$ we must check that $\Delta^{\prime \pi, e} \mid W_{k} \ominus F_{+}^{\pi, e} W_{k-1}$ has no eigenvectors with eigenvalue zero. This requires some calculation which we do not cite here. In this way we can manage to decompose the induced representations $\underset{S U(1,1) \dagger S L(2, C)}{\operatorname{Ind}} \pi$ (cf. [3] [13]).

§ 5. Proof of Theorem 1 and 3

We begin with
Lemma 10. Let T_{t} and S_{s} be one-parameter unitary groups on $L^{2}(R)$:

$$
T_{t} f(\tau)=e^{i M t \operatorname{sh} \tau} f(\tau), \quad S_{s} f(\tau)=f(\tau+s) \quad(M \neq 0)
$$

Then a closed subspace D of $L^{2}(R)$ which is invariant with respect to $\left\{T_{t}: t \geqslant 0\right\}$ and $\left\{S_{s}: s \in R\right\}$ is either $L^{2}(\boldsymbol{R})$ or the null space $\{0\}$.

Proof. Denote \hat{f} the Fourier transform of f. Since D is S_{s}-invariant, there exists a Borel set B such that $D=\left\{f \in L^{2}(R): \hat{f}(\lambda)=0\right.$ on the complement $\left.B^{c}\right\}$. If the Lebesgue measure $|B|$ is equal to zero, we have nothing to do. Otherwise, from the fact that Laplace transform $G_{\alpha}=$ $\int_{R_{+}} e^{-\alpha t} T_{t} d t$ is just the multiplication $1 /(\alpha-i M \operatorname{sh} \tau)$ it follows that for
non-zero element f of D Fourier transform of $G_{\alpha} f \in D$ is a non-zero holomorphic function on the strip $|\operatorname{Im} \lambda|<1$. Thus $\left|B^{c}\right|=0$. Q.E.D.

Proof of Theorem 1. First note that Theorem 2 also holds for the 2dimensional space-time Poincaré group. Irreducible unitary representations corresponding to space-like orbits $V^{ \pm i M}(2)=\left\{\hat{x}_{0}^{2}-\hat{x}_{3}^{2}=-M^{2}: \hat{x}_{3} \gtrless 0\right\}$ have the realization in $L^{2}(R)$:

$$
U^{i M}\left(\left(x_{0}, x_{3}\right), \omega_{6}(s)\right) f(\tau)=\exp \left(\pm i M\left(x_{0} \operatorname{sh} \tau+x_{3} \operatorname{ch} \tau\right)\right) f(\tau+s)
$$

Now Lemma 10 yields the theorem.
Q.E.D.

Let us turn to the proof of Theorem 3. As in §4, W_{k} stands for the k-th heighest weight vectors corresponding to the representation ($U^{\pi, e} \mid G, \mathfrak{S}_{\varrho}{ }^{\pi}$) of $G=S L(2, C)$. Denote k_{0} the minimum of $\left\{k: W_{k} \neq\{0\}\right\}$. We observe

Lemma 11. If there exists an invariant non-trivial closed subspace D_{+} of \mathfrak{S}^{π} with respect to the Poincaré subsemigroup P_{+}, then there exists a non-trivial closed subspace D of $W_{k_{0}}$ which is invariant with respect to $\left\{T_{t}=e^{i M t \operatorname{sh} \tau}: t>0\right\}$ and $\left\{e^{i t s}, e^{i s s^{\prime}}: s \in \boldsymbol{R}\right\}$.

Proof. Our reasoning depends on the results of $\S 3$. Denoting the orthogonal complement of D_{+}by D_{+}^{\perp}, it holds that

$$
\begin{equation*}
W_{k_{0}}=\left(W_{k_{0}} \cap D_{+}\right) \oplus\left(W_{k_{0}} \cap D_{+}^{\perp}\right) . \tag{25}
\end{equation*}
$$

We know that $W_{k_{0}} \cap D_{+}$(resp. D_{+}^{\perp}) is invariant with respect to $T_{t}(t>0)$ resp. $t<0$), Δ and Δ^{\prime}. Thus both components on the right side of (25) have the same property. We claim none of them is a null space. We will show this for $W_{k_{0}} \cap D_{+}$. The proof for the another component is similar. If $W_{k_{0}} \cap D_{+}$is a null space, some $k, k \geqslant k_{0}$ attains the maximum of $\left\{k^{\prime}: W_{k^{\prime}} \cap D_{+}=\{0\}\right\}$. Since the decomposition (25) holds for any k, W_{k} is a subspace of D_{+}^{\perp}. Thus $F_{+} W_{k}^{0}$ and $F_{+} \bar{G}_{\alpha} W_{k}^{0}$ are orthogonal to $W_{k+1} \cap$ D_{+}, where \bar{G}_{α} denotes Laplace transform $\int_{R_{+}} e^{-\alpha t} T_{-t} d t=1 /(\alpha+i M \operatorname{sh} \tau)$. An $f \in J_{k+1}\left(W_{k+1} \cap D_{+}\right)$satisfies

$$
\begin{equation*}
\left(f, J_{k+1} F_{+} J_{k}^{-1} h\right)=0, \quad\left(G_{\alpha} f, J_{k+1} F_{+} J_{k}^{-1} h\right)=0 \quad \text { for any } h \in J_{k} W_{k}^{0} \tag{26}
\end{equation*}
$$

(see (22) for J_{k}). From the second equality it follows that

$$
\begin{equation*}
\left(A \frac{i M \operatorname{ch} \tau}{(\alpha-i M \operatorname{sh} \tau)^{2}} f, \check{h}\right)+\left(f, J_{k+1} F_{+} J_{k}^{-1} \bar{G}_{\alpha} h\right)=0 \quad \text { for any } h \in J_{k} W_{k}^{0} \tag{27}
\end{equation*}
$$

where A is a constant diagonal matrix whose (ν, ν) component is equal to $2 i \sqrt{(k-\nu+1)(k+\nu+1)} / \sqrt{(2 k+2)(2 k+3)}$ and \check{h} denotes $\left(0, h^{t}\right)^{t} \in J_{k+1} W_{k}^{0}$.

Since the second term of (27) vanishes, f_{v} is zero except f_{k+1}. Together with the first equality of (26) f vanishes. This completes the proof.

Q.E.D.

Proof of Theorem 3. For the representation $U^{\pi, e}$ (see (6)) with, say $\pi=\pi_{(\ell, 0)}^{+}, W_{k_{0}}$ coincides with $W_{-\ell \cdot}$. Since $J_{k_{0}}$ transforms T_{t} and Δ^{\prime} to T_{t} and $2 i \ell \partial_{\tau}$ respectively, the theorem follows from Lemma 10 and 11.
Q.E.D.

Acknowledgement. The author expresses his sincere thanks to Professors Takenaka and Tatsuuma for their kind advice and to Mr. Itatsu for his interest in the problem.

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scatttering theory, Annali dela Scuola Normal Superiore di Pisa, series 3, 2 (1975), 149-218.
[2] E. Angelopoulos, Decomposition sur le sou-groupe de Poincaré de la represéntation de mass positive et de spin nul du groupe de Poincaré. Ann. Inst. Henri Poincaré XV, no. 4 (1971), 303-320.
[3] -, Reduction on the Lorentz subgroup of UIR's of the Poincare group induced by a semisimple little group, Math. Phys. 15 (1974), 155-165.
[4] J. Dixmier, Les C^{*}-algèeres et leurs represéntations. Gauthier-Villars Paris, 1969.
[5] A. Erdélyi, Higher transcendental functions 1, McGraw-Hill, 1955.
[6] L. Hormander, Linear partial differential operators, Springer, 1963.
[7] S. Itatsu and H. Kaneta, Spectral properties of first order ordinary differential operators, to appear.
[8] H. Joos, Zur Darstellungstheorie per inhomogeneous Lorentzgruppe als Grundlage quantenmechanischer Kinematik, Fortschr. Phts. 10 (1962), 65-146.
[9] T. Kato, Growth properties of solutions of reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403-425.
[10] G. W. Mackey, Induced representations of locally compact group I, Ann. of Math. 55, no. 1 (1951), 101-139.
[11] P. D. Lax and R. S. Phillips, Scattering theory, Academic Press, 1967.
[12] M. A. Naimark, Linear representation of Lorentz group, VEB Deucher Verlag der Wissenschaften Berlin, 1963.
[13] B. Radhakrishnan and N. Mukunda, Spacelike representations of the inhomogeneous Lorentz group in a Lorentz basis, J. Math. Phys. 15 (1974), 477-490.
[14] I. E. Segal, A class of operator algebras which are determined by groups, Duke Math. J. 18 (1951), 221-265.
[15] N. Tatsuuma, Decomposition of representations of three-dimensional Lorentz group, Proc. Japan Acad. 38 (1962), 12-14.
[16] ——, Decomposition of Kronecker products of representations of inhomogeneous Lorentz group, Proc. Japan Acad. 38 (1962), 156-160.
[17] N. Vilenkin, Special functions and the theory of group representations, AMS translation of monographs $22,1968$.

Department of Mathematics
Nagoya University

[^0]: Received September 8, 1978.

