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ON THE CARTAN-NORDEN THEOREM
FOR AFFINE KAHLER IMMERSIONS

KATSUMI NOMIZU ano FABIO PODESTA

In [N-Pi-Po] the notion of affine Kahler immersion for complex man-
ifolds has been introduced: if M™ is an n-dimensional complex manifold
and f: M" — C"*!' is a holomorphic immersion together with an anti-
holomorphic transversal vector field {, we can induce a connection F
on M™ which is Kahler-like, that is, its curvature tensor R satisfies
R(Z, W) =0 as long as Z, W are (1, 0) complex vector fields on M.

This work is aimed at proving a Cartan-Norden-like theorem for
affine Kahler immersions, generalizing the classical result in affine differ-
ential geometry (see [N-Pi]). In §1 we deal with some preliminaries about
affine Kéahler immersions in order to make our work self-contained. In
§2 we prove our main result: if a non-flat Kihler manifold (M?", g) can be
affine Kahler immersed into C**! and the immersion f is non-degenerate,
then for every point x € M™ we can find a parallel pseudokihlerian metric
in C"** such that f is locally isometric around the point x.

§1. Preliminaries

Throughout this work we shall refer to [N-Pi-Po] for basic results
in the geometry of affine Kihler immersions. We recall here some funda-
mental equations. Let M" be an n-dimensional complex manifold with
complex structure J and let f: M™ — C**! be a holomorhic immersion.
We denote by D the standard flat connection in C**!, a transversal (1, 0)
vector field { = & — iJ& along f is said to be antiholomorphic if D, =0
for every complex vector field Z of type (1,0) on M™.

If X and Y are real vector fields on M”, we can write

(1-1) Dx(f* Y) = f*(VX Y) + h(X, Y)f + k(X, Y)JS

thus defining a torsionfree affine connection J and symmetric tensors A
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and k£ on M". Since f is holomorphic and J is D-parallel, we get that
VJ=0and (X, Y) = —h(JX, Y) = —h(X, JY). We can also write

(1.2) Dy = —f(AX) + ((X)§ + uX)JE

defining the shape operator A and two 1-forms p and v. An easy calcula-
tion shows that the transversal vector field { is antiholomorphic if and
only if AJ = —JA and v(X) = w(JX) for every real tangent vector field
X. By extending h as a complex bilinear function on complex tangent
vectors, we get for Z=X —iJX and W= Y — iJX

(1.3) MZ, W) =2MX, Y) + ik(X, Y))

and
MZ,W)=0

so that we can write for complex vector fields Z, W
(1.4) D (fu W) = f(7: W) + WZ, W).

The covariant symmetric tensor A4 is called the second fundamental form
for f and we shall say that f is non-degenerate if the tensor A is non-
degenerate; it is very easy to see that this condition is actually inde-
pendent of the choice of a transversal vector field (holomorphic, anti-
holomorphic or whatever).

Moreover by putting S = A — iJA and z = ¢ — iv we can write

(1.5) Dl = —8(Z) + «(Z)¢

for every (1, 0)-complex vector field Z.

We are now going to write down the fundamental equations of Gauss,
Codazzi and Ricci in the real representation; for the complex version we
refer to [N-Pi-Po]. Henceforth U, X, Y will indicate real vector fields.
We have the equation of Gauss

(1.6) R(X, Y)U = WY, U)AX — h(X, U)AY + h(JY, U)AJX
— WJX, U)AJY,
the two equations of Codazzi
. W xh)(Y, U) + pX)WY, U) + w(JX)WJY, U)
= Fyh)(X, U) + U Y)h(X, U) + w(JY)R(JX, U)
(1.8) (FxA)Y — p(X)AY — n(JX)JAY

= 7y A)X — (Y)AX — p(JY)JAX
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and the equations of Ricci
(1.9) MX, AY) — WY, AX) = 2du(X, Y)
(1.10) MAX,JY) =du(X,Y).

§2. On the Cartan-Norden Theorem

We are now going to prove our main theorem

THEOERM 2.1. Let f: M® — C"*' be a non-degenerate affine Kdhler
immersion. If the induced connection V is non-flat and coincides with the
Levi-Civita connection of a pseudo-kihlerian metric g on M™, then for every
xe M™ there is a neighborhood U(x) and a parallel pseudo-kidhlerian
metric { > on C**! so that [ is isometric relative to g and { > and the
transversal vector field ¢ for f is perpendicular to f(U(x)) at each point of
U(x).

Proof. We denote by h the second fundamental form for f and we
define the conjugate connection ¥/ of F by means of the following equation

(2.1) XY, U) = h(F,Y, U) + WY,V ,U — u(X)U — o«(X)JU).

We recall that v(X) = @(JX). Equation (2.1) defines 7 uniquely since &
is supposed to be non-degenerate and we have easily that ¥ is a complex
connection, that is, FJ = 0; by using the Codazzi equation ¥ turns out
to be torsionfree.

LEMmma 2.1. If the connection V is a Levi-Civita connection, then the
1-form is closed.

Proof. Indeed from the Gauss equation we get that Ric(Y, Z) =
—2h(AY, Z) since tr A = trJA = 0. Since F is metric, the Ricci tensor
is symmetric and from the Ricci equation we have that (Fyp)(Y) is sym-
metric in X and Y, that is, dpg = 0. g.e.d.

LeEmma 2.2. If V' comes from a pseudo-kihlerian metric g, then the
conjugate connection V is locally pseudo-kihlerian.

Proof. We define the (1, 1) tensor B by setting g(X, Y) = (BX, Y);
we note that since g is hermitian, we have that

WBX,Y) = h(BJX, JY) = MJBJX, Y)
hence B = JBJ. We now define
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8X,Y)=vmB'X,Y)

for a suitable positive function v in order to have that g = 0. We note
that

ZhX, B'Y) — WX, V,B'Y) — h(V ,B'X, Y) = (F,8)(B'X, B-'Y) = 0
and that
MX, JB'Y) = —h(JBX, Y).
Using these identities we have

ZgX,Y) — gW,X, Y) — (X, 7,Y)
= Z(Wh(B'X, Y) + vZh(B'X, Y) — v[Zh(X, B-'Y)
— WX, V;B'Y — W(Z)B'Y — JZ)JB1Y)]
— v[ZMB'X,Y) — M(F,B'X,Y)
+ W Z)WBX,Y) + (JZ)WY, JB'X)]
= [Z(v) — 2vZ)I(B'X, Y).
So g turns out to be F-parallel if and only if we can choose a pos-
itive function v so that Z(v) = 2vu(Z); since p is closed by Lemma 1, we

can find locally a function 2 so that x4 = di and then we can put v =
exp (22) > 0. q.e.d.

We now compute the curvature tensor R of 7: we have
UZWX,Y) = WV, V, X, Y) + h(V, X, V,Y — p(U)Y — p(JU)JY)
+ WX, P,Y) + WX, PV ;Y — w(UW, Y — i JU)JV ,Y)
— Up(Z)NX, Y) — f(Z)UNX, Y) — Up(JZ)N(X, JY)
—~ JZYUMX, JY) .

Interchanging U and Z and subtracting [U, Z]A(X, Y), we get
WMR(U, 2)X,Y) + KX, R(U, 2)Y) — 2du(U, Z)WX, JY) = 0.

Using now the structure equations (1.6), (1.10) and the fact that A is
non-degenerate, we have
(2.2) R(U, 2)Y = 2WAU, JZ)JY — AU, Y)Z + WMAZ, Y)U

— WY, AJU)JZ + WY, AJZ)JU .

Taking trace we have that /R\ié(X, Y) = 2(n + DA(ZX, Y) and by equation
(2.2), it follows that the space (M*, g) is H-projectively flat (see e.g. [Y],
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Chapter XII, (3.16)); so the space (M™", g) has constant holomorphic sec-
tional curvature and in particular it is Einstein, hence

(2.3) WAX, Y) = 23(X, Y) = wh(B"'X, Y)

for some function 2, which is constant if n > 2 (see [K-N], p. 168). By (2.3)
we have A = lwB~! and

(2.4) g(AX, Y) = wg(BX,Y) = wh(X, Y).
We now state the following
LemmaA 2.3. There is a nowhere vanishing C= function ¢ such that
(2.5) 8(AX,Y) = ¢(X, Y)
for all real vector fields X, Y and
(2.6) do = 2pp.

Proof. We have already established the first assertion (2.5); the func-
tion ¢ can be taken to be Av, where v is the function found in Lemma
2.2 and 2 is a constant if n > 2; so (2.6) follows from the proof of Lemma
2.2 if n > 2. In the general case we differentiate (2.5)

Zg(AX,Y) = (ZHMX, Y) + ¢ZNX, Y)
hence
g((F,AX, Y) + g(A(F;:X),Y) + g(AX, V., Y) = (Z)NX, Y) + ¢ZNX, Y)
that is

(2.7) g(V:A)X,Y) — ¢V :m)(X, Y) = (ZoNX, Y)
and
(2.8 8(VxA)Z,Y) — ¢(Wxh)(Z,Y) = (X$NZ, Y) .

If we now subtract (2.8) from (2.7) and use the equations of Codazzi we
obtain

ZPI(X, Y) — (XPHHZ, Y)
= g(UWZ)AX + WJZ)JAX — (X)AZ — (JX)JAZ,Y)
— SW(UX)Z + WIX)IZ — UZ)X — (JZ)IX, Y)
= hQuZ)X — 2u(X)Z, Y)

hence
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(ZHX — (XPZ = 2¢[(Z)X — (X)Z]
that is
Z¢ = 20(Z) .

Since the function v satisfies the same differential equation dv = 2vg and
does not vanish anywhere, it follows that 2 is a constant. If 1 were 0,
we would have from equation (2.4) that A vanishes identically, hence
that F is flat. q.e.d.

We are now going to define the parallel pseudo-kédhlerian metric ( )
in C**! by means of the following

§,J§ =0, §,6) =<J§JE = ¢,

where ¢ is the function given by Lemma 2.3. We have to verify that
{ > is D-parallel, that is

(2.9) ZU, VS = (D,U, V> + (U, D, V>

for all vector fields U and V along f and a vector field Z on M". If
U=/f,X and V=/f,Y, then (2.9) reduces to V,g=0. If U=/f,X and
V = &, then (2.9) gives condition (2.5) and if U = V = &, then (2.9) reduces
to (2.6). The other possibilities are easily seen to be automatically
satisfied. q.e.d.

COROLLARY 2.1. Let (M™, g) be a non-flat kdhlerian manifold and let
f: M™ — C"*! be a non-degenerate affine Kdhler immersion. Then the Ricci
tensor of (M™ g) is positive- or negative-definite. Moreover the pseudo-
kéhlerian metric { ) in C**'- given by Theorem 2.1 is positive-definite if
and only if the Ricci tensor of (M™, g) is negative-definite.

Proof. Using the Gauss equation, we have the following expression
for the Ricci tensor

Ric(X, Y) = —2m(AX, Y)

for all real vectors X and Y. Using Lemma 2.3 we have (locally)
Ric (X, X) = -—%g(AZX, X) = ——%g(AX, AY).

Since h is non-degenerate, we see from (2.5) that the (1,1) tensor A is



AFFINE KAHLER IMMERSIONS 133

one-to-one, hence the Ricci tensor is definite. Moreover Ric is negative-
definite if and only if the function ¢ is everywhere positive. q.e.d.

ExampLE. In order to show that the Ricci tensor can be positive-
definite, we give the following example. Let Q = {ze C; Re 2<0}; we
define f: 2 — C* by f(2) = (2, exp(2)) and take { = (exp(2),1) as an anti-
holomorphic transversal vector field. Actually { is perpendicular to f(Q)
at each point of 2 with respect to the Lorentzian metric of C* of signa-
ture (1,1). The induced Kahler metric g on 2 is given by

2(0/02,0/0Z2) =1 — exp(2Re2) >0, zel,

and it is easy to see that the second fundamental form A is

h(3/az, 3/dz) = — zzi E;)Re .

so that f is non-degenerate. Moreover the Ricci tensor of (2, g) is (see
[K-N], p. 158)

Ry — _0log(1 —exp(2Rez)) _ exp (2 Re 2) 1+ exp(2Rez)

0/020/0Z 1 — exp(2Rez) )

This shows that (2, g) can not be obtained as a complex hypersurface
of C? endowed with the euclidean metric (see [K-N], p. 177, Prop. 9.4).

Remark. In order to clarify the geometrical meaning of the conjugate
connection used in the proof of Theorem 2.1, we recall something about
the Gauss map for complex hypersurfaces as introduced in [N-S]. Let
(M, g) be a kahlerian manifold and f: M — C**! a non-degenerate complex
isometric immersion. We choose a unit real vector field & normal to
f(M); we recall (see [S], p.230) that if X is any real vector field on M

Ve = —AX + s(X)J ¢

where s is a 1-form and with our notation the normal connection form
r is simply given by z(Z) = is(X — iJX), where Z = X — iJX. From
(&, Y> =0 for every vector Y we get by differentiation

(2.10) sAXY)=hXY).
Finally the Codazzi equation is now the following (see [S], p. 253)

FxA(Y) — Py A)(X) — s(X)JAX + s(Y)JAX = 0.
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According to [N-S], p. 516, we define the Gauss map @
O: M~ CP"

by putting @(x) = n(¢), where n: S**! — CP” is the canonical projection.
It is shown that @,,(X) = —r.(AX) for every real tangent vector X at
x€ M, so that since f is non-degenerate, the rank of A is 2n by (2.10)
and therefore @ is an immersion. If now g denotes the Fubini-Study
kéahlerian metric on CP”, a direct inspection of the results stated in [N-S],
§ 5, shows that the pull back @*g is given by

0*3(X, Y) = g(AX, AY) = h(AX, Y) = -—%Ric X, 7).

We claim that the conjugate connection // as defined by formula (2.1) is
the Levi-Civita connection of the metric @*g. Indeed equation (2.1)
reduces to

(2.11) XWY,Z) = WV Y, Z) + WY,V Z — s(X)JZ)

where X, Y, Z are real vector fields on M. We first note that by equation
(2.10) we have that

(2.12) Vxh)(Y, Z) = g(FxA)(Y), Z) .
We write equation (2.11) in the equivalent form
(2.13) V)Y, Z) + WY, VxZ) = WY,V Z — s(X)JZ)
and if we interchange X and Z and subtract it from (2.13), we obtain
8((FcA)(2),Y) — g(F;A)X), Y¥) + h(Y, [X, Z])
= WY, ViZ —V,X — s(X)JZ + s(Z)JX).

Using now the Codazzi equation, formula (2.12) and the fact that A is
non-degenerate, we get that ViZ —V,X = [X, Z], that is, V is torsionfree.
We now prove that F®*g = 0: indeed

214)  O*3(FLY, Z) + 0%5(Y, P1Z) = hP 1Y, AZ) + h(AY, P xZ)
= XW(Y, AZ) — WY, V2 AZ) + s(X)W(Y, JAZ)
+ XWZ, AY) — WZ, V3 AY) + s(X)(Z, JAY)
= XY, AZ) + XW(Z, AY) — WY,V AZ) — WZ, V AY)

since WZ, JAY) = —W(Z, AJY) = —h(AZ,JY) = —WJAZ,Y). We now
note that
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XWZ, AX) = Wxh)(Z, AY) + h(VxZ, AY) + h(Z,V 1 AY)

=g((FxA)(Z), AY) + WV 3Z, AY) + WZ,V,AY)
=hlzANZ),Y) + WAVLZ, Y) + W(Z,V;AY)
= hVyAZ Y) + WZ,VAY).

If we insert this into (2.14), we obtain

O*Gl 1Y, Z) + 0*8(Y,V:Z) = XW(Y, AZ) = X0*3(Y, Z)

and we are done.

[K-N]
[N-Pi]
[N-Pi-Po]
[N-8]

[S]

Y]

REFERENCES

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol II,
John Wiley, New York (1969).

K. Nomizu and P. Pinkall, On the geometry of affine immersions Math. Z.,
195 (1987), 165-178.

K. Nomizu, U. Pinkall and F. Podesta, On the geometry of affine Kahler
immersions, Nagoya Math. J., 120 (1990), 205-222.

K. Nomizu and B. Smyth, Differential geometry for complex hypersurfaces,
II J. Math. Soc. Japan, 20 (1968), 498-521.

B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math.,
(1967), 246-266.

K. Yano, Differential Geometry on Complex and Almost Complex Spaces,
Pergamon Press, Oxford (1965).

Katsumi Nomizu
Department of Mathematics
Brown University
Providence, RI 02912

U.S.A.

Fabio Podesta

¢/o Scoula Normale Superiore
Piazza Cavaliert 7

1-56100 Pisa

Italy








