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ON THE CARTAN-NORDEN THEOREM

FOR AFFINE KAHLER IMMERSIONS

KATSUMI NOMIZU AND FABIO PODESTλ

In [N-Pi-Po] the notion of afϊine Kahler immersion for complex man-

ifolds has been introduced: if Mn is an ^-dimensional complex manifold

and /: Mn -»Cn + 1 is a holomorphic immersion together with an anti-

holomorphic transversal vector field ζ, we can induce a connection V

on Mn which is Kahler-like, that is, its curvature tensor R satisfies

R(Z, W) = 0 as long as Z, W are (1, 0) complex vector fields on M.

This work is aimed at proving a Cartan-Norden-like theorem for

affine Kahler immersions, generalizing the classical result in affine differ-

ential geometry (see [N-Pi]). In § 1 we deal with some preliminaries about

affine Kahler immersions in order to make our work self-contained. In

§2 we prove our main result: if a non-flat Kahler manifold (Mn, g) can be

affine Kahler immersed into Cn+1 and the immersion / is non-degenerate,

then for every point x e Mn we can find a parallel pseudokahlerian metric

in Cn+ί such that / is locally isometric around the point x.

§ 1. Preliminaries

Throughout this work we shall refer to [N-Pi-Po] for basic results

in the geometry of affine Kahler immersions. We recall here some funda-

mental equations. Let Mn be an rc-dimensional complex manifold with

complex structure J and let f: Mn-+Cn+1 be a holomorhic immersion.

We denote by D the standard flat connection in Cn M, a transversal (1, 0)

vector field ζ = ξ — ίJξ along / is said to be antiholomorphic if Dzζ = 0

for every complex vector field Z of type (1, 0) on Mn.

If X and Y are real vector fields on Mn, we can write

(1.1) DAU Y) = fJVx Y) + h(X, Y)ξ + k(X, Y)Jξ

thus defining a torsionfree affine connection V and symmetric tensors h
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and k on Mn. Since / is holomorphic and J is D-parallel, we get that

FJ = 0 and k(X, Y) = -/ι(JX, Y) = -h(X, JY). We can also write

(1.2) Dzξ = -UAX) + μ(X)ξ + v{X)Jξ

defining the shape operator A and two 1-forms μ and v. An easy calcula-

tion shows that the transversal vector field ζ is antiholomorphic if and

only if A J = — JA and v(X) = μ(JX) for every real tangent vector field

X. By extending h as a complex bilinear function on complex tangent

vectors, we get for Z = X — iJX and W = Y — £JX

(1.3) Λ(Z, WO = 2(/ι(Z, Y) + i£(X, Y))

and

h(Z, W) = 0

so that we can write for complex vector fields Z, W

(1.4) DZ(U W) = ^(f7^ WO +

The covariant symmetric tensor h is called the second fundamental form

for / and we shall say that / is non-degenerate if the tensor h is non-

degenerate; it is very easy to see that this condition is actually inde-

pendent of the choice of a transversal vector field (holomorphic, anti-

holomorphic or whatever).

Moreover by putting S = A — iJA and τ = μ — iv we can write

(1.5) DEζ = -S(Z) + τ(Z)ζ

for every (1, 0)-complex vector field Z.

We are now going to write down the fundamental equations of Gauss,

Codazzi and Ricci in the real representation; for the complex version we

refer to [N-Pi-Po]. Henceforth U, X, Y will indicate real vector fields.

We have the equation of Gauss

(1.6) R(X, Y)U = h(Y, U)AX - h(X, U)AY + h(JY, U)AJX

- h(JX, U)AJY,

the two equations of Codazzi

(i.7) (yxh){Y, u) + μ(X)h(γ, u) + μ(jχ)h(jγ, u)

= (Vγh)(X, U) + μ{Y)h(X, U) + μ(JY)h(JX, U)

(1.8) (VχA)Y - μ(X)AY - μ(JX)JAY

= (VYA)X - μ(Y)AX - μ{JY)JAX
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and the equations of Ricci

(1.9) h(X, AY)- h(Y, AX) = 2dμ(X, Y)

(1.10) h(AX, JY) = dv(X, Y).

§ 2. On the Cartan-Norden Theorem

We are now going to prove our main theorem

THEOERM 2.1. Let f: Mn -> Cn+1 be a non-degenerate afβne Kάhler

immersion. If the induced connection V is non-flat and coincides with the

Levi-Ciυita connection of a pseudo-kάhlerian metric g on Mn, then for every

x e Mn there is a neighborhood U(x) and a parallel pseudo-kάhlerian

metric < ) on Cn+ί so that f is isometric relative to g and <( ) and the

transversal vector field ζ for f is perpendicular to f(U(x)) at each point of

U(x).

Proof. We denote by h the second fundamental form for / and we

define the conjugate connection F of F by means of the following equation

(2.1) Xh(Y, U) = h{VxY, U) + h(Y,FxU- μ(X)U - υ(X)JU).

We recall that υ(X) = μ(JX). Equation (2.1) defines F uniquely since h

is supposed to be non-degenerate and we have easily that F is a complex

connection, that is, VJ— 0; by using the Codazzi equation F turns out

to be torsionfree.

LEMMA 2.1. // the connection V is a Levi-Civita connection, then the

1-form is closed.

Proof Indeed from the Gauss equation we get that Ric(Y, Z)—

—2h(AY,Z) since tr A = trJA = 0. Since F is metric, the Ricci tensor

is symmetric and from the Ricci equation we have that (F'xμ)(Y) is sym-

metric in X and Y, that is, dμ = 0. q.e.d.

LEMMA 2.2. If V comes from a pseudo-kάhlerian metric g, then the

conjugate connection F is locally pseudo-kdhlerian.

Proof. We define the (1,1) tensor B by setting g(X, Y) = h(BX, Y);

we note that since g is hermitian, we have that

h(BX, Y) = h(BJX, JY) = h(JBJX, Y)

hence B = JBJ. We now define
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~g(X,Y) = vh(B-iχ, Y)

for a suitable positive function υ in order to have that Fg = 0. We note
that

Zh(X, B-ιY) - h(X, FZB^Y) - WEB-'X, Y) = (Fzg)(B-'X, B-Y) = 0

and that

h(X, JB-'Y) = -HJB-'X, Y).

Using these identities we have

Zg(X, Y) - g(FzX, Y) - g(X, FZY)

= Z{v)h{B-ιX, Y) + vZHB-'X, Y) - v[Zh(X, B'Ύ)

- h(X, VZB-Ύ - μ(Z)B'iY - μ{JZ)JB->Y)]

- υ[Zh(B-ιX, Y) - h((FzB~iX, Y)

+ μiZMB-'X, Y) + μ(JZ)h(Y, JB'X)]

= [Z(v) - 2vμ(Z)]h(B-1X, Y).

So g turns out to be F-parallel if and only if we can choose a pos-
itive function υ so that Z(ϋ) = 2vμ(Z); since μ is closed by Lemma 1, we
can find locally a function λ so that μ = dλ and then we can put v =
exp (2Λ) > 0. q.e.d.

We now compute the curvature tensor Λ of F: we have

UZh(X, Y) = h(FvFzX, Y) + h(FzX, VυY- μ{U)Y- μ{JU)JY)

+ h{FvX, FZY) + h(X, FυFzY- μ(U)FzY- μ(JU)JFzY)

- Uμ(Z)h(X, Y) - μ(Z)U(h(X, Y) - Uμ(JZ)h(X, JY)

- μ(JZ)Uh(X, JY).

Interchanging U and Z and subtracting [U, Z]h(X, Y), we get

h(R(U, Z)X, Y) + h(X, R(U, Z)Y) - 2<M*7, Z)h(X, JY) = 0 .

Using now the structure equations (1.6), (1.10) and the fact that h is
non-degenerate, we have

(2.2) R(U,Z)Y= 2h(AU, JZ)JY - h(AU, Y)Z + h(AZ, Y)U

- h(Y, AJU)JZ + h(Y, AJZ)JU.

Taking trace we have that ίlίc (X, Y) = 2(n + ϊ)h(ZX, Y) and by equation
(2.2), it follows that the space (Mn, g) is fί-projectively flat (see e.g. [Y],
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Chapter XII, (3.16)); so the space (Mn,g) has constant holomorphic sec-

tional curvature and in particular it is Einstein, hence

(2.3) h(AX, Y) = λg(X, Y) = λυhiB-'X, Y)

for some function λ, which is constant if n > 2 (see [K-N], p. 168). By (2.3)

we have A = λvB~ι and

(2.4) g(AX, Y) = λvg(B-*X, γ ) = λvh(Xί y ) β

We now state the following

LEMMA 2.3. There is a nowhere vanishing C°° function φ such that

(2.5) g(AX, Y) = φh(X, Y)

for all real vector fields X, Y and

(2.6) dφ = 2φμ .

Proof We have already established the first assertion (2.5); the func-

tion φ can be taken to be λυ, where v is the function found in Lemma

2.2 and λ is a constant if n > 2; so (2.6) follows from the proof of Lemma

2.2 if n > 2. In the general case we differentiate (2.5)

Zg(AX, Y) = (Zφ)h(X, Y) + φZh(X, Y)

hence

g((FzA)X, Y) + g(A(FzX), Y) + g(AX, VZY) = (Zφ)h(X, Y) + φZh(X, Y)

that is

(2.7) g{{VzA)Xi Y) - φ(Vzh)(Xy Y) = (Zφ)h(X, Y)

and

(2.8) g(ΨzA)Z, Y) - φ(Pzh)(Z9 Y) = (Xφ)HZ, Y).

If we now subtract (2.8) from (2.7) and use the equations of Codazzi we

obtain

(Zφ)h(X, Y) - (Xφ)h(Z, Y)

= g(μ(Z)AX + μ(JZ)JAX - μ(X)AZ - μ(JX)JAZ, Y)

- φh(μ(X)Z + μ(JX)JZ - μ(Z)X - μ{JZ)JX, Y)

= φh(2μ(Z)X - 2μ(X)Z, Y)

hence
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(Zφ)X - (Xφ)Z = 2φ[μ(Z)X - μ(X)Z]

that is

Zφ = 2φμ(Z).

Since the function v satisfies the same differential equation dυ = 2vμ and

does not vanish anywhere, it follows that λ is a constant. If λ were 0,

we would have from equation (2.4) that A vanishes identically, hence

that V is flat. q.e.d.

We are now going to define the parallel pseudo-kahlerian metric < )

in Cw + 1 by means of the following

</*x,UY) = 8(x, Y), </*x, ?> - (ux, jf> = o,
<£, J f > = 0 , <£, f > =

where φ is the function given by Lemma 2.3. We have to verify that

< ) is Zλparallel, that is

(2.9) Z< £7, V> = <DZ C7, V> + < U, Dz V}

for all vector fields U and V along / and a vector field Z on M \ If

U = f*X and V = /ί|sY, then (2.9) reduces to F ^ = 0. If U = f*X and

V = f, then (2.9) gives condition (2.5) and if U = V = ?, then (2.9) reduces

to (2.6). The other possibilities are easily seen to be automatically

satisfied. q.e.d.

COROLLARY 2.1. Let (Mn, g) be a non-flat kdhlerian manifold and let

f: Mn -> Cn + 1 be a non-degenerate affine Kάhler immersion. Then the Ricci

tensor of {Mn,g) is positive- or negative-definite. Moreover the pseudo-

kahlerian metric < > in Cn+1- given by Theorem 2.1 is positive-definite if

and only if the Ricci tensor of (Mn, g) is negative-definite.

Proof. Using the Gauss equation, we have the following expression

for the Ricci tensor

Ric(Z, Y ) = -2h(AX, Y)

for all real vectors X and Y. Using Lemma 2.3 we have (locally)

Ric (X, X) = --g{A*X, X) = -*-g(AX, AY).
φ φ

Since h is non-degenerate, we see from (2.5) that the (1, 1) tensor A is



AFFINE KAHLER IMMERSIONS 133

one-to-one, hence the Ricci tensor is definite. Moreover Ric is negative-

definite if and only if the function φ is everywhere positive. q.e.d.

EXAMPLE. In order to show that the Ricci tensor can be positive-

definite, we give the following example. Let Ω = {ze C; Re 2<0}; we

define /: Ω —• C2 by f(z) = (z, exp (z)) and take ζ = (exp (z), 1) as an anti-

holomorphic transversal vector field. Actually ζ is perpendicular to f(Ω)

at each point of Ω with respect to the Lorentzian metric of C2 of signa-

ture (1, 1). The induced Kahler metric g on Ω is given by

g(d/dz, d/dz) = 1 - exp (2 Re z) > 0 , z e Ω ,

and it is easy to see that the second fundamental form h is

aiaz)
1 — exp (2 Re z)

so that / is non-degenerate. Moreover the Ricci tensor of {Ω, g) is (see

[K-N], p. 158)

- = exp(2Re g ) j .+«Φ(2Re g ) > „ ,
I - exp (2 Re e)

This shows that (Ω,g) can not be obtained as a complex hypersurface

of C2 endowed with the euclidean metric (see [K-N], p. 177, Prop. 9.4).

Remark. In order to clarify the geometrical meaning of the conjugate

connection used in the proof of Theorem 2.1, we recall something about

the Gauss map for complex hypersurfaces as introduced in [N-S]. Let

(M, g) be a kahlerian manifold and /: M-> Cn + 1 a non-degenerate complex

isometric immersion. We choose a unit real vector field ξ normal to

f(M); we recall (see [S], p. 230) that if X is any real vector field on M

Vxξ= -AX+s(X)Jξ

where s is a 1-form and with our notation the normal connection form

τ is simply given by τ(Z) = ίs(X — iJX), where Z — X — iJX. From

<ξ, Y) = 0 for every vector Y we get by differentiation

(2.10) g(AX, Y) = h(X, Y).

Finally the Codazzi equation is now the following (see [S], p. 253)

(VXA)(Y) - (FrA)(X) - s(X)JAX + s(Y)JAX = 0 .
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According to [N-S], p. 516, we define the Gauss map Φ

Φ: M->CPn

by putting Φ(x) = π(ξ), where π: S2n + 1 -> CPn is the canonical projection.

It is shown that Φ%X(X) = —π*ξ(AX) for every real tangent vector X at

x e M, so that since / is non-degenerate, the rank of A is 2n by (2.10)

and therefore Φ is an immersion. If now g denotes the Fubini-Study

kahlerian metric on CPW, a direct inspection of the results stated in [N-S],

§ 5, shows that the pull back Φ*g is given by

, Y) = g(AX, AY) = h(AX, Y) = - l l t i c ( X , Y).

We claim that the conjugate connection F as defined by formula (2.1) is

the Levi-Civita connection of the metric Φ*g. Indeed equation (2.1)

reduces to

(2.11) Xh(Y, Z) - h(PxY, Z) + h(Y9 VXZ - s(X)JZ)

where X, Y, Z are real vector fields on M. We first note that by equation

(2.10) we have that

(2.12) (Vxh)(Y, Z) = g({VxA){Y\ Z).

We write equation (2.11) in the equivalent form

(2.13) (?zh)(Y9 Z) + h(Y, VXZ) = h(Y, PXZ - s(X)JZ)

and if we interchange X and Z and subtract it from (2.13), we obtain

g((FxA)(Z), Y) - g((FzA)(X), Y) + Λ(y, [X, Z])

= h(Y, VXZ - VZX - s(X)JZ + s(Z)JX).

Using now the Codazzi equation, formula (2.12) and the fact that h is

non-degenerate, we get that FXZ — VZX = [X, Z], that is, F is torsionfree.

We now prove that VΦ*g = 0: indeed

(2.14) Φ*g(PxY, Z) + Φ*g(Y, VXZ) = h(FxY, AZ) + h(AY, VXZ)

= Xh(Y, AZ) - h(Y, VXAZ) + s(X)h(Y, JAZ)

+ Xh(Z, AY)- h(Z, VXAY) + s(X)h(Z, JAY)

= Xh(Y, AZ) + Xh(Z, AY)- h(Y, VXAZ) - h(Z, FXAY)

since h(Z, JAY) = -Λ(Z, AJY) = -h(AZ, JY) = -h(JAZ, Y). We now

note that
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Xh(Z, AX) = (Fxh)(Z, AY) + h(FxZ, AY) + h(Z, FXAY)

= g((FxA)(Z), AY) + h(FxZ, AY) + h(Z, FXAY)

= h((FxA)(Z), Y) + h(AFxZ, Y) + h(Z, FXAY)

= h(FxAZ,Y) + h(Z,FxAY).

If we insert this into (2.14), we obtain

Φ*g(FxY, Z) + Φ*g(Y, FXZ) = Xh(Y, AZ) = XΦ*g(Y, Z)

and we are done.
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