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HYPERBOLIC AFFINE HYPERSPHERES

TAKESHI SASAKI

Introduction

A locally strongly convex hypersurface in the affine space Rn + 1 is
called an affine hypersphere if the affine normals (§ 1) through each point
of the hypersurface either all intersect at one point, called its center,
or else are all mutually parallel. It is called elliptic, parabolic or hyper-
bolic according to whether the center is, respectively, on the concave
side of the hypersurface, at infinity or on the convex side. This class
of hypersurfaces was first studied systematically by W. Blaschke ([1]) in
the frame of affine geometry. In his paper [3] E. Calabi redefined it and
proposed a problem of determining all complete hyperbolic affine hyper-
spheres and raised a conjecture that these hypersurfaces are asymptotic
to the boundary of a convex cone and every non-degenerate cone V
determines a hyperbolic affine hypersphere, asymptotic to the boundary of
V, uniquely by the value of its mean curvature. He proved this conjecture
for homogeneous convex cones under some conditions on the action of
the automorphism group of the cone. In § 2 we will prove that this is
the case for closed affine hyperspheres relying crucially on theorems of
H. Wu ([17]) and S. Y. Cheng-S. T. Yau ([4]) (Theorem 1). A hyperbolic affine
hypersphere is identified, through an appropriate Legendre transformation
(§ 1), with a bounded convex domain Ω in Rn(ξ) making use of Wu's theorem.
Cheng-Yau's theorem says that there exists a unique convex solution for
the following equation of Monge-Ampere type

ίdet (-^-) = (Hu)-n~2 in Ω
\3£49£,/

= 0 on dΩ .

Using this equation C. Loewner-L. Nirenberg [9] defined a projectively
invariant metric of the domain Ω. Then the Legendre transformation is
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an isometry with respect to this metric and the affine metric of the hyper-
sphere (Theorem 2).

In § 1 we recall the definition of an affine hypersphere. In § 3 we
derive a composition formula of solutions of the equations of type (#)
above (Theorem 3).

In § 4 we restrict ourselves to the homogeneous case. Here the the-

ory of homogeneous convex cones plays a central role. Let V be a non-

degenerate open convex cone in Rn+ί(x) and V be its dual. A(V) means

the group of all linear transformations which leave V invariant. Follow-

ing V. M. Koecher we define the function called the characteristic func-

tion of V, by the equation φv(x) = e~<Xtξ>dξ for every xe V, (x, ξ) being

the value of the linear functional ξ at x (Koecher [8], E. B. Vinberg [16]).
We denote by Sc the level surface of φv: {φv(x) = c} which is a noncom-
pact submanifold in V. It is also known that the Hessian d2 log φv defines
the metric on V. We denote by ω the induced metric on Sc. Now we
shall assume the cone V is homogeneous under A(V). Then we will
prove that Sc is a homogeneous hyperbolic affine hypersphere and every such
hyperspheres can be obtained in this way (Theorem 4a, 4b). We state another
composition formula of solutions of equations of type (#) and see that ω
is identified with the affine metric. We remark also that Sc is a global
Riemannian symmetric space when V is a self-dual cone (Proposition 6).

The author would like to express his thanks to his colleagues K.
Shiga and T. Tsuji and to Professor S. Kobayashi for pleasant discussions
with them.

Added in proof. In May, 1979, Professor S. Y. Cheng kindly informed
me that he and S. T. Yau also obtained Theorem 1 in this paper independ-
ently and announced it in the 1977 Utah conference on partial differential
equations.

§1. Proper hyperbolic affine hyperspheres

First we recall, for completeness, the definition of affine normals
after Calabi's paper [3] (cf. H. Flanders [6]). Let S be a hypersurface in
Rn+1 and f:S->Rn+1 be the imbedding of S. The imbedding / defines a
volume bundle valued quadratic form G on S by the equation
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in terms of local coordinates (/, , yn) of S. This is invariant under
unimodular affine transformations in Rn+ί. If this quadratic form is sup-
posed to be non-degenerate, it defines a pseudoriemannian structure tensor
g with corresponding volume element dv(g), uniquely defined by the equa-
tion

G = g®dυ(g).

In this paper we assume that the set S is locally strongly convex. Then
the tensor g can be chosen to be positive definite choosing the orienta-
tion of S so that G is positive valued. With this Eiemannian metric,
called the affine metric, the affine normal is defined to be the vector

n = —Δf, where Δ is the Laplace-Beltrami operator with respect to g.
n

For an affine hypersphere of hyperbolic or elliptic type (called of proper
type together) with the center at the origin, n satisfies the equation

n= -Hf,

where H, called the affine mean curvature, is a nonzero constant. Next
we explain a non-parametric characterization of an affine hypersphere.
Let (x\ - - ,xn+1) be a linear coordinate system of Rn+ί and {xn+ί = f(x\- ,
xn)} be the representation of S as the graph of a locally strongly convex
function / for x = (x\ , xn) ranging in a domain D c Rn. Let Ω C Rn(ξ19

• ,fn) be the image of D under the locally invertible mapping ξ = grad/

= (Λ> ''' 9 fn), where ft = -J-. We define the function u($u , ξn) on Ω
dxι

by the equation

u(grad/(x)) - -/(*) + (x, grad/(x)) ,

where (,) is the pairing giving the canonical duality. We recall u the
Legendre transform of / and also the domain Ω the Legendre transform
of S with respect to the coordinates (x\ •• ,xw+1). In this formulation
Calabi proved

(a) The hypersurface S is a proper affine hypersphere with its center
at the origin and the affine mean curvature H if u satisfies the equation

d e t ( H ;) =

For the later use we state an easy
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LEMMA 1. If we take another coordinate system y = (y\ -,yn+1) such

that y = Ax for A = (α£) e SL(n + 1, R) and assume v(η) is the Legendre

transform of yn+1 with respect to (y\ -,yn+1), rjj = ~—. Then
By3

(1) ξi = ( Σ aίVj ~ α?+1)/(α;:ί - Σ aί+lVj)
(2) u(ξ) = v(v)l(arΛ-Σai+ίVj) ( -hJ-Π)

§ 2. Construction of hyperbolic affine hyperspheres

In this section we will give an answer to Calabi's conjecture stated

in Introduction owing mainly to Wu and Cheng-Yau (Theorems A and B).

Let S be a closed hyperbolic aίBne hypersphere with center at the origin

and the affine mean curvature H. This is complete with respect to the

affine metric ([5]). (But the author does not know whether the complete-

ness of the affine metric implies the closedness or not.) It is also com-

plete with respect to the induced metric of the Riemannian metric of Rn+K

Therefore the hypersurface S is complete, noncompact, orientable, smooth

and locally strongly convex. In this situation we have

THEOREM A. (Wu [17], R. Sacksteder [14]). Such a surface is the full

boundary of some closed convex body and is the graph of a non-negative

smooth strictly convex function defined in some hyperplane.

By this theorem the hypersurface S can be written globally as the

set {xn+1 = f(x\ - , xn)}, where / is a positive smooth strictly convex func-

tion on {xn+ί = 0}.

LEMMA 2. Let h{z) be a positive smooth strictly convex function on R

and H = {y = h(z)} be the curve in R2. Assume every line through the

origin o and the points p in H cannot be tangent to H for all p. Then

any half line through o can intersect H at most at one point.

Proof This is straightforward and its proof is omitted.

LEMMA 3. Let S be represented as above. Then the tangent plane at

any point of S cannot contain the origin.

Proof. In other words the affine normal is not tangent to S. Obvious-

ly the normal vector in Euclidean sense at one point in S is proportional

to nE: = (<?!, •••,?„, — 1), ξi being the coordinate of the Legendre trans-

formation. The affine normal n at that point is —
2
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+ Σ 4fξt)> w h e r e P = d e t (Λi)"1/W+2 (see [3], p. 26). Hence (n, nE) = -1/p

Φ 0, completing the proof.

We say a half line I through o is an asymptotic line of S if there

exists an unbounded sequence of points xn in S such that half lines

through xn and o tend to L And we say S is asymptotic to the boundary

of a convex cone when the boundary is equal to the set of all asymptotic

lines of S. Then we have

PROPOSITION 1. Let Sk = {kpe Rn+1;pe S}. Then Sk Π Sk, = 0 for

kφh! and V:= [Jk>oSk is an open non-degenerate convex cone. S is as-

ymptotic to the boundary of V.

Proof A convex cone is said to be non-degenerate when it contains

no straight line. Assume Sk Π Sk, φ 0 for some k Φ k'. This means that

there exists a point p in Sk such that (kjkf)p is also a point in Sk. But

this cannot occur by the above Lemmas.

Next we shall study the Legendre transform of S. Let C be the

convex body {xn+ί >f(x)}. S is the boundary of C. For any convex body

K, the set of all vectors y e Rn+ι such that K + yd K is called the reces-

sion cone of K ([11], p. 61) and denoted by 0+K. Proposition 1 says that

0+C=V. By definition, the barrier cone B(K) of K is the set of all vec-

tors ξ such that, for some βeR, (x, ξ> < β for every xeK. This is equal

to the closure of the set consisting of all outer normals to K if K has

interior. Also by definition, the polar cone W° of a convex cone W is

the set {ξeRn+1; (x,ξ) < 0 for all xe W}. W° is the minus of the dual

cone W: W° = {-ξ ξe W'}. It is known that B(K)° = 0+K([ll], p. 123).

Then we have

PROPOSITION 2. The Legendre transform Ω of S is the interior of the

section of V° with the hyperplane {ξn+ί = —1}. The Legendre transform

function u tends to 0 at the boundary of Ω.

Proof By definition, Ω can be identified with the set of outer nor-

mals nE to S, i.e. Ω = int (B(Q) n {£n+1 = -1} = int (V°) Π {fn+1 = -1}. By

the strong convexity of/, we see that u(ξ) = sup {(y, ξ};y e S} for ξeΩ»

Since the condition ξ0 e dΩ is sup {{y, ξ0) y e S} = 0, for any sequence

ξi e Ω tending to ξ0, we have lim u(ξt) = 0.

From (a) and Proposition 2 it follows that u satisfies the following
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equation of Monge-Ampere type

fdet (-^-) = (Hu)-n~2 in Ω

U = 0 on 342 .

Due to the way of the choice of coordinates u is non-positive and Ω is a

bounded convex domain.

EXAMPLE 1. Put S = {x e Rn+ί; x1 xn+1 = 1, x1 > 0, - , xn+ί > 0}. S

is a hyperbolic afllne hypersphere ([3]). It is asymptotic to the boundary

of the quadrant V — {x1 > 0, , xn+ί > 0}. The Legendre transform Ω is

projectively equivalent to an n-dimensional simplex which is the bounded

intersection of V° with a hyperplane.

Conversely we have the following

THEOREM B (Cheng-Yau [4]). Suppose Ω is a bounded convex domain.

Then there exists a unique continuous convex function u on Ώ satisfying

<#) such that u\ae C°°(β).

By direct calculations we have

LEMMA 1'. Let A e SL(n + 1, J?) be a protective transformation which

sends Ω onto AΩ in the sense of (1) in Lemma 1. Then the solution u

and v of equations (#) on Ω and AΩ respectively are related with each

other by the equation (2) in Lemma 1.

Now for a given convex domain Ω we will consider the convex solu-

tion u of the equation (#) whose existence is assured by Theorem B. u

is negative by the convexity of u. Defining xι = — -̂ (1 < i < ri), the

Legendre transform function f(x) of u with respect to ξ is equal to — u(ζ)

+ Σ?-i χi%<• We denote by T(Ω) the Legendre transform of Ω, i.e. the

image of the map x(ξ). To show that T(Ω) is the entire space Rn we

state the maximum principle for the equation

on a domain £), where H is a negative constant.

LEMMA 4. Lβί &! and u2 be two convex functions on D satisfying
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on D. Suppose ux > u2 on the boundary 3D. Then ux > u2 on D.

Proof. This is proved in [4], Proposition 2. (cf. [10]).

We define the function F on Rn by F(x) = sup {- u(ζ) + (x, ξ); ξ e Ώ}..

F(x) = f(x) on T(Ω). If F(x) is equal to -u(ξ) + (x,ξ) for an interior

point ξ of Ω, x belongs to T(Ω). Here we assume there exists a point x

such that F(x) = -u(ξ0) + (x, ξo)=:d for f0 e dΩ and F(x) > -u(ξ) + (x, ξ)

for ξ eΩ. Since Ω is convex we can find a closed simplex K contained

in Ω such that dK f] dΩ = {ξ0}. Let uκ be the solution of (#) in K. By

Lemma 4 we have uκ > u on K. Hence uκ(ξ) > (x, ξ) — d for f e int (K)

and Mχ(fo) = (ff> fo) — d. That is, — uκ(ξ) + (x, f) attains its maximum value

at the boundary point ξ0 of K. But this is a contradiction, because the

Legendre transform of int (K) with respect to uκ is the entire space as

in Example 1. Therefore we conclude that T(Ω) = Rn. Thus the function

/(x) is defined for all xeRn and the hypersurface {xn+1 = f(x)} is closed.

By (a), this hypersurface is a hyperbolic affine hypersphere with center

at the origin. Reversing the above argument constructing a convex do-

main from an affine hypersphere, we easily see that this hypersphere is

contained in VΩ and asymptotic to the boundary of Vθ9 where VΩ is the

polar cone of the non-degenerate convex cone generated by Ω thinking

Ω as lying in the plane {ξn+1 = —1}.

Let Ωr be a projective transform of Ω: Ωf = AΩ for A e SL(n + 1, R).

Then, by Lemma 1 and Lemma V, we see that VΩ and VQ, are affinely

related by the transformation CA)'1 and the corresponding hyperspheres

are also transformed to each other by QA)'1. Therefore, for a given

convex cone V, we correspond a unique hypersphere irrespective of the

choice of the domain Ω in V°.

Hence we have the following

THEOREM 1. Every closed hyperbolic affίne hypersphere is asymptotic to

the boundary of a convex cone. Conversely, every non-degenerate cone V

determines a hyperbolic affine hypersphere asymptotic to the boundary of

V, and uniquely determined by the value of its mean curvature.

Proof. The uniqueness part is due to the uniqueness assertion of

Theorem B and that the affine hyperspheres S and Sk — {kp pe S}(k Φ 1)

can be distinguished from each other by the value of mean curvatures.

Lastly in this section, we consider the metric defined by Loewner-

Nirenberg [9]. On a bounded convex domain Ω in Rn(ξ) let us take intα
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consideration again the equation (#). For a negative convex solution u

of (#), they defined the metric

τ = du
Hu

which we call shortly the LN-metric of Ω in this paper. Such a metric

always exists and is uniquely determined by Theorem B. This metric has

the protective invariance in the following sense (cf. Lemmas 1 and 1').

(b) Let A e SL(n + 1, R) be a protective transformation which sends

Ω onto AΩ. Then A is an isometry with respect to LN-metrics of Ω and

AΩ.

THEOREM 2. Legendre transformation is an isometry with respect to

the LN-metric τ and the affine metric g.

Proof. Let xn+1 = f(x\ , xn) be an equation of a hyperbolic affine

hypersphere. Since άet(fij9fu ,/n) = fίj9 the affine metric is written as

g= (det(/^))"1/n+2d2/. But d2f(x) = d2u(ξ) at the corresponding points x

and ξ by the Legendre transformation. Hence τ = d2u = pd2u = g.
Hu

Remark 1. By the unpublished work of Cheng-Yau [5] the affine

metric g is complete. Hence, by Theorems 1 and 2, τ is also complete.

We will give an example.

EXAMPLE 2. Let V be a circular cone C(ή): = {yn+ί > © = ! # } •

Then, by [2], 0F(y) = (y2

n+ί - Σ?=i^)" ( w + 1 ) / 2 and $ is a hyperboloid of two

sheets: {y2

n+ί = 1 + Hf-itf, y»+i > °} O n t h e o t h e r h a n d u = Vl - |?|2,

fέ == yjyn+1. Hence Ω is the open unit ball. The affine metric is equal

to the Hubert metric of the ball.

§3. A composition formula

In [3] Calabi has shown a composition formula of two given affine

hyperspheres of hyperbolic type constructing a third one of the same type.

In this section we will reformulate this composition formula with respect

to solutions of the equations of type (#).

Let / : S-+Rn+1 andg: T—>Rm+1 be hyperbolic affine hyperspheres with

centers at each origin of Rn+ί or Rm+ί. Then, for any positive constants

c and c\
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(c) h:= (cet/n+1f, cV / m + 1 g): R X Sx T->Rn+m+2 is another hyperbolic

affine hypersphere of dimension greater by one than the sum of dimen-

sions of S and T ([3]).

Let V(resp. W) be the cone to whose boundary the hypersphere S

(resp. T) is asymptotic, which is uniquely determined by Theorem 1. We

set R = Ufc>oScfcTO+1 X Γc,fc-(»+1) for k = β

t / ( n + 1 > ( w + 1). By definition of h, we

have the following

PROPOSITION 3. The hypersphere h is equal to the set R. R is asymp-

totic to the boundary of the cone V X W.

Hereafter we shall assume c = d = 1. Let {xn+1 = f(x)} and {ym+ί = g(y)}

be global representations of S and T respectively, where x — (x\ , xn)

and y — (y\ , ym). By Ωt (resp. Ω2) we will denote the Legendre

transform of S (resp. T) with respect to the coordinate Λ: (resp. y). Also

by u (resp. υ) the Legendre transform of / (resp. g). The function u (resp.

υ) is the convex solution of the equation (#) on Ωx (resp. Ω2).

We shall now compute the Legendre transform function for R. For

that purpose we shall take, as a new coordinate system of Rn+m+2

9 the

coordinates (a, β, γ, δ) defined by a = (a1, , an) = jt, β = (β\ , βm) = y,

γ = (n + ϊ)xn+1 ~(m + l)ym+1 and δ = (n + l)xn+1 + (m + ϊ)ym+1. Then the

hypersphere R is expressed by the equations

a = et/n+ίx , β = e~t/m+1y ,

r = ( Λ . + l)et/n+1f(x) -(m + l)e-t/m+ίg(y) ,

3 = (n + ί)et/n+ίf(x) + (m+ ΐ)e~t/m+1g(y) .

Here we regard (JC, y, t) as the coordinates of R. Also (a, β, γ) can be

regarded as the coordinates of R since the mapping (JC, y, t) —> (α, β, γ) is

non-singular. Direct calculation leads to the jacobian equation of this

mapping:

dt = -Adγ + (n + Ϊ)A Σ ftdot - (m + 1)A Σ gjdβj ,
i 3

dx = e~t/n+ίda + A xdγ - Ax Σ ftda* + m + λAx Σ gjdβ3 ,
n + 1 * n -\- 1 j

dy = e'^dβ - -^—ydγ + ^±±Ay Σ fM - AyΣ gsdβs ,
m + 1 m + 1 i J

where A"1 = e ί / n + 1^ + e-t/m+ίv. Next we set f = (ξl9 , ξn) and ^ = (ηu
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Vm) b y ξt = -J-^ a n d ηs = ^ A l s o p = (pu , pn), σ = (σ» 9 σm) a n d τ

by Pt = » σ, = i» and τ = » Since _§- = *»•«/- e-'/"fc ^

= (n + iy/n*^t and — = (m + l)e't/m+% we have
dy3

τ = A(eί/w+1w - e-t/n+1ϋ)

p = (n

σ = (m

By these equations the Legendre transform function w of δ with respect

to (a, β, γ) is equal to

w = (n + m + 2)Ae{{ί/n+1)-{ί/m+1))tuv .

But by the equation τ = A(et/n+ίu — e~t/m+1v) we have e

( ( w + m + 2 ) / ( n + 1 ) ( m + 1 ) ) t

= v(l + τ)/u(l - τ). This yields

w = _

The value of τ must belong to the interval (—1,1) because u and z; are

negative and t varies in R. Changing the variables by τr = (1 — τ)/2,

/ = %n + ϊ)p and σ' = 2(m + l)σ, and setting again τ = τ', p ~ p' and

σ = σ' we have the following

THEOREM 3. Lei Ω be the domain \JQ<τ<1τΩι X (1 — τ)Ω2 in Rn+m+1(p9

σ, τ). Then the convex solution of (#) on Ω is given by

( / / n\ \ n + 1 / / rr \ \ m + l\ l/w+m+2

(-i).-.(u(f)t) (^Jα-.)) )
ι/p ίo α constant multiple, where u and v are the negative convex solutions

of (#) on Ωx and Ω2 respectively.

This construction remains valid, even if one or two of n and m is

zero, considering Ωt as one point in R and u or v as a nonzero constant

function.

EXAMPLE 3. Let K be a simplex in Rn denned by inequalities lY > 0,

• , 4+i > 0> where Z* is a linear function. Then the solution of (#) on

K is equal to a constant multiple of (lx Zn+1)
1/w+1.
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§4. Homogeneous hyperbolic afiine hyperspheres

In this section we will consider homogeneous hyperbolic affine hyper-

spheres. Let V be a non-degenerate convex cone in Rn+1. First we recall

some properties of the characteristic function φv defined in Introduction

([16]).

(d) φv(x) tends to infinity when x approaches to any point of the

boundary of V,

(e) The measure φv(x)dx is invariant under A(V), i.e. φv(Ax)

= φv(x)jdetA for AeA(V), and

(f) log φv is convex on V. Hence d2 log φv defines a metric on V.

By (d) and (f) the level surface of φv: Sc = {φv(x) = c} is a noncompact

submanifold in V which we call the characteristic surface of V. We de-

note by ωc the induced metric of d2 log φv on Sc.

1. We shall now assume V is affinely homogeneous. The character-

istic surface Sc is obviously homogeneous with respect to unimodular ele-

ments of A(V). Then we have

THEOREM 4a. Every characteristic surface Sc is a complete hyperbolic

affine hypersphere with mean curvature ac2/n+2

9 where a is a negative con-

stant depending only on V.

Proof. Let ψ(x) — log φv(x). Sc = {ψ = log c} can be written locally

as {xn+1 == f(x\ , xn)} by a smooth function /, the coordinate (x\ , xn+1)

being chosen such that ψn+ί Φ 0. First we calculate the Legendre transform

u of /. Since ψ is constant on Se9 we have ft = — ψilψn+ι on Sc. By the

definition, u = - ( / ψ n + 1 + Σ ? β l *V*)/*»+i- But, by (e), ψ(fac) = ψ(«)

— (n + 1) log & for any x e V and every positive constant k. Hence

Σ£-iX"Ψ«(x) = -(n + 1). Therefore u = (n + l)/ψn+1. Next consider

det(—ψn+ίfij), 1 < ί, j < n. This is calculated as follows:

d e t (-irn+ιftJ) = det

T 2 Ψn + lj Ψ n + ln + l Ψrn

ψj Ψn + 1 ϋ

Setting
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Φ(X) =
Ψccβ Ψo

(1 < α, β < n + 1) ,
0

we have, by the property (e),

Φ(x) = (det AfΦ(Ax) for A e A( V).

Hence Φ(x) = 602(x) by the homogeneity for some constant b which depends

only on V itself. But this means

(ψn+iy det(-ψ n + 1Λ,) = Φ{x) = be2

Se. Since det (ftj) = det ( — — ) , we have finallyon

By (a), Sc is an affine hypersphere with the affine mean curvature ac2/n+2

y

where a is a negative constant since Sc is hyperbolic.

Remark 2. The Legendre transform function u is equal to (n + ί)/ψn+1.

Next we shall assume S is a complete hyperbolic affine hypersphere

with its center at the origin which is homogeneous under the subgroup

G of the unimodular group. By Theorem 1 we can construct a convex

cone V to whose boundary the hypersurface S is asymptotic: V= {Jk>0Sk.

Let G: = G X R\ The element g = (g,t)eG acts on V by g(x) = t-g(x).

V is homogeneous under G.

THEOREM 4b. Let S and V be as above. Then S is a characteristic

surface of V.

Proof. We define a function χ on V by the equation

x(x) = k-n-1 for xeSk.

Since Sk f) Sk, = φ for k Φ k', χ is well defined. Then χ(Ax) = χ(x)/ det A

for A e G. Therefore, by the homogeneity, we have

X = &0F

for some nonzero constant b. This proves Theorem 4b.

Remark 3. By Theorems 4a and 4b we see that the classification of

homogeneous hyperbolic affine hyperspheres is reduced to the classifica-



HYPERBOLIC AFFINE HYPERSPHERES 119

tion of homogeneous convex cones. The latter is treated in O. S. Rothaus
[13], Vinberg [16] and S. Kaneyuki-T. Tsuji [7], [15]. For instance, we know
an inductive method producing all homogeneous convex cones [16]: from
a given convex cone Vί in Rn+1(x) one can construct another homogeneous
cone V in R(t) X Rm(y) X Rn+\x) by the equation V= {(t,y, x);t> ' y / r ^ M ,

where h is a linear mapping on Rn+1 whose values are real symmetric
positive-definite matrices of order m and, corresponding to each element
B of some transitive subgroup of A{V^), there exists a matrix A e GL(m,R)
such that tAh(x)A = h(Bx). This method can be transposed to our case
to obtain all projectively homogeneous bounded convex domains or all
homogeneous hyperbolic aίfine hyperspheres.

Remark 4. In an inhomogeneous case the level surface is not neces-
sarily an affine hypersphere. For example, let V= {(x, y, z)e Rz; \x\ < z9

\y\ < z}. Then φv = 8z/(z2 - x2)(z2 - y2) and {φv = c} is not an affine
hypersphere, because the function Φ in the proof of Theorem 4a is not
constant on this hypersurface.

2. As for the affine metric we have

THEOREM 5. Suppose V is homogeneous. Then the metric ωc is iden-
tified with the affine metric g up to a constant factor.

Proof. Let ψ and / be as in Theorem 4a. Since dxn+1 = - Σ -^~dx\
^Ψn + l

we have

ωc = d2ψ\Se = Σ -ψn+ίfijdxidxj .

But ψn+ί = (n + 1)1 u (Remark 2). Therefore ωc = ~(n + ϊ)Hg.

Remark 5. The assumption needed to prove Theorem 5 is not the
homogeneity of V but the condition that the level surface is an affine
hypersphere. (cf. Remark 4).

3. The composition formula in § 3 is, in the homogeneous case,
interpreted as follows. The solution u of the equation (#) is given as a
first order logarithmic derivative of the characteristic function, i.e.
u = (n + l)lψn+i (Remark 2). Since the characteristic function φ of the
product of convex cones V and W is equal to φvφw, the derivative of φ
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is written using the derivatives of φv and φw. This gives the composition

formula for reducible cones.

Associated with the construction of a cone of higher rank (Remark

3) there is another formula of solutions. Let Vx and V be the same as

in Remark 3. First we note that the dual cone V of V = {t > tyh~1(x)y}

is equal to {(λ, η> ξ) e R X Rm X Rn+1; λξ — F(η, η) e VΊ}9 where V[ is the dual

cone of VΊ and F{η, η) is a vector function defined by the equation Ψiη, η)x

= ιηh(x)η. Assume the coordinate ξ = (ξl9 , ξn, fn+1) is chosen so that

^i = {£n+i = 1} Π Vi is a bounded domain. Then the domain Ω = {λ + f n + 1 = 1}

D V is also bounded and equal to the set

{(fi, , ξn, y> 0 ; - K C < l, i - ζ2 - V ^ > o,

where ζ = fn+1 — 1, ha = . Next choose the coordinate in Rn+1(x) so
dxa

that {xn+1 = 1} Π Vi is bounded. Let ψJ = log^F l, ξ = ~ψ'/ψn+i and

u = {n + l)/ψ£+1 be the solution of (#) with respect to (fί, , ξ'n). Setting

k(χ) = Vdet /ι(x), we have

PROPOSITION 4. The solution v = v(ξ, η, ζ) of the equation (#) oτι the

domain —Ω is equal to

n + m + 1 1 — ζ2 •— ιηhn+ιη Aw

2 1 - ζ (Λ + 1)* - kn+ίu

where k,kn+1 and u is a function of ξ\ where ξ and ξ' are related by the

equation

(3) 2(1 - ζ)ξi

1 - ζ2 - ^An+1^ (n + 1)A - kn+1u '

Proof. The characteristic function of V is known to be equal to

Φv(t,x,y): = φVl(x)lk(x)(t - i3/A-1(x)y)1+(m/2) ([12]). To calculate its Legendre

transform we introduce new variables z and r, instead of xn+1 and ί, by

the equation z = (t + xn+ί)l2 and r = (t — xn+1)l2. Set ψ = log ^ r and

9 C = —Ψj

Then, by direct calculation, we have
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1 m + 2
< 4 > !-«:= ~ f ,

ψa z + τ — y

( 5 )
2(1 - ζ) (n + ΐ)k - kn+ίu

and the relation (3). Noting that ψz < 0, kn+ί < 0 and w < 0 by the way

of the choice of coordinates, we have 1 — ζ > 0 from (4) and 1 — ζ2

— V*n+i? > 0 fr°m (5), hence 1 — ζ2 > 0. Since k(x) is homogeneous of

degree m/2 we have 2]Sίϊ ^ « = — & Using this relation and the equa-
Δ

tion w = — xn+1 + X]?=1x*fi we see that ((n + 1)?{& + kiU)l((n + l)k — kn+1u)

belongs to —β1 # Therefore (ξ,η,ζ) belongs to —Ω. This means that

(n + m + l)/ψ2 is the solution of (#) just on the domain —Ω and we have

proved the proposition.

4. In this subsection we consider the self-dual cone. To formulate

another description of the Legendre transformation we introduce the

^-mapping due to Koecher [8], It is a mapping from V to its dual V

defined by the equation

ξ = x* =z —(ψί(χ)9 . . . ? ψn+ί(x)) for xe V.

This mapping * has the following properties ([15]).

(g) * sets up a one to one correspondence between V and V and

(Ax)* = (Ά)-1** holds for every AeA(V).

(h) If V is homogeneous, then Vf is also homogeneous and φv{x)φv,{x*)

is constant for all x. We denote this constant by Λ;2.

In our homogeneous case, by (h), the *-image of Sc is also a char-

acteristic surface of V which we denote by S'c. Taking a hyperplane H

such that U:— H Π Vf is a non-empty bounded convex domain, we cor-

respond, for every point x* e S'e9 the intersection point of the line through

the origin and x* with U. Thus we have a mapping from S'c to U. And

we have easily

LEMMA 5. The mapping * followed by this mapping is defined on Sc

and protectively equivalent to every Legendre transformation of Sc.

PROPOSITION 5. Suppose V is homogeneous. Then * is an isometry

with respect to the metrics d2 log φv and d2 log φv,.
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*Proof, Let ψv = log φv and ψv, = log φv,. By the equation x

- - gradx ψκ, we have df*(x*) = - Σ ^tz.(χ)dxj. Also dxJ(f *) =
J dxtdxJ

- Σ Jrfe#>#* B e c a u s e ** = identity, we have £ i ^ ( χ ) |±^(**)

= δf. Therefore

t,T*.ιdξidξj dx'dx" dx'dx1

Now assume V is a self-dual cone. Then K(x):= —— is an auto-
dx

morphism of V ([12], p. 201) and, moreover, x* = K(x)x ([12], p. 192). Let

S = Sκ. By (h), * IS is an involutive automorphism of S. Since φv(x*)

= φv(K(x)x) = φv(x)lάetK, we have άetK(x) = 1 for xe S. Therefore K(x)

is an automorphism of S for xe S.

PROPOSITION 6. // the homogeneous cone V is self-dual, then the char-

acteristic surface Sc is a globally symmetric space.

Proof, For one point x0 e S define an automorphism s of S by s(x)

= K{x^~xx*. Since K{x) is symmetric, s is an involution by (g). By the

ds dx*
above argument, s(xQ) = x0 and (xύ) = K(x^~ι (x0) = — I. For a gen-

^x 5x
eral Sc, it is enough to translate the symmetry of S to Sc by the map-

ping Sc B x —> —x e S. Hence we have the proposition,

c

EXAMPLE 4. Let H+(n, K) be the cone of positive-definite hermitean

symmetric matrices over K = fields R, C, H (quaternions) or the Cayley

algebra Ca. Then the followings are the list of all irreducible self-dual

cones V and the corresponding globally symmetric spaces S,

1. V= H+ (n, R) S= SL(n, R)ISO(ή) of type AI.

2. V = H+ (n, C) S= SL(n, C)/SU(n).

3. V = H+(n, H) S= SU*(2ή)ISp(n) of type All.

4. V = C(ή) S = SO(1, rc - 1)/SO(Λ - 1) of type BDI.

5. V = H + (3, Cα) S = the space of type EIV.



HYPERBOLIC AFFINE HYPERSPHERES 123

Remark 6. The author does not know these symmetric spaces are
the only ones which can be represented as the affine hyperspheres. If we
allow, at the beginning, the metric to be only pseudoriemannian, then
some kinds of affine symmetric spaces are realized as the characteristic
surfaces. For example: In the space of real symmetric matrices of order
n, the components of the set {det = const.} are such spaces. In fact, they
are affine symmetric spaces SL(n, R)/SO(iy n — ΐ) (0 < i < n).
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