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INVARIANT SUBRINGS WHICH ARE COMPLETE

INTERSECTIONS, I

(INVARIANT SUBRINGS OF FINITE ABELIAN GROUPS)

KEIICHI WATANABE*

Introduction

Let G be a finite subgroup of GL(n, C) (C is the field of complex
numbers). Then G acts naturally on the polynomial ring S = C[XU , Xn].
We consider the following

PROBLEM. When is the invariant subring SG a complete intersection?

In this paper, we treat the case where G is a finite Abelian group.
We can solve the problem completely. The result is stated in Theorem
2.1.

1. Construction of the groups and the invariant subrings

First, let us fix some notations.
Z is the ring of integers.
iV is the additive semigroup of nonnegative integers.
Z+ is the set of positive integers.
C is the field of complex numbers.
S = C[XU , XJ.

G is a finite Abelian subgroup of GL(n, C). It is well known that
G is diagonalizable. So we will always assume that every element of G
is a diagonal matrix.

em is a primitive m-th root of unity.
I = {l, . . . 9 n) (the index set of variables).
(a; i) (resp. (a,b;i,j)) is the diagonal matrix whose (i, ί) component

is a (resp, (i, i) component is a and (j,j) component is b) and the other
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diagonal components are 1. For example, if n = 3,

(a; 2) =\ a and (α, 6; 1, 3) = 1

L IJ I b\
DEFINITION 1.1. A special datum D is a couple (D, w) where D is

a set of subsets of I and w is a mapping of D into Z+ satisfying the

following conditions.

(1) For every i e I, {i} e D.

(2) If J,Jf eJ9, one of the following cases occurs;

(aJc/cJ' (b)J'cJ (c)JΓU' = 0.

(3) If J is a maximal element of D, then w(J) = 1.

(4) If J,J'eD and if J £ J7, then w(J) is a multiple of w(JO and

w(J) > w(J').

(5) If Ju J2,JeD and if Jt < J (i = 1, 2), then ^(JO = z^(J2). (We

write J < Jf if J Q Jf and if there is no element of D between J and

JO
A datum D is a couple of a special datum Df and (α1? •• ,αJeZ+»

We identify a special datum Z> with the datum (D,(1, ,1)).

DEFINITION 1.2. If D = (D, w, (au , αw)) is a datum, we put

E P = C[Xj; Je D], where Xd = (γ\ X^Y™ .

DEFINITION 1.3. If D = (D, w9 (au , aj) is a datum, the group GD

is the one generated by the following elements;

{(eaί; i)\ie 1} and

{(ewai, e-τ

aj; i, j)\J» J2,JeD,ie Ju j e J2, Ju J2<Jandw = w(Jx) = w{J2)}.

NOTATION 1.4. To illustrate a special datum D9 we define the graph

of D = (JD, M;) as follows;

(i) We represent JeD by a circle and we write the integer w(c7)

inside it.

(ii) If J < J', we join the corresponding circles by a line segment

in such a way that the circle corresponding J 7 lies above that of J.

EXAMPLE 1.5. A. If the graph of D is



COMPLETE INTERSECTIONS 91

then

.-XJ and

GD = <(βα> el1; 1,2), (e β, β"1; 2, 3), • , (ea, el1; n - 1, Λ)> .

It will be shown later that if G c SL(τz, C) is a finite Abelian group

which is not contained in SL(n — 1, C) and if SG is a hypersurface, then

SG = i?^ and G = G^ of this example (cf. Theorem 2.1).

B. If the graph of D is

(n = 4), then RD = C[Xiβ, X2

α, XXX19 X£, X!, XZX,\ = B Λ l ® c ^z>2, where

and D2 are special data whose graphs are

and

respectively and G^ = {(e^e*1; 1, 2), (βδ, β^1; 3, 4)> = GDι X GD%.

Remark 1.6. By the construction, it is clear that if D is a special

datum and if Dr = (D, (au , an)) is a datum, then i?^ ^ RD>.

PROPOSITION 1.7. If D = (D, w, (al9 , αj) is a datum, then

(1) ί/ie ring RD is a complete intersection.

(2) RD is the invariant subring under the action of the group GD.

Proof. We prove this by induction on the cardinality of D. If

#(D) = n, RD is a polynomial ring and the statement (2) is clear, too.

(1) Let J be a maximal element of D with #(J) >̂ 2. We can write

J = j ; u UJp, where J, •< J for ί = 1, • ,p. We put U = D\{J}

and D' = (£)', M;', (αί, , aQ>), where

w (J) = <
WJO (ifJ'ή J)

and

f α, α;( J,) (if j 6

Then it is easy to see that ^ - RD\XΛ = RD,[Y]l(YwUi) - Π?-iX,) As.
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RD, is a complete intersection by the induction hypothesis, so is RD,

(2) It is easy to see that every element of RD is invariant under the

action of GD. Also, by easy computation, we can reduce to the case

where D is a special datum. As SGβ is generated by monomials, it

suffices to show that every monomial in S°D is divisible by some Xj(Je D).

Let M = Xc (c = (cl9 , cn)) be a monomial in SG*>. We put Γ =

{ΐe/ |Ci>0}. If Γ contains some maximal element J of D, then M is

divisible by XJm Otherwise, there exist J,J'eD such that Jr <J, Jf C Γ

and J<X /'. If we take jeJ so that y g J', s, = (β^^,,e~(V) i,7) e G/, for

every i e J'. As st(M) = M, we have w(J')\Ci for every i e J'. This means

that Xj/ divides M. (The author thanks the referee for advising him this

nice proof.)

Remark 1.8. We can define the ring RD(k) for any field k and a

datum D by putting RD(k) = k[Xj; Je D]. (The definition of Xj is the

same as the one in 1.2.) The proof of 1.7 (1) shows that RD{k) is a com-

plete intersection for an arbitrary field k.

2. The main theorem

In this section, we conserve the notation and conventions at the
beginning of Section 1.

THEOREM 2.1. If G is a finite Abelian subgroup of GL(n, C) (resp.

SL(n, C)) and if SG is a complete intersection, then there is a datum (resp.

a special datum) D such that S° = RD and G = GD.

We divide the proof of (2.1) in several steps.

2.2. As G is diagonal, SG is generated by monomials of Xl9 •• ,Xn.

For a monomial M = Xa(a = (al9 , an))9 we put deg (M) = (au , an).

In this manner, SG is a ZM-graded ring. We put m = (Xl9 , Xn)S Π SG

and we choose monomials Ml9 •• ,Afn+ί so that the images of Mt'& in

m/m2 form a basis of m/m2. It is clear that Mt'β are uniquely determined

by this condition and that Ml9 - - ,Mn+t are the minimal generators of SG.

Among M/s, there are monomials of the form Xf* (i = 1, , ή). So we

can assume that Mt = Xj1* for i = 1, , n. As SG is normal, Mt (i = 1,

- , ή) are uniquely determined by this property.

Now, let us define the homomorphism
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by T{Yt) = Mt (i = 1, .. , n + t). We consider C[Yl9 , Yn+t] a Zn-graded

ring by putting deg (3Q = deg (ΛQ (i = 1, , n + t). Then T is a homo-

morphism of Zπ-graded rings and so Ker (T) is a Zw-graded ideal. It is

easy to see that Ker (T) is generated by the differences

1 In+t II *n+t SUCn m a t lVLλ ΊVίn+t — IVlγ - - ΊVln+t .

Minimal basis of Ker (T) is given by the basis of the vector space

Ker (T)/(YΊ, , Yn+t) Ker (Γ). For i = rc + 1, , n + t, some power of

Mt is a product of other M/s. So, there is a difference

^ = Yt* - (monomial of Y/s) (ί = n + 1, , τι + ί)

such that JF^ is a member of a minimal generating set of Ker (T). As

SG is normal, a relation of the type Mf — Mj = 0 does not occur for

i ^r j . So Fw + 1, , F w + ί are distinct elements of Ker (T). Also, the images

of Fn+19 - >,Fn+t in Keγ(T)l(Yu , Yn + ί)Ker(T) are linearly independent

since Ker {T)j(Yu - - , Yn+t) Ker (Γ) is a Zn-graded module and deg(FJ

(ί = n + 1, , n + t) are all distinct. If SG is a complete intersection,

Ker(Γ) is generated by precisely t elements and the above argument

shows that Ker(T) is generated by Fn+U -,Fn+t.

Before proceeding further, we need some remarks.

2.3. In general, if R is a Gorenstein ring graded by Nn and if Ro

is a field, then the canonical module KR of R has the natural Zw-graded

.R-module structure and KR = R(d) for some d — (du , dn) e Zn as Zn-

graded JR-modules (cf. [3]). We define a(R) = d. This invariant a(R)

plays an essential role in the proof of 2.1. We need two facts concern-

ing a(R).

2.4. (R. Stanley, [5]) K(sG) = (SG)+ as Zw-graded SG-modules, where

(SG)+ is the ideal generated by {Xe e SG\e = (el9 , en), et > 0 (ί = 1, , n)}.

EXAMPLES. A. If G C SL(n, C), then SG is a Gorenstein ring and

a(SG) = (—1, , — 1). Conversely, if SG is a Gorenstein ring and a(SG)

= ( - 1 , , -1) , then G c SL(τz, C).

B. If D = (D, ̂ , (d, , an)) is a datum, then αCR/,) = (—al9 , — αn).

2.5. If R = k[Yu , yn+J/ίjPi, , Ft) is a complete intersection,

where k is a field and deg(Y ί) e iVn\{0} is given so t h a t i^, ,Ft are

homogeneous with respect to this grading, then
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a(R) = ±deg(Fd -
i - l j=l

The proof of this fact is the same as those of (2.2.8) and (2.2.10) in [2].

2.6. If J is a subset of I and if we put Sj = C[Xt; ieJ], then G
acts on Sj (as we have assumed that G is diagonal) and (Sj)G — Sj Π SG.
And,

2.7. If S° is a complete intersection, then (Sj)°. is a complete inter-
section for every subset J of /.

Proof. In the notation of 2.2, (Sj)G = CtMJM, e S,]. If we define

Tj: C[Yt\l ^ i ^ n + ίMiβSj]-* (Sj)G

by Tj(Yi) = Mi9 then it is easy to show that the set {Ft\n + 1 <[ ί ^ n + ty

Mt e Sj} generate Ker (Tj).

2.8. Let G be a (not necessarily Abelian) finite subgroup of GL(n, C).

The following facts are known.

THEOREM [1]. SG is a polynomial ring if and only if G is generated
by its pseudo-reflections, (ge G is a pseudo-reflection if rank (g — J) = 1.)

THEOREM [7]. If G contains no pseudo-reflections, then SG is a Gorenstein
ring if and only if G C SL(n, C).

If G is Abelian (and diagonal); then every pseudo-reflection in G i&
of the form (e i) where e is a root of unity and ίe I. If H is the sub-
group of G generated by all the pseudo-reflections of G, then

for some integers al9 , an. The group GjH acts linearly on the new
basis (Xλ

a\ , X£n). If SG is a Gorenstein ring, then G/H c SL(n, C) by
this new representation. That is, Xί1- X,fn€ SG. So, to prove 2.1, we
may assume that G C SL(τι, C).

2.9. Now, let us continue the proof of Theorem 2.1. We assume
that G C SL(n, C) and that SG is a complete intersection. We put SG =
C[Λfi, , Mn+t] as in 2.2. We prove the theorem by induction on n.
(For n ^ 2, the conclusion of 2.1 is well known and is easy to prove.)
So, we assume that for J Q I, (Sj)G — RD for a datum D for the index
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set J ((Sj)G is a complete intersection by 2.7).

For a monomial M, we define Supp (M) = {ie I\ X%\M). We put

Supp (Mt) = J, (i = 1, , n + t).

2.10. If i ^ j, then J, ^ Jj.

Proof. Assume that J = Jt = Jj. Considering the action of G on

Sj and by the induction hypothesis, we may assume J = I. But in this

case, as Xx> Xne SG, the only possible monomial M with Supp(M) = I

that is a member of the minimal generators of SG is M = X^ Xn. A

contradiction!

2.11. If i ^ j, either J, c J,, J* 3 J, or Jt Π J, = 0.

Proof. If the conclusion is false, there is a pair (i,j) such that

J* 73 Jj9 Jt (X Jj and J = Ji Π Jj =*F 0. Let us take such a pair that

t/̂  U Jj is minimal. By the induction hypothesis, we may assume Jt U Jf

= /. Then P = XΓ Xn divides MtMj. So, by 2.2, P must be a member

of the minimal generating set of SG and there is an integer a such that

Pa = MiMj. Also by 2.2, there is no further couple (£, m) such that

JJC U c/m = /. By the minimality assumption, for every & (^ = 1, , n + t),

one of the following cases occurs; (i) Mk = P (ii) Jk c Jt (iii) Jfc c Jj.

That is, we have SG = C[(SJi)
G, (SfJy)

σ, P]. By the induction hypothesis,

there exist data Dt and Dό for the index sets Jt and J^, respectively, such

that (SJt)
G = RDi and (Sj)G = RDj. We want to compute a(SG) to have a

contradiction. Consider the homomorphism T defined in 2.2. We have

seen in 2.2 that Ker (Γ) = (Fn+U -,Fn+t). If k ^ n + 1 and if Jk C J,,

then, by the construction of RD0 Fk = Yξ — Πme^ ̂ m, where Jk = {ιw| J m

-< c/fc} and 1; = w(Jm)lw(Jk) (everything is considered in the datum Dt).

The situation is similar if Jk c Jj. Thus we have

(*) deg(F f c)= Σ deg(MJ.

If Mk = P, we have seen Fk = Pa - MtM^ By 2.5,

α(SG) = Σ deg (Ffc) - Σ deg (MJ .

We recall that {Jk\k = 1, , n + t) = A U D^^ U {1} and that A and D,

have the non-empty intersection. If we replace deg (Fk) by the equality (*),

deg (Mm) appears twice if Jm < Jk in Dt and Jm < Jk, in Dj for some Jk

and Jfc/. So, we have
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a(SG) = — deg(P) + 2] {deg(Mfc)| Jk is a maximal element of J= Ji Π e/,} .

But, on the other hand, as G c SL(n,C), we must have a(SG) = — deg(P)

= (—1, , — 1). This contradicts the fact that J ±? 0.

2.12. For every i, ί = 1, , n + t, Mt = (Πme^ -Xm)Wί for some integer

^ and M^ = Wj if J* •< Jk and </, -< J^ for some Jk.

Proof. We prove this by descending induction on Jt. If Jt = I, then

Mt = P and we have already seen that Pa = Π/* </ -*f* f° r some integer α

<cf. 2.11). Thus Mk = ( Π t 6 ^ ^ ) α for every & such that Jk<L We can

repeat this process considering the action of G on SJί and using the in-

duction hypothesis. Also, this argument shows that we have checked the

condition (4) of 1.1. The proof of Theorem 2.1 is complete.

EXAMPLE 2.13. To illustrate the proof of 2.11, let us give an example.

If we put R = C[X\ Y\ Z\ X2Y, YZ\ XYZ], R is a complete intersection

and a(R) = ( - 1 , 1 , - 1 ) = ( - 1 , - 1 , -1) + (0, 2, 0). The calculation of a(R)

shows that R is not normal. The normalization of R is R[X*Z, XZZ\ XZ%

which is not a complete intersection.

Remark 2.14. Let H c Nn be a finitely generated additive semigroup

and let H e a field. Then the property "R = k[H] (k[H] = k[Xh; h =

{&!, , hn) 6 H]) is a complete intersection" does not depend on k. So,

we have the following

THEOREM. Let k be a field and H = Nn ΓΊ L be a semigroup, where

L is an additive subgroup of Zn with rank (L) — n. If R = k[H] is a

complete intersection, then R = RD{k) for some datum D (cf. 1.8).

Remark 2.15. For n — 3, normal semigroup rings of dimension 3

over arbitrary field, which are complete intersections were classified by

M.-N. Ishida in [4].

Remark 2.16. R. Stanley gave a criterion for S β to be a complete

intersection in [6], where G is the intersection of a reflection group G

and SL(n,C). If G is Abelian, G is necessarily of the form GB = <(βδ<;Q|

1 ^ i >̂ ή), where B = (bu - , bn) is an n-tuple positive integers. In this

case, his criterion says that SGB (GB = GB Π SL(n, C)) is a complete

intersection if and only if the set {bί9 , &„} is ''completely reducible"

(see [6] for the definition of this word). By our Theorem 2.1, it is not
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hard to get the special case of his theorem when G is Abelian. But, for

a special datum D, the group GD is not necessarily the intersection of a

reflection group and SL(n, C).

3. Some concluding remarks and conjectures

PROPOSITION 3.1. If G a SL(n, C) is a finite Abelian group and if Sσ

is a complete intersection, then

(1) G is generated by {ge G|rank (g — I) = 2},

(2) SG is generated by at most 2n — 1 elements,

(3) if SG is a hypersurface (if SG is generated by (n + l)-elements),

then G — G Π SL(n, C), where G is a finite Abelian reflection group,

(4) if SG is a hypersurface, the multiplicity of SG is at most n. If

SG is generated by exactly 2n — 1 elements (if the embedding dimension of

SG is 2n — 1), the multiplicity of SG is 2n~\ In general, the multiplicity

of SG is at most 2n~\

Proof. We may assume that SG = RD, where D = (D, w) is a special

datum. Then (1) is clear by the definition of GD. To prove (2)-(4), we

may assume that SG does not contain any non-zero linear forms. For

Je D, \J\ ^ 2, we put

Π
JGD

d(J) = #{J' e D\ Jf < J) and m(D) =

Then we have ΣljeDt\j\^(S(J) - 1) = n - 1. This proves (2). As for (3),

if RD is a hypersurface, then GD = {(e, β"1; ί, i + l)\i = 1, , n — 1) =

(iβm\ i)\i = 1> * j τι) Π SL(n, C) for some integer m. To prove (4), we

consider the ring A = RD/a, where a is the ideal of RD generated by

{Xj\J is a maximal element of D} and

{Xj, - Xj,,\J', J" e D and Jf < J, J" < J for some J e D] .

Then A is an Artinian ring and length (A) — m(D) by using the follow-

ing easy lemma repeatedly, and so the multiplicity of RD is at most m(D).

It is easy to see that m(D) <,2n-\

LEMMA. // B is an Artinian ring and if C = B[Y]j(Ym — b), where

Y is an indeterminate and be B, then length (C) = m. length (JB).

In general, we have the following

CONJECTURE 3.2. If G c SL(n, C) is a (not necessarily Abelian) finite
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group and if SG is a complete intersection, then the followings are true.

(1) G is generated by {ge G|rank(# — /) = 2}.

(2) The embedding dimension of SG is at most 2n — 1.

(3) If S° is a hypersurface, then G = G Γ\ SL(n, C) for some finite

reflection group G.

(4) The multiplicity of SG is at most T~\ If SG is a hypersurface,

then the multiplicity of SG is at most n.

We have examined this conjecture when G is Abelian. If n = 2, it

is well known that SG is a hypersurface of multiplicity 2 for every finite

subgroup G of SL(n, C). In [8], we will show that the conjecture is true

for n = 3.
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