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WEIL TYPE REPRESENTATIONS AND AUTOMORPHIC FORMS

TOSHIAKI SUZUKI

Introduction

During 1934-1936, W. L. Ferrar investigated the relation between
summation formulae and Dirichlet series with functional equations, inspired
by Voronoi's works (1904) on summation formula with respect to the
numbers of divisors. In [11] A. Weil showed that the automorphic prop-
erties of theta series are expressed by generalized Poisson summation
formulae with respect to the so-called Weil representation. On the other
hand, T. Kubota, in his study of the reciprocity law in a number fields
defined a generalized theta series and a generalized Weil type representa-
tion of SL(2, C) and obtained similar results to those of A. Weil (1970-
1976, [5], [6], [7]). The methods, used by W. L. Ferrar and T. Kubota, to
obtain (generalized Poisson) summation formulae depend similarly on
functional equations of Dirichlet series (attached to the generalized theta
series).

In this paper, we will show the relation between automorphic forms

and generalized Poisson summation formulae with respect to "Weil type

representations" by a simple and direct way. In § 1, we define "Weil

type representations" rs>k of SL(2, R) and "Whittaker functions" related

to rSfk. A "whittaker function" has a intertwining property with respect

to modular transformations and "Weil type representations". This cor-

responds to the fact that the function exp ί — — J is invariant under

Fourier transformation. In § 2, we show that Eisenstein series of SL(2, R)
can be expanded by "Whittaker functions". The generalized Poisson
summation formula for Eisenstein series is proved by this fact together
with the intertwining property. In § 3, we see that the generalized Poisson
summation formulae for automorphic forms are equivalent to their auto-
morphic properties. In § 4, we consider "Weil type representations" for
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covering groups of SL(2, R) and "Whittaker functions" related to them.
Then we obtain the original Weil representation as a special case.

The author wishes to express his hearty thanks to Professor T. Kubota,
for his valuable advice and warm encouragement.

Notation

We denote by TV, Z, R and C the set of natural numbers, the ring of
rational integers, the real number field and the complex number field,
respectively. For zeC, we put e(z) = exp (2ττV — lz). We denote by z
the complex conjugate of z e C For x e R, we put

if x > 0 ,

if x < 0 ,

if x = 0 .

§ 1. Representations of SL(2, R)

1. To begin with, we consider the representations πS)k of SL(2, R)
which are fully investigated by I. M. GeΓfand, M. I. Graev and N. Ya.
Vielenkin ([2], chap. VII).

For any integer k and any complex number s, we associate a func-
tion space $£ Stk consisting of the function φ(x), xeR, with the following
properties.

(1) Every φ(x) must possess all derivatives.
(2) Asymptotically as |#|—• oo, the behavior of φ(x) is given by

φ(x)~ C\x\~2s+kχ-k

where C is a constant.
We topologize s/Btk in the following way. A sequence of functions φn

in j / i t k is said to "converge to zero" if the φn converge uniformly to
zero with all their derivatives on every compact set of R.

The representation πStk of SL(2, R) in the space jtf8tk is defined as fol-
lows :

(^^i) \r* + $rs sgn* (γx + δ) ,
γx +

where a = (a fje SL(2, R) and φ(x) 6 s/tlk.



REPRESENTATIONS AND AUTOMORPHIC FORMS 147

We shall summarize the results on the representations πSfk of SL(2, R)

according to [2].

If 2s =£ k (mod 2), then πSfk is irreducible. Two representations πs>k

and πs,tk, (2s ̂  &(mod2), 2s' ̂  h! (mod 2)) are equivalent if and only if

k~k; (mod 2), s = s' or k = k' (mod 2), s = 1 — s'. There exists an in-

tertwining operator MsΛ from sf8ιk onto «sΛ_β,fc, i.e.,

M,,kπatk(σ) = π^s,k{σ)Ms>k , σ e SL(2, R) .

Here, M5jfc is given by

Λoo

5,fc9\x/ — I l x i x\ s & n \ x i — X)ψ\Xι)uX1 , y>VVfct^s,fc ?
»/ — CO

where the integral is understood in the sense of its regularization (for

details, see [2]).

If 2s = k (mod 2), then ττs>fc is not irreducible. To see this, it is sufficient

to consider only π0>k, keZ. We write πk (resp. sέk) instead of τr0>fc (resp.

<stf0)k). First, consider the case of nonpositive integer k = 1 — n (n e TV).

Obviously, ^/t-n contains the invariant subspace Eλ_n of dimension n, consist-

ing of polynomials of degree n — 1 and lower. There exist also two other

invariant subspaces ^t-n and s/ϊ_n in «s/i_w. &?ϊ-n (resp. «*/{"_Λ) consists

of functions which are the boundary values of holomorphic functions in

the upper (resp. lower) half plane up to polynomials of degree n — 1 and

lower. Further, s/t-n Π ^ϊ~n = Ex_n, s$ϊ_n U s/ϊ_n = srfx_n. Next, consider

the case of integer k such that k = n + 1 for ne N. s/n+ί contains the

subspace Fn+1, which consists of functions f(x) with

ί: xιf(x)dx = 0

for I = 0,1, , n — 1. Obviously, the quotient space ^/n+ilFn+i is of

dimension n. Further, Fn+1 has two other invariant subspaces F++ί and

Fn+i- F++ί (resp. F~+1) consists of functions which are the boundary values

of holomorphic functions in the upper (resp. lower) half plane. There ex-

ists an intertwining operator Mλ_n from s/t_n onto Fn+ί whose kernel is

Ex_n. Mί.n is given by

More precisely, there exists an intertwining operator Mt_n (resp. Mf_n)
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from j/ί_n (resp. ^ϊ-n) onto FJ+1 (resp. F~+1) whose kernel is E^n.
are given by

where (x — V —10)"71 (resp. (x + V —10)~w) is the boundary value of
(Λ — V^Λy)~n (resp. (x+V"^^)" 7") when ;y->0 (for details, see [2]).
Further, there exists an intertwining operator Mn+1 from s/n+1 onto Ex_n

whose kernel is Fn+1. Mn+1 is given by

Similarly, we have s/t = Ft Θ Fϊ where F? (resp. Fϊ) consists of
functions which are boundary values of holomorphic functions in the
upper (resp. lower) half plane.

The representation πSιk becomes a unitary representation if and only
if Re (s) = i or 0 < s < 1 ( s ^ | ) , i = 0 (mod 2). When Re (s) = J, this is
called a representation of the principal series and the scalar product in
s/,tk is of the form

(1.1) (φ, ψ)§9k = P φ(x)ψ(x)dx , φ,ψe s/,tk .
J -co

When 0 < s < 1 (s ^ J), β = 0 (mod 2), the unitary representation πStk is
called a representation of the supplementary series and the scalar product
in s/8ιk is of the form

(1.2) (φ, ψ),tk = Γ Γ \xx - xf"2 φ(x1)ψ(x)dx1dx , φ,ψe ^s,k .
J _OO J —OO

The representations (πu F^ and (πn+1, Fw+i) = (ττi-n> ̂ i-n/^i-n) are also
unitary representations, which are called representations of the discrete
series. The scalar products in F1 and Fn+1 are given as follows:

(1.3) (φ, ψ)ί = Γ φ(x)ψ(x)dx , φ,ψeF? ,
J - O O

(1.3)' (0, ψ)±+1 = J" J " (Λ, - ίc)"'1 In (Xl-x+ V^l • 0)φ(x!)f(x)dxidx ,

Here, In(x ± V — 1 0) are the boundary values of ln(a; ± V — l y)
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= log (x ± ΛΛ^Ί J ) when y -> 0 (y > 0) (for details, see [2]).

2. We denote by H the complex upper half plane {z — ξ + V —1*3?

eC:η> 0}. An element σ = ( a £ j e SL(2, 1?) operates on i l (and on its

boundary R U {°°}) by means of the fractional linear transformation

z^σz a z + β zeH(zeR U {oo}) .z σ z 9

γz + δ

Let CQ(H) be the function space consisting of locally integrable func-

tions with respect to the invariant measure dz = * ^, whose support

is compact.

In the following, let k denote any nonnegative integer and s any

complex number. Set

ΦU*> *) = Vs~(k/2) \* ~ x\-2s+k(z ~ x)~k , xeR,z = ξ + V^Λ.ηeH,

then φs>k(z, x) e sέs>k. Especially, φk/2tk(z, x) e F* (k > 0), because φkM(z, x)

is the boundary value of (z — x + V^ϊ y)~k as y -> 0. It is easy to get

the following formula:

(1.4) π8fk(σ)φ8tt(z9 x) = jk{p-\ z)φS}k(σ-% x) ,

for any a e SL(2, i?). Here, jk(σ, z) = (r2i + ^)"fc for <x = ( α βλe SL(2, R).

For any fe C0(H), set

^S)fc(Λ Λ) = I f(z)ΦsΛz> *)dz ,

then we have φ8tk(f, x) e s/8tk (resp. φk/2,k(f, x) e Fk) and

*MΦ.M, x) = Φ.M"k, x), * e SL(2, J?) ,

where /σ'fe(^) = f(σz)jk(σ, z).

If s ^ Jfe/2, ^ 0 or ^ - 0, 1 - 5 $ iV, then the set {̂ ,fc(/, x):/e C0(fl)}

is dense in s/8fk. If s = A/2, A ^ 0, then the set {φ8tk(f> x):fe C0(H)} is

dense in F^. lΐ k = 0,1 — seN, then {φ8lk(f, x)} = E2s.

3. Now we try to get another realization (rStk, &Stk) of the represen-

tation (πS)k, s/Stk) by passing from the functions φ(x) e <$/S)k to their Fourier

transforms
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Φ(ύ) = ί φ(x)e(— ux)dx , ueR .

In this realization, the representation space &St1c consists of the Fourier
transforms of φ(x) e s/ttk, so 08ttΊt may contain "functions with singular-
ities" in general.

We give the space &Stk the topology which is induced by that of <stfS)k.
Denote by Fn (resp. F£, F~) the function space of the Fourier trans-

forms of φ(x) e Fn (resp. FZ, F~) (n > 1). If Φ(u) eFn+u then

Φil)(0) = 0, I = 0,1, , n - 1 , (neN) .

If Φ(u) 6 Fi (resp. F~), then Φ(u) = 0 when u > 0 (resp. w < 0).
Let i?5,fc(2, x), z = ζ + V^ΐ-ηe H,ueR, be the Fourier transform of

φ8tk(z, x) with respect to x, i.e.,

BStk(z, x) = ,fc(2, x)e(-ux)dx

= Γ

Here, for s such that Re (5) > 1, the integral converges absolutely, and for
s such that Re (5) < 1, the integral has a meaning as the analytic contin-
uation on s. This integral can be expressed by Whittaker function

(1.5) Bs,k(z,x)

Γ(2s - 1)

ί'+ϊ)

if u = 0 ,

if u > 0 ,

I Ml-1 9-*/2WW(1/2)(4;r |u| ^)e(-uf) , if u < 0 ,

(for the definition of Wtiμ(z), see [1] and [2]).
We call BSfk(z, u) "Whittaker function" attached to r,,k.
For any fe C0(H), set
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then Bs>k(f, u) is the Fourier transform of φs,k(f, x). If s ^ A/2, A ^ 0, or

A = 0,1 — seiV, then the function space όg°8ιk = {BSik(f, ύ):fe C0(H)} is

dense in ^, f Λ. If s = A/2, A = 0, then the function space ύ8\ = {BS)1e(f, ύ):

fe C0(H)} is dense in Fk.

Under the assumption that 0 < Re (s) < 1, the formula for the operator

r,ffc(σ), σ = (a fj e SL(2, R), takes the following form:

(1.6) (rs>k(σ)Φ)(u) = Γ KSflc(σ: u, v)Φ(v)dv , Φ(u) e @s,k ,
t/ — oo

where

K,,k(σ: u, v) = Γ eί-ux + t ^ + f ) | rx + δ\~2s sgn* (γx + δ)dx .
J-oo \ γx -f ^ /

This expression can be written in a somewhat different form.

If σ = ( £ J)eSL(2,Λ),r = 0, then

(1.7) (rttk(<WXu) = sgn f c ^ . | ^ l " 2 s + 2 e{δβu)Φ(!Pu) ,

If σ = ^ A 6 SL(2, i?), ̂ 0 , then the integral kernel KStk(σ: u, v) can

be written in

In the last formula, the integral converges uniformly in the region

0 < Re (s) < 1, and is expressed by Bessel functions. Therefore, we have:

if uv > 0, then

K.,k(σ: u, v) = πV^Ϊ sgn* (vγ) \γ|- g ( ^ + OT)

(1.8) r

f—(1/2)

and if uv < 0, then
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U
K.Λ(σ: u, v) = 2 sgn* (γv) |r|"»

Here, we quote the integral expressions of H*p9Hf> and Kv:

H™(χ) = <-»lA) Γ Θχp (V~=l x cosh (ί) -
7ΓV—1 J-°°

= _<~Φ) Γ exp (-/^l-x-cosh (ί) - vt)dt
7ΓV—1 ^-°°

and

Kv{x) = —e{-φ) Γ IT- 1

2 Jo

exp ( - J L V ^
\ 2

(see [10]).

The integral kernel Ks>k(σ: u, v), σ = (a ζ\ e SL(2, R) (γ ^ 0), has a

meaning for every complex number s, because Bessel functions are ana-

lytically continued to entire functions with respect to s. Taking into

account of this fact, we can define the operator rStk(σ), σ e SL(2, R) in any

case (i.e., for any s and k) by the formula (1.7), (1.8) and (1.8)'.

According to (1.4) and to the definitions of the operator rStΊc{σ) and

"Whittaker function" BS)]c(z9 u), it follows that, if 0 < Re (s) < 1, then

(1.9) rMB9tt(*> u) = Bs,k(σ~% u)jk(σ~\ z)

for any σ e SL(2, R). In view of the analytic continuations on s, the

above intertwining formula (1.9) holds for every complex number s. We

call (rs>ky a9fk) "Weil type representation" of SL(2, R).

If the representation (πs>k, stfStk) is unitary (in other words, "Weil

type representation (rStk, &Stk) is unitary), the scalar product in &Stk is

defined (up to a constant multiple) by

(Φ, Ψ)Stk = (φ, ψ)fffc , (Φ9Ψe a,,k, φ,ψe s/,,k),

where Φ and ¥ are the Fourier transforms of φ and ψ, respectively. In
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the case of principal series:

(1.10) (Φ, ¥)..* = J ^ Φ(u)Ψ(u)du .

In the case of supplementary series:

(1.11) (Φ, Ψ)s,k = Γ I M I 1 - 8 ^ ^ ) ^ ) ^ .
J —oo

Similarly, in the case of discrete series, the scalar products in F++1 and

F~+1 (neN) are of the forms:

(1.12) (Φ, W)i+ί = (/^Ί)~TC+1 Γ Φ^iuWiuϊdu , Φ, ?Γ e F£+1

Jo

and

<1.12)' (Φ, ?Γ)-+1 = ( Λ Λ = 1 ) - + 1 Γ Φ^\u)Ψ{u)du , Φ, ?F e F~+ 1 ,
»/ — CO

respectively.

Thus, we obtain

THEOREM 1. (1) For "Weil type representation" (rStk, &s>k) of SL(2, R),

defined by the formulae (1.6) and (1.7), and for "Whittaker function" BStlc(z, u)

related to rs>k, defined by (1.5), we have the following intertwining formula

with respect to modular transformation on z:

rs,k(σ)Bs,k(z, u) = Bitk(σ'% u)jh(p~\ *) , <* e SL(2, R) .

(2) "Weil type representation" (rSfk, &Stk) is unitary if and only if

Ee (s) = 1/2 or 0 < s < 1 (s ̂  1/2), k = 0 (mod 2), and the scalar products

in these cases are given by (1.10) and (1.11), respectively.

The representations (r ( n + 1 ) / 2 f n + 1, F£+1) are unitary and irreducible, and

the scalar products are given by (1.12) and (1.12/, respectively.

If 2s ̂  k (mod 2), then (r9tk9 @Sik) is irreducible. Two representations

rStk and τy,fc, (2s ̂  k (mod 2), 2sf ^ h! (mod 2)) are equivalent if and only if

k = k! (mod 2), s = sf or k = kf (mod 2), s = 1 — s'.

Remark. In the cases of principal and supplementary series, the

realizations (rStk, &Stk) are already investigated ([3]).
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§2. Generalized Poisson summation formula for Eisenstein series

In this section, we write (rS9 &s) and Bs(z9 u) instead of (r8t0, &s>0) and

Bs>0(z9 u)9 respectively.

First, we summarize the theory of Eisenstein series of SL(2, R) (see

[4]). A discontinuous subgroup Γ of SL(29 R) is called a discontinuous

group of finite type, if the measure of Γ\H with respect to dz is finite.

Let A; be a real number or oo, and let Γκ be the stabilizer of K in Γ, i.e.

Γκ = {σe Γ\σκ = tc}. We call K a. cusp of Γ, if Γκ is generated by a para-

bolic element. Two cusps κ9 κ
! are called equivalent, if there is a σ e Γ

such that oκ = κ\ If Γ is of finite type, then the number of inequivalent

cusps is finite.

Let Γ be a discontinuous group of finite type, and let κu -,ιch be

a complete set of inequivalent cusps. Let Γt be the stabilizer in Γ of κi9

i.e., Γi = {σeΓ\σκi = Λ J , and fix an element σt e SL(2, R) such that ^oo = κiy

and that α^Γ^t is equal to the group UQ ?)\βez\. Furthermore, de-

note by η(z) the imaginary part of z e H.

The Eisenstein series E^z, x) for the cusp fci9 is defined by

(2.1) Elz9 s) = Σ Vi^σzy , (σ e Γ^Γ) ,
σ

where s is a complex variable.

It is known that the Eisenstein series Et(z, s) converges absolutely,

if Re (s) > 1. From the definition, it follows immediately that Et(σz9 s)

= Ei{z9 s) for any σ e Γ9 and DEt{z9 s) = λEt(z9 s) with λ = s(s — 1), where

D is the Laplacian on H given by

Further, Et(z9 s) does not depend on the particular choice of at and a

cusp κt among equivalent ones.

In the following, we assume that oo is a cusp and the stabilizer

Γ^ = {σeΓ:σoo = oo} of oo is equal to the group | ( Q £J βeZ\.

A function f(z) on H is called an automorphic function with respect

to Γ, if f(σz) = f(z) holds for all σ e Γ. If K is a cusp of Γ, then there

exist a σ'e SL(29 R) such that σ'oo = κ% If f(z) is an automorphic func-

tion, then f(afz) is a periodic function with period 1, i.e., f(σ'(z + 1))
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= f(σ'z). Therefore, we have a Fourier series expansion

f(a'z) = Σ am(τ])e(mξ) , (meZ,z = ξ + V~-ΐ y) ,
m

whenever / satisfies some natural conditions. Here,

am(v)= ί fWz)e(-mξ)dξ .
Jo

The Fourier expansion of the Eisenstein series Et(z, s) at the cusp κj9

is given in the form

EifajZ, s) = Σ aijΛv> s)e(-mξ) , (m e Z) ,
m

with

a>ijΛy, s) = \ EfajZ, s)e(mξ)dξ
Jo

= ΦnΛs) Γ y°(ξ* + vTse(mξ)dξ
J —oo

= ΦυAs) Γ Vs(ξ2 + rf)-se(-mξ)dξ
J —oo

- φijtjβ) Bs(z, m) e(mξ) , (m ̂  0) ,

and

αij,o(^, s) = δtjη* + <f>ij(s)tf~s , (^j: Kronecker's delta) .

Here,

(c>0,d(modc),(* *) e σ Ψσ,) ,

and

φtj(s) = Φu

Therefore, we have the expansion of the Eisenstein series E{(z, s) at
the cusp Kj by "Whittaker function" Bs(z, u):

(2.2) Efaz, s) = δ{jV° + Σ φij,m(s)Bs(z, m) .
mez

The constant term matrix Φ(s) = (φυ(s)) is a symmetric matrix.
Furthermore, Φ(s) is meromorphic on the whole s-plane and satisfies the
functional equation Φ(s)Φ(l — s) = I, where / is the identity matrix.
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Each Ei(z, s) has a meromorphic continuation to the whole s-plane,

and the column vector £(z, s) = \Ex{z, s), , Eh(z, s)) satisfies the func-

tional equation

S{z, s) = Φ(s)£(z, 1 - β) .

Therefore, each φi3,m{s) has a meromorphic continuation to the whole

s-plane, and the both sides of (2.2) has a meaning as meromorphic func-

tions on the whole s-plane.

Now, we prove the following theorem.

THEOREM 2. For a discontinuous group Γ of finite type with inequiv-

alent cusps κά (j = 1, , h), let φij>m(s) (i, j = 1, , h, m e Z) be the

Dirichlet series defined by:

ΦiU*) = Σ \c\-2s(Σ e{-πf)) > (θO,d (mod c), (* *) e σϊTσj) ,

where at e SL(2, R) are as above. Further, let rs be the "Weil type represen-

tation" of SL(2, R) in the space &„ defined in Theorem 1.

Then, for any σ e ΓU) = σjΨσj, we have

δirΦ(oo) + Σ φij>m(s)Φ(m) = δir(rt(σ)ΦXoo) + Σ φij,m(s)(rs(σ)Φ)(m) ,
m€Z meZ

where Φ(u) e J1? (i.e., Φ(u) = B£f, u) for f{z) e C0(H)) and

Φ(oo) = f f(z)v>dz , (rs(σ)Φ)(oo) = f f(z)φ^zγdz .

In particular, for σ € ΓU) = σjΨσj, we have

SiiV* + Σ Φ».»(β)BXz, m) = δtφ-'zy + Σ φi3Λs)Φ)Bs{z, m) .
mGZ mβZ

Proof. By the fact that Et{az, s) — Et(z, s) for any σ e Γ, it follows

that EiiσσjZ, s) = E^σ^z, s) for any a e Γ. Since there exist a σf 6 ΓU)

= σjΨσj such that σσό = σ3σ' for any σeΓ, we conclude that Ei(ajaz,s)

= EfajZ, s) for any σ e Γ ϋ ) . Taking into account the expansion (2.2) of

EifajZ, s), we have

$Vs + Σ Φij,m(s)Bs(z, m) = δ^σ^z)9 + Σ Φij.Λs)Ba(σ'% m)
eZ

Σ
mβZ

for any σeΓu\

By means of Theorem 1, we can rewrite this formula in the form:
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δitf + Σ φυ,m(s)Bs(z, m) = δttfiσ-^y + Σ φi},m(s)rXσ)Bs(z, m)
mez mez

for any σ e Γ(j\
Multiply by f(z) e C0(H) on the both sides of this formula, and inte-

grate it on H with respect to dz, then we obtain the assertion of Theo-
rem 2.

COROLLARY. Assume that the Eίsenstein series Et(z, s) has a pole at
s = s0. Set aij>m the residue of φίj>m(s) at the pole s0.

Then, for any a e Γu\ we have

and

where Φ(ύ) e

Σ aiUmΦ{m) = Σ aίj>m(r$0(σ)Φ)(m)
ez mez

Σ aijί7nBS0(z, m) = Σ aίJ)VlrS0(σ)BS0(z, m) ,
mez mez

Remark 1. We can define "Weil type representations" and "Whittaker
functions" for SL{2, C), similarly to the case of SL(2, R). Then we ob-
tain similar results to those of § 2.

Remark 2. In [6], T. Kubota defined generalized theta series by the
residues of a kind of Eisenstein series for SL(2, C), and gave a gener-
alized Poisson summation formula associated with the theta series for

the special element a = ί - V Applying the arguments in Remark 1

to Eisenstein series, which T. Kubota discussed, and its residues, we can
get the generalized Poisson summation formula for any element of the
corresponding discontinuous group.

§ 3. Generalized Poisson summation formulae for holomorphic forms

Let Γ be a discontinuous group of finite type such that oo is a cusp

and ΓOO = <(Q Π:/3eZ>. By a similar way to §2, we can define

"Eisenstein series" E(z, s)k = Σ\r* + ^Γ2s+fc(r^ + $Y\ (<* = (* g)

e /7

co\ΓrJ, and obtain "generalized Poisson summation formula" for E{z,s)k.

But, it is more interesting and important for us to investigate "generalized
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Poisson summation formulae" for automorphic forms of holomorphic type

with respect to Γ.

To carry this out, we start with considering "Weil type representa-

tion" and "Whittaker function" for the case where s = k/2 (k: positive

integer). For the sake of brevity, we write Bk(z9 u) (resp. rk9 Kk(σ: u9 v))

ins tead of Bk/2tk(z, ύ) (resp. rm>k9 Kk/2>k(σ: u, v)).

We know that Bk(z9 u) e F^ and the representation (rfe, F*) is unitary

and irreducible (the scalar product in Fk is given by (1.12)0. So, we

have

Bk(z9 u) = 0 if u > 0 ,

and

Kk(σ: u9 v) = 0 if uv < 0 ,

where Kk(σ: u9 v) is the integral kernel for rk.

"Whittaker function" Bk(z9 u) is given by

{-2π<sΠ-i if u = 0 ,
= t-2τr/=Ί.e(|u\ z) if u < 0 ,

and

if u = 0 ,

The operator rfc(<7), σ = ί a *t J e SL(29 R) on the space F^9 is given as

follows: if γ = 0, then

(rs{σ)Φ)(u) = sgnfc ί |d|-fc

( 3 ' 2 ) = δ-k+2e(δβu)Φ(δ2u) ,

if γ ^ 0, t h e n

(rXσ)Φ)(w) = ° k -/E.1.X.-.-1 Γ° _/(5w + ^ \ w

(3.2)' '

where w ̂  0, Φ(») 6 F; and J , . , ^ ) = (Hi«,(x) + mU
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The intertwining formula is given by

(3.3) rk(σ)Bk(z, u) = Bk(σ~% u)jk(σ~\ z) , σ e SL(2, R) .

A holomorphic function f(z) on H is called "an automorphic form of

holomorphic A-type with respect to Γ", if the followings are satisfied:

(1) f(σz)jk(σ, z) - f(z) for any σ e Γ,

(2) f(z) is holomorphic at every cusp of Γ.

In explanation of the last condition, fix an element σt e SL(2, R) for every

cusp Ki such that ^ 0 0 = κi9 07 T ^ = II^ Py. βez\, then (2) says that fiiz)

= f{θiZ)jk{σuz) has the Fourier expansion:

ft(z) = aί>0 + Σ at,ne(nz) .

The coefficients aί>n are called the Fourier coefficients of f(z) at the cusp

We define "modified coefficients" bi>n of f(z) at the cusp κt by

if n > 0 ,
(3 4)

and

(0 if T I ^ O ,

] (k-l)\ _k+1 . (k>ΐ).

ait0 if n = oo .

Then we have the expansion of f^z) by means of "Whittaker functions":

f Σ bi>nBk(z, n) if k > 1 ,
nez

bitnBx{z, ή) if k = 1 .

Since fi(σ-λz)jk(σ-\ z) = ft(z) for any σe Γ ( ί ) = ^Γσ,"1, we get

&*,- + Σ 6i,»J3t(«, ή) = bίtJk(σ-\ z) + Σ bifnBk{a~% ή)jk{σ~\ z)

for £ > 1, and

= bitJk(σ-\ z) + Σ bί>nrk(σ)Bk(zf ή)
nez



1 6 0 TOSHIAKI SUZUKI

^Bfa n) = Σ KnB^σ-% n)h(σ-\ z)
Z

= Σ KMBfa n)
nGZ

for k = 1.

THEOREM 3. Let bUn (i = 1, , h, ne Z U {oo}) 6e "modified coeffi-

cients" of an automorphic form f(z) of holomorphic k-type with respect to

Γ, at the cusp κu and (rk, Fι) be the "Weil type representation" of SL(2, R),

defined by (3.2) and (3.2)'.

Then we have; for any σ e Γ{i\

(3.5) Σ KnΦ(n) = Σ bUn(Φ)Φ){n) , (k = 1) ,

KnΦ{n) = 6<fββ(r4(σ)Φ)(oo)

where Φ(u) e (F*)° (i.e., Φ(u) = Bk(g, u) for ge C0(H)) and

φ(oo) = f g(z)dz , (rk(σ)Φ)(co) = f g(z)jk(σ-\ z)dz .
JH JH

In particular,

K~ + ΣzKnBk(z, ή) = bitJk(σ-\ z) + Σzbi,nrk(σ)Bk(z, ή) , (k>ϊ),

for any σ e Γ(ί).

Conversely, for any sequence {bn}, (ne Z(J {oo}), for which the formula

(3.5) or (3.5)' is valid for any a e ΓU), bn are "modified coefficients" of an

automorphic form of holomorphic k-type with respect to Γ, at the cusp κt.

Remark. It is not difficult to generalize the above results to the case

of non-holomorphic forms, which satisfy a kind of differential equation.

More precisely, we can expand non-holomorphic forms by means of

"Whittaker functions".

§ 4. Covering groups of SL(2, R) and Weil representation

For any positive integer q, let G{q) denote the set of a = (σ, j(σ, z))
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formed by an element σ = ( a ΐ\e SL(2, R) and a holomorphic function

j(σ, z) on the upper half plane H such that j(σ, z)q = γz + δ. Defining a

law of multiplication in G{q) by

(4.1) (τ, j(τ, z)) (σ, j(σ, z)) = (τσ, j(τ, σz)j(σ, z)) ,

we can make G{q) a group with t h e uni t element L i)> l ) I t is clear

t h a t G(<2) is a g-folded covering group of SL(2, /?).

For or = (σj(σ, z)) e G(q\ set

where s is a complex variable and p is an integer which is relatively

prime to q and 0 < p < q. Then we have, for any τ, σ e G(q\

(4.2) φSfP(τσ, z) = &,p(τ, (72) j(σ, z)~p .

For any zeC, we define V ^ = z1/q so that — τr/g < arg QΛ/Z ̂  τr/g, then

it follows that, for zjz1 e H, zu z2e C — R,

(4.3) ( ,̂W = Hf
U^)179 , otherwise ,

and, for ze H,ce R,

]c\1/qzί/q if c > 0 ,
(4.4) (cz)1/q = ,

L c ( — l / 2 ς ? ) | c | I / β « 1 / β i f c < 0 .

For any σ = (σ,j(σ, z))e G(q),σ = (a ^J, there exist unique <7-th root

ε(σ) of unity such that j(σ, z) = ε(σ)(γz + d)1/q.

Put

^ f P ( ^ , x) = (z- x)~p/q\z - χ|-2ί+^/«γ-(^«) , zeH,xeR ,

then we have

for r = (r, j(ϊ, z)) e &q\ τ = (* _ * ) , i(f, *) = ( * - x)1/?.

For σ = (σ,j(σ, z)) e &q\ σ = (^ ξ), we put
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-1 \γx + δ\1/q

j(<7, x ) =

if γx + δ > 0, γ * 0 ,
1/q if γx : + δ < 0, γ * 0 ,

if r = 0 .

Then, for the above r e G(q) and for any σ e G(q\ σ = (a ζ\, we can see

that

<4.6) φ..p(*&-1, z) = j(σ, x)-> \γx

because (4.3) and (4.4) imply that

aX + f
/

—r-ε +
r* + σ ) - =

if x̂ + ^ > 0 ,

γx +

if γx + δ < 0, γ > 0 ,

if

γx + δ

+ ί < 0, γ < 0 .

Let J / ^ be the vector space generated by functions φs,p(z, x) on x,

where the topology in s/(

sfp is defined similarly to that of s/8tk in § 1. The

representation πStP of G(q) in the space s/(

s

q)

p is defined by

<4.7)

for 3 = (σ, i(5,2)) e G( \ σ =

\γx

6 SL(2,

φ(x) e

By means of (4.2) and (4.6), we get the following intertwining for-

mula:

(4.8) z, x) = '\ z)~

for any σ e G{q\

For this representation πSfP, we can obtain similar results to those

for πS)k in § 1, but here we are interested in the case when s —pβq. We

write πp/q (resp. s/p/q) instead of πpJ2q>p (resp. sfv%iP). The representation

(πp/q, jrfp/q) is irreducible and unitary with the scalar product
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(4.9) (φ,ψ)P/v = Γ Γ (*, - x - </=ϊ θyn>-ψxd φ(x)dxιdx ,
J — oo J — oo

Φ, ψ e jtfp/ί .

Denote by f̂̂  the vector space generated by "Whittaker function"
BS)P(z, ύ) on u e 2?, where

/»co

£^(2, w) = ,̂,p(2;, x)e(-ux)dx
J - o o

= Γ ^-(?)/25)(2 - x)-s-(p/2q)(z - x)-s+(p/2q)e(-ux)dx .
J —oo

This integral is expressed by the usual Whittaker function W.y.

(4.10) Bs,p(z,u)

Γ ( 2 s 1 ) i f u = 0 ,

- (p/2g))

Γ(s + (pl2q))Γ(s -

I " ! " 1 V-"%tW_p/p,..-<v*>V*\u\y)e(-uξ) if u > 0 ,

(p/2g))
\u\-1η-"t<W,nq...a/n(4π\u\7J)e(-uς) if » < 0 ,

(z = ξ + iηeH) .

By means of Fourier transformation and by similar arguments to § 1,

we get another realization (r,tP, &l%) of the representation πSιP of Gw.

If, namely, & = (σ, j(σ, z)) e G ( ί ), a = (a Q e SL(2, R), γ = 0, then

(4.11) (rsJσ)Φ)(u) = e(*)s(sgn δ)" ί / 5 |δ | " 2 s + 2 e(5/3w)Φ(δ2w) ,

J£σ = (σ, j(σ, z)) 6 G<«>, σ = ^ ^ e SL(2, Λ), r ^ 0, then

(4.12) (r Φ(μ) e <gι% ,

where the integral kernel KSiP(d\ u, v) is given by the followings: in the

case that uv > 0,

..,<*: u, v) =

(4.13) sgn u)l4q)e((2s -
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- e(-p(sgnr - sgn u)l4q)e((l -
\r\ /J

in the case of that uv < 0,

(4.13)' X [e(-/>(sgn γ + sgn u)l4q)e((2s - l)/4)

+ e(-p(sgn r - sgn u)/4q)e((l -
\r\

Furthermore, we have the following intertwining formula:

(4.14) r s » BsJz, u) = BsJσ'% u) j(σ-\ z)

for any σeG < 9 ) .

Now, we investigate the case where s = p/2q. We write rplq (resp.

Bp/q(z, ύ), @vlq) instead of rf/2q,p (resp. Bίί2q,p(z, u), @(

p%tJ. We see that

O if u ̂  0 ,

if u < 0 .

The operator rp/q(σ) for a = (σ,j(σ, z)) e Gw, σ = (" fj, γ = 0, is given by

(rp/ί(ί)Φ)(α) = ε(σ)"δ"-^e(Sβu)Φ(δ2u) , Φ(u) e Stvlq .

The operator rp/,(ί) for a = (σ,i(σ, 2)) e Gw a = ί" β , 7- ̂  0, is given by

(0 if w ̂  0 ,
(rB/9(σ)Φ)(ω) = ro Φ(α) € Λ W ί ,

I f - JBΓ'/Ϊ(*: "' ϋ)Φ(υ)ίίi;' if " < ° '
where

Km(a: u, v) = ε ( W r r

The representation (rp / ί, ^ p / β ) is irreducible and unitary with the scalar

product
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(Φ, Ψ)flq = Γ Iuf-^Φ(u)W(ύ)du , Φ,Ψe $p/q.
J - o o

Further, considering the special case where p/q = 1/2, we can see that

: u, v) =

= /2"ε(σ)e(-sgn r/8) | r |-
1 / 2 e(^u + av)\u\-^ cos

We modify the representation (r1/2, J*1/2) in the following way. Let &
be the function space consisting of Φ(t) = \t\Φλ{—t2f2) for any Φx{u)eSim,
and let r be the representation of G(2) in the space & defined by

(r(σ)Φ)(t) = |ί| (r1/2(d)Φj)(-ί2/2) , Φ(t) = |ί| Φ^-f/2) , Φj 6 J*1/2 ,

for (7 6 G(2).
Then, the representation (r, ̂ ) is irreducible and unitary with the

scalar product

(Φ, Ψ) = 2/2-(Φu Ψ,)m

= 1^ f I w|1/2 Φίu)Ψlu
J -co

= 2/2"
J

where Φ(ί) - |ί| Φ^-φ), W(t) = \t\ ^ ( - ί /2) 6 ̂ , Φ,, ̂  e 3SW

The operation of r(σ) is given as follows.

If σ = (*, ;(σ, 0)), a = (^ ξje SL(2, R), γ = 0, then

(r(σ)Φ)(t) = ε(σ)δ2-a/2)e(-δβfl2)Φ1(-δH2l2)\t\

= ε(σ)δ1/2e(-δβfl2)Φ(δt) .

If a = (σ, ;(<7, z)), σ = (jf ξje SL(2, R), γ # 0, then

(r(σ)Φ)(t) = /2"ε(σ)e(-sgn r/8) | - ί

cos
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-sgn r/8) |rl-

c o s

Therefore, the representation (r, J*) is nothing else than the original Weil
representation.

Remark 1. The original definition of Weil representation in [11] seems
to be somewhat complicated. By means of the above results, we can see
the connexion between Weil representation and other representations.

Remark 2. Recently, S. Niwa showed that Weil representation for a
non-archimedian local field is obtained by similar arguments to those of § 4.
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