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IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS

OF THE POINCARE GROUP WITH RESPECT TO THE

POINCARE SUBSEMIGROUP, I

HITOSHI KANETA

§ 1. Introduction

Since E. Wigner set up a framework of the relativistically covariant
quantum mechanics, several aspects of unitary representations of the
Poincare group have been investigated (see [8], [16]). In this paper it
will be shown that some unitary representations of the Poincare group
are irreducible, even if they are restricted to the Poincare semigroup
(Theorem 1, 2 and 3). As a result of the argument we shall also give
the irreducible decomposition of induced representations Ind π (see § 3,

SZ7(11) \SL(2C)

cf. [3]). Here the Poincare group P means a semi-direct product between
i?4 and SL(2, C) with the multiplication

(x,g)&,§') = (* + g^x'g-1, gg') for x% xf e R, and g,g' e SL(2, C) ,

where x = (x0, xl9 x2, x3) is identified with the matrix (XJ ~ f* xl~ ιxJ)
\X2 T" IXi %o ~Γ X%J

and g* shows the adjoint of the matrix g. The Poincare semigroup P+

is the subsemigroup {(x, g) e P: x?0 — xl — x\ — x\ ^ 0, xQ ^ 0}.
We have not yet succeeded in proving that any irreducible unitary

representations of P are irreducible with respect to P+, but in a lower
dimensional case we have the following.

THEOREM 1. Every irreducible unitary representation of the 2-
dimensional space-time Poincare group P(2) is irreducible too as the
representation restricted to its Poincare subsemigroup. Here P(2) is the

semi-direct product between R2 and <(e^ _t/A:teR> with the same
0 π 3 _ι_ )•

υ x 0 -f- X3/
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The semigroup is just {(x, g): x2

0 — x\ > 0, xQ > 0}.

§2. Main theorems

Let us define a bilinear form < , > between RA and R± by <x, x) =

xoxo — X& — x2x2 — Λ:3X3. By abuse of symbol, < , > stands also for the

similar bilinear form on RA or j?4. Defining the action of G = SL(2, C)

on i?4 by x-g = g*xg (recall the identification), we obtain the well known

diagram:

G-orbits

r o — l\**'J **'/ — v > **O "< V J

ViM — \\X9 X? — —iVl \

yo = j ^ %y ^ o, χ0 = 0}

fixed points

(? 2)

little groups

^/9x r/β<# OYI
l\s e /J

SC/(l,l)={(^):H2-|JS|2 = l)

SL(2, C)

M: positive number.

Furthermore there exists a well known correspondence between an

irreducible unitary representation of P and a triplet (ω, Go, π), where ω

stands for one of G-orbits and π denotes an irreducible unitary representa-

tion of the little group Go. More precisely, denote %>π the representation

space of π and vω the G-invariant measure on the homogeneous space ω

— G0\G and let !Q°'* be a Hubert space consisting of φπ-valued measurable

functions on P such that

( 1 ) /((*, go)(x', £')) - e^*>π(go)f(x', g') for g0 e Go

where x is a fixed point with the little group Go,

( 2 ) ί \\Kχ,g)\?f.dv.<<*>.
J ω

Then the irreducible unitary representation of P corresponding to the

triplet (ω, Go, π) say Uω>π is realized on £>"'* by the formula

( 3 ) /-(*, g)f(x\ *0 =
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THEOREM 2. Irreducible unitary representations of the Poincare group
corresponding to one of the orbits V£, VQ and VQ are irreducible as the
representation of the Poincare subsemigroup.

Proof. Let (U,ξ)) be an irreducible unitary representation of P. If
it is reducible with respect to P+, there exists a non-trivial closed sub-
space flc§ such that UtD £ D for any t > 0, where Ut denotes

U((t, 0, 0, 0), e). Put D+ = D © Π UιD and £ + = T J T T ^ Then D+ is
ί>0 ί

an outgoing subspace of ξ>+ in the sense that
(i ) UtD+ c D+ for all t > 0,
(ii)

(ϋi) u tf*D+= Φ+=£{0}.

In view of Sinai's theorem (Theorem 3.1 in chap. 2 [11]) the restriction
(Ut,ξ)+), which is a unitary representation of R, is unitarily equivalent to
some multiple of the regular representation of R. Consequently the
representation (Ut9ίQ) of R must contain at least one regular representa-
tion of R. On the other hand, making use of (1) and (3) and putting

gf = (a ^J? we can verify easily that

Utf{x',g') = β«.*<w+ι>ι >/γ(x',g') ,

where ε denotes one of constants ±1, ±M~1 and 0. This implies that
the spectrum of the self adjoint operator iU[\t=0 has either upper or lower
bounds. In particular the representation Ut never contains the regular
representation. Q.E.D.

We turn now to the representations corresponding to the orbit ViM»
Since each of them is specified by an irreducible unitary representation
of the little group GQ = SU(1, 1), we summarize those representations
after Vilenkin (§ 2 in chap. VI [17]). All of them can be obtained from
algebraic representations on closed subspaces D of C°°-functions C°°(Γ)
on the 1-dimensional torus T. We denote the inner product by ( , ).

THEOREM 3. Irreducible unitary representations of the Poincarέ group
P given by the so-called discrete series representations ττ±(^, 0) and ττ±(^, 1/2)
of Go = SU(1,1) and the orbit VίM are also irreducible even if they are
restricted to the subsemigroup P+.

We shall give the proof of Theorem 3 as well as Theorem 1 in the
following § 5.
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representations π

7Γ(/>0) £ —

^,1/2) ^ ~

7Γ (; ) 0) — 1

πΐt.W) £ =

TΓ-^OJ £ =

-H2 + iP,P>0

- * + fc,>0

<£< -1/2

1, 2, •

1/2, 3/2,

- 1 , - 2 , •••

-1/2, -3/2, •••

I

I.

I,n

Jo

In

'--(i 9
eίψ 4- i§ \

D

C-(Γ)

C-(Γ)

C - ( Γ )

Σ ove" "v

the values of
(e*"+, eίBψ) or

1

1

Γ(£ +
Γ{-£

Γ{£^

Γ(-e
Γ{£ 4-

Γ{£-\

Γ{-£

v + D
-u)

v + ΐ)

+ v)

- v 4- 1/2)

+ v - 1/2)

h v 4- 3/2)

4- v 4- 1/2)

§ 3. Decomposition of unitary representations of SL(2, C)

We begin with reviewing the irreducible unitary representations of
SL(2,C) after Naimark [12]. Throughout this section G stands for
SL(2, C). For an integer m denote by Vm(SU(2)) a subspace of L\SU(2))
consisting of functions φ satisfying

The irreducible representations Sm>p(m e Z, pe R) has a realization on
LUSU(2)):

V(g)φ(u) = -

where a(g) = |̂ "22Γ>~m"2&2m and ug denotes a unitary representative of the

coset Kug with K = l( Q

 μλ:λ> 0, μeC\. Meanwhile the irreducible

representation Dσ (0 < σ < 2) has a realization on the Hubert space φσ

in which a subspace Bo of bounded functions belonging to L2

0(SU(2)) is
dense:

V(g)φ(u) = --?ίϊ for

where a(g) = Ifel"*7"2. We put
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ω (t) = (cos */2 i s i n ^2\ ω (t) = (COS ^ 2 ~ s i n ^2\
\ί sin ί/2 cos ί/2/ ^ Vsinί/2 cos ί/2/

^ ~~ Vsh ί/2 ch ί/2/

i sh ί/2\ ^ . v = ίetβ 0

chί/2/ ω e U \ 0 e~{

We now introduce linear operators associated with a unitary representa-

tion (T, £) of G. Define

(ί)) for 7 = 1,2, , 6 ,

ϋf± = ίω2 ± <Mi, Hz = ίωz , F± = ίω5 ± ω4 , F 3 = iω6 ,

J o = -(ff+ff. + HM+ + 2Hξ)/2 ,

Δ = ( F + F . + F_F + + 2F3

2)/2 + Jo - 1 ,

J ' = (H+F_ + H_F+ + F+iϊ_ + F.H+ + 4F3F3)/2 .

More precisely, since the operator Δo (resp. Δ and # ) is essentially

selfadjoint with domain < finite sum of <pi(u)T(u)fidu: ψi 6 C°°(SU(2))9

I J SU(2)

/,6$} (resp. [finite sum of ^φi(g)T(g)fidg: Ψi e C0"(G), ft e £>}) ([14]), we

shall use the same letters for their selfadjoint extensions. We denote

the domain of an operator A by DA. Then DH± (resp. DF±) is the

intersection Dωi Π Dm (resp. DWi Π Dω5). Clearly iω; is a selfadjoint

operator with domain Dω5.

Remark. A homomomorphism yl from G onto the proper Lorentz

group defined by Λ(g)x — g*~ιxg~ι for xeR± (recall the identification in

§ 1) satisfies

Λiωάt)) = (h(~t) , Λ(ωt(t)) = *i(t) , Λ(ω>(t)) = <h(t) ,

Λ(ω<(t)) = b2(-t) , Λ{ωM = bx{t) , Λ(ω5(f)) = bz(t)

We refer subgroups αt(ί) and b^t) to [12] where a homomorphism Λ(g)x

= gxg* is used.

We write down explicitly a canonical basis of the representations

Sntβ and Όβ.

LEMMA 1. A canonical basis of the representation Sm>f) is given by

{ψl,m,P'P = —k, —k + 1, , k and k = ra/2, ra/2 + !,-••}, where
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A canonical basis of the representation Dσ is given by {ψp,σ:p = — Jfe, — Jfe + 1,

• , k and k = 0,1, }, where

function C*jV oτι SU(2) is defined by

UιιU12 U2ι U22 y

where a ranges from max (0, — μ — v) up to min (k — μ,k — v).

Proof. See § 11 and § 12 of [12]. Since we use the homomophism

A, the canonical basis above differs a little from the one cited in [12].

It seems convenient to reparametrize these representations of G as

follows:

\ *-m,λ9

Smιi for m > 1

S0f2vτ for m = 0 , λ > 0

A ^ for 7TC = 0 , - 1 < λ < 0

unit representation for m = 0, λ = — 1 .

Thus the representation (Tm>λ, $gmt3) has the canonical basis ffi1Άti in

accordance with Lemma 1 and it holds that

Furthermore, putting £0 = {(0, λ): - 1 < λ} and £m = {(m, X): λ e R] for

positive integer m, we can identify the dual space G with a Borel subset

Σw^o ^m in i?2 (18. 9.13 [4]).

LEMMA 2. Denote {f^m,x} the canonical basis of the representation

(Tm>λ,ξ>m,λ) then it holds that

( i )

( ϋ )

(iii) ί ./ί,,,, = V(2^ + 1)(2A + 2)C,+1,
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I)2 - (-f- {4(k + If -

for m

W{(k + I)2 + λ}l{4(k + I)2 - 1} for m = 0

(iv) Put f*mfλ = 0 for k = 0, 1/2, 1, 3/2, . . . and \v\ = 0, 1/2, 1,

unless v — —k, —k + l,- 9k and k = m/2,m/2 + 1, . Then the function

{Tm,λ{g)f*m,λ,β\m,λ)m,x on G X G is measurable.

( v ) As t —> 0, ίΛβ norm

Γ w >/*))/* m ,, - Λ*Wf, _ Λl «

converges to zero uniformly on any compact set of {(0, λ): — 1 < λ < 0},

{(0, λ): λ > 0} arid Sm with positive integer m.

Proof. A canonical basis has properties (i), (ii) and (iii). Assume

that g = fe)eG, ι*eSC/(2), ( _ | ξ)eSU(2), ( ^ j) e X" and that

w ' t h e n w e h a v e ( s e e § 1 L 1 i n

Hence a(ug)la(ug) is given by

{| -Mi + ^ 2 i | 2 + I -βgn + ag22?}-ί+(ίp-m)/2 for S W f , ,

{| - f e i i + ^2ii 2 + I -βgu + agv?}-1-*'2 for Dσ .

Consequently V(g)φk

v>m,p(u) and V(g)φlσ(ύ) are C°°-functions on G X S£/(2)

X i? and G X S£7(2) X (0,2) respectively. Recalling that the inner pro-

ducts of the representation space of Sm,p and Dσ are of the form

(<p,φ)m,P = ί \φ(u)fdu
JSU(2)

(φ, φ)σ = π\\
JJs

Φ(utUf/-γ)φ(u!)φ(u")dufdu"
) SU(2)XSU(2)

respectively, where Φ(u) = \u21\-2+σ, we easily verify (iv). Since V{g)ψ{u)

is smooth, (v) is clear. Q.E.D.

Thanks to Lemma 2 (especially to (iv)), for a σ-fίnite measure on G
r®

we can define a unitary representation Tmfλdσ on the Hubert space
J G
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&m,λdσ. To decompose a unitary representation of G is, by definition,
J β

to determine a sequence of mutually singular σ-finite measures {σuσ2,

- - , σ^} on the measurable space G so that the representation is unitarily

equivalent to the representation (T, H) defined by

T = Γ Γ ^ A Γ , Θ [2] Γ Tm,,rfσ2 Θ Θ [«J Γ
J σ J G J G

on the Hubert space

$ = f! £ » Λ Θ [2] Γ ̂ m,,dσ2 θ θ [«J

where the cardinal number in the bracket indicates the multiplicity. We

shall search for a procedure to determine the measure σt up to the usual

equivalence.

LEMMA 3. For k = 0, 1/2, 1, , let Wk be the space of solutions of

the equations

(4) H,f=kf, Af=-k(k+ϊ)f

with respect to the representation (ϊ7, @ above. Denote σim) the restriction

σ€\£m. Then we have unitary equivalences among self adjoint operators:

Δ\ Wo ~ ί@ λdσ™ © [2] ί® λdσP θ θ [« 0] Γ
J[-i,~) Jc-i»~) J[-

Δ'\ Wk θ F+ Wt.i cs Γ (-fyλdσ?* θ [2] f® ( -

Proo/. Without loss of generality we may assume that all measures

except for OΊ are zero measures. Rewrite σx = σ. We claim

1° Wk = { £ a(2k, λ)fUλdσ:jd \af dσ < oo} .

Indeed, set

~ ίΓ® fc Γ Ί
^ == i Σ aX^^)f^mtλdσ: \avf dσ < oo for each zΛ .

We will show that the restriction Δ0\Wk is equal to — k(k + 1). To this

end define f(ψ) for f=ffm,λdσeWk and φ in C°°(SC7(2)) by
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L φ(u)T(ύ)fdu € Wk. Denoting Δr

0 and Δ™*λ the operator Δo Correspond-
ed (2)

ing to the left regular representation of SU(2) and the restriction Tmfλ\SU(2)
C®

respectively, for h = hmtλdσ we have
J G

(Δof(φ), h) = \ du(Jlψ(u))(T(u)f, h)

JG J S
\

SU(2)

as desired. Since the set {fv

k,m,x: v = — k, — k + 1, - -,k and k = m/2, m\2

+ 1, } is an orthonormal basis in the Hubert space &m,x, & is a direct

sum of Wfc's. Thus Wk is a subspace of Wk. From (v) of Lemma 2 f =
r® k „

I . Σ a>Am> Z)f?,m,λdσ i n Wk satisfies

Λ Σ v<*>fu*m,χdσ = A/,

which implies that av is equal to zero a.e. unless v = k, proving 1°.

Next step is to show

2° WMQF+Wk.1 = ( Γ a(2k9λ)ft2k,λdσ: ί |α | 2dσ < oo) .

To see this, define WktΊn = < a(m,X)f£mtλdσ: \a\2 dσ < ooL Since H^

is a direct sum of Wk>m's with non-negative integers m = 2k, 2k — 2,

and since the closure F+Wk_ί>m coincides with Wktm due to (iii) and (v)

of Lemma 2, 2° is now clear. Finally we verify

3° Δ ί@ α(0, λ)fl0>λdσ = Γ λa(0, X)fo%}λdσ ,

Δf J 2 a(2k, λ)fl2k>λdσ = j ^ (-h)λa(2k, λ)fk%)λdσ ,

provided the members on the right side belong to £>. Indeed we can

argue as we showed that Δ0\Wk = —k(k + 1) in 1°. Now 1°, 2° and 3°

yield the Lemma. Q.E.D.

The following lemma is also useful.
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LEMMA 4. The restriction Δ'\Wk and Δ'\F+Wk are unίtarily equivalent

selfadjoint operators.

Proof. As mentioned in the proof of Lemma 3, the closure F+ Wk is

a direct sum of Wfc+1>m's with non-negative integers m = 2k, 2k — 2, .

The following isometry from Wk onto F+ Wk transforms the first operator

to the second one:

(m, λ)flmtλdσ -+ Σ Γ a(m> W^Uxdσ .
m = 2Jc,2Jc-2,"' J i m

Q.E.D.

To sum up, given a unitary representation of SL(2, C), one can

decompose it into irreducible ones if one could specify the space Wk

(call it the space of the k-th heighest weight vectors) and carry out the

spectral decomposition of selfadjoint operators Δ\ Wo and Δ/\WkQF+WJc^1.

§ 4. The space of the k-th heighest weight vectors Wk

Let UiM'* denote an irreducible unitary representation of the

Poincare group P associated with the hyperboloid of one sheet ViM and

an irreducible unitary representation π of SU(1,1) (see § 2). In this

section we shall first solve the equation (4), then determine the spectral

type of selfadjoint operators Δ\ Wo and Δ'\ Wk of the restriction UίMi*\SL(2, C).

From now on G and Go stand for SL(2, C) and SU(1,1) respectively.

We begin with specifying the representation JJiM'π of P. ViM =

\y = y° T\ϊ ^y~~+y): &ety = —ΛP> in R± is a G-homogeneous space

with the invariant measure dμ(y) = dyxdy2dyzl\yΰ\. Letp be the projection

from G onto VίM defined by p(g) = g*xg, where x denotes the fixed point

u ^ n ®^(2) l e t su be a measurable section from ViM

into G such that p o su = identity and that

( 5 ) su op((τ, θ, φ}) = <r, θ, φ)u for (r, θ, ψ) 6 Bx(0, π)χ(0,2π) ,

Q —1)

where (τ,θ,φ} stands for the matrix ω^τ)ω2{θ)ωz{φ). We fix su once for

all. Then the representation UiMt* has the following realization U**u on

the Hubert space %π = L\ViM,Qκ,μ) for each ueSU(2):

( 6 ) E7-«(

( 7 ) 8u(y)(x, g) = (x7, go)su(y - g) with ^0 e Go
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By the aid of the isometry /. : ξ> (G) = {/e L\G, &, μ): f(gog) = π(ga)~f(g)

for g0 e Go} -> £* such that f(su{y)) = lj(y), U"u is transformed to U"υ

by IJΰ1.
We proceed, assuming the representation π to be π+t>0). Other cases

can be treated in the same way. Setting

Y = {p(ω,(τ)ωlθ)ω3(ψ)): (τ, θ,φ)eRX (0, π) X (0, 2π)} C Vul ,

for we >S{7(2) define a dense subspace $J'M of $*:

$;.• = ί/e C ( y u X T):/(y, e4*)
I

We note that for / in &0>
u (6) takes the form

( 6) ' EΛ *(

provided su(y)g = gosu(y-g) with g0 = {% | j e Go. Since the section sM is

smooth on Y u as well as the map (y, g)-+y-g9 there exists a relatively

compact neighborhood U of the unit element of G such that for fe^u,

the function Uπ>u(0,g)f(y, eH) belong to C°°(Z7χ 7 M X T). This observa-

tion leads to

LEMMA 5. The domain of ωyu includes £>J'M for all j and the restric-

tion ωyu\ξ)o'u is a differential operator with C™-coefficients.

Now that ωπyu is a continuous transformation of φJ'M with the relative

topology of CQ(Y-U X T), we define the dual operator ώyu by the follow-

ing

where /e(φo ί f*)' and fe$Z'u. Regarding $π as a subspace of the dual

space (£>o'w)', we claim

LEMMA 6.

( i ) ωπyu C -ώyu.

(ii) Assume that f belongs to %>^u and S u p p / c Yv for some

v 6 S!7(2). Then fv = IJΰxf belongs to %π

0>
v and satisfies

(ωyuf, h) = (ωγvf\ hv) for any h e & .

(iii) The intersection Djπ>u Π DJπjU Π Drπ,u includes ^ u . Further-



124 HITOSHI KANETA

more, it holds that (the indexes π and u are omitted)

4 c g(ώy , Jcg(d\) 2 - Σ (ώ,)2 - l ,

Δ' C ~(o)1o)4 + o>4o>! + ώ2ώ5 + o>5o>2 + 2o)3o)6) .

Proo/. Since ωγu is antihermitian, (i) follows. We note that fv(y)

= π(go)f(y) provided sβ(y) = gQsu(y) with #0 = ^ ^ j e Go, namely

(8) r(y, e*+) = |ite'+ + a f

Since g0 is smooth on Y u Π Y u, /v has a representative in $J'ϋ Now

(ii) is evident. As to (iii) we deal only with Δn*u. It suffices to prove

= f 9<g)U'"ΪO, g)\Σ K y - Σ (ωj' )2 - ll

for φ e C0~(G) and /e φj tt [14]. To this end we will show that for ψ e C?(G)

and Λ e $o'w

- J φ(g)U-(0, g)fdg, J ψte;)tf "•"(<>, ίOΛcfe'

(9 ) = (I?<ί)E7 (^ )[5 « ' w ) 2 - Σ (*;•")• -

A diffeomorphism g: V<Jf -> R X S2 defined by

(10) q(y) = (yo,yjWyl + yl + yl9 y^y\ + yl + yl, yjVyl + yl + yϊ))

maps Y u onto R X S". We note that each S^ is dense and open in

the unit sphere S2 and that the union ^Juesuw S? covers the sphere.

Observing that for given a,a'eG and y,y'β ViM there exists weSU(2)

such that {y, y', y' α'^α} c Y H;, we can show inductively that there

exist a finite covering {£/„} of Supp^>, finite covering {Uaβ} of Suppψ,

finite covering {Yaβr} of Supp/, finite covering {Yaβrd} of Supp/i and

Waβγδ € SU(2) such that each member is relatively compact and that
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Denote χa, χaβ, χaβr and χaβrδ the partition of unity associated with the

coverings above. Now the left side of (9) is equal to

J dg<f(g)(f, EJ-.-te-V- J f{g')U^{

= J dgΨ(g)(f, 4-l7' «(ί-') J MgW'WW)

= \dg<f{g)(f, J""

= f Σ frfm«

Putting w = wafτ) we rewrite the aβγδ-texm above as

J dgφχa((fχaβίY, Δ*>™ I +χ.βU"y>(g-1grKhχaβ

Since χΛ(g) J fχafU' w(hχaβrS)
wdg' belongs to φj'1", it holds that

Δ"wχXg) J ψχ.βU"v'(hχafrtrdgf

On account of Lemma 5 and (ii) of Lemma 6 the tfβfd-term is equal to

from which (9) follows. Q.E.D.

We now derive the concrete forms of the restrictions to ^ e of

ωu Hi, Fί9 Δo, Δ and Δf with respect to the representation (t/π'e, $f). After

tedious computation we obtain the following. The underlined terms

disappear for nonspinor irreducible unitary representations π(e>Q) and

7rf,,0) of SU(l, 1).

= (~eτ c o s 2 θl2 + e'τ s i n 2 θ'2 c h Γ s i n f l e~ i ψ

V ch r sin &^ - e 7 sin2 0/2 + e - cos2 0

(jo, yi, ̂ 2, y3) = ( — sh r, ch r sin θ sin ψ, ch τ sin 0 cos φ, ch r cos 0) ,

dμ = ch2 r sin θ dτdθdφ ,

cot*cosp9, - a, +
sin θ 2 sin
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ω2 = cos φdθ - cot θ sin φd9 + ^ ^ % - ί s i n φ ,
sin θ 2 sin θ

ω3 = d9 ,

ω4 = - s in 0 cos ̂ r - th τ cos 0 cos φdθ +
 t h τ. s m φ dφ

sin #s in

+ (- th r cot θ sin p - C O S g C O S P s ί n ^ + s i n φ c o s ^
V chτ

, ^(cos θ cos ̂  cos ψ — sin φ sin ψ)
chτ

, i(cos θ cos φ sin ψ + sin φ cos ψ) th τ cot θ sin

^ 2 h 1

= sin θ sin ̂ r + th τ cos ̂  sin φdθ + ^
sin ^

, / ,1 , ,3 . cos ̂  sin cί) sin-ψ — cos ̂  cos ψ \~-f- I — t h τ cot ̂  cos 9 + ~ " -̂ •!- )5ψ
\ chr /

, £(—cos ^ sin 9 cos ψ — cos φ sin ψ)
chτ

, z'( —cos θ sin φ sin ψ + cos ψ cos ψ) th τ cot θ cos 9
"*" 2 c h ^ ^

= cosOdt - t h τ mnβd§ - 9, +
ch τ ch

i sin θ sin ^

^ + = e-*>(id, + catθdr - -±-9Ψ + - r 4 - ^
\ sin θ 2 sm θ

i9, - cot 09, ^ 9 Ψsin θ 2 sm

H3 = i9p,

ι t h

sin θ
-s in θdτ - th τ cos ̂ 9, + ι t h τ d

i θ
+ ^cosψ\
τ /ch /

l(cos Θ cos ψ — ί sin ψ) i cos θ sin ̂  — cos ψ
ch τ 2 ch τ

th τ cot θ
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F_ = eiφ\&mθ dτ + th r cos θdθ + ι t h τ dφ + (-i th r cot θ
L sintf \

, cos # sin ψ — ί cosψ \~ _ i cos# sinψ + cosψ
chr / 2 chr

thrcot<? (̂ —cos^cosψ —ίsinψ)"
2 c h r

sin ^ sin -= ι| cos #αΓ — th τ sm σσ̂  —
L

,

dψ +
ch τ ch τ

i sin # sin

Z/o = c/tf + —; oφ — uφθψ + — ; dψ + cot σάβ
sin θ sin θ sin $

ί cot θ Λ ί Λ 1

c o s Ψ ^ ^ i 2 s ί n ψ . . 2 cot /9 sin
29Γ5ψ + 5 β 9 ψ + r τ » Λ ΐ °

ch τ ch r sm ^ ch τ
/ ^ sin ψ* _ ί cos ψ \^ / _ 2^ cosψ _ i sin ψ»
V ch r ch τ / V ch τ sin ^ ch τ sin θ

, o / ^ cot θ cos ψ ,i . ί cot ^ sinψ \«
-h 1̂ r — t n r -t- \oΨ

\ ch τ c h r /

Δ = -(dl + 2thτ9 r +

We remark that the differential operator S does not contain any
terms of the form S(r, θ, φ, ψ)d{ (j = 0,1, 2).

We are ready to solve the equation (4). Consider the following
equation

(π) -iώj = kf, g <&?/ = -Kk + i)/, /e φπ (k = - A - ^ + l, •)

and denote W& the space of solutions (in (11) we omitted the indexes π

and e for the sake of simplicity). Lemma 6 implies that Wk is the inter-

section of Wit, DH% and DM.

LEMMA 7. An f belongs to Wk if and only if f is of the form:

(12) / M , ¥>,*")= Σ Σ fU*)QU<n*0)e'tkf+i* ,
v>-£ ί = l,2
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where fvΛ belongs to L2(R,ch2τdτ) and {QVti(z):i = 1,2} span the space of

solutions in L2((—1,1)) of the equation:

(13) [(1 - z*)dl - 2zdz -
 U + *+£**>* + k(k + 1)]Q(Z) = 0 on (-1,1) .

For the proof we need

LEMMA 8. Assume that k ranges 0,1/2,1, and that k + v is an

integer. Then the equation (13) has no solutions in L2 for \v\ > k, while

the bounded solution of (13) is proportional to Pt,-V(z) for \v\ < k. PltV is

defined by

Proof of Lemma 8. A similar statement can be found in chap. 3,

sec. 4 [17]. That PJ f . y is a bounded solution of (13) is known. By the

change of variable t = (z + l)/2, the solution of (13) may be written as

= ta(i - typ

If c < 1, equivalently k Φ v, then ta(l - t)rF(a, b,a + b-c,l-t) and

ttt(l - t)°-a-bF(c - a, c - b, c - a - b + 1,1 - t) are linearly independent

solutions around t = 1, where F(a, b, c, t) denotes the hypergeometric

function. Checking the behavior of them around t = 0 and 1 [5], one

verifies the lemma for k Φ v. If c = 1, wx = P\,.k is a solution. As is

well known, a linearly independent solution w2 has the form

c.iWφ) log (z + 1) + Σ °n{z + ΐ)n with C^CQ =£ 0 .

This function is unbounded around z = — 1. Q.E.D.
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Proof of Lemma 7. Expand /: f(y, eiψ) = 2 fv{y)eivf. For A(r, θ, φ, ψ)

with hi 6 Cj° we have

from which it follows that fv(y) is of the form fv(τ90)e-tte* with fveV(R

X (0, Γ): ch2 τ sin 0 dτdθ). Furthermore / satisfies

0 = (/, [Jo + k(k + 1)]A) = (f, \d] + cot 03,
sin2 0 sin <

+ k{k + 1)1 A)

cot 09, — —

sin2#

' COS#

sin2 θ

k(k + ] )

Putting Gv(τ, cos 0) = fv(τ, θ), we conclude that Gu(τ, z) is a weak solution,

consequently, a smooth solution of (13) for a.e.r. Thus / must have the

desired expression. Conversely if / is of the form (10), it satisfies (11)

because A's finite linear combinations form a dense set in ξ>J'e. Q.E.D.

LEMMA 9. Assume f in φ* to be of the form

(14) f(τ, θ, φ, e^) = Σ£ fXτ)Pl-Xcos eyr"****

for some integer k and fv in C%(R). Then f belongs to domains ofωJfAo,Δ

and Δr (j = 1, 2, , 6). F belongs to Wk, too.

Proof We may suppose / = fvPl_ve-ίkφ+ivψ. We will show that there

exists an f in &π(G) such that

(15) RωXτ)u, e*+) = fXτ)t\_k(u)e^ , Ief = f

(see below (7) for the definition of &π(G) and Ie), where tι

m,n{u) is the

(m, ή) matrix element corresponding to an irreducible unitary representa-

tion of SU(2) (chap. 3 [17]). It suffices to prove

assuming that ω6(τ')u' = g0ω6(τ)u. As one verifies easily, the condition

implies that τ' = τ and g0 = ωd(t) for some t. Thus it holds that
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which proves (16). Take a compact set B of the hyperboloid ViM so that

any/o§ t t (ueSU(2)) vanishes on the complement Bc, then find a finite

covering {Ya}9 the partition of unity and a finite set {ua} C SU(2) satisfy-

ing S u p p χ α c Y wα. Since I«β/r7z« = (/Ό%« belongs to $ζ'Ua, Dj,tUa9

for example, contains it due to Lemma 6. This in turn implies that fχa,

hence / itself, belongs to the domain of Jπ>e. Recalling Wk = Wk Π DHz

(Ί DJQ9 we complete the proof. Q.E.D.

Finally we solve the equations (4).

PROPOSITION 1. The space of k-th heίghest weight vectors Wk for the

representation Uπ'e\SL(2,C) with π = τrJ>0) is as follows:

e-"'***: fv e L\R, ch2 dτ)\
)

for k = -ί9 -ί + 1,

= {0} otherwise .

Proof. Since Uπ>e(0, — e) = /, Wk is a null space provided £ is a half

integer. On account of Lemma 9 and closedness of H3 and Jo, Ŵ  includes

the right side above. Keeping Lemma 7 in mind and assuming that

f(τ, θ, φ, β«+) = Σ fJMQAcoa θ)e-^"* ,

where Qv(z) is a L2-solution of (13) which is independent of Pk^v(z), we

will show the opposite inclusion. By Lemma 8, Qυ is either identically

zero or unbounded arround —1 or 1. From (8) we see that fu = Iuol~λf

has the form:

Γ(τ9 θ, φ, e») = t fXτ)QXcos Q>)e-w^^

provided ω6(τ)ω2(θ)ω3(φ)u = ω&(τf)ωz{t)ω2(θ')ωz(φ'). Since fu belongs to W/'w,

it satisfies

(17) Σ(ώV»)ψ= -k(k + ϊ)fu.
i = l

Put Qϊ(θ,φ) = Qv(cosθf)eikψfJrivt. Assume that Qv(z) is unbounded around 1

and that for a positive constant a α"1 < |/v(τ)| < a on a non-null set Bv.

In other words we assume that fv(τ)Qv(cos θ)e~ίlcφ, as a function on Y, is

not essentially bounded around y = (—shτ, 0, 0, 1). Let ue SU(2) be so

chosen that q op(ω6(τ)ωί(πl2)ωz(π)u) = y (see (10) for q). By the assumption
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fv(τ) Qϊ(θ9 ψ) is not essentially bounded on Bv X (ττ/2 — ε, π/2 + ε) X (π — ε,

τr + ε). We will conclude the proof showing that sin ΘQ»(Θ, φ) must be a

smooth function on (ττ/2 — ε, ττ/2 + ε) X (π — ε, TΓ + ε). To this end choose

an open neighborhood Ux of a point of (0, π) X (0, 2π) X Γ and an open

neighborhood U2 of the unit element of SU(2) so that the map: (θ, φ, eίψ, u2)

-+(θ,φ,eίHΨ+t)) defined by ω2(θ)ω3(φ)u2 = ω3(t)ω3(θ')ω3(φ') is smooth on Ux X U2

and that for each (θ,φ,eίψ)e U, the map: u2-^ (θ',φ',em+t)) from U2 into

(0, π) X (0, 2ττ) X T is a diffeomorphism. It turns out that the restriction

ωVu\§l'u is of the form

+ ai2d9
audΨ) ,

where ai} (i,j = 1,2,3) are real-valued C°°-functions depending only on

(θ, φ) with det (aί3) Φ 0. Now it is not difficult to see that Σ (ώ*>u)2 is an
i

elliptic differential operator with C°°-coefficient and that each fvQ™eίvψ

satisfies (17), from which the smoothness of sin ΘQ^(Θ, φ) follows. Q.E.D.

We summarise the £-th heighest weight vectors Wk for the representa-

tions Uπ>e.

π

π(£,Q)

π(ί,U2)

π(e,\/2)

i

£= -ll2 + ip,p>0

£ = -l/2 + ip,p>0

-1<£< -1/2

^ = - l , - 2 ,

£= -1/2,-3/2,. .-

4 = - l , - 2 , . .

^ = - 1 / 2 , - 3 / 2 , . - .

Wk (Φ{0})

Σ f v P - v e ' ί k φ + i v ψ

v=-k

k

y-| j p e-ikΨ+i(u + i/2H
v=-k

k

V fP p-Mψ + ivψ
v = -k

Z_j Jv1 -v&

k

y"1 fp e-ίkφ + ί(v+l/2)ψ

v = £

-k
y 1 f p e-ikφ + ί(v + l/2)ψ

k

0,1,

1/2, 3/2,

0, 1, •

-£,-£ + !,...

as above

as above

as above

(Here we put P.v = P*,_
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Denote Wl a subspace of Wk consisting of functions expressible as

(14). Making use of formulas (chap. 3, sec 4 [17])

d,p*m,π(cos θ)=±(V(k + n + \){k - n)P5U+1(cos θ)
(18) 2

n)(k - n

ί(m - n cos 0)P£,B(cos θ) = -^-(V(& + n)(k -n + ^ P * , . . , (cos θ)
(19) 2

-V(β - ή)(k + n +
and calculating formally, we see that

(20) Δ'( Σ f.Pl-jr""*"*) = Σ \-2w(dτ + thr)/;

- ( ^ + v + ϊ)V(k + v + l)(k - v)Jz£-
chr

chr

Similarly, applying the formulas (18) (19) and

(2k + 1)(2& + 2)

sin2 Ap* _
2 '

~ "X*•-
2 •' ' y (2k + ϊ)(2k + 2)

we obtain

\4

2) ^

(21) X (3r — Athr)Λ + {i + v + ΐ)V(k- v)(k-

v)(k
chτ

chτ

Since / in Wl is C°°-function on V<Jf, the formal calculus can be justified.



REPRESENTATIONS OF THE PIONCARE GROUP 133

Set cv = Hβ^lU The isometry Jk from Wk onto Σ ® L\R) defined

by

(22)
k

φ + ivψ

2k + 1
chΛ

transforms Δ'\W*te to Lj:

(23) Ll = -2ί(

{k

where (v) =

- 1

3r + _ i - y ,
chτ

and V is an hermitian matrix whose

(v, v + 1) component is equal to — v(—^ + P)(^ + v + l)(k + 1 + 1). Since

the symmetric operator Ll is essentially selfadjoint with domain 2] C£(R)

[7], we denote Lj its selfadjoint extension. Now the following proposition

is selfexplanatory.

PROPOSITION 2. .For ίΛe representation π = TΓ(

+

M> ίΛβ restriction J/π'e \ Wk

is unitarily equivalent to Ll provided k =—£,—£ + 1, - - -.

Similarly we have

PROPOSITION 3. For the representation π = π(£t0) either with £ = —1/2

+ ip (p > 0) or with ~ 1 < ^ < —1/2, the restriction JΛ>β|W0 is unitarily

equivalent to L; which is the selfadjoint extension of a symmetric operator

Lπ

Q on L2(R) with domain C£(R):

(24) Ll ^ .
ch2r

For a Borel set B oί R and σ-ίinite measure σ on B, let λdσ denote
JB

the ^-multiplication operator in L2(B,σ).

PROPOSITION 4. (i) For the representation π = π^fQ)Ll is unitarily
c®

equivalent to [k + ί + 1] λdλ. (ii) For the representation π = TΓ(̂  0) either
JR
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£ — —1/2 + ip (p > 0) or with — 1 < £ < —1/2, Lj is unitarily equivalent

λdλ.to [2] f @

Proof. Applying the result of [7], we obtain (i). We note that Lj is

a Schrδdinger operator with a so-called short range potential. So (ii) is

a direct consequence of Agmon [1] and Kato [9]. Q.E.D.

PROPOSITION 5. For the representation π = τrJ)0), J
/ ί Γ ' e | WJ^QF'+^WJ,^ is

r®
unitarily equivalent to λdλ provided k = — £> — £ + 1, .

J B

Proof. Lemma 4 and (i) of Proposition 4 yield the proposition.
Q.E.D.

For the representation π = π(£)0) with £ = —1/2 + ip (p > 0) or with

- 1 < I < -1/2 Ll is unitarily equivalent to [2k] Γλdλ® [^0] ί@ ^(d^)
J i? J {0}

for any positive integer k, where d denotes the Dirac measure. In order
r®

to show that J/7Γ'e| W f c θ ^ ί ' β ^ - i is unitarily equivalent to [2] λdλ we

must check that Δ/π>e\WkO Fl>eWk_x has no eigenvectors with eigenvalue

zero. This requires some calculation which we do not cite here. In this

way we can manage to decompose the induced representations Ind π
SU(1,1) ϊ SL(2,C)

(cf. [3] [13]).

§ 5. Proof of Theorem 1 and 3

We begin with

LEMMA 10. Let Tt and Ss be one-parameter unitary groups on L\R):

= e ί J f ί Λ ' / ( τ ) , S,/(τ) = f(τ + s) (M Φ 0) .

Then a closed subspace D of L\R) which is invariant with respect to

{Tt: t > 0} and {Ss:se R} is either L\R) or the null space {0}.

Proof. Denote / the Fourier transform of /. Since D is S,-invariant,

there exists a Borel set B such that D = {f e L\R): f(λ) = 0 on the com-

plement Bc}. If the Lebesgue measure |B | is equal to zero, we have

nothing to do. Otherwise, from the fact that Laplace transform Ga =

e~atTtdt is just the multiplication l/(a — ίMshτ) it follows that for
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non-zero element f of D Fourier transform of GafeD is a non-zero

holomorphic function on the strip | ImΛ|< 1. Thus \BC\ = 0. Q.E.D.

Proof of Theorem 1. First note that Theorem 2 also holds for the 2-

dimensional space-time Poincare group. Irreducible unitary representations

corresponding to space-like orbits V±ίM(2) = {xl — x\ = — M2: xz ^ 0} have

the realization in L\R)\

UίM((x0, xs), ωβ(s))/(τ) - exp (±ίM(x0 sh τ + x3 ch τ))f{τ + s) .

Now Lemma 10 yields the theorem. Q.E.D.

Let us turn to the proof of Theorem 3. As in § 4, Wk stands for the

£-th heighest weight vectors corresponding to the representation (U*'e \ G, $π)

of G = SL(2, C). Denote k0 the minimum of {k: Wk Φ {0}}. We observe

LEMMA 11. If there exists an invariant non-trivial closed subspace D+

of & with respect to the Poincare subsemίgroup P+, then there exists a

non-trivial closed subspace D of Wko which is invariant with respect to

{Tt = eίm shτ: t > 0} and [eu\ eίsΔ': s e R}.

Proof. Our reasoning depends on the results of § 3. Denoting the

orthogonal complement of D+ by D±, it holds that

(25) Wk0 = (Wk0 Π D+) Θ (Wkΰ Π D i ) .

We know that Wk0 (Ί D+ (resp. D^) is invariant with respect to Tt (t > 0)

resp. t < 0), Δ and Δ\ Thus both components on the right side of (25)

have the same property. We claim none of them is a null space. We

will show this for Wko (Ί D+. The proof for the another component is

similar. If Wko Π D+ is a null space, some k,k^k0 attains the maximum

of {k': Wk, Π D+ = {0}}. Since the decomposition (25) holds for any k, Wk

is a subspace of D±. Thus F+W°k and F+GaW°k are orthogonal to Wk+ί ΓΊ

D+, where Ga denotes Laplace transform e~atT_tdt = l/(α + iMshτ).

An feJk+1(Wk+1Γ) D+) satisfies

(26) (/, Jk+1F+Jk'h) = 0 , (Gaf, Jk+1F+ J?h) = 0 for any h e JkW«

(see (22) for Jk). From the second equality it follows that

(27)
(a — i

l f, h) + (/, Jk+1F+Jk^Gah) = 0 for any h e JkW°,
h τf )

where A is a constant diagonal matrix whose (v, v) component is equal to

2W(k - v + l)(k + v + 1)/V(2A + 2)(2A + 3) and h denotes (0, hj e Jk+ίW^
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Since the second term of (27) vanishes, /„ is zero except fk+1. Together

with the first equality of (26) / vanishes. This completes the proof.

Q.E.D.

Proof of Theorem 3. For the representation Uπ>e (see (6)) with, say

π = πjko,, WkQ coincides with W_£. Since JkQ transforms Tt and Δf to Tt

and 2i£dr respectively, the theorem follows from Lemma 10 and 11.

Q.E.D.
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