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WEIL TYPE REPRESENTATIONS AND AUTOMORPHIC FORMS
TOSHIAKI SUZUKI

Introduction

During 1934-1936, W. L. Ferrar investigated the relation between
summation formulae and Dirichlet series with functional equations, inspired
by Voronoi’s works (1904) on summation formula with respect to the
numbers of divisors. In [11] A. Weil showed that the automorphic prop-
erties of theta series are expressed by generalized Poisson summation
formulae with respect to the so-called Weil representation. On the other
hand, T. Kubota, in his study of the reciprocity law in a number field,
defined a generalized theta series and a generalized Weil type representa-
tion of SL(2,C) and obtained similar results to those of A. Weil (1970~
1976, [5], [6], [7]). The methods, used by W. L. Ferrar and T. Kubota, to
obtain (generalized Poisson) summation formulae depend similarly on
functional equations of Dirichlet series (attached to the generalized theta
series).

In this paper, we will show the relation between automorphic forms
and generalized Poisson summation formulae with respect to “Weil type
representations” by a simple and direct way. In §1, we define “Weil
type representations” r,, of SL(2, R) and “Whittaker functions” related
to r, ;. A “whittaker function” has a intertwining property with respect

to modular transformations and “Weil type representations”. This cor-
2
responds to the fact that the function exp (——362—) is invariant under

Fourier transformation. In §2, we show that Eisenstein series of SL(2, R)
can be expanded by “Whittaker functions”. The generalized Poisson
summation formula for Eisenstein series is proved by this fact together
with the intertwining property. In § 3, we see that the generalized Poisson
summation formulae for automorphic forms are equivalent to their auto-
morphic properties. In §4, we consider “Weil type representations” for
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covering groups of SL(2, R) and “Whittaker functions” related to them.
Then we obtain the original Weil representation as a special case.

The author wishes to express his hearty thanks to Professor T. Kubota,
for his valuable advice and warm encouragement.

Notation

We denote by N, Z, R and C the set of natural numbers, the ring of
rational integers, the real number field and the complex number field,
respectively. For ze C, we put e(z) = exp (2rv/—12). We denote by z
the complex conjugate of ze C. For x€ R, we put

1 if x>0,
sgn(x) = {—1 if x<O0,
0 if x=0.

§1. Representations of SL(2, R)

1. To begin with, we consider the representations =,, of SL(2, R)
which are fully investigated by I. M. Gel’fand, M. I. Graev and N. Ya.
Vielenkin ([2], chap. VII).

For any integer & and any complex number s, we associate a func-
tion space &, consisting of the function ¢(x), x€ R, with the following
properties.

(1) Every ¢(x) must possess all derivatives.

(2) Asymptotically as |x| — oo, the behavior of ¢(x) is given by

§x) ~ C x4z~

where C is a constant.

We topologize 7, , in the following way. A sequence of functions ¢,
in «,, is said to “converge to zero” if the ¢, converge uniformly to
zero with all their derivatives on every compact set of R.

The representation =z, , of SL(2, R) in the space &/, , is defined as fol-
lows:

@) = (S ) e + o sgnt e + ),

where ¢ = (‘;‘ g) e SL2, R) and §(x) € o, ..
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We shall summarize the results on the representations r, , of SL(2, R)
according to [2].

If 25 = k (mod 2), then =#,, is irreducible. Two representations =, ,
and 7, (2s = k(mod 2), 28’ = k' (mod 2)) are equivalent if and only if
k=F (mod 2),s=35 or k=% (mod2),s=1—¢". There exists an in-

tertwining operator M, , from ./, , onto &/ _,,, i.e.,
Ms,kﬂs,k(o) = nl-s,k(o)Ms,k s gE SL(2’ R) .

Here, M, , is given by

M.od@) = [ |m — 2P~ sgn® (o — Dgeddz,  g@e A,
where the integral is understood in the sense of its regularization (for
details, see [2]).

If 2s = k (mod 2), then #,,, is not irreducible. To see this, it is sufficient
to consider only r,,, k€ Z. We write r, (resp. «7,) instead of z,, (resp.
&, ). First, consider the case of nonpositive integer k =1 — n (ne N).
Obviously, <7, _, contains the invariant subspace E,_, of dimension n, consist-
ing of polynomials of degree n — 1 and lower. There exist also two other
invariant subspaces «/;_, and /7, in &/, ,. i, (vesp. &/1.,) consists
of functions which are the boundary values of holomorphic functions in
the upper (resp. lower) half plane up to polynomials of degree n — 1 and
lower. Further, o/}, N, = E,_,, &7, U A, = ,_,. Next, consider
the case of integer % such that k=n + 1 for ne N. <,,, contains the
subspace F,,,, which consists of functions f(x) with

f’jm 2f()dx = 0

for I=20,1,---,n— 1. Obviously, the quotient space ,,,/F,,, is of
dimension n. Further, F,,, has two other invariant subspaces F;,, and
F;. .. F;. (resp. F7,,) consists of functions which are the boundary values
of holomorphic functions in the upper (resp. lower) half plane. There ex-
ists an intertwining operator M,_, from .7,_, onto F,,, whose kernel is
E,_,. M,_, is given by

d

M,.o(x) = = -6(x) = $() .

More precisely, there exists an intertwining operator M;_, (resp. Mi.,)
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from «;_, (resp. &i_,) onto F;,, (resp. F;,,) whose kernel is E,_,. M;i,
are given by

1 I ® #(x) dx
2/ —1Jd-o (x, —x F V/=10)"** ’
where (x — v/ —10)"" (resp. (x + 4/ —10)"") is the boundary value of
(x — V/—=1y)" (resp. (x ++—1y)"") when y—0 (for details, see [2]).
Further, there exists an intertwining operator M,,, from «,,, onto E,_,
whose kernel is F,,,. M,,, is given by

M@ = [ (o — 29,

Similarly, we have &, = F} @ F; where F; (resp. F;) consists of
functions which are boundary values of holomorphic functions in the
upper (resp. lower) half plane.

The representation z,; becomes a unitary representation if and only
if Re(s) =3 or 0<s<1(sx3),k=0(mod2). When Re(s) =%, this is
called a representation of the principal series and the scalar product in
o, is of the form

@ @ P = [ _$F@d,  gvet,.

When 0 <s<1(s=$%),k=0 (mod2), the unitary representation z,,, is
called a representation of the supplementary series and the scalar product
in &, , is of the form

A2 GWue= | [ lm— P g @dndr, 4.

The representations (r,, F;) and (7,.:, Fr,1) = (71, &,_,/E,_,) are also
unitary representations, which are called representations of the discrete
series. The scalar products in F;, and F,,, are given as follows:

@3 G0: = [_s@¥@dx, g veFi,

@ GWa=[ [ =9 e - 2 F VEL0g@I@dRds,
¢V eFi.,.
Here, In(x &= +—1.0) are the boundary values of In(x &+ +—1-3)
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= log (x = ¥/ —1-y) when y — 0 (y > 0) (for details, see [2]).
2. We denote by H the complex upper half plane {z=¢+ vV —1.3
€C:p> 0} An element ¢ = (;)f g) € SL(2, R) operates on H (and on its

boundary R U {co}) by means of the fractional linear transformation

z)—>az=“z+f8, zeH(zeR U {0}).
12+ 0

Let C,(H) be the function space consisting of locally integrable func-
déd

tions with respect to the invariant measure dz = -

, Whose support

is compact.
In the following, let 2 denote any nonnegative integer and s any
complex number. Set

Burle, ®) = 7P|z — & He —DF,  weRz=¢+ VolyeH,

then ¢, (2, x) € &, .. Especially, ¢.. (2, x) € F; (k > 0), because ¢, (2, x)
is the boundary value of (z — x + v—1.y)"%* as y - 0. It is easy to get
the following formula:

(1.4) 7,1(0)Ps,1(2, X) = Jilo™", 2)Ps,i(07'2, %) ,

for any o€ SL(2, R). Here, jo,2) = (yz + 6)°* for ¢ =<;)f g) e SL(2, R).
For any fe C(H), set

b.:(f %) = | F@puule, w)dz
then we have ¢, .(f, x) € o, ; (resp. ¢ :(f, x) € Fr) and

ns,k(o)q-ss,k(f’ x) = ¢s.k(fa,k’ x) ’ g€ SL(29 R) ’

where f7*(2) = f(02)j.(o, 2).

If s k/2,kx0o0r k=0, 1— s&N, then the set {¢,.(f, x): fe C(H)}
is dense in &,,. If s =Fk/2, k0, then the set {4, .(f, x):fe C(H)} is
dense in F;. If k=0,1— seN, then {¢,.(f, x)} = E,..

3. Now we try to get another realization (r,,, #,,) of the represen-
tation (x,,x, ;) by passing from the functions ¢(x) € &, , to their Fourier
transforms
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D(u) = Jf“’ d(e(—ux)dx, ueR.

In this realization, the representation space %, , consists of the Fourier
transforms of ¢(x)e &, ,, so #,, may contain “functions with singular-
ities” in general.
We give the space %, , the topology which is induced by that of <7, ,.
Denote by F, (resp. F:, F;) the function space of the Fourier trans-
forms of ¢(x)e F, (vesp. F;,F;)(n=1). If &(w)eF,,, then

o%0)=0, 1=01,---,n—1, (neN).

If &(u)e F; (vesp. F;), then &(x) = 0 when u > 0 (resp. u < 0).
Let B, (2,%),2 =& + +/—1-nc H,uc R, be the Fourier transform of
é,.:(2, x) with respect to x, i.e.,

B, (2, x) = r bs,4(2, x)e(—ux)dx
= r PR |2 — x|™H (2 — x) " *e(—ux)dx .
Here, for s such that Re(s) > 1, the integral converges absolutely, and for

s such that Re (s) < 1, the integral has a meaning as the analytic contin-

uation on s. This integral can be expressed by Whittaker function
W, .(2):

(1.5) B, (2 x)

'41_3(\/-——1)_k F(ZS —1) vl-s—(k/Z) , ifu=0,
oo+ 3)t-2)
2 2

s()— 1)~k '
L%lu|s-1 W _ip,e-am(dn |u] pe(—ué) , if u>0,
= F(s — _)
2
W=D "_l)k_|u|s—1 9 Wass,s- asm(4r | u] D)e(—ué) , ifu<o,
s+ )

(for the definition of W, ,(2), see [1] and [2]).
We call B, (z, v) “Whittaker function” attached to r,,,.
For any fe C(H), set
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B.u(f,w) = [ f@)B,x(z wdz,

then B, ,(f, u) is the Fourier transform of ¢, ,.(f, x). If s k/2,k =0, or
k=0,1—s&N, then the function space %9, = {B,(f,v):fe C(H)} is
dense in %, ,. If s = k/2,k = 0, then the function space %: = {B,,(f, v):
fe C(H)} is dense in Fj.

Under the assumption that 0 < Re (s) <1, the formula for the operator

r,,.(0), 0 = (;)f fg) € SL(2, R), takes the following form:

16 @D = [ Ko 0@y,  0wed,,,

where

K, .(o:u,v)= ‘r_ow e(——ux + v‘;; i g)lrx + 6|7* sgn® (yx + 0)dx .

This expression can be written in a somewhat different form.

(f o = (;‘ g) ¢ SL@, R), 7 = 0, then
(1.7 (r,,.(0)D)(u) = sgn*d-|0|7*** e(6pw)P(6°w) , O(u)e B, .

If 6 = (;'f g) € SL(2, R), r = 0, then the integral kernel K, ,(o:u,v) can
be written in

K, (o:u,v) = |r|“e<6u+—av> r e(—l(ut + vt“)) |¢]7% sgn® tdt .
7 T

-

In the last formula, the integral converges uniformly in the region

0 < Re(s) <1, and is expressed by Bessel functions. Therefore, we have:
if wv > 0, then

K, {o: u, v) = ==L sgn* (vp) |r|™ e(ﬁﬂ;ﬂ) % o
(1.8) A B
X [(—l)ke(zs%) §§>_1<47r1/|;‘_|”> — e(l_—4_%§> @ 1( 475% >] ’

and if uv < 0, then
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u [s=am
v

[+ o5 2)] o)

Here, we quote the integral expressions of H®, H® and K,:

K, o2 u, v) = 2-sgn* o) [7[™ e(‘iu—t‘fi’)
T

1.8y

H(x) = e(;iii) _r:w exp (v —1-x-cosh (£) — vt)dt ,

T

(1< Re(»<1,x>0)
HO(x) = _f(_:/;___il;_) fj exp (—+/ —1.x-cosh (£) — vt)dt ,

(=1<Re(»<1,x>0)

and

K(x) = %e(—u/4) f: v exp (—%ﬁ‘i.x(u - v“))dv ,

(—1 <Re(”) < 17x> 0) ’
(see [10]).
The integral kernel K, .(o:u,v),o = (;’f g) € SL(2,R)(r % 0), has a

meaning for every complex number s, because Bessel functions are ana-
lytically continued to entire functions with respect to s. Taking into
account of this fact, we can define the operator r, (o), s € SL(2, R) in any
case (i.e., for any s and k) by the formula (1.7), (1.8) and (1.8).
According to (1.4) and to the definitions of the operator r,,.(¢) and
“Whittaker function” B, (2, u), it follows that, if 0 < Re (s) < 1, then

(1.9) 7,1(0)B;, (2, u) = B,(07'2, u)jilo™, 2)

for any o€ SL(2,R). In view of the analytic continuations on s, the
above intertwining formula (1.9) holds for every complex number s. We
call (r,y, #,,.) “Weil type representation’ of SL(2, R).

If the representation (=, +/,,) is unitary (in other words, “Weil
type representation (r,., %,.) 1s unitary), the scalar product in %, , is
defined (up to a constant multiple) by

(@9 w)s,k = (¢’ 1!")s,k s (@’ Ve '@s,k’ ¢: ‘P‘ € 'Ms,k) s

where @ and ¥ are the Fourier transforms of ¢ and +, respectively. In
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the case of principal series:

(1.10) @,7),, = j: oW (w)du .
In the case of supplementary series:

(1.11) @ D = [ [ul0@T@du .

Similarly, in the case of discrete series, the scalar products in F;,, and
F;., (neN) are of the forms:

W12 @D, = W=D [ e wlwde, 0T F,
0

and

Q1Y @D = W=D [ or@Pwde,  0,FeF,,

respectively.
Thus, we obtain

TuaeorReEM 1. (1) For “Weil type representation” (r,,, &) of SL(2, R),
defined by the formulae (1.6) and (1.7), and for “Whittaker function” B, (z, w)
related to r,,, defined by (1.5), we have the following intertwining formula
with respect to modular transformation on z:

rs,k(o)Bs,k(z5 u) = Bs,k(o‘-lz, u)jk(o_l) Z) ’ g€ SL(2’ R) .

(2) “Weil type representation” (r,., #,.) is unitary if and only if
Re(s) =1/2 or 0 <s <1 (s=1/2), k=0 (mod2), and the scalar products
in these cases are given by (1.10) and (1.11), respectively.

The representations (T, 12,415 F‘:H) are unitary and irreducible, and
the scalar products are given by (1.12) and (1.12), respectively.

If 2s = k (mod 2), then (r,,, %, is irreducible. Two representations
ry. and ry . (2s = k(mod 2), 28’ = k' (mod 2)) are equivalent if and only if
E=F (mod2),s=5 or k=k (mod2),s=1—5¢"

Remark. In the cases of principal and supplementary series, the
realizations (r,;, 4, are already investigated ([3]).
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§2. Generalized Poisson summation formula for Eisenstein series

In this section, we write (r,, #,) and B,(z, u) instead of (r,,, %Z,,) and
B, (z, u), respectively.

First, we summarize the theory of Eisenstein series of SL(2, R) (see
[4]). A discontinuous subgroup I" of SL(2, R) is called a discontinuous
group of finite type, if the measure of I'\H with respect to dz is finite.
Let & be a real number or oo, and let I', be the stabilizer of ¢ in I, i.e.
I' ={oel'|orx =«}. We call £ a cusp of I', if I', is generated by a para-
bolic element. Two cusps k,x’ are called equivalent, if there is a ¢ I”
such that gr = «’. If I' is of finite type, then the number of inequivalent
cusps is finite.

Let I be a discontinuous group of finite type, and let «, ---,%, be
a complete set of inequivalent cusps. Let I', be the stabilizer in I" of &,
ie., I'y={oc e I'|or; = k;}, and fix an element ¢, € SL(2, R) such that g,00 =;,

and that ¢;'I",0; is equal to the group {((1) ‘f)’ Be Z}. Furthermore, de-

note by 5(2) the imaginary part of ze¢ H.
The Eisenstein series E,(z, x) for the cusp «;, is defined by

2.1 Efz, 8) = Xinloi'o2)',  (eel'\I),

where s is a complex variable.

It is known that the Eisenstein series E(z, s) converges absolutely,
if Re(s) > 1. From the definition, it follows immediately that E/(¢z, s)
= Ez,s) for any o', and DE(z, s) = AE,(z, s) with 2 = s(s — 1), where
D is the Laplacian on H given by

D 0’ | 0° Ve
2( ) ’ 1. ’

e + %7 z=¢ 7

Further, E,(z, s) does not depend on the particular choice of ¢; and a

cusp £, among equivalent ones.
In the following, we assume that o is a cusp and the stabilizer

I'.={cel:g00 = o} of o0 is equal to the group {<(1) ‘f)’,@ez}.

A function f(2) on H is called an automorphic function with respect
to I, if f(o2) = f(2) holds for all geI'. If x is a cusp of I', then there
exist a ¢’ € SL(2, R) such that ¢'co = . If f(2) is an automorphic func-
tion, then f(¢’2) is a periodic function with period 1, i.e., f(¢'(z + 1))
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= f(¢’z). Therefore, we have a Fourier series expansion
f(012)=zam(7])e(m§), (meZ,z:E-l— V—l'v)y
m

whenever f satisfies some natural conditions. Here,

an() = [ flo'De(—me)ds .

The Fourier expansion of the Eisenstein series E,(z, s) at the cusp «,,
is given in the form

Efo,2,8) = 3, ai;,n(y, 8)e(—mé) , (me 2),

with
ain(n, ) = || Eo,2, e(meds

= bun® [ 7 + ) e(me)de

= bun® [ + ) (= me)de

= ¢ij,m(s)'Bs(z) m)e(mé) ) (m =S 0) )
and

@509, 8) = 0, + (S, (6,;: Kronecker’s delta) .

Here,

Buns) = 23 el (; e(——de)) : (c > 0, d (mod ¢), (: ;) e a;lraj> ,
and

$:5(8) = $15,0(89)By(2, 0)°~* .

Therefore, we have the expansion of the Eisenstein series E(z, s) at
the cusp £, by “Whittaker function” B,(z, u):

(2°2) Ei(ajz’ S) - 5“7)3 + 71%:2 ¢z‘j,m(s)Bs(z3 m) .

The constant term matrix &(s) = (¢,,(s)) is a symmetric matrix.
Furthermore, @(s) is meromorphic on the whole s-plane and satisfies the
functional equation @(s)@(1 — s) = I, where I is the identity matrix.
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Each E(z, s) has a meromorphic continuation to the whole s-plane,
and the column vector &(z,s) = “(E(z, s), - - -, E (2, s)) satisfies the func-
tional equation

é(z,8) = O(s)é(z,1 — s) .

Therefore, each ¢;; .(s) has a meromorphic continuation to the whole
s-plane, and the both sides of (2.2) has a meaning as meromorphic func-
tions on the whole s-plane.

Now, we prove the following theorem.

TueoreEM 2. For a discontinuous group I' of finite type with inequiv-
alent cusps k;, (j=1,---, h), let ¢yyn(s) G, j=1, ---,h,meZ) be the
Dirichlet series defined by:

md * %
w8 = D, ]c]‘“(z e(————)) , (c > 0, d (mod ¢), ( ) € oi“Fa,) R
c [ C c d

where ¢, € SL(2, R) are as above. Further, let r, be the ““Weil type represen-
tation” of SL(2, R) in the space %,, defined in Theorem 1.
Then, for any ccI''” = g7 I'¢;, we have

8y @(0) + 3, $15m(8)P(m) = 3y (r(@)D)(0) + 3, 11,m($)T()P)(m) ,

meZ

where 9(u) € %5 (i.e., D(u) = B(f, u) for f(2) e C(H)) and
o) = [ f@rdz,  (ro)0)(e) = | Flmioayde.
In particular, for ce I'? = ¢;'I's,, we have
0 + T $um@Be, m) = 8,072 + 3 fun(I (B2, m) .

Proof. By the fact that E,(¢z,s) = E(z,s) for any o[, it follows
that E 00,2, s) = E(0,2,s) for any geI'. Since there exist a ¢ e¢I'?
= ¢;'I's, such that oo, = g/’ for any g€ I, we conclude that E(s,0z, s)
= E(0,2, s) for any ¢ I''”. Taking into account the expansion (2.2) of
E(0,2,s), we have

5117]8 + mze:Z ¢ij,m(S)Bs(Z’ m) = 61177(0'—12)8 + 7%:2 ¢U,m(s)Bs(o‘-lz, m)

for any ge ',
By means of Theorem 1, we can rewrite this formula in the form:
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dum’ + Z;Z B15,m(8)By(2, m) = d;m(c'2)° + Z;Z b5,m(8)r(0) By(2, m)

for any o I'?,

Multiply by f(2) € Cy(H) on the both sides of this formula, and inte-
grate it on H with respect to dz, then we obtain the assertion of Theo-
rem 2.

CoRrOLLARY. Assume that the Eisenstein series E/z,s) has a pole at
s =s, Set ay,n the residue of ¢, .(s) at the pole s,.
Then, for any e I'?, we have

";:Z @y,mP(m) = g‘g‘z @5, m(Ts(0)DP)(m)
and

aij,mBso(z9 m) = Z aij,mrso(G)Bso(Z; m) ’
mezZ meZ

where O(u) € %5,

Remark 1. We can define “Weil type representations” and “Whittaker
functions” for SL(2, C), similarly to the case of SL(2, R). Then we ob-
tain similar results to those of § 2.

Remark 2. In [6], T. Kubota defined generalized theta series by the
residues of a kind of Eisenstein series for SL(2, C), and gave a gener-
alized Poisson summation formula associated with the theta series for

the special element ¢ = (__1 1). Applying the arguments in Remark 1

to Eisenstein series, which T. Kubota discussed, and its residues, we can
get the generalized Poisson summation formula for any element of the
corresponding discontinuous group.

§3. Generalized Poisson summation formulae for holomorphic forms

Let I be a discontinuous group of finite type such that oo is a cusp

and I, = {((1) ‘/ia):ﬁeZ}. By a similar way to §2, we can define

¥ %
“Eisenstein series” E(z,8), = > |rz + 6""**rz + 87F, (o = (7’ 5)

€ Z’w\l"), and obtain “generalized Poisson summation formula” for E(z, s),.

But, it is more interesting and important for us to investigate *“‘generalized
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Poisson summation formulae” for automorphic forms of holomorphic type
with respect to I'.

To carry this out, we start with considering “Weil type representa-
tion” and “Whittaker function” for the case where s = k/2 (k: positive
integer). For the sake of brevity, we write B,(z, u) (resp. r,, K.(c: u, v))
instead of By, (2, ) (resp. Ty, Kipi(o: u, v)).

We know that B.(z, u) ¢ F; and the representation (r,, F;) is unitary
and irreducible (the scalar product in F z is given by (1.12)). So, we
have

B(z,u) =0 ifu>0,
and
Kio:u,v) =0 if uv <0,

where K,(c: u, v) is the integral kernel for r,.
“Whittaker function” B,(z, u) is given by

@D Bz w = {:Zg-e(m[ 2) i: Z : g :
and
0 ifu=0,
ey Bens [(—(2”5 ,1—)" lul*-te(ulz) fu<o0, =D

The operator r.(c),c = (‘; ‘g) € SL(2, R) on the space F;, is given as
follows: if y = 0, then

(r(0)D)(w) = sgn” d|0| *** e(6pu)D(d*w)

(3.2) = 5'k+ze(6ﬁu)¢(52u) ’ @(u) e 11?‘];;
if y % 0, then

(r(0)D) ) = 2r-sgn” 1-e(k/4) |r|™* J‘O e<5L‘tﬂ) u [0
3.2 e » "

~Jk_1(47r *l/r”?)qﬁ(v)dv ,

where u < 0, O(u) € F; and J,_(x) = (H2(x) + H2(x))/2.
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The intertwining formula is given by
(3'3) rk(o)Bk(za u’) = Bk(O'-IZ, u)jk(a_l9 Z) ’ g€ SL(27 R) .

A holomorphic function f(2) on H is called “an automorphic form of
holomorphic k-type with respect to I'’, if the followings are .satisfied:

(1) f(02)jilo, 2) = f(2) for any oe T,

(2) f(2) is holomorphic at every cusp of I.

In explanation of the last condition, fix an element ¢, € SL(2, R) for every
cusp #; such that ¢,00 = k,, 67,0, = {<(1) ‘f) Be Z}, then (2) says that f,(z)
= f(0,2)j(0;, 2) has the Fourier expansion:

f(@ = a;, + 4;; a;,e(nz) .

The coefficients a,,, are called the Fourier coeflicients of f(z) at the cusp

£
We define “modified coefficients” b, , of f(2) at the cusp «; by
0 ifn>0,
(3.4) bin =1 —a, . k=1,
t-n o ifn<o0,
2ry/ —1 nn=
and
0 ifn=0,
, _ (k — 1)! . . *k>1.
(3.4) bin = ‘m‘“” LARRY PR if n<o0,
Qs if n = o0,

Then we have the expansion of f,(2) by means of “Whittaker functions™:

bi. + 2 b,.Bz,n) ifk>1,
fz(z) = nes .

2 bi,.Bi(z, n) ifk=1.

neZ

Since f(c™'2)j(c7", 2) = fi(2) for any e ' = ¢,l'a;", we get
bi,oo + Z bi,an(z’ n) = bi,wjk(a_la Z) + Z; bi,an(o'_lz7 n)jk(a_l’ Z)
nezZ ne
= bi0ji0™, 2) + 3, biar(0) Bz, )

for £ > 1, and
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5 bB& 1) = 3 buaBie'% e, 2
= nzz_; by,.1(0)By(z, n)

for k= 1.

THEOREM 3. Let b,,(i=1,---,h,neZ U {o}) be “modified coeffi-
cients” of an automorphic form f(2) of holomorphic k-type with respect to
T, at the cusp ;, and (., F;) be the “Weil type representation” of SL(2, R),
defined by (3.2) and (3.2).

Then we have; for any ec I'®,

(3.5) 2, b00(m) = 3 boa(ri@)0)m),  (k=1),

and

bi,0(0) + 3 b, 0(n) = by (r()0)() + 3 bunrl)P)n) ,
k>1),

where ®(u) ¢ (F;) (i.e., ®(u) = By(g, u) for ge C(H)) and

3.5)

Ue) = | e@dz, (@D(w) = [ g@ido™,2)dz .
In particular,

ngz bi,nBl(z, n) =neZ:Z bi,nrk(a)Bl(z’ n) ’ (k = 1) ’
b + gjz b, Bz, n) = b;,.j.(c7, 2) + %Zbi,nr,,(o)Bk(z, n), k>1,

for any g I'®.

Conversely, for any sequence {b,}, (n€ Z U {oo}), for which the formula
(8.5) or (8.5) is valid for any e I'®, b, are ‘“modified coefficients” of an
automorphic form of holomorphic k-type with respect to I, at the cusp «;.

Remark. It is not difficult to generalize the above results to the case
of non-holomorphic forms, which satisfy a kind of differential equation.
More precisely, we can expand non-holomorphic forms by means of
“Whittaker functions™.

§4. Covering groups of SL(2, R) and Weil representation

For any positive integer q, let G denote the set of ¢ = (o, j(4, 2))
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formed by an element ¢ = (‘;‘ §) ¢ SL(2, R) and a holomorphic function

j(6,2) on the upper half plane H such that j(g, 2)? = yz + 0. Defining a
law of multiplication in G‘© by

(4.1) (z,J(%, 2)) (0, (3, 2)) = (20, (%, 02)j(3, 2)) ,

we can make G‘© a group with the unit element <<(1) 0), 1>. It is clear
that G'? is a g-folded covering group of SL(2, R).
For ¢ = (o, j(5, 2)) € G©, set
8.0, 2) = §(9, ) Pr(a)~ 70

where s is a complex variable and p is an integer which is relatively
prime to ¢ and 0 < p < q. Then we have, for any %, e G‘?,

(4.2) $5,5(20, 2) = §,,,(%, 02)-j(3,2)7" .

For any z e C, we define ?4/Z = 2% so that —=/q < arg %/z < n/q, then
it follows that, for z,/z,€ H, z,, z,€ C — R,

(4.3) (2,/2)"4(2,)"" = {e(l/‘I)'(Zz)l/q ) if zzeH and Z,c H,

(CARAN otherwise ,
and, for ze H,ce R,
4.4) (c2)Vs = |e[Ye2¥e ifc>0,
' ~le(—1/29) e[zt if < 0.

For any ¢ = (g, j(6,2) e G?,0 = (;‘f ‘§>’ there exist unique g-th root
e(¢) of unity such that j(g, 2) = «(6)(yz + 9)"°.

Put

¢s,p(z, x) = (2 —x)""z—x 2D/ Oy = (220 zeH xeR,
then we have
¢8,p(2’ x) = ¢8,Z7(€., z)
. * * .

for t = (nj(5,2)e G0 r = (1 _,).it,9) = — o

For ¢ = (0, j(3, 2)) € G, ¢ = (‘; f;) we put
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(@) yx + o)/ ifye+6>0,7yx0,
@5  j@, x) = {e(@)'e(sgny/2q) [rx + 61T if yx+5<0,7x0,
e(5) 19" ify=0.

Then, for the above #€ G and for any € G?, g = (;'f 5), we can see

that

W8 pua72) = O, D7 x4 ooy, (5, EEE)
rx+0

because (4.3) and (4.4) imply that

(172 + 51"""(2 —ex+ P ﬂ)—uq

rx+ 0
frx+6>0),
e(—1/2q) [rx + Bl“"‘(z —axtp ‘B)—w
x4+ 0

(228 ) et o=

-1z t+a ifrx4+6<0,y >0,

6(1/2(])[735 + 5!—1/4](2 . a_x"f'—ﬁ_)‘l/q
' 7%+ 6

ifyx+6<0,7<0.

Let &9 be the vector space generated by functions ¢, ,(z, x) on x,
where the topology in /{9 is defined similarly to that of &, , in §1. The
representation z,, of G in the space &{9 is defined by

@D w0 = H(EEL)j6, Dl oo, ey,

for ¢ = (0,3, 2) € G2, 0 = (;‘ /g) e SL(2, R).

By means of (4.2) and (4.6), we get the following intertwining for-
mula:

4.8 70,0(0)$5,5(2, X) = 65,5(07'2, 2)-j(57, 2)77,

for any ¢ e G2,

For this representation r,,, we can obtain similar results to those
for #,, in §1, but here we are interested in the case when s = p/2q. We
write x,, (resp. «7,,) instead of z,,,,, (resp. &%, ,). The representation
(Tpsqs o) 1s irreducible and unitary with the scalar product



REPRESENTATIONS AND AUTOMORPHIC FORMS 163

@) G Pue=| [ - x— VT ) Fdnds
¢7 Ve x4 p/q *

Denote by #(% the vector space generated by “Whittaker function”
B, (2, u) on ue R, where

B@w) = [ 4.,z De(—un)dz
— Jw 77.«z—(p/zq)(z — x)—s—(p/Zq)(z _ x)—s+(p/2q)e(_ux)dx .

This integral is expressed by the usual Whittaker function W, ,:

(4.10) B, (2, w)

- F(zs _ 1) 1-2s,,5-(p/2q) 1 J—
(v —1)-?/2 2 /2 fu=0,
) e a6 — o) n

EZD T PPyl D) 38 >0,

s(a/ — 1)~ 79 .
%ﬁ ‘u]s_l 7fpﬂqI/Vp/zq,s—<1/2)(47'L' |u| n)e(—uf) ifu<o0,

(z=§+inpeH).

By means of Fourier transformation and by similar arguments to §1,
we get another realization (r,,,, Z{%) of the representation =z, , of G®.

If, namely, & = (o, j(3, 2)) € G©, ¢ = (;‘ g) ¢ SL(2, R), 7 = 0, then
@11 (r, (D)O)W) = (3)*(sgn 3)-77 |3 e(0Bu)D@w) ,  D(u)e BL .

It 6 = (0, /(3 2) € GO, 0 = (;‘ g) ¢ SL2, R), 7 = 0, then

412 @0W = [ K,0uv0@d,  0weFy,

where the integral kernel K, ,(¢:u,v) is given by the followings: in the
case that uwv > 0,

u s—(1/2)

K,y(05 1,0 = oy T o 20

(4.13) -[e( —p(sgny + sgn w)/4q)e((2s — 1)/4)H§?_1(4n'%>
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— e(—p(sgny — sgn w)/dg)e((1 — 2s)/4)H;§>_1(4ﬂ@)];

I71
in the case of that wv <0,
K, (d:u,v) = e(a)*2]7]™" e(M) u o
7 v
(4.18y X [e(—p(sgn 7 + sgn u)/4q)e((2s — 1)/4)
+ e(—p(sgn 7 — sgn u)/4g)e((1 — 2s)/4)]Kzs—1(4ﬂ :;‘lv{) )

Furthermore, we have the following intertwining formula:
(4.14) r.o(6) B, (2, u) = B, (672, u)-j(¢7*, 2)

for any € G°.
Now, we investigate the case where s = p/2q. We write r,, (resp.
B,,(2, u), #,,) instead of r,p,,, (resp. B, (2, v), #9,,). We see that

0 ifugo,

(ﬁ%)p/qp(p/q)—1u(p/q)—1e(_zu) if u<0.

B:o/q(zs u) = {
The operator r,,(5) for ¢ = (e, j(G, 2)) € G, 0 = (;)f ‘g), y = 0, is given by
(T/(DD) ) = &(6)"0* P Ve(pu)P(F°u) ,  D(w) € Boyq -

The operator r,,(5) for ¢ = (o, j(6,2) e G0 = (;'f §>’ 7y % 0, is given by

ifux=0,

0
g = q (0 o B ot »
o@D { [ Eomosom, guco, O

where

(r—-a)/2¢

Kyo(0: 4, 0) = 0 2e || o 24T 00 ) 2
7 v

-e(—sgny -p/4q)J(,,,q)_1<47r ‘[/;‘?) .

The representation (r,,, #,,) is irreducible and unitary with the scalar
product
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@, 7),,, = f)& luf- "0 dWTWdu, O,TeB,,.

Further, considering the special case where p/g = 1/2, we can see that

~1/4 J 1/2<47; «|/u|v)

= +/ 2&(3)e(—sgn 7/8) |7|™ e<él—‘—;ﬂ) |u|~'* cos <4n Juv)

K02 u, v) = &(0)-2z 7| e(—sgn r/8)e(w—:ﬂ) %

We modify the representation (ry,, %,,) in the following way. Let %
be the function space consisting of @(f) = |t| D,(—¢t*/2) for any @,(u) € %,
and let r be the representation of G® in the space % defined by

(r@)0)t) = |t (r (DD )N—E[2) , () = |t| D(—F/2), D.€ By s

for 6 € G*®.

Then, the representation (r, #) is irreducible and unitary with the
scalar product

(Q’ w) = 2ﬁ(@1a wl)l/z
— T f " 0w (w)du

=2/2 f e — /20T (—/2)tdt

- L o(t)-T(d)dt

where O(t) = |¢|D(—t/2), ¥(t) = || T(—¥[2) e B, D, V', € By
The operation of r(¢) is given as follows.

If 6 = (0, (3, 2)), 0 = (;‘ g) e SL(2, R), 7 = 0, then

(r(@)D)() = £(6)5° “Pe(—opt*[2)D,(—5¢[2) |t|
= o(6)5"e(— 8L 2)D(5t) .

If 5 = (0,3, 2)), 0 = (‘;‘ §) e SL(2, R), 1 = 0, then

(r(@)D)t) = v 2 &(d)e(—sgn y/8) | — /2|~ |t

[ oD ) o (4n@)@l<v>dv

= 2&(0)e(—sgn 7/8) |~
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0

e =22 ) cos a0 (— e/t
2r

= @e—sgn 7l Iy o - E=ZE o,

Therefore, the representation (r, #) is nothing else than the original Weil
representation.

Remark 1. The original definition of Weil representation in [11] seems
to be somewhat complicated. By means of the above results, we can see
the connexion between Weil representation and other representations.

Remark 2. Recently, S. Niwa showed that Weil representation for a
non-archimedian local field is obtained by similar arguments to those of § 4.
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