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ON THE COMPOSITION SERIES OF PRINCIPAL SERIES

REPRESENTATIONS OF A THREE-FOLD COVERING

GROUPOF5L(2,Z) 1 )

HALUK ARITURK

Introduction

In this paper, we study the composition series of certain principal
series representations of the three-fold metaplectic covering group of
SL(2, K), where if is a non-archimedean local field. These representations
are parametrized by unramified characters μ(x) = \x\s of Kx, and characters
ω of the group of third roots of unity. We study only the genuine
representations corresponding to nontrivial ω parameter, as the case
where ω — 1 gives nothing but representations of SL(2, K). We show
that, outside the line Re s = 0 (where the representations may decompose
simply), the genuine principal series are irreducible except when s = ±1/3.
We find the composition series at s = ± 1/3, and obtain a unique quotient,
rω9 which is spherical.

The motivation for this study is a paper of Gelbart and Sally (cf. [4])
where it is proved that an irreducible component of the Weil representa-
tion appears as a quotient of the genuine principal series representation
corresponding to s = 1/2 of the two-fold covering group of £L(2, K); this
is the only spherical quotient of the representations corresponding to
s = ± 1/2, and all other genuine principal series representations parametrized
by nonunitary unramified characters are irreducible.

The author would like to extend his thanks to J. Igusa for suggest-
ing this problem, and to P. Sally and J. Shalika for encouragement and
several helpful conversations.

1. Metaplectic group

We fix once and for all a non-archimedean local field, K, of
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characteristic zero containing the cube roots of unity. We denote by

•Θ the ring of integers of K, τ a fixed generator of the prime ideal 0> of

Θ9 Θ
x its group of units, and q the order of &/&. We shall assume, for

convenience, that q is odd.

The three-fold metaplectic group is defined by a two-cocycle on

G = SL(2, K) which involves the cubic power residue symbol of K. (This

construction is given by Kubota for 71-fold metaplectic groups in [7]).

We shall, therefore, list some properties of the cubic power residue

symbol, ( , )3, which will be frequently used.

1.1. PROPOSITION.

i) ( , )3 is bilinear.

ii) (a, 6)3 = (b, a)*1

iii)" (, )s is identically 1 on Θx X Θx

iv) If a is a cube in K, (a, b) is identically 1.

For proofs and more information cf. [7], [1].

Now, suppose g = rf ^ in SL(2, K). We set x(g) equal to c or d

according as c is non-zero or not. The following theorem is proved in [7],

1.2. THEOREM. The map a: SL(29 K) X SL(29 K) -> Z3 defined by:

is a cohomologically non-trivial two-cocycle on SL(2, K).

We thus get a covering group, G\ of G by Z3 which is central as a

group extension. This is the three-fold metaplectic group. The group

law in Gf is given by

(£i> TiXft, r2) = (&&, a(g19

We denote by B the upper triangular subgroup of G; A is the

diagonal subgroup, and N the subgroup < L, ί >. We set M— SL(2yΘ).

If H is any subgroup of G, we shall denote its inverse image in Gf by H\

The cocycle a is trivial on M X M and N X N. Therefore, Λf and

N are isomorphic to subgroups of G' which we shall also denote by M

and N. As a notational convenience, we shall write a for the element

I? _! of A when the meaning is clear from the context. We can

easily see that
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a(a, b) = (α, b'% .

It is also clear that a is trivial on Ao X Ao, where Ao is the subgroup

of the diagonal group consisting of elements with entries whose order is

divisible by 3—the order of a nonzero element x in K is the unique

integer v(x) for which xτ~v{x) is a unit. We therefore have A'o = Ao X Z3.

2. Principal series representations of G'

Any irreducible representation of A[ is clearly of the form Lωtμ with

where μ is a quasi-character of the multiplicative group Kx of nonzero

elements in K, and ω is a character of Z3.

2.1. PROPOSITION. AZZ /ΐniίe dimensional irreducible representations

of Af are obtained by inducing Lωy[1 from A'o.

Proof Let Lo — Lωyμ be an arbitrary representation of A'θ9 and

hi = (h, η) any element of A'. Since we have

h'{b,Qh'-l = (b,{h,b-*f£)

LQ and LJ', its conjugation by h! are identical on A! if and only if

ω((h, ft"1)?) = 1 for all 6 in Ao. Hence the set

H={h'eA':Lϊ' = L}

is either A! or AQ depending on whether ω is trivial or not. So, from

the theory of representations for groups with normal subgroups of finite

index (cf. [3], Lemma 5.2), we can see that all finite dimensional

representations of A/ are obtained by inducing from AJ.

We put σωιμ = Ind (AJ, A', Lωtμ). σωiμ acts by right translations on the

space of C-valued functions / on A! satisfying

whenever x'o is in AJ. We now compute the action of A! explicitly.

Since any (x, ζ) in A! can be uniquely decomposed as

(2.1) (x,0 = (Xo,C(*o,τ« >),)(τ<w,l)

where x0 is in Ao and 0 < i(x) < 2, {(τ\ 1) i = 0,1, 2} is a set of represent-

atives for A'/AQ. We have
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(2.2) t =

according as i + i{a) < 2 or not.

We extend σω>μ to B' which is the semi-direct product of A and N,

and then induce to G\ and thus obtain the principal series representa-

tions of Gf. We denote such a representation by ρWtμ. It acts by right

translations on the space φWιμ of locally constant functions ^ on G' X Ar

satisfying

(i) φ(g', aW) = t . Λ α ί W , α') if α$ e Aί
(ii) ^δ'g', σθ = δ(V)φ(g'9 a'V) if &' e A!

where δ(b') denotes the modulus of b if V = 6(1, ζ).

In the rest of this paper we shall restrict ourselves to the case of

unramified characters of Kx, so that μ(x) = \x\s for a complex number s.

Furthermore, if μ(x) = \x\s and μ'(x) = \x\s' where s and s' differ by an

integer multiple of 2πi/3lnq9 then LΦift and Lβ>A,/ are equal on A'o. We

shall therefore restrict ourselves to the strip — π/3lnq < Ims < π/3lnq.

Throughout this paper, we shall be referring to this strip when we say all

complex numbers s. Finally, we shall always assume ω to be nontrivial,

and thereby consider only the genuine representations of G'.

An analogue of the Bruhat decomposition holds in G7; we have

σ = & u &(w, i)N

where w = I ^ ^ I. We note that, we write g for the element (g91) of

Gr when the meaning is clear from the context.

It follows from the above decomposition that all φ in φω%μ are deter-

mined by their values on N and w. Hence, putting f(x9 α') equal to

φ{w~ιn{x)9 a
r) with n(x) = Lv ^ gives rise to a realization of pWtμ on the

space Fωφ of locally constant functions on K X A! satisfying

(2 3) ( ί } f(X' a*a) L » " W ( * ' α / ) i f α ί € A«
(ii) |x|σω)/£(x, 1)/(JC, αθ is constant for large \x\.

We fix a character χ oΐ K once and for all. We assume, for con-

venience, that the conductor of χ is 0. For a function / in JF^ we define
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f(y> af)x(yχ)dy
v(y)=n

where dy is a fixed Haar measure on K normalized so that 0 has measure
1. This series converges uniformly on compact subsets of Kx. (cf. [5],
Lemma 9; essentially the same proof works here as we have \f(x, a')\
~ \x\~ι IμOr)!""1 for large \x\.) ^f will be called the Fourier transform of
/, and sometimes be denoted by /*. Moreover, for each fixed a',f{x,a')
is a square integrable function when Re s > —1/2; in this case the Fourier
transform of / in the U sense coincides with J^.

From distribution theory, it can be seen that the kernel of the map
2F contains only functions which are constant on Kx {a!} for each a'
in A'. However, the only such function satisfying condition (ii) of (2.3)
is zero. Hence, ίF maps Fω,μ injectively onto a space 3^mtμ. We shall
characterize this space only for certain μ and this will be done in §5.
We shall denote the realization of ρωtμ on ^ωiμ by p*φ.

3. Intertwining operators

We shall fix some notation first: Let Kt denote the set of elements
of K whose order is equal to i modulo 3, and ψt the characteristic func-
tion of Kt. £?(K) (resp. Sf{Kx)) will denote the Schwartz-Bruhat space
of K (resp. Kx); i.e., the space of locally constant functions whose support
is compact in K (resp. Kx). We let dxx be the Haar measure on K*

i dxgiven by .

3.1. LEMMA. For any Φ in ^{K), complex number s with 0 < Re s
< 1, and j ~ 1,2 we have

Φ(x)\x\sω{(x,τ%)dxx
5

= c^ s-I / 2f Φ*(x)\xγ-a>{{x,;
v K^i — i

where Φ* is the Fourier transform of Φ, and c3 are complex numbers of

modulus 1 with cxc2 — 1.

Proof. We fix a unit D in K so that (D, τ)3 is a primitive cube root
of 1. Then (D, x)3 is a primitive root unless v(x) = 0 mod 3. We can
therefore write the characteristic function of K* as
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Furthermore, since the character (D, x)3 is unitary and unramified, it is
of the form \x\d for some complex number d with Re d = 0. We can now
write the left hand side of the equality in the proposition as

(1/3) έ Qldί f Φ(x) \*\s+ldω((x, τ%)d*x .
1 = 0 JK

Applying Tate's functional equation to each term and recalling that we
have

where Γ is the p-adic gamma function and c3 are complex numbers of
modulus 1 such that cλc2 = 1 (cf. [9], Theorem 1), the sum becomes

t
1=0

f Φ*(x)\xrs-
JK

Observing that we have

(1/3) Σ QUi-Qld\x\-u = (1/3) Σ (A ar't-'-1), = f ! (-,W
1=0 1 = 0

we prove the proposition.
For the case j — 0 we have the following.

3.2. LEMMA. For any Φ in ^(K), complex number s with 0 < Re
< 1, we have

f Φ(x)\x\sdxx= 1~^'1 Γ Φ*(χ)\xγ-d*x
jKi 1 — q~3s jKoi

— q'Zs

+ [
1 — q~3s Jκu-9

Proof. The left hand side is equal to

Φ*(x)\x\ι~sd*x .

Φ(x)\x\s+lddxx .

By Theorem 1 of [9], Γ(\ \s) = (1 - q"1)/^ - q"). Applying the functional
equation of Tate, we see that the above expression is equal to
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( 1 ~« + 2d-l \ Ί |

ί-α—)r X χ

We compute the expression in brackets. We factor out 1 — q~zs

9 the

product of the three denominators; this leaves an expression with a q°

term coefficient of 3ψ2i(x), a q~s term coefficient of Sψ2i_2(x), a q~2s term

coefficient of 2>f2ί-ι{x), a qs~x term coefficient of — Sψ^.^x), a q'1 term

coefficient of — 3ψ2i-2(x). Therefore, the integral is

, 1

 3s ί Φ*(x)\x
1 — q~ JK

This completes the proof.

For an element φ of φω,μ we put

Iφ(8', a') =

The integral converges for Re s > 0 since

\φ(wn(x)g', wa'w-y * \μ(x)nxr .
It is easy to see that Iφ is in φω,μ-ι and that I commutes with right

translations; / intertwines pΦiμ and pω,μ-i. Furthermore, if φeφω,μ and

Φ'€φδ,μ-i then φ-φf is invariant under left translations of the second

variable by elements of A'o. The function

J φ\g',a')da'

is in the space L(G\ B') of locally constant functions Φ satisfying

/ / I ί X «t« I \ / \

\\Lθ a"1! / /

If we denote the essentially unique positive linear form on L(G', Bf) by

Φ i- f ΦigW
J B'\Gf

then

, Φ'>=\ f Φ(g\ a')φ'(g\ a!)da!dg'
J B'\G' J A'Q\A'



184 HALUK ARITURK

gives a non-degenerate bilinear form on φω,μ X φBtμ-u Thus it follows

that p<δ,μ-i is the contragradient representation of pωtμ. (cf. [5], p. 1.18).

By well-known techniques, the above integral can be written as

(φ9φ'}=[ f φiw-'nixX
J K i A'0\A'

We shall now restrict ourselves to the case of real s with 0 < s < I.

In this case the complex conjugate of Iφ is in φmφ-i if φ is in φmtμ. Thus,

the following is an invariant bilinear form on φmtμ X φmtμ.

f f φx(w-ιn(x\ af)Iφ2{w'ιn{x\ a')da!dx
JK3A>Q\A>

= /i(#>#0 φ2(wn(y)w~1n(x)9wa/w'1)dyda/dx
JK J A'0\A' J K

JJC J^vi' JK \L 0 ^J /

We note that the arguments of φ2 in the last two expressions are only

equal up to a central element of G ;; the difference is absorbed by the

integration over A'0\A'. We write the integral in the following form:

f f /i(*,αθf σωtμ(y-\ 1), f2(x + y'\ wa'w->)d*y da'dx .
JK J A'a\Λ' JK

By using the set of representatives {r4: i = 0,1, 2} of -A -̂A', this invariant

bilinear form becomes

J7.<*, i) J σ.,,(y, i)Λ(* + y,

+ J fix, S) J ff^OOlί + y ^ ί ί xydχ.

By (2.2) this expression is equal to

/• (x, 1) J ψo(y) I y | fix + y, l)d xydx

+ J/Xx, 1) J Ψ

+ J/ <x, 1) J

+ J7.<*, r) J
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J7,(*.
,(*, r) J

J7ι(«, x + y,τ) d*ydx

We now assume that / has compact support as a function of x for each
α'. Then each term of the above sum can be thought of (by Fubini's
theorem) as having the form of the expressions in Lemmas 3.1 and 3.2
where Φ is the convolution of fΐ and /2. (/" is the translate by — 1 of
/,). By these lemmas, we therefore write the invariant bilinear form as
follows, if we write P(r, t, v) for the sum of (1 — q~ι)r, q's(l — q'^t and

ff(y,

f?(y, ΐ)7?(y,

J my,
(3.1) + jf?(y, τ)f*(y,

?(y, τ)J*(y,

+ J/?(y,r*)7?(y, i) lyΓ c.ί -

By taking a suitable sequence of functions in Fa,μ which are compactly
supported in their first variable for each a' we can easily see that the
above is valid for any /, in Fω<μ.

We can think of the expression (3.1) in the form
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(3.2) f f fHy,a')JfΠy,a')d*yda'
JK J A'Q\A>

for some linear map J defined on £?ω,μ. For any operator T let us
denote by Tc the operator />-> Tf Then (3.2) gives an invariant non-
degenerate bilinear form on J4?Φt/ι X Image of Jc. (J is not 0). Thus the
image of Jc can be identified with a subspace of the contragradient of
Jfω,μ i.e.,. ^S.A -I If we denote by I* the intertwining operator obtained
by carrying I from the φMtμ model to the Jfω>μ model, then it is clear that

Thus J = Γ for 0 < s < 1.
We now write J in the matrix form by considering /* to be a vector

valued function on Kx; we put f*(x) equal to

(/*(*, 1),Λ(*, *),/*(*,*"))

in C3—this vector determines /*(x, af) for all a'. We then have

Γ(l - q^Y'PiΨo, Ψu Ψύ ctf

where we write ψt (resp. ωθ instead of ψi(x) (resp. cw((x, τθ8)). We shall
sometimes write JωtS, to emphasize dependence on ω and s.

3.1. PROPOSITION. jΓΛe operator J is defined and is equal to J*
the whole right half-plane {s:Re(s) > 0}.

Proof. For i = 0,1,2, we let F* be a function from ^(Kx), and put
/*(#, T*) = Fi(x), and f(x, τι) = F?(x). For each μ we can extend / to a
function fμ so that fμ is in 2^^. Then

for i = 0,1,2. Since J = J* on the interval (0,1) we have

for i = 0,1,2 when 0 < s < 1. (Note that the values of /* in question
are independent of s.) Thus, from the principal of analytic continuation
and the fact that every function in Fωiμ is the pointwise limit of a
sequence of functions of the form fμy the proposition follows.
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4. Composition series of p*tμ for Re s > 0

We start with an analogue of a theorem for p-adic reductive groups.
A simple proof of this theorem for the semi-simple rank 1 case is in [2],
pp. 3-4; this proof works verbatim in the case of G'. We therefore omit
the proof.

4.1. THEOREM. The length of p*tμ is at most 2.

Consequently, to determine the composition series of p*iμ, we only
need the following theorem.

4.2. THEOREM. The image of JωtS is irreducible for all s with Res
> 0 .

This is a theorem of Langlands whose proof for the case of real
reductive groups is contained in [8]. We include here a slight modifica-
tion of Langlands' proof for the sake of completeness. We first need the
following.

4.3. LEMMA. Let x be in Kx,φ in φω>μ and φf in φ^,μ-χ with s a real
number. If we put

then as \x\ approaches oo, we have

F(x) ~ Ixl3^-1* ί Iφ(w, wa'w'Wie, a')daf

J A'0\A'

where e is the identity element of G'.

Proof. We write F(x) in the form

F(x) = ί ί Pω μ(x\ l)φ\nu a')φ\nu a')dn,da!
J A'0\A' J NX

where Nt = w~ιNw. By the 'Ίwasawa decomposition", Gf = B'M, we can
write nx as n(t,ζ)k. We also put

(χ-\ΐ)ni(x\l) = nx(tx,Okx

so that

Substituting in F(x) first the expression for nu and then the one for kx\,
we get
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Pωtμ(x\ ΐ)φ(nί9 α') = \x\>\tx\ σω,μ{x\tX9 ζx))φ(kx, a')

and

φ'(nί9a') = {tlσ^&ζϊφ'ik, a') .

Now we change variables by putting nf — x'znxx
z. Observing that

k = (ίjζ)"1^"1^3^^"3, and that xWx'3 approaches e as \x\ approaches oo,
we find that

F(x) ~ \xfs-" [ [ φ(nί9 af)dnxφ
f{e, a!)da! .

J A'0\A' J 2Vi

We leave it to the reader to prove that one can interchange the integral
and the limit as we just did. (cf. [8]). This completes the proof of the
lemma.

Proof of the Theorem. Suppose Vx is the kernel of I and V2 is a
proper invariant subspace of φmtμ containing Vλ. It clearly suffices to
prove that any such V2 is contained in Vx.

Pick a non-zero element φ'o in φs>μ-i such that (φ, φΌ) = 0 for all φ in
V2. Fix an element φ2 of V2. We have

for all gf in G\ Putting gf = x% for x in Kx, and using Lemma 4.3,
we get

I Iφ2(w, wa'w^φΌie, a')da! = 0 .
J A'Q\A'

As this equality holds for pω,μ(g')φ2 instead of φ2 for any g'9 we must
have Iφ2 = 0, which proves the theorem.

As a consequence of this, we have the following theorem.

4.4. THEOREM. The representations p*tμ are irreducible for Re s ^ 0
except when s = ±1/3. If rω denotes the representation of G' obtained by
restricting /o* _1/3 to the image of JωΛ/Z9 then

0 QrωQ p*t_Ui

is the composition series of />*-i/3.

Proof. It can be seen from (3.1) that for R e s > 0 we have
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(l-g-)3 '

The kernel of Jω>s is therefore trivial for Re s > 0 except at 5 = 1/3. The

theorem now follows from Theorems 4.1, 4.2 and the equivalence of p*iP

and p * ^ ! .

Let us denote by πω the representation obtained by restricting p*1/3

to the kernel of JΛlUz. We shall devote the rest of this section to proving

that rω and πω are inequivalent representations, neither of which is

equivalent to an irreducible p*iμ.

4.5. PROPOSITION. The representations ρ*,μ and rω are spherical; i.e.,

they contain a nontriυial subspace fixed by M. πω is not spherical.

Proof. We shall consider the pω>μ realization. By the Iwasawa de-

composition, there exists an element φQ in φωiP fixed by M if and only if

there is a function Φo on A with the properties

(i) ΦoWO = L^a'^φla') for a'Q e Af0

(ii) Φoία'&O = Φ0(O for δ ^ ^ ί l M.

ffc' = (α, ζ), b' = (u, 1) with a unit element u, then α'6' = (u, (u, α2)3)(α, ζ).

Therefore, the second condition is met if and only if ω((u, α2)3) = 1 for

all units u, whenever Φ0(a') is nonzero. Thus, it is necessary that we

have Φ0(τ) = Φ0(τ2) = 0. Any such Φo that also satisfies (i) will give a

function φ0 in φω>μ which is fixed by M by putting φo(a'k, b') equal to

Φ0(a'b').

As the subspace fixed by M is thus shown to be one-dimensional, to

complete the proof of the proposition it suffices to prove that the function

φ0 in φωΛ/3 is not in the kernel of I. But

φo(l, 1) = ί φo(wn(x), ϊ)dx
J K

= ^(1,1) ί dx + ί φo(wn(x), l)dx,
J | Λ ? | ^ 1 J |Λ?|>1

and for \x\ > 1 we have

wn(x) = [J"1

for some element y and element k of Af. Hence the second integral is
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f φo(l,χ-1)dxx=[ Φlx-'Wx.
J \X\>1 J \X\>1

However, since Φo vanishes outside A'θ9 this integral becomes

0O(1,1) f I*"1!1'3 Mx)d*x = φod, 1)(1 - q-1) Σ Q'n = Q'W, D

So IφQ takes on the value φo(l, 1)(1 + q'1), and therefore is not zero.

This proposition already proves that no irreducible p*iμ or rω is

equivalent to πω. We now want to show that rω is not equivalent to any

irreducible ρ*ίμ.

We consider the Iwahori subgroup

Bo = l\a ^1 € M: c = Omod^j

and compute the subspace Vωtμ(B0) of φωtμ fixed under Bo. Gf can clearly

be written as the disjoint union of B'BQ and B'wB0. The elements of

Vω)μ(B0) vanishing on B'wB0 are of the form

(4.1) φ(b'b09 a') = d(b')φ(l, a!U)

where φ(X,a!) is a function on Ar satisfying

(4.2) φ(l, αίαO = £ ^ ( α ^ ( l , αίαO if αί € Ai

(4.1) and (4.2) give a well defined function if and only if

1, α'60 = Λl, αθ

for all bf in B7 Π Bo. As in the proof of the last proposition, we see

that 0(1, τ) = φ(l, τ2) = 0. Therefore, the subspace of functions in Vωtμ(BQ)

vanishing on B'wB0 is one dimensional.

We proceed similarly to study the elements of Vω>μ(B0) vanishing on

B'B0. They must be given by (4.2) and

(4.3) φφΊυbo, α') = δ(b')φ(l, a'V) .

It is then necessary that

δ(b')Φ(l,a'b') = 0(1, α;)

whenever bf is in WBQW1 Π B'\ i.e., for br — (u,ζ) with a unit u. Hence,,

by (4.2) 0(l,τ) = 0(l,r2) = O.

We have proved that Vωtμ(B0) is a two-dimensional subspace with a.



PRINCIPAL SERIES REPRESENTATIONS 191

basis consisting of the two functions φl9 φ2 given as follows: φx vanishes

on B'wB0 and

U7 ' I 0

according as a'b' is in A'a or not; φ2 vanishes on B'B0 and

according as o!bf is in A'o or not.

We shall now consider the Bo fixed elements of πω and rω. We shall,,

therefore, first compute IωΛ/zφι and IωΛ/3φ2. It suffices to compute their

values at (1,1) and (w, 1) by Bo invariance.

Iφλ{l, 1) = ί φάwφ), ί)dx + f φtiwφ), ϊ)dx .
J \X\<1 J \X\>1

The first integrand is 0. In the second integral we write

o x JL-x-1 I

Thus,

where the integrand is |x|~4/3ψ0(x); we get q~\

Also,

Iφι(w, 1) = φ1(wn(x)w, V)dx + φ1{wn{x)w, ϊ)dx .
J ι#ι<i J I#I^I

In the first integral we have ^M __, ,1 which is 1. The second

integrand is 0 since

wn(x)w = I x \wn(—x'1) .
L 0 — xi

Therefore Iφ1(w, 1) = q~\

In exactly the same manner we compute Iφ2 and get Iφ2(l, 1) =

Iφ2(w, 1) = 1. We thus see that πω contains a one-dimensional subspace

fixed under BQ; it is generated by φ2 — qφx. Therefore the S0-fixed sub-
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space of rω is also one-dimensional. This, along with Proposition 4.5
proves the following theorem.

4.6. THEOREM. NO two representations in the collection consisting of

irreducible p*ίμ9 rω and πω are equivalent.

5. The representation rω

In this section we shall study the irreducible representation rω more
closely, and obtain a more explicit description.

We start by computing ^fωf[i for μ(x) = \x\lf\ We recall that this
space consists of Fourier transforms of functions in FΦtμ. Fωtμ is the
direct sum of £fm,μ, which is the subspace of functions vanishing for
large \x\, and the subspace generated by the function g(x, a') given by

according as \x\ > 1 or not, where G is a function on A satisfying

G(a'oa') = Lωtμ(a£)G(a') .

Thus 2Pmtμ is the direct sum of < ω̂>/t and the space generated by g*. We
shall now compute g*; it suffices to compute its values when a' is 1, τ

, 1) = Σ f G(x)χ(χ->y)d*x .

We break the sum into three parts, Σ°,Σ\Σ2 where Σι indicates that
summation is to be carried out over those nonnegative integers which
are equal to i modulo 3. We observe that by (5.1), G(x) is nothing but
β(x)G(ΐ) when x is in Ko. When x is in Kx we write (x, 1) in the form
(xτ~\ (#,r)3)(r, 1) so that G(x) = μ{xτ~x)ω{{x, τ)3)G(τ); when x is in K2, we
find similarly that

G(x) = μ(xτ

We thus have

= Σ*G(τ) ί
J v(x)-n
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= Σ2G(τ*) ί

We have for i — 1, 2

(5.2) f M*M(*> Γ W X ^ * = K

according as v(y) = n — 1 or not, where the ct are the constants that

arise as in Lemma 3.1 from the gamma function. (We put ct = ci+3m for

all integers m.)

We now compute Σ°. We have

f 1 -n Γ
J υ(a?)=w J 0 X

in which /ι(y) is 1 or 0 according as u(j>) > 0 or not. Therefore,

where F°(y) = Σ°q~nsh(τ~ny). Changing variables by putting n = 3m in

this summation, we easily find that

F°s(y) = ^ ^

where [ ] is the Gauss symbol. We thus get

-J: (1 - q-1 - q~3

1 Q~ZS

according as v(y) Ξ 2 or v(y) ̂  2 mod 3. Taking s = 1/3, putting the

above together with Σ*,Σ2 and using (5.2) we find that

g*(y,ΐ) = GO)

according as ^ Ξ 0, v(y) = 1 or u( y) = 2 mod 3, if |y | is sufficiently

small—g*(y, 1) is 0 for large \y\. The computations of g*(y, τ) and g*(y, τ2)

are quite similar; we omit them and collect the results in the following:

proposition.
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5.1. PROPOSITION. 3/PωΛ/s consists of functions f on Kx x A with

which for any fixed a! are locally constant functions on Kx vanishing

outside some compact subset of K and which behave in a neighborhood of

0 as η(x, a') + v(x, a') for some functions η and v where η(x, a') is constant

for a fixed a', and

v(x, 1) =

v(x,τ) = |xΓ

v(x, τ2) = |x|1/3 -Bq-2<%1 + q'1)

according as v(x) = 0, v(x) = 1 or v(x) = 2 mod 3, for some constants A, B,

and C.

We now consider JωΛ/z as given by (3.2). The following lemma is

easily proved.

5.2. LEMMA. The kernel of JωΛiz consists of functions f in 3fω,1/B which

satisfy the following:

f(x, 1) = -c2q
1/2ω((x, r)3)/(x, r2) if v(x) Ξ 0 mod 3

/(*, 1) = -c^cφ, τ2)3)/(x, r) if v(x) Ξ 1 mod 3

f(x, T) = -c^σftx, Λ)f(x, τ2) if v(x) = 2 mod 3 .

Consequently, the functions which behave as v(x, af) around 0 are in

the kernel. Thus to characterize the image it suffices to consider the

subspace SfωΛΐz of J^ωfUz. We obtain the following easily.

5.3. LEMMA. The image of JωΛ/3 consists of locally constant functions

on Kx X A! which satisfy

(i) /(x,α^0 = Lω,_
(ii) one of the following according as v(x) ~ 0, v(x) — lor v(x) = 2 mod 3.



PRINCIPAL SERIES REPRESENTATIONS 195

f{x, 1) = c2q-^ω((x, τ\)f{x, r2),

f(x, τ) = c^ωϋx, τ)ύf(x, 1),

fix, r2) = c^ωϋx, τ\)fix, r),

and which behave as ψ(x, a') around 0, u Λere

ί A + Bc2ωϋx, τ)3)

/(*, r) = 0

fix, r2) = 0

/(*, 1) = 0

according as u(x) = 0, v(x) = 1 or vix) = 2 mod 3, for some constants
A,B,C.

Given any function / o n Kx, we define a function ί/ on Kx X A' by
putting

cfix,τ) = lfix

according as v(x) = 0, vix) = 1 or U(JC) Ξ 2 mod 3, and requiring that

ιfix,a'oa') = LUι_1/s(<ζ)ιf(x,af).

5.4. THEOREM. The representation rm has a realization on the space
of locally constant functions on Kx, which have compact support in K,
and which behave around 0 as
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A + Bc2ω((x,τ\)

Bqw +

according as v(x) = 0, v(x) = 1 or v(x) = 2 mod 3. The action of Gf is

given by

rJig')f•= {r^-

Moreover, ra is a pre-unitary representation with the inner product

(/., Λ) = - f f <fi(y, a')Ja,-wtfz(y,a')da' d*y .
JK J A'0\A'

Proof. It only remains to prove that ( , ) is positive definite. Jω,-iβ

does not vanish on the image of JωΛ/z—in fact e/ω)_1/3o J"ω>1/3 is a scalar.

Furthermore, for each y, — Jω,-Uz{y) is a Hermitian matrix with positive

diagonal elements whose principal minors have nonnegative determinants.

Thus at each y, —Jω,-i/s(y) can be written as J5*JS for some matrix B

(which does not vanish on the image of Jω>1/3). This completes the proof.
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