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HARMONIC MORPHISMS IN NONLINEAR

POTENTIAL THEORY1

HEINONEN2, T. KILPELAINEN, AND O. MARTIO

§ 1. Introduction

This article concerns the following problem: given a family of partial

differential operators with similar structure and given a continuous

mapping / from an open set Ω in Rn into Rπ, then when does / pull back

the solutions of one equation in the family to solutions of another equa-

tion in that family? This problem is typical in the theory of differential

equations when one wants to use a coordinate change to study solutions

in a different environment.

To describe our objective more precisely, fix a number 1 < p < oo

and let Ap denote the family of all mappings srf: Rn X Rn —> Rn satisfying

assumptions (1.5)-(1.9) below. In particular, we impose the growth con-

dition sί(x, h)'h ^ \h\p. A function u defined in an open subset Ω of Rn

is said to be srf-harmonic in Ω if it is a continuous solution in Ω to the

quasilinear elliptic equation

(1.1) -div.s/(a;, Vu) = 0.

That is, u belongs to the local Sobolev space W\$(Ω) and satisfies

(*, Fu(x)) Vφ(x) dx = 0ί.
for all test functions φ e C^(Ω). Equations of the form (1.1) can be viewed

as measurable perturbations of the p-Laplace equation

(1.2) - div (I Fu(x) \p~Ψu(x)) = 0,

which naturally reduces to the Laplace equation Δu = 0 when p = 2.
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1.3. Definition. Let stf% and s$ belong to Ap. A continuous map-

ping /: Ω -> Rn is an {srf*, ss/yharmonic morphism if uof is J/*-harmonic

in / •*(£?') whenever u is ^-harmonic in Ω'. Further, / is an Av-harmonic

morphism if / is an C*/*, j/)-harmonic morphism for some Λ/* and srf in

Ap.

In recent years the nonlinear potential theory associated with J/-

harmonic functions has been studied quite intensively [GLMl, 2], [HK1, 2],

[HKM1, 2], [K], [LM]. The problem of determining harmonic morphisms

is central to the theory which is partly motivated by its applications to

quasiregular mappings. Let us recall that a continuous mapping / from

an open set Ω in Rn into Ru, n > 2, is K-quasiregular if it belongs to

the Sobolev space W]£(Ω) and satisfies the functional inequality

(1.4) \f'(x)\n<KJf(x)

almost everywhere in Ω. Here f'{x) designates the formal derivative

matrix of / at a point x with \f'(x)\ its supremum norm, and Jf(x) is the

Jacobian determinant.

When n = 2 and K = 1 in (1.4) we recover complex analytic functions

which are harmonic morphisms for the Laplace equation. In fact, any

continuous mapping / which is a harmonic morphism for the Laplacian

(that is, an (s/, ^-harmonic morphism with s/(x, h) = h) is necessarily

conformal in that it is

(i) analytic or antianalytic when n = 2,

(ii) of the form f(x) = λOx + a for some λ e R, a e Rn, and an or-

thogonal n X n matrix O when n > 2.

For this result, see [GH], [Fl], [I] where references to earlier works

can also be found. The systematic study of harmonic morphisms in po-

tential theory apparently began in the article [CC].

When p — n, the dimension of the underlying euclidean space, it is

a fundamental property of quasiregular mappings that uofis ^/-harmonic

for some $0 whenever u is ^-harmonic, i.e. u satisfies equation (1.2) for

p = n. Even more is true: given any mapping i e A , , a new mapping

,s/* can be defined such that j / * e An and that / is an (J/*, j/)-harmonic

morphism. The explicit expression for srf% is given by the formula

(x, h) = Jf(x)f'(x)-^(f(x),f'(x)->τh),

if f'(x) exists and is invertible, and
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^*(x, h) = \h\n~2h,

otherwise. Above, T denotes transpose. For these results as well as more
information on quasiregular mappings, see [GLMl], [MRV1,2], [Re], [Ri2].

Thus quasiregular mappings provide examples of An-harmonic mor-
phisms. Many fundamental properties of quasiregular mappings can be
proved by using this morphism property only. For example, the recent
proof of the Picard theorem given by Eremenko and Lewis [EL] only
hinges on the fact that log|/(x) — b\ is .^-harmonic in Rκ if / is entire
quasiregular and omits the point b. The natural question therefore is:
are there other mappings with that property? The main theorem of this
paper answers to this question negatively by asserting that every sense-
preserving An-harmonίc morphism is a quasiregular mapping. Moreover,
when n = 2 we can show that every A2-harmonic morphism is either
sense-preserving or sense-reversing in each component of Ω. This char-
acterization parallels the classical situation explained above and essentially
solves the problem in the Sobolev borderline case p = n.

For p different from n the situation seems to be more complicated.
There is a subclass of quasiregular mappings, called mappings of bounded
length distortion, which are Ap-harmonic morphisπis for all p > 1 [MV].
Roughly, these are maps that are uniformly locally bilipschitz outside the
branch set. We have been able to prove that if 1 < p < n and if /: Ω ->
R71 is an Ap-harmonic morphism subject to additional topological restric-
tions, then /is a mapping of bounded length distortion in every compact
subset of Ω. We can display a fairly trivial example showing that one
cannot expect / to be a mapping of bounded length distortion in all of
Ω although we do not know if that is true in a single component of Ω;
in our example Ω has infinitely many components.

In the situation when p > n very little is known to us. We are able
to prove that in any case harmonic morphisms satisfy a maximum prin-
ciple and that they map each component of Ω either onto an open set
or to a point.

The paper is organized such that first we stuάy properties of mor-
phisms in general. Then we establish estimates for singular ^/-harmonic
functions (some of these estimates may have independent interest). In
Section 4 we characterize A^-harmonic morphisms in the borderline case
p — n and in Section 5 we examine the case 1 < p < n.
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TERMINOLOGY. Throughout this paper Ω will denote an open subset

of Rn, n > 2. For 1 < p < oo the set Ap is the collection of all mappings

<$/ for which there exist numbers 0 < a < β < oo such that the following

conditions hold:

(1.5) the mapping x ι-> srf{x, h) is measurable for all h e R7i and

the mapping h^-^^(x,h) is continuous for a.e. xeRn;

for all h e R ι and a.e. x e Rn

(1.6) Λ?(x,h) h > a\h\p

(1.7) W{x,h)\<β\hr'',

(1.8) (s/(x, hύ - s/(x9 Λ2)).(A! - h2) > 0

whenever hi Φ h2; and

(1.9) s/(x, λh) = \λ\p-2λ^(x, h)

for λ e R, λ Φ 0.

We call the parameters n, p, a, β the structure attached both to the

mapping <srf and to equation (1.1).

If C is a compact subset of Ω, then the p-capacity of the condenser

(C, Ω) is the number

cap/C, Ω) = inf ί
J 0

where the infimum is taken over all ψ e C^(Ω) such that ^ = 1 on C

The definition is extended in a natural way first to open subsets of Ω by

taking the supremum over their compact subsets, and then to arbitrary

subsets of Ω by taking the infimum over their open neighborhoods. A

set E is said to have zero p-capacity if capp(Z£ Π β, Ω) — 0 for all bounded

Ω. Then a point has zero p-capacity if and only if 1 < p < n. In general,

if 1 < p < n and 0 < r < 1/2, then capp(S(x0? r), S(x0, 1)) - ^ " p . whereas

0, r),

§ 2. Basic properties of A^-harmonic morphisms

In this section we consider some basic properties of an Ap-harmonic

morphism /: Ω —> Rw. We first establish that under weak additional as-

sumptions / is either an open mapping or constant in each component of

Ω. This, in turn, leads to a maximum principle for Ap-harmonic mor-
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phisms. We record a Picard type result concerning the size of the omitted

set and show that the preimage of a polar set (equivalently, a set of in-

capacity zero) is again a polar set. This latter result, when applied to

the particular case when the polar set is one point, is crucial when we

prove the discreteness of Ap-harmonic morphisms for values n — 1 < p < n.

We say that a mapping /: Ω —» Rn has the Radό property if f~\y) has

no interior points whenever y e R\ Clearly every open mapping has the

Radό property whereas the converse is not true; for example, let/: Rw->

Rw be a projection onto any affine proper subspace.

2.1. THEOREM. Suppose that f: Ω —> Rn is an Ap-harmonίc morphίsm

having the Radό property. Then f is open.

Proof. Fix xoe Ω and assume, on the contrary, that there are arbi-

trarily small balls B centered at x0 whose images are not neighborhoods

of f(x0). Choose a ball B = B(xQ, r), compactly contained in β, such that

f(xQ) e df(B) and that f(B) c & = B(f(xQ\ 1). Because / has the Radό

property, we can find a point zoe B with f(zQ) Φ f(xQ).

Suppose first that 1 < p < n so that all singletons have zero p-capac-

ity. Let yt e B\f(B), i = 1,2, , be a sequence of points converging to

f(xϋ) and let ui be a singular ^-harmonic function in B\{yί}. More

precisely, let ui be ^/-harmonic and nonnegative in Bf\{y^\ such that

X\mz_v% ut(z) = OΌ and that ]img^y u^z) = 0 for each yedB'; the existence

of such a function is well known (cf. [S], [HKM2], [H]). Since f(zQ) Φ yί9

we may assume that uί(f(zQ)) = 1 for each ί. It then follows from Har-

nack's inequality that for each compact set K c B\{f(x0)} there is i0

such that the sequence uu ί > ίQ, is a uniformly bounded family of J</-

harmonic functions, hence equicontinuous on K, and we may select a

subsequence, call it still uu which converges locally uniformly to an in-

harmonic function u0 in B'\{f(x0)} (see [S], [HK1], [HKM2, Chapter 6]).

Because Ui(f(z0)) = 1 for all i, we easily infer from the uniform Wiener

type boundary estimate [Maz], [HKM2, Chapter 6] that l i m ^ uo(z) = 0

for all y e dB', and because uo(f(zQ)) — 1, it follows that u0 is not constant.

Next, u0 is nonnegative, and it is an easy consequence of the dilation

invariant Harnack inequality that the limit lim^_>/(̂ o)w0(2;) exists; moreover,

since sets of zero p-capacity are removable for bounded ^/-harmonic

functions [S], [HK1], the maximum principle forces this limit to be oo.

From the definition of an A^-harmonic morphism we see that, for
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some i * 6 A p , the functions υt = utof are j/*-harmonic in B; observe

that no preimage of yt meets B. Now vt are nonnegative with Vi(z0) = 1,

and arguing as before we obtain a subsequence of υt which converges

locally uniformly in B to an j/*-harmonic function υ0. But then we

obviously have that v0 = u0of in B, which implies the impossible equality

uo(xo) = WO(/(ΛΌ)) = °° Thus / is open at x0 and the proof is complete

when 1 < p < n.

Suppose next that p > n. As above we choose a sequence yt e B'\f(B)

converging to f(x0). Now all points have positive p-capacity (in particular

they are regular for the Dirichlet problem [Maz], [HKM2, Chapter 6])

and we let ut be the unique ^/-harmonic function in B'\{yi9 f{zQ)} with

boundary values 0 on dB' U {f(z0)} and 1 on {yt}. It is easily seen that ut

converges uniformly in Bf to the ^-harmonic function u0 in B'\{f(x0), f(z0)}

which has boundary values 0 on dB'U{/(£0)} and 1 on f(xQ); this is, in

fact, again a consequence of the uniform Wiener type boundary estimate

applied to singletons with positive p-capacity. Moreover, the functions

utof converge to an .c/*-harmonic function υ0 in B^f'^fizJ)}. Since

v0 < 1 and ô(̂ o) = 1? the maximum principle implies v0 = 1 in the xQ-

component of B\{f-\f(zJ)}. Because limx^{f-1{f(Zo))} vo(x) = 0, we have the

desired contradiction, and the theorem follows.

An inspection of the above proof readily implies that if Ω is a domain,

xe Ω, and if /: Ω -> R71 is a nonconstant A^-harmonic morphism, then f(x)

belongs to the interior of f(U) whenever U is a neighborhood of a point

from the nonempty set d{f~ι(f(x))}ΠΩ. This is more succinctly expressed

in the following theorem.

2.2. THEOREM. If Ω is a domain and f: Ω -> R71 is a nonconstant

Ap-harmonic morphism, then for each subdomain U of Ω we have that

f(U) is either a point or an open set.

Theorem 2.2 leads to the openness of A^-harmonic morphisms for

1 < P < n. This result in the linear axiomatic setting is due to Fuglede

[F2].

2.3. THEOREM. Suppose that f: Ω —> Rn is a nonconstant Ap-harmonic

morphism and Ω is connected. If 1 < p < n, then f is an open mapping.

Proof. Suppose that / is an (s/*, j^O-harmonic morphism and that U

is a nonempty open subset of Ω. We want to show that f(U) is open

and for that we may assume U is connected. By Theorem 2.2, f(U) is
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either open or a point; assume f(U) = {yQ}. As in the proof of Theorem

2.1 we can construct a singular ^/-harmonic function u in -B\{JΌ} for

some ball B centered at yQ. Since / is not constant, f(Ω) is open by

Theorem 2.2, and we may assume that B is compactly contained in f(Ω).

Let B' = f~\B). Then the pull back υ = uof is an j/*-harmonic function

in the open set B/\f"\y0), and it can be extended continuously to have

the value oo on f-ι(y^)C[B'. The extended function is j^-superharmonic

in Bf which means that f~1(y0)ΠB/ is j/*-polar, hence of zero p-capacity

(see the discussion after Theorem 2.7). This is a contradiction since

Udf'Xyo) and since no set of zero p-capacity can have interior points.

The theorem follows.

2.4. Remark, We do not know whether Ap-harmonic morphisms are

open mappings for p > n. This does not follow from Theorems 2.1 and 2.2

as there are nonconstant mappings /: R7* -* Rn which do not have the

Radό property but nevertheless map each open set U in Rn either onto

an open set or to a point. To exhibit a particular example in R2, set

first g,: R -> R by

Ί + t, -oo < t< - 1 ,

gί(f)= 0, —1 < ί < 0,

t9 0 < t < oo.

Then define g: R2 -> R2 by g(x) = (^(^i), x2) for x = (xl9 x2) and let h: R2 ->

R2, h(xu x2) = (r, φ), be the mapping r = | JCX |, φ = x2\xx in the polar coor-

dinates (r, ψ) of R2. The mapping f = hog has the desired properties; it

maps the vertical strip {xeW: — 1 < xt < 0} to the origin. Note that Λ

is an open mapping of R2 onto itself which sends the x2-axis to 0.

Theorem 2.2 implies the following maximum principle for Ap-harmonic

morphisms.

2.5. THEOREM. If f: Ω -> Rw is an Ap-harmonίc morphίsm, then for

each xe Ω it holds that

here oo is included in dΩ if Ω is unbounded. Moreover, if Ω is connected

and if f is nonconstant, then the above inequality is strict.

The following Picard type theorem is almost an immediate conse-

quence of the definition for Ap-harmonic morphisms. When p = n,
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Theorem 4.1 in Section 4 implies that a (sense-preserving) Ap-harmonic

morphism /: Rn -» Rn is quasiregular and hence, a fortiori, the Picard

theorem for quasiregular mappings LEL], [Ril] tells us that the omitted

set is at most finite. A similar remark pertains to discrete Ap-harmonic

morphisms when 1 < p < n (see Theorem 5.7).

2.6. THEOREM. Suppose that f: Rn -» Rn is a nonconstant Ap-harmonίc

morphism. If p — n, then Rn\f(Rn) has zero n-capacity. If p Φ n, then f

is onto.

Proof. If / a nonconstant («β/*, ̂ /)-harmonic morphism, then Ω' =

f(Rn) is open by Theorem 2.2.

If p == n and the complement of Ωf has positive rc-capacity, then by

the Kellogg property dΩ' has at least two regular boundary points, say

yQ and yu for the ̂ /-harmonic Dirichlet problem [K, 5.6]; see also [HKM2].

Thus the Perron method provides a bounded nonconstant ^/-harmonic

function u in Ω' with limit values 0 at y0 and 1 at yr. Consequently,

the composition uof would be a bounded nonconstant j/*-harmonic func-

tion in Rn, contradicting the LiouviUe theorem. Thus Rn\f(Rn) has zero

n-capacity as desired.

Suppose then that p Φn and that there is a point xQ e dΩ'. Now we

may construct a nonconstant positive j^-harmonic function u in Rπ\{x0}

(see the proof of [K, Lemma 3.2] or [HKM2, Chapter 7]). Then, by Har-

nack's inequality, uof is a bounded nonconstant j/*-harmonic function

in Rn, contradicting the LiouviUe theorem.

Next we discuss how Ap-harmonic morphisms pull back ^-superhar-

monic functions. Recall that a lower semicontinuous function u: Ω->

(— oo, oo] is jtf-superharmonic in Ω if it is not identically infinite in any

component of Ω and if it satisfies the comparison principle relative to

^/-harmonic functions: for each domain DcΩ and each j/-harmonic

function h in D, h e C(D), the inequality h < u on 3D implies h < u inside

D. It is in fact a recent theorem of Laine [L] that if /: Ω —> Rn is an

(j/*, j^)-harmonic morphism which is not constant in any of the compo-

nents of Ω and if u is j/-superharmonic in an open set Ω', then, in each

component of f~\Ω'), uof is either j/*-superharmonic or identically infi-

nite. Laine works in an axiomatic set up but it is easy to see that the

nonlinear potential theory of ,.c/-superharmonic functions embodies his

axiom system. See also [HKM2, Chapter 13]. We can record the fol-
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lowing theorem.

2.7. THEOREM. Suppose that f: Ω -> Rn is an ( j / * , <stf)-harmonic mor-

phism which is not constant in any of the components of Ω. Then the

function uof is <stf*-superharmonίc in f~\Ω;) whenever u is jrf-superharmonic

in an open set Ωf.

Before the proof we recall that a set E dRn is sέ-polar if there is

a neighborhood U of E and an j^-superharmonic function u in U such

that u = oo on E. It is known that j/-polar sets admit a characteriza-

tion as sets of zero p-capacity [HK2]; see also [HKM2]. In particular,

for p > n the sole polar set is the empty set.

Proof. In light of the above mentioned result of Laine the only thing

that prevents uof from being j^*-superharmonic in f~ι(Ω') is the possibility

that wo/=oo i n a component U. If this happens, we deduce that u is

identically infinite in the image f(U) which immediately forces p < n.

But f(U) is open by assumption and by Theorem 2.3 violating the char-

acterization of polar sets as sets of zero capacity. The theorem follows.

Theorem 2.7 leads to the following corollary on polar sets.

2.8. COROLLARY. Suppose that f: Ω —>Rn is an (Λ/*, s/)-harmonic

morphίsm which is not constant in any of the components of Ω. If E c Rn

is ^f-polar, then f~x(E) is srf*-polar. Equiυalently, if E c E n is of zero p-

capacity, then f~\E) is of zero p-capacity.

Proof. Since the empty set is the only set of zero p-capacity for

p > n, we may assume that 1 < p < n. If E is j/-polar, there is an entire

^-superharmonic function u in Rn such that u = oo on E [K, Theorem

4.1]. Consequently, by Theorem 2.7, v=uof is an j/^-superharmonic

function in Ω with v = oo on f~\E) which means that f~\E) is an j / * -

polar set as asserted.

A mapping /: Ω -> Rn is light if for each y e Rπ the preimage f~\y)

is a totally disconnected set, i.e. its components are singletons, and /

is discrete if f~\y) is a discrete set in Ω.

Since, for 1 < p < n, a point always has zero p-capacity, the preimage

f~\y) under a nonconstant (in any component) Ap-harmonic morphism /

likewise has zero p-capacity by Corollary 2.8. In particular, if n — 1 <

p < n, then f~\y) has Hausdorff dimension strictly less than one (see
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Remark 2.12 (b) below) and hence cannot contain a continuum. Conse-

quently, this and Theorem 2.3 imply

2.9. THEOREM. Suppose that f: Ω —> Rn is an Ap-harmonic morphism

such that f is not constant in any of the components of Ω. If n — 1 < p

< n, then f is light and open.

For n = 2, light, open maps are necessarily discrete [LV, p. 244], and

in any dimension open, discrete maps are either sense-preserving or sense-

reversing [Chi, 2], [VI]. Here recall that a continuous mapping /: β-»Rw

is sense-preserving (resp. sense-reversing) if the topological degree of /

satisfies μ(y, f,D)>0 (resp. μ(y, f, D) < 0) for every y e f(D)\f(dD) and

every domain D with compact closure in Ω. For the definition and the

properties of the topological degree, see [RR] (see also [MRV1], [Re], [Ri2]).

We can state the following theorem.

2.10. THEOREM. Suppose that f: Ω —• R2 is a nonconstant Ap-harmonίc

morphism in a plane domain Ω and 1 < p < 2. Then f is discrete and

open. In particular, f is either sense-preserving or sense-reversing.

Theorem 2.10 means, in particular, that for 1 < p < 2 a plane A -̂

harmonic morphism is topologically equivalent to an analytic function,

since by Stoϊlow's theorem every discrete and open mapping / in the plane

is of the form / = g o h where h is a homeomorphism and g is an analytic

function.

The following theorem is yet another result in this vein.

2.11. THEOREM. Suppose that f: Ω -> Rπ is a nonconstant Ap-harmonίc

morphism in a domain Ω and suppose that n — 1 < p < n. If f is sense-

preserving or sense-reversing, then f is discrete. If f is discrete, then f is

either sense-preserving or sense-reversing.

Proof. By Theorem 2.9, / is light and open. Now a result of Titus

and Young [TY, Theorem 4] tells us that sense-preserving light mappings

are discrete. Since the result applies to sense-reversing mappings as well,

the first assertion follows. The second assertion follows from the above

mentioned results of Chernavskii and Vaisala [Chi, 2], [VI].

2.12. Remarks, (a) It is clear that the conclusions of Theorem 2.7

and Corollary 2.8 are not necessarily true if 1 < p < n and if / maps a

component of Ω onto a point. However, for p > n the assertions are
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retained for any A^-harmonic morphism /, because then j/-superharmonic

functions are real-valued and ts/-polar sets empty.

(b) Corollary 2.8 admits a formulation in terms of Hausdorff meas-

ures : If /: Q —• Rn is an A^-harmonic morphism and ί c R " has finite

Hausdorff (n — />)-measure, then f~\E) has Hausdorff dimension at most

n — p. This follows from the well known relations between Hausdorff

measures and capacities; see e.g. [HKM2], [Re, p. 120], [V2].

(c) We do not know whether sense-preserving Ap-harmonic mor-

phisms are discrete in general. This does not follow from Corollary 2.8

combined with the Titus-Young theorem because for 1 < p < n — 1 sets

of zero p-capacity may contain nondegenerate continua. Nor do we know

whether Ap-harmonic morphisms are light in general.

(d) Because quasiregular mappings (p — n) and mappings of bounded

length distortion (all p's) are Ap-harmonic morphism, the above results

can be applied to those mappings. In this case, however, such results

are well known; see [MRV1, 2], [Re], [Ri2], [MV].

§ 3. Estimates for singular ^-harmonic functions

Our basic strategy in investigating the local distortion of A^-harmonic

morphisms is to analyze the behavior of singular solutions. In this sec-

tion we prove some auxiliary results concerning the asymptotic behavior

of ^/-harmonic functions near an essential isolated singularity. Results

of this sort appear e.g. in [H], [Re], [S], where we also refer to for the

construction of singular solutions.

Throughout this section we assume that 1 < p < n and that j / e Ap

with structure constants 0 < a < β < oo. The letter c will stand for

various constants depending only on (n, p, β, a), and the expression a « b

means c~xa < b < ca.

By a singular jsf-harmonic function u in a ball B will singularity

ξ e B we mean a positive j/-harmonic function u in a punctured ball

B\{ξ} with l i m ^ u(x) = oo. We set u(ξ) = oo; then u becomes ^/-super-

harmonic in B. For simplicity we also assume that u is bounded near

dB so that for all large a > 0 the set {u > a} is compactly contained in

B. We define the flux of u at ξ by the formula

flux (u) = j/(x9 Vu) - Vψ dx
J B

where <pe C^(B) is such that ψ = 1 in a neighborhood of ξ. Then flux(w)
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does not depend on the particular choice of φ, and by approximating we

may allow φ to be a compactly supported function in W\>P{B) with ψ — 1

in a neighborhood of ξ.

For the next two lemmas we assume that u is a singular <c/-harmonic

function in a ball B with singularity ξ.

3.1. LEMMA. There is a constant c = c(n,p, β,a)>0 such that for all

numbers 0 < b < a for which the set {u > b} is compactly contained in B

we have

p{z/ > a], {u > b}) < cΆux(u)(a -
c

Proof. Consider the function

Combining the quasiminimizing property of ^/-harmonic functions with

the obvious fact that υ is an admissible test function for the condenser

({u > a}, {u > 6}), we find that

C3LPP({U > a}, {u >b})<[ \Vv\pdx < c capp({w > α}, {u > b}).
J {b<u<a}

The quasiminimizing property in this case means

ί \Fυ\pdx<c[ \Fψ\pdx

for any function ψ with v — ψ e W\'p({b < u < a}); this is an easy conse-

quence of Holder's inequality. Now because s/(x, Vv) Vυ ̂  | Fv \p and

because

ί s/(x, Fv)Fvdx = (a- b)x~p [ ^{x, Fu)-Fυdx = (α - b)ι'pΆux(u),
J B J R

the lemma follows.

For all small enough r > 0 write

M(r) = max u(x)
\x-ζ\=r

and
m(r) = min u(x).

3.2. LEMMA. There is a constant c = c(n, p, β,a)>0 such that for
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all sufficiently small r > 0 we have

M(r) - m(r) < c

when p = n, and

1> < m(r) < M(r) <

when 1 < p < n.

Proof. Assume first that p — n. We let r > 0 be so small that

{u > m(r)} is compact in B and apply Lemma 3.1 (note that there is

nothing to prove if M(r) — m(r)). Indeed, by the maximum principle the

set {u > M{r)} is connected and meets both ξ and the sphere dB(ξ, r),

while the boundary of the set {u > m(r)} meets the same sphere. A

standard symmetrization argument (see [G] or [Re, Theorem 3.5, p. 121])

yields

{z/ > M(r)}, {u > m(r)}) > c(n) > 0

and the assertion for p = n follows from Lemma 3.1.

Next consider the case when 1 < p < n. Let a > 0 be a number

large enough such that {u > a} is compact in B. We choose r > 0 so

small that m(r) > 2α and set

= min
— a

Then v is the unique ^/-harmonic function in the open set {u > a}\{u >

M(r)} having boundary values 1 and 0 on the inner and outer boundary

components, respectively. The capacity estimate [HK3, Lemma 3.2] im-

plies that

c a p * * M W ) , ,„ > . , , >_

and the dilation invariant Harnack inequality guarantees that for all

small r > 0 we have

M(r) < cm(r).

Hence

capp({w > {M(r)}9 {u > a}) > c capp({w > m(r)}, {u > a}).

Next, the maximum principle implies the inclusions
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{u > M(r)} c B(ξ, r) c {u> m(r)}

which means that the above capacities can be estimated from above and

below by a constant times the capacity capp(JB(f, r), {u > a}), which be-

haves asymptotically like rn'p as r->0. Putting these estimates together

and again invoking the quasiminimizing property of ^-harmonic func-

tions, we obtain

c, Fv)-Fvdx « capp({w > M(r)}9 {u > α}) ~ rn~p.

Since

•*/(#, Fv)-Fvdx = (M(r) — α)1"p j^(a, Fu)>Fvdx « Mi/)1"*' flux(w)
J {zt>σ} J (!t>(ϊ]

and since

M(r)~m(r),

the lemma follows.

3.3. LEMMA. Suppose that u is a singular ^-harmonic function in

B(x0, R) with singularity at ξ e B(x0, i?/4). Suppose further that u(x)-+0

as x->dB(xo,R) and that u(z0) = 1 for some fixed point z0 with \z0 — xo\

= R/2. Then there is a constant c — c(n, p, β, a) > 0 such that

~Rn-p < flux(w) < cRn~p .
c

Proof. If M denotes the maximum value of u on the sphere 3J3(x0, R/2)

and m the minimum value there, we know from Harnack's inequality that

m < 1 < M < cm. Hence Lemma 3.1 implies

Άux(u) « capp({w > M}, B(xQ, R)) « capp({w > m}9

On the other hand, by the maximum principle the set {u > M} is con-

tained in the closed ball B(xQ, Rj2) and the set {u > m) contains the same

ball, so that

capp({α > M], B(xQ, R)) < caPί,(S(x0, B/2), B(xQ, R)) < capp({u > m},

Because

caPί,(5(Λ;0, β/2),

the assertion follows.
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3.4. LEMMA. Suppose that p = n and that u is a singular sέ'-harmonic

function in B — B(xQ, R) as in Lemma 3.3. For all sufficiently large

positive numbers a > 0 the following holds: if B(ξ, X) is the largest open

ball centered at ξ and contained in the set {u > α}, and if B(ξ, Λ) is the

smallest closed ball centered at ξ and containing the set {u > a}, then

A<c<oo.
λ ~

Proof. From the preceding lemma we obtain

(3.5) 0 < — < flux (u) < c,
c

where c = c(n, a, β) > 0. Next, fix a > 0 large and let 0 < λ < A < oo

be the radii as described in the claim. (It is enough to assume a >

max]x_xol:=R/iu(x) so that the closed ball B(ξ, A) lies inside B(x0, R)). We

may obviously assume that the middle inequality is strict. Let M1 denote

the maximum value of u on the sphere 3B(ξ, X) and mx the minimum value

on the sphere 3B(ξ, A). Then by the maximum principle Mx > a > m^

and Lemma 3.1 together with (3.5) implies that

cap%({zz > MJ, {ι/ > α}) « (M, - o)1-"

and that

n({u > α}, {u > m,}) « (α - m,)1"72.

To estimate these capacities, we employ the symmetrization device

once more and conclude that they both are bounded from below by a

dimensional constant. Hence

Mλ — mλ — Mx — a + a — m 1 < c < o o .

Using this inequality, Lemma 3.1, (3.5), and a trivial capacity estimate,

we infer

0 < c < (M, - mxy-n < c c&pn({u > M,}, {u > m1}) < c(\ogA\~n

which gives the desired result.

In the final lemma in this section we need to consider a situation

which is slightly more general than that above. We say that an en-

harmonic function u has singularities {ξu , ξk} C B if u is j^-harmonic
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in B\{ξu , ξk\ and lim,^. u(x) = oo for all i. We define the flux of u

by the same integral formula

flux(^) = f s/(x, Fu)>Fφdx
J B

as before the test function φ e C^(B) now satisfies φ = 1 in a neighbor-

hood of each singularity ξt.

3.6. LEMMA. Suppose that K is a compact subset of a ball B and

that u and uj9 j = 1, 2, , are nonnegative singular stf-harmonic functions

whose singularities are contained in K. Then if Uj —• u pointwise in B\K,

we have that flux(z^) —> flux(w) as j —> oo.

Proof. Fix a test function £? e C^(B) such that ^ = 1 in a neighbor-

hood of K. Then the functions u3 are ^/-harmonic in an open neighbor-

hood of spt Fφ, the support of Fφ, and since for ^/-harmonic functions

pointwise convergence implies locally uniform convergence, we have that

Uj —> u uniformly on spt Fφ. This implies (see [HK1, 2.32]) that

s/(x, Fuj) > s/(x, Fu)

weakly in Lp/(p~υ(spt Fφ). In particular, we have that

limflux(^) = lim s/(x9 Fu^-Fφdx = s/(x, Fu)>Fφdx = flux(w)
i/-»oo J - " 0 0 J Spt Vψ J Spt Γp

as required.

§ 4. An-harmonic morphisms are quasiregular

In this section we establish our main theorem in this paper.

4.1. THEOREM. If /: Ω —> Rn is a sense-preserving An-harmonic mor-

phism, then f is quasiregular.

Since by Theorem 2.10 every A2-harmonic morphism in the plane is

either sense-preserving or sense-reversing, we obtain

4.2. COROLLARY. If f: Ω -» R2 is an A2-harmonic morphism in a do-

main Ω, then either f or f composed with a sense-reversing reflection is a

quasiregular mapping. In particular, f is of the form φoh, where h is a

quasίconformal homeomorphism and φ is either analytic or anti-analytic.

To prove Theorem 4.1, we employ the geometric definition for quasi-

regular mappings given in [MRVl] (see also [Ri2, Section II.6]). A map-
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ping /: Ω -> Rra is quasiregular if and only if in each component of Ω

either / is constant or the following three conditions hold:

( i ) / i s sense-preserving, discrete, and open;

(ii) the local distortion H(x,f) is locally bounded in Ω;

(iii) there is a real number a such that H(x, f)<a for a.e. x e Ω\Bf.

Here

l(x,r,f)
with

L(x,rJ)= sup \f(y)-f(χ)\, l(x,r,f)= inf \f(y) - f(x)\,
\y-x\ = r \y-x\=r

and Bf, the branch set of /, is the set where / fails to be a local home-

omorphism.

For the rest of this section we assume that /: β—>Rw is an (J/*, S/)

harmonic morphism in an open set Ω for some stf and srf* from An. We

let a, β and α*, β* denote the structure constants of s/ and .a/*, respec-

tively, and as usual c stands for various constants depending only on a,

β9 #*, β*, and 72.

Proof of ( i): This is contained in Theorems 2.3 and 2.11.

Proof of (ii): Fix xoe Ω and let Bf be a ball with radius 1 centered

at JΌ = /(x0). Then choose r0 > 0 so small that B = B(xQ, r0) is compactly

contained in Ω and that U = f(B) a\B'. Fix a normalization point 20

in B' such that |£0 — yo\ = 1/2 and then for each j 6 U choose a singular

.c/-harmonic function uy with singularity at y such that M^O) = 1; more-

over, we demand that \\mz_>dB, uy(z) — 0. It follows from Lemma 3.3 that

the flux of uy is bounded from above and from below by constants inde-

pendent of y. Consequently, we deduce from Lemma 3.1 that

(4.3) — (a — by~n < ca$n({uy > α), {uy > b}) < c(α — by~n

c

for all numbers 0 < b < α.

Now fix X! e B and r > 0 so small that B(xu r) c B and {/"^/(Xi))} (Ί

B(xur) = {xί}; this is possible because / is discrete. Write JΊ = /(Xi),

u = uvi, and υ = uof. Then u is a singular ^/-harmonic function in

cl5 r) with singularity at xt. Let

M = M(r) = max ι>(x), m = m(r) — min u(x).
|a?-α?i|=r |a;-a;il=r
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Since

M - m< cflux(ι;)1/(n-υ

by Lemma 3.2, it follows from (4.3) that

(4.4) capp({a > M}, {u > m}) > c > 0.

flux (v)

Write

L = L(xur,f), l = l{x»r,f).

Let λ1 be the least radius such that the set {u > M) is contained in the

closed ball B(yu ^), and let Λx be the radius of the largest open ball

B(yu A) contained in the set {u > m}. Since {u = M) meets the boundary

of the ball B(yu I) and {u — m) meets the boundary of the ball B(yu L),

we obtain from Lemma 3.4 that

(4.5) λi<cl, L<cA,.

Because we may clearly assume that the ratio L/l is so large that λx < Λί9

we have

capTO({ι/ > M}, {u > m}) < capn(S(^, λx\ B(yl9 A,)) = ωnjlog ^-T\

and an appeal to (4.4) yields

A . < exp{cflux(u)1/(n-1)}.

M

Combining this with (4.5), we arrive at

— < Cexpjcflux^)1/^-1^,
V

and since the right hand side does not depend on r, we have shown that

H(xl9f) <

where C and c depend only on a, β, a*, β*, and n.

To complete the proof of (ii) we need to verify that the mapping

Φ: B -> (0, oo), x H-> Φ(x) == flux (ufix) of)

satisfies

sup Φ(x) < oo .
\x~xo\<ro/2
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Suppose, on the contrary, that there is a sequence x5 e B(x09 ro/2) such that

Φ(Xj) —> oo. We may assume that Xj —> ξ e B(x0, ro/2). Due to the normal-

ization uf(Xj)(z0) = 1, we may use Harnack's inequality and equicontinuity

to select a subsequence ut of uf{Xj) such that ut converges uniformly on

compact subsets of B\{f(ξ)} to an j/-harmonic function u. As easily

seen, limy^/(€) w(;y) = oo.

Since / is discrete, open, and sense-preserving, there is a neighborhood
U of ξ such that U is compactly contained in B, f(U) = B(f(ξ), s) for

some s > 0, {f~Kf(£))} Π £/ = {£}, and every point in B(f(ξ), s) has at most

j(f, f) = k preimages in U; here i(ξ, /) is the local topological index at £

(see [MRV1, Lemma 2.12] or [Ri2, Section 1.4]). Then for i > i0 the func-

tions vt = utof are singular ^-harmonic functions in a ball B(ξ,t) c £7

with at most k singularities at points {/"X/(#*))}. Since f(Xi)-

υt — Ui o/-> uof = v

pointwise in B(ξ, ί)\{l}> a n d w e readily obtain from Lemma 3.6 that

oo = lim flux (uj = flux (u) < oo ,
i—• oo

a contradiction. Thus (ii) is proved.

Proof of (iii). Fix a point x0 in Ω\Bf and choose a small ball β =

J3(JC0, r) contained in β such that / is a homeomorphism in B. Then pick

two points xλ and x2 from 8.B such that

L - L(x0, r, /) = I /(x,) - /(x0) I, Z = Z(x0, r, /) = I /(x2) - f{x,) I.

We want to show that the ratio of L and / is bounded from above inde-

pendently of xύ and r. This is achieved by a (nonlinear) harmonic meas-

ure argument.

Let ^ be a spherical cap on dB(x0, r) containing xt and x2 such that

one hemisphere of dB(xQ, r) does not intersect #. Then /(#) = ^ is a

continuum joining the two spheres dB(y0, I) and 9i5(y0, L), where y0 = /(x0).

Let ω = ω(^ ;, B(yo> L); srf) be the ^-harmonic measure of W in S(y0, L)\g'.

That is, ω is the Perron solution in B(y^ L)\£' to the ^-harmonic

Dirichlet problem with boundary values 1 on <%' and 0 elsewhere. Since

^f is a continuum, the known boundary estimates for ^/-harmonic meas-

ures (see [Maz], [GLM2], and, in particular, [Mar, Theorem 2.18]) imply

that
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ω(y0) > 1 - c(log - L 4 y ) 5

where c and δ are positive constants depending only on the structure of

jtf. On the other hand, since / is an ( J / * , ^)-harmonic morphism, the

function ω* = ωof is the j/^-harmonic measure of <$ in D\€, where D is
the x0-component of f~\B(y^L)) (since x0 lies outside the branch set, we
may assume that r is small enough so that f~ι defines a homeomorphism

from B( j 0 , L) onto D). Now let F be an unbounded continuum in the

complement of D such that F contains the point x1 and let ώ be the J/*-

harmonic measure of ^ in RW\(^U-F). Then by comparison,

ώ(x0) > ω*(x0) - ω(y0) > 1 -

To complete the proof we need to show that ώ(x0) is less than some

constant c < 1 which depends only on the structure of J / * . This is a

consequence of a standard iteration of Harnack's inequality. Indeed, by

construction ^ lies in a half space bounded by an affine hyperplane going

through x0. It follows from elementary geometric considerations that

one can join x0 to a point in F by a chain of 10 balls Bt such that cλBi

does not meet c€\ the last ball in the chain, say Bo, can be assumed to
be centered at a point on F. Since ώ vanishes continuously on F, in-

voking the boundary estimates [Maz], [GLM2] once more, we have that

ώ < c < 1 in Bo. Then applying Harnack's inequality ten times we arrive

at the desired estimate ώ(xQ) < c < 1.

This completes the proof of (iii), hence that of the theorem.

4.6. Remark. The proof of (iii) above reveals that outside the branch

set the dilatation of an (<s/*, ̂ )-harmonic morphism is controlled by a

constant that depends only on n and the structure constants of stf and

cs/*. Since the branch set of a nonconstant quasiregular mapping has

zero Lebesgue n-measure, we deduce that, if / in the situation of Theorem

4.1 is an (stf*, ^-harmonic morphism, the dilatation of / depends only

on n and the structure constants of $0 and ja/*.

A homeomorphic quasiregular mapping is usually said to be quasi-

conformal. Here it is advantageous to call a homeomorphism /: Ω -> Rw

quasiconformal if it belongs to W\£(Ω) and for some K < oo the inequality

\f'(x)\» £ K\Jj(x)\
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hold almost everywhere in Ω; this definition does not exclude sense-

reversing mappings. From Theorem 4.1 and similarly for sense-reversing

mappings (see also [MRVl, p. 11]) we obtain

4.7. COROLLARY. // /: Ω —> Rn is a homeomorphic An-harmonic mor-

phism, then f is quasiconformal.

4.8. Remark. J. Manfredi has shown that every 7i-harmonic mor-

phism is necessarily 1-quasiregular, hence a Mόbius transformation in

dimensions n > 3. By an n-harmonic morphism we mean an (s/9 stf)-

harmonic morphism with stf{x,K) = \h\n~2h. His proof uses delicate pro-

perties of singular 7i-harmonic functions.

§ 5. Ap-harmonic morphisms for 1 < p < n

We recall that a mapping /: Ω -> Rn is of L-bounded length distortion

or L-BLD if the coordinate functions belong to the Sobolev space Wfc&Ω),

if Jf(x) > 0 a.e. in Ω, and if there is an L > 1 such that the inequality

(5.1)

holds for all h in Rn and a.e. x in Ω. Here again f'(x) denotes the formal

derivative of / and Jf{x) its Jacobian determinant.

It is obvious that condition (5.1) is more restrictive than the ine-

quality required for quasiregularity, and we see that BLD mappings form

a strict subclass of quasiregular mappings. In fact, a mapping /: Ω -> Rn

is L-BLD if and only if it is quasiregular and satisfies

(5.2) \f'(x)\<L, /(/'(*)) :> 1/L

a.e. in Ω. Here l(f;(x)) = inf^i^l/7^)/^. Note in particular that a BLD

mapping is never constant. These mappings were introduced in [MV] and

the name reflects the path length preserving property they have. For

these results and more information on BLD mappings, see [MV].

It was proved in [MV] that BLD mappings are Ap-harmonic morphisms

for all p > 1. Namely, given any p and any mapping stf in Ap, there is

a mapping j / * in Ap such that / is an ( J / * , j/)-harmonic morphism. It

seems reasonable to expect that Ap-harmonic morphisms are BLD map-

pings when p Φ n, but the following example shows that this hope is

futile.

5.3. EXAMPLE. Let Ω be a disjoint collection of open balls Bt in Rn,
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i = 1, 2, . Define a mapping /: Ω -> Rw by setting /(x) = jx for x in JB<.
Then it is easily seen that for all 1 < p < oo the mapping / is an (j/, j/)-
harmonic morphism for j / = |/ι|p~2/ι (in other words, / preserves p-harmonic
functions) but / is not L-BLD for any fixed L in Ω.

In this example, however, / is BLD in each component of Ω. We do
not know whether, for p Φ n, there is a nonconstant A^-harnomic mor-
phism in a connected open set which is not BLD.

In contrast to the borderline case p — n, our knowledge of Ap-har-
monic morphisms for 1 < p < n is incomplete. However, we have the
following partial result.

5.4. THEOREM. Suppose that 1 < p < n and that f: Ω -» RTC is a non-
constant sense-preserving Ap-harmonic morphism in a domain Ω. If either
7i — I < p < n or f is discrete, then f is BLD on every compact subset of
Ω. In particular, any homeomorphίc Ap-harmonίc morphism for 1 < p < n
is locally bilipschitz.

A mapping / is locally bilipschitz in our terminology if every point
x has a neighborhood U such that for some constant L = L(U) the double
inequality

\z~y\IL<\f(z)-f(y)\<L\z-y\

holds for all pairs of points z, y in U; similarly, / is locally Lipschitz, if
only the right inequality holds. Then it is clear that the last assertion
in the theorem follows from the first. We do not know if for every
homeomorphic Ap-harmonic morphism / with 1 < p < n the above double
inequality is true for L independent of the neighborhood U.

To prove Theorem 5.4, we employ a geometric characterization of
BLD mappings akin to the quasiregular case. For x e Ω we define

«*, f) = lim sup 1 A?)-/(*>! , Kx, f) = lim inf 1/(*>-/<*>! .
v-x \y — x\ y-*χ \y — x\

Then / is L-BLD if and only if it is in W)£(Ω), Jf(x) > 0 a,e. in Ω and

L(x,f)<L, Z(x,/)

for all x in Ω [MV, Theorem 2.16].

Proof of Theorem 5.4. Suppose that /: Ω -> R" is an (ja/*, j/)-harmonic
morphism for some s/ and j / * in Ap. Denote the structure constants of
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sί and j / * by a, β and α*, /3*, respectively, and recall the convention

c = c(n,p, a, β, α*, j8*) with α ~ 6 meaning c-1α < b < ca.

First observe that if 7i — 1 < p < n, then / is discrete by Theorem

2.11.

Next, pick a point x0 e Ω and write yQ = /(x0). Let Bf be a ball of

radius 1 centered at y0 and let r0 > 0 be so small that f(B(xOi r0)) = [7 is

contained in \Bf. For each j> in U choose a singular ^/-harmonic func-

tion uy as in the proof of Theorem 4.1. That is, uy has singularity at y,

there is a point z0 such that |z0 — j>0| = 1/2 and uy(z^ = 1, and Iim2_ajs, uv{z)

= 0. Then Lemma 3.3 implies

(5.5) 0 < — < Άux(uy) < c < oo .
c

Now fix a point Xj e B(x0, r0) and choose r > 0 so small that the ball

JB(xl5 r) is compactly contained in B(x0, r0) and that {/^(/(Xi))} (Ί β(Xi, r) =

{Xi}. Choose points i^ and i6>2 on the sphere dB(xl9 r) such that

L = L(x1? r, /) = max | /(x,) - f(x) \ = \ fix,) - f(wx) \,
| a ? i - Λ ? | = r

and that

/ = l(χl9 r,f) = ^min J/(x,) - /(x)| = \f(Xί) - /(ιι;2)|.

Write yx = /(xj, w = wyi, and υ = uof Then i; is a positive singular

j/*-harmonic function in JB(Xj, r) with singularity at xλ. Moreover, pro-

vided r is small enough, we conclude from Lemma 3.2 that

(5.6) v(wt) « v(w2) « r(p"7l)/(p"1) flux(u)1/(p~1) .

On the other hand, using Lemma 3.2 this time for u and heeding (5.5)

we find that

lit -fill) W --—' 7" (P~n)/(P-l)
u\l\w\)) ~ Li*

and

M(/(M;2)) « l<*-»»<»-» .

Combining this with (5.6) yields

L I

r r

In conclusion, there is a constant c such that
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<p-n) < l(x,f) < L(xuf) < c Ά\xx(v)ί/(p~n)

c

where υ is the singular j/-harmonic function ufixi)of.

Finally, since / is discrete, open, and sense-preserving, we can employ

Lemma 3.6 exactly as we did in the proof of Theorem 4.1 to conclude

that the function

χy->φ(χ) = flux(w/(ί)o/)

is bounded both from above and below locally in B(xQ, r0). This shows

that / is locally a Lipschitz mapping in β, hence differentiable a.e. in Ω

by Rademacher's theorem, and in particular / is a member of the Sobolev

class W\£(Ω). Now since / is sense-preserving, it follows from [MRVl,

2.14] that Jf(x) > 0 a.e. in Ω. Since also L(x,f) and Z(x, /) are locally

bounded from above and below, the theorem follows.

The proof of Theorem 5.4 gives

5.7. THEOREM. // 1 < p < n, then every discrete sense-preserving Ap-

harmonίc morphίsm is a locally Lίpschίtz quasiregular mapping. Moreover,

if 1 < p < n, every homeomorphίc Ap-harmonίc mcrphism is a locally

bilipschitz quasiconformal mapping.
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