ON THE CARTAN-NORDEN THEOREM FOR AFFINE KÄHLER IMMERSIONS

KATSUMI NOMIZU and FABIO PODESTÀ

In [$\mathrm{N}-\mathrm{Pi}-\mathrm{Po}$] the notion of affine Kähler immersion for complex manifolds has been introduced: if M^{n} is an n-dimensional complex manifold and $f: M^{n} \rightarrow \mathbf{C}^{n+1}$ is a holomorphic immersion together with an antiholomorphic transversal vector field ζ, we can induce a connection ∇ on M^{n} which is Kähler-like, that is, its curvature tensor R satisfies $R(Z, W)=0$ as long as Z, W are $(1,0)$ complex vector fields on M.

This work is aimed at proving a Cartan-Norden-like theorem for affine Kähler immersions, generalizing the classical result in affine differential geometry (see [N-Pi]). In §1 we deal with some preliminaries about affine Kähler immersions in order to make our work self-contained. In $\S 2$ we prove our main result: if a non-flat Kähler manifold (M^{n}, g) can be affine Kähler immersed into \mathbf{C}^{n+1} and the immersion f is non-degenerate, then for every point $x \in M^{n}$ we can find a parallel pseudokählerian metric in \mathbf{C}^{n+1} such that f is locally isometric around the point x.

§ 1. Preliminaries

Throughout this work we shall refer to [$\mathrm{N}-\mathrm{Pi}-\mathrm{Po}$] for basic results in the geometry of affine Kähler immersions. We recall here some fundamental equations. Let M^{n} be an n-dimensional complex manifold with complex structure J and let $f: M^{n} \rightarrow \mathbf{C}^{n+1}$ be a holomorhic immersion. We denote by D the standard flat connection in \mathbf{C}^{n+1}, a transversal $(1,0)$ vector field $\zeta=\xi-i J \xi$ along f is said to be antiholomorphic if $D_{z} \zeta=0$ for every complex vector field Z of type (1,0) on M^{n}.

If X and Y are real vector fields on M^{n}, we can write

$$
\begin{equation*}
D_{X}\left(f_{*} Y\right)=f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi+k(X, Y) J \xi \tag{1.1}
\end{equation*}
$$

thus defining a torsionfree affine connection ∇ and symmetric tensors h
Received March 6, 1990.
and k on M^{n}. Since f is holomorphic and J is D-parallel, we get that $\nabla J=0$ and $k(X, Y)=-h(J X, Y)=-h(X, J Y)$. We can also write

$$
\begin{equation*}
D_{x} \xi=-f_{*}(A X)+\mu(X) \xi+\nu(X) J \xi \tag{1.2}
\end{equation*}
$$

defining the shape operator A and two 1 -forms μ and ν. An easy calculation shows that the transversal vector field ζ is antiholomorphic if and only if $A J=-J A$ and $\nu(X)=\mu(J X)$ for every real tangent vector field X. By extending h as a complex bilinear function on complex tangent vectors, we get for $Z=X-i J X$ and $W=Y-i J X$

$$
\begin{equation*}
h(Z, W)=2(h(X, Y)+i k(X, Y)) \tag{1.3}
\end{equation*}
$$

and

$$
h(Z, \bar{W})=0
$$

so that we can write for complex vector fields Z, W

$$
\begin{equation*}
D_{z}\left(f_{*} W\right)=f_{*}\left(\nabla_{Z} W\right)+h(Z, W) \zeta \tag{1.4}
\end{equation*}
$$

The covariant symmetric tensor h is called the second fundamental form for f and we shall say that f is non-degenerate if the tensor h is nondegenerate; it is very easy to see that this condition is actually independent of the choice of a transversal vector field (holomorphic, antiholomorphic or whatever).

Moreover by putting $S=A-i J A$ and $\tau=\mu-i \nu$ we can write

$$
\begin{equation*}
D_{\bar{Z}} \zeta=-S(Z)+\tau(Z) \zeta \tag{1.5}
\end{equation*}
$$

for every $(1,0)$-complex vector field Z.
We are now going to write down the fundamental equations of Gauss, Codazzi and Ricci in the real representation; for the complex version we refer to [N-Pi-Po]. Henceforth U, X, Y will indicate real vector fields. We have the equation of Gauss

$$
\begin{align*}
R(X, Y) U= & h(Y, U) A X-h(X, U) A Y+h(J Y, U) A J X \tag{1.6}\\
& -h(J X, U) A J Y
\end{align*}
$$

the two equations of Codazzi

$$
\begin{align*}
& \left(\nabla_{X} h\right)(Y, U)+\mu(X) h(Y, U)+\mu(J X) h(J Y, U) \tag{1.7}\\
& \quad=\left(\nabla_{Y} h\right)(X, U)+\mu(Y) h(X, U)+\mu(J Y) h(J X, U) \\
& \left(\nabla_{X} A\right) Y-\mu(X) A Y-\mu(J X) J A Y \tag{1.8}\\
& \quad=\left(\nabla_{Y} A\right) X-\mu(Y) A X-\mu(J Y) J A X
\end{align*}
$$

and the equations of Ricci

$$
\begin{align*}
& h(X, A Y)-h(Y, A X)=2 d \mu(X, Y) \tag{1.9}\\
& h(A X, J Y)=d \nu(X, Y) \tag{1.10}
\end{align*}
$$

§ 2. On the Cartan-Norden Theorem

We are now going to prove our main theorem
Theoerm 2.1. Let $f: M^{n} \rightarrow \mathbf{C}^{n+1}$ be a non-degenerate affine Kähler immersion. If the induced connection ∇ is non-flat and coincides with the Levi-Civita connection of a pseudo-kählerian metric g on M^{n}, then for every $x \in M^{n}$ there is a neighborhood $U(x)$ and a parallel pseudo-kählerian metric 〈〉on \mathbf{C}^{n+1} so that f is isometric relative to g and \rangle and the transversal vector field ζ for f is perpendicular to $f(U(x))$ at each point of $U(x)$.

Proof. We denote by h the second fundamental form for f and we define the conjugate connection \tilde{V} of ∇ by means of the following equation

$$
\begin{equation*}
X h(Y, U)=h\left(\nabla_{X} Y, U\right)+h\left(Y, \tilde{\nabla}_{X} U-\mu(X) U-v(X) J U\right) \tag{2.1}
\end{equation*}
$$

We recall that $v(X)=\mu(J X)$. Equation (2.1) defines $\tilde{\nabla}$ uniquely since h is supposed to be non-degenerate and we have easily that $\tilde{\nabla}$ is a complex connection, that is, $\tilde{V} J=0$; by using the Codazzi equation \tilde{V} turns out to be torsionfree.

Lemma 2.1. If the connection $\boldsymbol{\nabla}$ is a Levi-Civita connection, then the 1-form is closed.

Proof. Indeed from the Gauss equation we get that $\operatorname{Ric}(Y, Z)=$ $-2 h(A Y, Z)$ since $\operatorname{tr} A=\operatorname{tr} J A=0$. Since ∇ is metric, the Ricci tensor is symmetric and from the Ricci equation we have that $\left(\nabla_{x} \mu\right)(Y)$ is symmetric in X and Y, that is, $d \mu=0$.

Lemma 2.2. If $\bar{\nabla}$ comes from a pseudo-kählerian metric g, then the conjugate connection \tilde{V} is locally pseudo-kählerian.

Proof. We define the $(1,1)$ tensor B by setting $g(X, Y)=h(B X, Y)$; we note that since g is hermitian, we have that

$$
h(B X, Y)=h(B J X, J Y)=h(J B J X, Y)
$$

hence $B=J B J$. We now define

$$
\tilde{g}(X, Y)=v h\left(B^{-1} X, Y\right)
$$

for a suitable positive function v in order to have that $\tilde{\nabla} \tilde{g}=0$. We note that

$$
Z h\left(X, B^{-1} Y\right)-h\left(X, \nabla_{Z} B^{-1} Y\right)-h\left(\nabla_{Z} B^{-1} X, Y\right)=\left(\nabla_{Z} g\right)\left(B^{-1} X, B^{-1} Y\right)=0
$$

and that

$$
h\left(X, J B^{-1} Y\right)=-h\left(J B^{-1} X, Y\right)
$$

Using these identities we have

$$
\begin{aligned}
Z \tilde{g}(X, Y) & -\tilde{g}\left(\tilde{\nabla}_{Z} X, Y\right)-\tilde{g}\left(X, \tilde{\nabla}_{Z} Y\right) \\
= & Z(v) h\left(B^{-1} X, Y\right)+v Z h\left(B^{-1} X, Y\right)-v\left[Z h\left(X, B^{-1} Y\right)\right. \\
& \left.-h\left(X, \nabla_{Z} B^{-1} Y-\mu(Z) B^{-1} Y-\mu(J Z) J B^{-1} Y\right)\right] \\
& -v\left[Z h\left(B^{-1} X, Y\right)-h\left(\left(\nabla_{Z} B^{-1} X, Y\right)\right.\right. \\
& \left.+\mu(Z) h\left(B^{-1} X, Y\right)+\mu(J Z) h\left(Y, J B^{-1} X\right)\right] \\
= & {[Z(v)-2 v \mu(Z)] h\left(B^{-1} X, Y\right) }
\end{aligned}
$$

So \tilde{g} turns out to be $\tilde{\nabla}$-parallel if and only if we can choose a positive function v so that $Z(v)=2 v \mu(Z)$; since μ is closed by Lemma 1 , we can find locally a function λ so that $\mu=d \lambda$ and then we can put $v=$ $\exp (2 \lambda)>0$.
q.e.d.

We now compute the curvature tensor \tilde{R} of \tilde{V} : we have

$$
\begin{aligned}
U Z h(X, Y)= & h\left(\nabla_{U} \nabla_{Z} X, Y\right)+h\left(\nabla_{Z} X, \tilde{\nabla}_{U} Y-\mu(U) Y-\mu(J U) J Y\right) \\
& +h\left(\nabla_{U} X, \tilde{\nabla}_{Z} Y\right)+h\left(X, \tilde{\nabla}_{U} \tilde{\nabla}_{Z} Y-\mu(U) \tilde{V}_{Z} Y-\mu(J U) J \tilde{V}_{Z} Y\right) \\
& -U \mu(Z) h(X, Y)-\mu(Z) U(h(X, Y)-U \mu(J Z) h(X, J Y) \\
& -\mu(J Z) U h(X, J Y) .
\end{aligned}
$$

Interchanging U and Z and subtracting $[U, Z] h(X, Y)$, we get

$$
h(R(U, Z) X, Y)+h(X, \tilde{R}(U, Z) Y)-2 d \nu(U, Z) h(X, J Y)=0 .
$$

Using now the structure equations (1.6), (1.10) and the fact that h is non-degenerate, we have

$$
\begin{align*}
\tilde{R}(U, Z) Y= & 2 h(A U, J Z) J Y-h(A U, Y) Z+h(A Z, Y) U \tag{2.2}\\
& -h(Y, A J U) J Z+h(Y, A J Z) J U
\end{align*}
$$

Taking trace we have that $\widetilde{\operatorname{Ric}}(X, Y)=2(n+1) h(Z X, Y)$ and by equation (2.2), it follows that the space (M^{n}, \tilde{g}) is H-projectively flat (see e.g. [Y],

Chapter XII, (3.16)); so the space (M^{n}, \tilde{g}) has constant holomorphic sectional curvature and in particular it is Einstein, hence

$$
\begin{equation*}
h(A X, Y)=\lambda \tilde{g}(X, Y)=\lambda v h\left(B^{-1} X, Y\right) \tag{2.3}
\end{equation*}
$$

for some function λ, which is constant if $n \geq 2$ (see [K-N], p. 168). By (2.3) we have $A=\lambda v B^{-1}$ and

$$
\begin{equation*}
g(A X, Y)=\lambda v g\left(B^{-1} X, Y\right)=\lambda v h(X, Y) \tag{2.4}
\end{equation*}
$$

We now state the following
Lemma 2.3. There is a nowhere vanishing C^{∞} function ϕ such that

$$
\begin{equation*}
g(A X, Y)=\phi h(X, Y) \tag{2.5}
\end{equation*}
$$

for all real vector fields X, Y and

$$
\begin{equation*}
d \phi=2 \phi \mu \tag{2.6}
\end{equation*}
$$

Proof. We have already established the first assertion (2.5); the function ϕ can be taken to be λv, where v is the function found in Lemma 2.2 and λ is a constant if $n \geq 2$; so (2.6) follows from the proof of Lemma 2.2 if $n \geq 2$. In the general case we differentiate (2.5)

$$
Z g(A X, Y)=(Z \phi) h(X, Y)+\phi Z h(X, Y)
$$

hence

$$
g\left(\left(\nabla_{Z} A\right) X, Y\right)+g\left(A\left(\nabla_{Z} X\right), Y\right)+g\left(A X, \nabla_{Z} Y\right)=(Z \phi) h(X, Y)+\phi Z h(X, Y)
$$

that is

$$
\begin{equation*}
g\left(\left(\nabla_{Z} A\right) X, Y\right)-\phi\left(\nabla_{Z} h\right)(X, Y)=(Z \phi) h(X, Y) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Z, Y\right)-\phi\left(\nabla_{X} h\right)(Z, Y)=(X \phi) h(Z, Y) \tag{2.8}
\end{equation*}
$$

If we now subtract (2.8) from (2.7) and use the equations of Codazzi we obtain

$$
\begin{aligned}
(Z \phi) h(X, Y) & -(X \phi) h(Z, Y) \\
= & g(\mu(Z) A X+\mu(J Z) J A X-\mu(X) A Z-\mu(J X) J A Z, Y) \\
& -\phi h(\mu(X) Z+\mu(J X) J Z-\mu(Z) X-\mu(J Z) J X, Y) \\
= & \phi h(2 \mu(Z) X-2 \mu(X) Z, Y)
\end{aligned}
$$

hence

$$
(Z \phi) X-(X \phi) Z=2 \phi[\mu(Z) X-\mu(X) Z]
$$

that is

$$
Z \phi=2 \phi \mu(Z)
$$

Since the function v satisfies the same differential equation $d v=2 v \mu$ and does not vanish anywhere, it follows that λ is a constant. If λ were 0 , we would have from equation (2.4) that A vanishes identically, hence that ∇ is flat.

We are now going to define the parallel pseudo-kählerian metric \rangle in \mathbf{C}^{n+1} by means of the following

$$
\begin{array}{ll}
\left\langle f_{*} X, f_{*} Y\right\rangle=g(X, Y), & \left\langle f_{*} X, \xi\right\rangle=\left\langle f_{*} X, J \xi\right\rangle=0, \\
\langle\xi, J \xi\rangle=0, & \langle\xi, \xi\rangle=\langle J \xi, J \xi\rangle=\phi,
\end{array}
$$

where ϕ is the function given by Lemma 2.3. We have to verify that \rangle is D-parallel, that is

$$
\begin{equation*}
Z\langle U, V\rangle=\left\langle D_{z} U, V\right\rangle+\left\langle U, D_{z} V\right\rangle \tag{2.9}
\end{equation*}
$$

for all vector fields U and V along f and a vector field Z on M^{n}. If $U=f_{*} X$ and $V=f_{*} Y$, then (2.9) reduces to $\nabla_{Z} g=0$. If $U=f_{*} X$ and $V=\xi$, then (2.9) gives condition (2.5) and if $U=V=\xi$, then (2.9) reduces to (2.6). The other possibilities are easily seen to be automatically satisfied.

Corollary 2.1. Let $\left(M^{n}, g\right)$ be a non-flat kählerian manifold and let $f: M^{n} \rightarrow \mathbf{C}^{n+1}$ be a non-degenerate affine Kähler immersion. Then the Ricci tensor of $\left(M^{n}, g\right)$ is positive- or negative-definite. Moreover the pseudokählerian metric 〈〉in \mathbf{C}^{n+1} - given by Theorem 2.1 is positive-definite if and only if the Ricci tensor of $\left(M^{n}, g\right)$ is negative-definite.

Proof. Using the Gauss equation, we have the following expression for the Ricci tensor

$$
\operatorname{Ric}(X, Y)=-2 h(A X, Y)
$$

for all real vectors X and Y. Using Lemma 2.3 we have (locally)

$$
\operatorname{Ric}(X, X)=-\frac{2}{\phi} g\left(A^{2} X, X\right)=-\frac{2}{\phi} g(A X, A Y) .
$$

Since h is non-degenerate, we see from (2.5) that the $(1,1)$ tensor A is
one-to-one, hence the Ricci tensor is definite. Moreover Ric is negativedefinite if and only if the function ϕ is everywhere positive. q.e.d.

Example. In order to show that the Ricci tensor can be positivedefinite, we give the following example. Let $\Omega=\{z \in \mathbf{C} ; \operatorname{Re} z<0\}$; we define $f: \Omega \rightarrow \mathbf{C}^{2}$ by $f(z)=(z, \exp (z))$ and take $\zeta=(\exp (\bar{z}), 1)$ as an antiholomorphic transversal vector field. Actually ζ is perpendicular to $f(\Omega)$ at each point of Ω with respect to the Lorentzian metric of \mathbf{C}^{2} of signature (1,1). The induced Kähler metric g on Ω is given by

$$
g(\partial / \partial z, \partial / \partial \bar{z})=1-\exp (2 \operatorname{Re} z)>0, \quad z \in \Omega,
$$

and it is easy to see that the second fundamental form h is

$$
h(\partial / \partial z, \partial / \partial z)=\frac{\exp (z)}{1-\exp (2 \operatorname{Re} z)}
$$

so that f is non-degenerate. Moreover the Ricci tensor of (Ω, g) is (see [K-N], p. 158)

$$
R_{1 \overline{1}}=-\frac{\partial^{2} \log (1-\exp (2 \operatorname{Re} z))}{\partial / \partial z \partial / \partial \bar{z}}=\exp (2 \operatorname{Re} z) \frac{1+\exp (2 \operatorname{Re} z)}{1-\exp (2 \operatorname{Re} z)}>0
$$

This shows that (Ω, g) can not be obtained as a complex hypersurface of \mathbf{C}^{2} endowed with the euclidean metric (see [K-N], p. 177, Prop. 9.4).

Remark. In order to clarify the geometrical meaning of the conjugate connection used in the proof of Theorem 2.1, we recall something about the Gauss map for complex hypersurfaces as introduced in [N-S]. Let (M, g) be a kählerian manifold and $f: M \rightarrow \mathbf{C}^{n+1}$ a non-degenerate complex isometric immersion. We choose a unit real vector field ξ normal to $f(M)$; we recall (see [S], p. 230) that if X is any real vector field on M

$$
\nabla_{x} \xi=-A X+s(X) J \xi
$$

where s is a 1 -form and with our notation the normal connection form τ is simply given by $\tau(Z)=i s(X-i J X)$, where $Z=X-i J X$. From $\langle\xi, Y\rangle=0$ for every vector Y we get by differentiation

$$
\begin{equation*}
g(A X, Y)=h(X, Y) \tag{2.10}
\end{equation*}
$$

Finally the Codazzi equation is now the following (see [S], p. 253)

$$
\left(\nabla_{X} A\right)(Y)-\left(\nabla_{Y} A\right)(X)-s(X) J A X+s(Y) J A X=0
$$

According to [N-S], p. 516, we define the Gauss map Φ

$$
\Phi: M \rightarrow \mathbf{C P}^{n}
$$

by putting $\Phi(x)=\pi(\xi)$, where $\pi: S^{2 n+1} \rightarrow \mathbf{C P}^{n}$ is the canonical projection. It is shown that $\Phi_{* x}(X)=-\pi_{* \xi}(A X)$ for every real tangent vector X at $x \in M$, so that since f is non-degenerate, the rank of A is $2 n$ by (2.10) and therefore Φ is an immersion. If now \tilde{g} denotes the Fubini-Study kählerian metric on $\mathbf{C P}^{n}$, a direct inspection of the results stated in [N-S], $\S 5$, shows that the pull back $\Phi^{*} \tilde{g}$ is given by

$$
\Phi^{*} \tilde{g}(X, Y)=g(A X, A Y)=h(A X, Y)=-\frac{1}{2} \operatorname{Ric}(X, Y)
$$

We claim that the conjugate connection \tilde{V} as defined by formula (2.1) is the Levi-Civita connection of the metric $\Phi^{*} \tilde{g}$. Indeed equation (2.1) reduces to

$$
\begin{equation*}
X h(Y, Z)=h\left(\nabla_{X} Y, Z\right)+h\left(Y, \tilde{\nabla}_{X} Z-s(X) J Z\right) \tag{2.11}
\end{equation*}
$$

where X, Y, Z are real vector fields on M. We first note that by equation (2.10) we have that

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=g\left(\left(\nabla_{X} A\right)(Y), Z\right) . \tag{2.12}
\end{equation*}
$$

We write equation (2.11) in the equivalent form

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)+h\left(Y, \nabla_{X} Z\right)=h\left(Y, \tilde{\nabla}_{X} Z-s(X) J Z\right) \tag{2.13}
\end{equation*}
$$

and if we interchange X and Z and subtract it from (2.13), we obtain

$$
\begin{array}{r}
g\left(\left(\nabla_{X} A\right)(Z), Y\right)-g\left(\left(V_{Z} A\right)(X), Y\right)+h(Y,[X, Z]) \\
\quad=h\left(Y, \tilde{\nabla}_{X} Z-\tilde{\nabla}_{Z} X-s(X) J Z+s(Z) J X\right)
\end{array}
$$

Using now the Codazzi equation, formula (2.12) and the fact that h is non-degenerate, we get that $\tilde{V}_{X} Z-\tilde{\nabla}_{Z} X=[X, Z]$, that is, $\tilde{\nabla}$ is torsionfree.

We now prove that $\tilde{\nabla} \Phi^{*} \tilde{g}=0$: indeed

$$
\begin{align*}
& \Phi^{*} \tilde{g}\left(\tilde{\nabla}_{X} Y, Z\right)+\Phi^{*} \tilde{g}\left(Y, \tilde{\nabla}_{X} Z\right)=h\left(\tilde{\nabla}_{X} Y, A Z\right)+h\left(A Y, \tilde{\nabla}_{X} Z\right) \tag{2.14}\\
& \quad=X h(Y, A Z)-h\left(Y, \nabla_{X} A Z\right)+s(X) h(Y, J A Z) \\
& \quad \quad+X h(Z, A Y)-h\left(Z, \nabla_{X} A Y\right)+s(X) h(Z, J A Y) \\
& \quad=X h(Y, A Z)+X h(Z, A Y)-h\left(Y, \nabla_{X} A Z\right)-h\left(Z, \nabla_{X} A Y\right)
\end{align*}
$$

since $h(Z, J A Y)=-h(Z, A J Y)=-h(A Z, J Y)=-h(J A Z, Y)$. We now note that

$$
\begin{aligned}
X h(Z, A X) & =\left(\nabla_{X} h\right)(Z, A Y)+h\left(\nabla_{X} Z, A Y\right)+h\left(Z, \nabla_{X} A Y\right) \\
& =g\left(\left(\nabla_{x} A\right)(Z), A Y\right)+h\left(\nabla_{x} Z, A Y\right)+h\left(Z, \nabla_{x} A Y\right) \\
& =h\left(\left(\nabla_{X} A\right)(Z), Y\right)+h\left(A \nabla_{x} Z, Y\right)+h\left(Z, \nabla_{X} A Y\right) \\
& =h\left(\nabla_{X} A Z, Y\right)+h\left(Z, \nabla_{X} A Y\right) .
\end{aligned}
$$

If we insert this into (2.14), we obtain

$$
\Phi^{*} \tilde{g}\left(\tilde{V}_{X} Y, Z\right)+\Phi^{*} \tilde{g}\left(Y, \tilde{V}_{X} Z\right)=X h(Y, A Z)=X \Phi^{*} \tilde{g}(Y, Z)
$$

and we are done.

References

[K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol II, John Wiley, New York (1969).
[N-Pi] K. Nomizu and P. Pinkall, On the geometry of affine immersions Math. Z., 195 (1987), 165-178.
[N-Pi-Po] K. Nomizu, U. Pinkall and F. Podestà, On the geometry of affine Kähler immersions, Nagoya Math. J., 120 (1990), 205-222.
[N-S] K. Nomizu and B. Smyth, Differential geometry for complex hypersurfaces, II J. Math. Soc. Japan, 20 (1968), 498-521.
[S] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., (1967), 246-266.
[Y] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965).

Katsumi Nomizu
Department of Mathematics
Brown University
Providence, RI 02912
U.S.A.

Fabio Podestà
c/o Scoula Normale Superiore
Piazza Cavalieri 7
I-56100 Pisa
Italy

