YOUNG DIAGRAMMATIC METHODS IN NON. COMMUTATIVE INVARIANT THEORY

YASUO TERANISHI

Introduction

In this paper we will study some aspects of non-commutative invariant theory. Let V be a finite-dimensional vector space over a field K of characteristic zero and let

$$
\begin{aligned}
K[V] & =K \oplus V \oplus S^{2}(V) \oplus \cdots, \text { and } \\
K\langle V\rangle & =K \oplus V \oplus \otimes^{2} V \oplus \otimes^{3} V \oplus \cdots
\end{aligned}
$$

be respectively the symmetric algebra and the tensor algebra over V. Let G be a subgroup of $G L(V)$. Then G acts on $K[V]$ and $K\langle V\rangle$. Much of this paper is devoted to the study of the (non-commutative) invariant ring $K\langle V\rangle^{\theta}$ of G acting on $K\langle V\rangle$.

In the first part of this paper, we shall study the invariant ring in the following situation.

Take a classical group G (i.e., $G=S L(n, K), O(n, K)$ or $S p(n, K)$) and the standard G-module K^{n}. Let V be the d-th symmetric power of K^{n}. Then G acts on V and we get $K\langle V\rangle^{a}$.

By the Lane-Kharchenko theorem ([L], [Kh]), the invariant ring $K\langle V\rangle^{a}$ is a free algebra. For the construction of explicit free generators, we will develop a symbolic method along the lines of Kung-Rota [K-R].

In the second part of this paper, we will study S-algebras in the sence of A.N. Koryukin. Koryukin [Ko] has proved that if V is a finite-dimensional K-vector space and G is a reductive subgroup of $G L(V)$ then $K\langle V\rangle^{G}$ is finitely generated as an S-algebra. We will prove that a homogeneous system of generators for the (commutative) invariant ring $K\left[\Lambda^{2} V \oplus V\right]^{G}$ gives rise to a system of generators for the invariant ring $K\langle V\rangle^{a}$ as an S-algebra.

In the final part of this paper, we will study (non-commutative) in-

[^0]variants of finite linear groups acting on the ring of 2 by 2 generic matrices with zero trace. In this case, rings of invariants are finitely generated and Cohen-Macaulay modules over their centrers. We will give a formula for the Poincare series of the invariant rings. The formula is analogous to the classical formula of Molien in the commutative case, but more complicated.

§ 1. Umbral derivation of tensor invariants of n-ary forms

1.1. We consider the generic n-ary forms of degree d,

$$
f\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)=\sum_{\substack{\alpha \in N^{n} \\|\alpha|=d}}\binom{d}{\alpha} a_{a} \xi^{\alpha}
$$

with coefficients a_{a} which are indeterminates over a field K of characteristic zero. Here, for an $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbf{N}^{n},|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \xi^{\alpha}=\xi^{\alpha_{1}} \ldots \xi^{\alpha_{n}}$ and $\binom{d}{\alpha}=\frac{d!}{\alpha_{1}!\cdots \alpha_{n}!}$. Then each transformation

$$
\xi_{i}=\sum_{1 \leq k \leq n} a_{k i} \xi_{k}^{\prime},
$$

carries the generic n-ary form $f\left(\xi_{1}, \cdots, \xi_{n}\right)$ into another n-ary form

$$
f^{\prime}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)=\sum_{\alpha \in \mathbf{N}^{n}}\binom{d}{\alpha}{a_{\alpha}^{\prime} \xi^{\alpha} .}^{\text {. }}
$$

The map $a_{\alpha} \rightarrow a_{\alpha}^{\prime}$ defines the d-th symmetric tensor representation of the general linear group $G L(n, K)$. Further let $d_{1}, d_{2}, \cdots, d_{r}$ be positive integers and consider a system of generic n-ary forms $f_{1}, f_{2}, \cdots, f_{r}$ of degree $d_{1}, d_{2}, \cdots, d_{r}$, respectively:

$$
f_{1}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|a|=d_{1}}}\binom{d_{1}}{\alpha} a_{\alpha}^{(1) \xi^{\alpha}}, f_{2}=\sum_{\substack{\beta=\mathbb{N}^{n} \\|\beta|=d_{2}}}\binom{d_{2}}{\beta} a_{\beta}^{(2)} \xi^{\beta}, \cdots, f_{r}=\sum_{\substack{r \in \mathbb{N}^{n} \\| |=d_{r}}}\binom{d_{r}}{\gamma} a_{r}^{(r)} \xi^{r} .
$$

Viewing the coefficients $a_{\alpha}^{(1)}, a_{\beta}^{(2)}, \cdots, a_{r}^{(r)}$ as independent variables over K, we get a linear action of $G L(n, K)$ on the polynomial ring

$$
S_{n, \underline{q}}=K\left[a_{\alpha}^{(1)}, a_{\beta}^{(2)}, \cdots, a_{r}^{(r)}\right]
$$

Let G be a classical subgroup (i.e., $G=S L(n, K), O(n, K)$, or $S p(n, K)$). The invariant ring $S_{n, \phi}^{G}$ under the group action of G is called the ring of simultaneous G-invariants of n-ary forms $f_{1}, f_{2}, \cdots, f_{r}$. The polynomial ring $S_{n, \underline{q}}$ is \mathbf{N}^{r}-graded by giving $a_{\alpha}^{(i)}$ multi-degree $\underline{e}_{i}=(0, \cdots, 0,1,0, \cdots, 0)$, the
i-th unit vector of \mathbf{N}^{r}, the grading on $S_{n, q}$ induces the same grading on $S_{n,{ }_{2}}^{G}$.

For each $\underline{m}=\left(m_{1}, \cdots, m_{r}\right) \in \mathbf{N}^{r}$, we denote by $\left(S_{n, q}\right)_{m}^{G}$ the vector space of degree \underline{m}. If $\underline{m}=(1,1, \cdots, 1)$, the space is called the space of multilinear G-invariants of type $d=\left(d_{1}, \cdots, d_{r}\right)$.

Let $x^{(1)}={ }^{t}\left(x_{1}^{(1)}, \cdots, x_{n}^{(1)}\right), x^{(2)}={ }^{t}\left(x_{1}^{(2)}, \cdots, x_{n}^{(2)}\right), \cdots, x^{(r)}={ }^{t}\left(x_{1}^{(r)}, \cdots, x_{n}^{(r)}\right)$ be the n-dimensional column vectors whose entries $x_{j}^{(i)}$ are independent commuting variables. We call these variable vectors $x^{(1)}, x^{(2)}, \cdots, x^{(r)}$ umbral vectors and we call the polynomial ring $K\left[x_{j}^{(i)} ; 1 \leq i \leq r, 1 \leq j \leq n\right]$ the umbral space. The umbral operator U is the linear operator from the umbral space to the polynomial ring $S_{n, \mathbb{q}}$ defined by

$$
U\left(x^{(i) \alpha}\right)=\left\{\begin{array}{l}
a_{\alpha}^{(i)}, \text { if }|\alpha|=d_{i} \\
0, \text { otherwise }
\end{array}\right.
$$

where $x^{(i) \alpha_{1}}=x_{1}^{(i) \alpha_{1}} \cdots x_{n}^{(i) \alpha_{n}}$, for $\alpha \in \mathbf{N}^{n}$. For a monomial, we set

$$
U\left(x^{\left(i_{1}\right) \alpha_{1}} \cdots x^{\left(i_{t}\right) a_{t}}\right)=U\left(x^{\left(i_{1}\right) \alpha_{1}}\right) \cdots U\left(x^{\left(i_{t}\right) a t}\right) .
$$

1.2. We associate to an n-tuple $\underline{i}=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ of positive integers satisfying $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq r$, an indeterminate $p_{i}\left(=p_{i_{2} 1_{1} \cdots i_{n}}\right)$. Let I be the ideal of the polynomial ring $K\left[\cdots, p_{i}, \cdots\right]$ generated by the Plücker relations

$$
\sum_{1 \leq k \leq n+1}(-1)^{k+1} p_{j_{1} j_{2} \cdots j_{\hat{k}} \cdots j_{n+1}} p_{i_{1} i_{2} \cdots i_{n-1} j_{k}}
$$

The quotient ring

$$
K\left[\cdots, p_{i}, \cdots\right] / I
$$

is the coordinate ring $K[\operatorname{Gr}(n, r)]$ of the Grassmann variety $\operatorname{Gr}(n, r)$. The ring $K\left[\cdots, p_{i}, \cdots\right]$ (resp. $K[\operatorname{Gr}(n, r)]$) is an \mathbf{N}^{r}-graded ring by giving each p_{i} degree $\underline{e}_{i_{1}}+\cdots+e_{i_{n}} \in \mathbf{N}^{r}$. We associate to each monomial

$$
p_{i} \cdot p_{i} \cdots p_{\underline{\underline{k}}}\left(i=\left(i_{1}, \cdots, i_{n}\right), j=\left(j_{1}, \cdots, j_{n}\right), \cdots, k=\left(k_{1}, \cdots, k_{n}\right)\right)
$$

of degree $\underline{d}=\left(d_{1}, \cdots, d_{r}\right) \in \mathbf{N}^{r}$, a multi-linear form in $a_{\alpha}^{(1)}, a_{\beta}^{(2)}, \cdots, a_{r}^{(r)}$ in the following way. We replace each factor $p_{m_{1} \cdots m_{n}}$ of a monomial $p_{i} \cdot p_{i}$ $\cdots p_{\underline{k}}$ by the determinant $\left|x^{\left(m_{1}\right)} \cdots x^{\left(m_{n}\right)}\right|$ of the n by n matrix

$$
\left(\begin{array}{ccc}
x_{1}^{\left(m_{1}\right)} & \cdots & x_{n}^{\left(m_{n}\right)} \\
\vdots & & \vdots \\
x_{1}^{\left(m_{1}\right)} & \cdots & x_{n}^{\left(m_{n}\right)}
\end{array}\right)
$$

Then expanding the product of these determinants, we find that

$$
U\left(\left|x^{\left(i_{1}\right)} \cdots x^{\left(i_{n}\right)}\right| \cdot\left|x^{\left(j_{1}\right)} \cdots x^{\left(j_{n}\right)}\right| \cdots\left|x^{\left(k_{1}\right)} \cdots x^{\left(k_{n}\right)}\right|\right)
$$

is a Z-linear combination of terms of the form

$$
a_{\alpha}^{(1)} \cdot a_{\beta}^{(2)} \cdots a_{r}^{(r)}\left(\alpha, \beta, \cdots, \gamma \in \mathbf{N}^{n}\right) \quad \text { with }|\alpha|=d_{1},|\beta|=d_{2}, \cdots,|\gamma|=d_{r} .
$$

Therefore we can define a K-linear map

$$
U_{n, r, \underline{q}}: K\left[\cdots, p_{i}, \cdots\right]_{\underline{q}} \longrightarrow\left(S_{n, \underline{q}}\right)_{(1 \cdots 1)}
$$

by

$$
\begin{aligned}
& U_{n, r, d}\left(p_{i_{1} \cdots i_{n}} \cdot p_{j_{1} \cdots j_{n}} \cdots p_{k_{1} \cdots k_{n}}\right) \\
& \quad=U\left(\left|x^{\left(i_{1}\right)} \cdots x^{\left(i_{n}\right)}\right| \cdot\left|x^{\left(j_{1}\right)} \cdots x^{\left(j_{n}\right)}\right| \cdots\left|x^{\left(k_{1}\right)} \cdots x^{\left(k_{n}\right)}\right|\right.
\end{aligned}
$$

Theorem 1.1. The image of $K\left[\cdots, p_{i}, \cdots\right]_{\underline{q}}$ by the K-linear map $U_{n, r, \underline{d}}$ is the K-vector space $\left(S_{n, q}\right)_{(1 \cdots 1)}^{S L(n, K)}$ of multi-linear $S L(n, K)$ invariants of type \underline{d} and the kernel is $I \cap K\left[\cdots, p_{i}, \cdots\right]_{q}$.

In other words, the map $U_{n, r, q}$ induces a K-linear isomorphism

$$
K[\operatorname{Gr}(n, r)]_{\underline{d}} \simeq\left(S_{n, r, \underline{d}}\right)_{(1 \cdots, \cdots)}^{S L(n, K)}
$$

Proof. Consider the standard action of $S L(n, K)$ on the umbral vectors $x^{(1)}, x^{(2)}, \cdots, x^{(r)}$. Then the fundamental theorem of vector invariants (cf. [W] Chap. 2) says that the ring $K[\operatorname{Gr}(n, r)]$ is isomorphic to the ring of $S L(n, K)$-invariants of the umbral space, via the map

$$
p_{i_{1} \cdots i_{n}} \longrightarrow\left|x^{\left(i_{1}\right)} \cdots x^{\left(i_{n}\right)}\right|
$$

The umbral space is \mathbf{N}^{r}-graded by giving each $x_{j}^{(i)}$ degree $e_{i} \in \mathbf{N}^{r}$. Then it is clear that, for each $\underline{d}=\left(d_{1}, \cdots, d_{r}\right) \in \mathbf{N}^{r}$, the umbral operator

$$
U: K\left[x_{j}^{(i)} ; 1 \leq i \leq r, 1 \leq j \leq n\right]_{q} \longrightarrow\left(S_{n, q}\right)_{(1 \cdots 1)}
$$

is an $S L(n, K)$-isomorphism of vector spaces and hence we obtain K-linear isomorphisms,

$$
\begin{aligned}
K[\operatorname{Gr}(n, r)]_{d} & \simeq K\left[x_{j}^{(i)} ; 1 \leq i \leq r, 1 \leq j \leq n\right]_{(1 \cdots 1)}^{S L(n, K)} \\
& \simeq\left(S_{n, q}\right)_{(1 \cdots 1)}^{S L(n, K)} .
\end{aligned}
$$

This completes the proof.
For every $d=\left(d_{1}, \cdots, d_{r}\right) \in \mathbf{N}^{r}$, we set

$$
k=|\underline{d}| \mid n \quad \text { and } \quad \underline{d}^{\sim}=\left(k-d_{1}, \cdots, k-d_{r}\right) .
$$

Then it can be easily seen that if $\operatorname{dim}_{K}\left(S_{n, \phi}\right)_{(1 \cdots i)}^{S L(n, K)} \geq 1, \underline{\sim} \sim \in \mathbf{N}^{r}$. For an n-tuple (i_{1}, \cdots, i_{n}), $1 \leq i_{1} \leq i_{2}<\cdots<i_{n} \leq r$, let ($i_{1}^{\prime}, \cdots, i_{r-n}^{\prime}$) denote the complement of $\left(i_{1}, \cdots, i_{n}\right)$ in ($1,2, \cdots, r$).

To each monomial

$$
p=p_{i_{1} \cdots i_{n}} \cdot p_{j_{1} \cdots j_{n}} \cdot \cdots \cdot p_{k_{1} \cdots k_{n}}
$$

we associate the monomial

$$
\hat{p}=p_{i_{1}^{\prime} \cdots i_{r}^{\prime}-n} \cdot p_{j_{1}^{\prime} \cdots j_{r-n}^{\prime}} \cdot \cdots \cdot p_{k_{1}^{\prime} \cdots k_{r-n}^{\prime}} .
$$

Then the map $p \rightarrow \hat{p}$ defines a K-linear isomorphism

$$
K[\operatorname{Gr}(n, r)]_{d} \simeq K[\operatorname{Gr}(r-n, r)]_{d^{-}} .
$$

By Theorem 1.1, we obtain
Corollary. If $\operatorname{dim}_{K}\left(S_{n, 4}\right)_{(1 \cdots 1)}^{L(n, K)} \geq 1$, then

$$
\operatorname{dim}_{K}\left(S_{n, q}\right)_{(1 \cdots 1)}^{S L(n, K)}=\operatorname{dim}_{K}\left(S_{r-n, q}\right)_{(1 \cdots 1)}^{S L(n, K)} .
$$

Let us recall some notations and definitions on Young diagrams. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ be a partition. We identify λ with the corresponding Young diagram (denoted also by λ). If $\lambda_{n}>0$ and $\lambda_{n+1}=0$, for some n, we call n the length of λ and denote it by $l(\lambda)$. A Young diagram whose squares are filled with some positive integers is called a numbered diagram. If a numbered diagram is column strict, i.e., the numbers in each row are non-decreasing from left to right and numbers in each column are strictly increasing from top down, it is called a Young tableau. If a Young talbeau T has i_{1} l's, $i_{2} 2$'s, etc, then the sequence (i_{1}, i_{2}, \cdots) is called the weight of T. For a Young diagram λ, we denote its transpose by ${ }^{t} \lambda$.

A monomial $p_{i_{1} \cdots i_{n}} \cdot p_{j_{1} \cdots j_{n}} \cdots p_{k_{1} \cdots k_{n}}$ is called a standard monomial if the associated numbered diagram

$$
\left(\begin{array}{cccc}
i_{1} & j_{1} & \cdots & k_{1} \\
\vdots & \vdots & & \vdots \\
i_{n} & j_{n} & \cdots & k_{n}
\end{array}\right)
$$

is a Young tableau. A Young tableau is called an $S L(n, K)$-tableau if each column has n squares. Let T be an $S L(n, K)$-tableau with weight $\underline{d}=\left(d_{1}, d_{2}, \cdots, d_{r}\right) \in \mathbf{N}^{r}$. We denote the associated monomial in $K[\operatorname{Gr}(n, r)]$ by $p(T)$. Then $p(T)$ has degree \underline{d}.

Proposition 1.1 ([D-R-S] Theorem 1). For each $\underline{d} \in \mathbf{N}^{r}$, the set of
monomials $\{p(T) ; T$ is an $S L(n, K)$-tableau of weight $\underline{d}\}$ is a K-basis of $K[\operatorname{Gr}(n, r)]_{q}$.

By Theorem 1.1 and Proposition 1.1 we then obtain the following
Theorem 1.2. For each $\underline{d}=\left(d_{1}, \cdots, d_{r}\right) \in \mathbf{N}^{r}$, the set of elements $\left\{U_{n, r, d}(p(T)) ; T\right.$ is an $S L(n, K)$-tableau of weight $\left.\underline{d}\right\}$ is a K-basis of the vector space of multi-linear $S L(n, K)$-invariants with type \underline{d}.

Consider a free algebra $K\left\langle a_{a} ; \alpha \in \mathbf{N}^{n}\right.$ and $| \alpha|=d\rangle$ generated by a_{α}. Then this algebra is N -graded by giving each a_{α} degree one. For each (non-commutative) monomial $a_{\alpha_{1}} a_{\alpha_{2}} \cdots a_{\alpha_{r}}$ of degree r, we set $\Psi_{r}\left(a_{\alpha_{1}} a_{\alpha_{2}} \cdots a_{a_{r}}\right)$ $=a_{a_{1}}^{(1)} a_{\alpha_{2}}^{(2)} \cdots a_{a_{r}}^{(r)}$, then we obtain a K-linear isomorphism

$$
\Psi_{r}: K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle_{r} \longrightarrow\left(S_{n,\langle\alpha\rangle}\right)_{\langle 1\rangle},
$$

where $\langle d\rangle=(d \cdots d) \in \mathbf{N}^{r}$. Further we set

$$
\hat{U}_{n, r, d}=\Psi_{r}^{-1} U_{n, r,\langle d\rangle} .
$$

Then from Theorem 1.2, we obtain
Proposition 1.2. For each $r \in \mathbf{N}$, the set of elements $\left\{\hat{U}_{n, r, d}(p(T)) ; T\right.$ is an $S L(n, K)$-tableau of weight $\left.\langle d\rangle \in \mathbf{N}^{r}\right\}$ constitutes a K-basis of $K\left\langle a_{a}\right.$; $\left.\alpha \in \mathbf{N}^{n},|\alpha|=d\right\rangle_{r}$.

Let T be a Young tableau with, say, s columns and let t be a positive integer with $t<s$. Then we denote by T_{t} the Young tableau taken from the first t columns of T. An $S L(n, K)$-tableau T with, say, s columns and weight $(d \cdots d) \in \mathbf{N}^{\tau}$ is called indecomposable, if there is no positive integer $t, t<s$, such that T_{t} is an $S L(n, K)$-tableau of weight $(d \cdots d) \in \mathbf{N}^{k}$ for some $k, 0<k<r$. Then the following result follows from Proposition 1.2 and the Lane-Kharchenko theorem.

Theorem 1.3 ([Te2] Theorem 3.3). The set $\left\{\hat{U}_{n, r, d}(p(T)) ; r \in \mathbf{N}\right.$ and T is an indecomposable $S L(n, K)$-tableau of weight $\left.(d \cdots d) \in \mathbf{N}^{r}\right\}$ constitutes a set of free generators of the non-commutative) invariant ring $K\left\langle a_{a} ; \alpha \in \mathbf{N}^{n}\right.$, $|\alpha|=d\rangle^{s T(n, K)}$.

$$
\text { Let } \begin{aligned}
& A(n, d, r)=\operatorname{dim}_{K} K\left[a_{\alpha} ; \alpha \in \mathbf{N}^{n},|\alpha|=d\right]^{s L(n, K)} \quad \text { and } \\
& \hat{A}(n, d, r)=\operatorname{dim}_{K} K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle^{s L(n, K)} .
\end{aligned}
$$

In the commutative case, the classical Hermite reciprocity theorem says that $A(2, d, r)=A(2, r, d)$ for all d and r. On the other hand, in the
non-commutative case, we obtain the following reciprocity theorem.
Proposition 1.3. If $r>n$, then

$$
\hat{A}(n, d, r)=\hat{A}\left(r-n, d^{\sim}, r\right),
$$

where $d^{\sim}=r d / n-d$.
Proof. This follows from the corollary of Theorem 1.1.
1.3. In this section we shall be concerned with simultaneous invariants of the orthogonal group $O(n, K)$. Let n and r be positive integers with $n \leq r$ and $x_{i j}, 1 \leq i, j \leq r$, independent variables. Let I be an ideal of the polynomial ring $K\left[x_{i j} ; 1 \leq i, j \leq r\right]$ generated by the following elements:
(1) $\quad x_{i j}-x_{j i}, \quad 1 \leq i, j \leq r, \quad$ and
(2) the $(n+1) \times(n+1)$ minors of the $r \times r$ matrix $X=\left(x_{i j}\right)$, $1 \leq i, j \leq r$.
The polynomial ring $K\left[x_{i j} ; 1 \leq i, j \leq r\right]$ has an \mathbf{N}^{r}-graded structure by giving each $x_{i j}$ degree $\underline{e}_{i}+\underline{e}_{j}$. Here, as before, \underline{e}_{i} and \underline{e}_{j} denote respectively the i-th and j-th unit vectors of \mathbf{N}^{r}.

For each monomial $x_{i_{1} j_{1}} x_{i_{2} j_{2}} \cdots x_{i_{k} \xi_{k}}$ of degree $\underline{d} \in \mathbf{N}^{r}$, we set

$$
U_{n, r, q}\left(x_{i_{1} j_{1}} x_{i_{2} f_{2}} \cdots x_{i_{k} f_{k}}\right)=U\left(\left(x^{\left(i_{1}\right)}, x^{\left(j_{1}\right)}\right)\left(x^{\left(i_{2}\right)}, x^{\left(j_{2}\right)}\right) \cdots\left(x^{\left(k_{k}\right)}, x^{\left(j_{k}\right)}\right)\right),
$$

where $x^{(1)}, \cdots, x^{(r)}$ are umbral vectors and U the umbral operator, and $(x, y)=\sum_{1 \leq i \leq n} x_{i} y_{i}$, the standard inner product.

Then we get a K-linear map

$$
U_{n, r, \underline{q}}: K\left[x_{i j} ; 1 \leq i, j \leq r\right] \longrightarrow\left(S_{n, \underline{q}}\right)_{(1 \cdots 1)} .
$$

The fundamental theorem of vector invariants (cf. [W] Chap. 2) for the orthogonal group $O(n, K)$ says that the ring $K\left[x_{i j} ; 1 \leq i, j \leq r\right] / I$ is isomorphic to the ring $K\left[x_{j}^{(1)} ; 1 \leq i \leq r, 1 \leq j \leq n\right]^{o(n, K)}$ of orthogonal vector invariants, via the map $x_{i j} \rightarrow\left(x^{(i)} x^{(j)}\right)$. By the same argument as in the proof of Theorem 1.1, we then obtain the following result.

Theorem 1.4. For each $\underline{d} \in \mathbf{N}^{r}$, the image of the K-linear map $U_{n, r, d}$ is the vector space $\left(S_{n, q}\right)^{o(n, K)}$ of multi-linear $O(n, K)$-invariants of type \underline{d}, and

$$
\operatorname{Ker} U_{n, r, \underline{q}}=I \cap K\left[x_{i j} ; 1 \leq i, j \leq r\right]_{q} .
$$

In other words, the K-linear map $U_{n, r, d}$ induces a K-linear isomorphism
from the K-vector space $\left(K\left[x_{i j} ; 1 \leq i, j \leq r\right] / I\right)_{d}$ to the K-vector space of multi-linear $O(n, K)$-invariants of type \underline{d}.

Let, as before, $\langle d\rangle=(d \cdots d) \in \mathbf{N}^{r}$ and $\hat{U}_{n, r, d}=\Psi_{r}^{-1} U_{n, r,\langle d\rangle}$.
Corollary. For all $d, r \in \mathbf{N}$,

$$
\hat{U}_{n, r, d}:\left(K\left[x_{i j} ; 1 \leq i, j \leq r\right] / I\right)_{\langle\alpha\rangle} \longrightarrow K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle_{r}^{o(n, K)}
$$

is a K-linear isomorphism.
Let λ be a Young diagram. A Young tableau T with shape λ of length $\leq n$ is called an $O(n, K)$-tableau if λ is an even partition. Given $\left(i_{1}, i_{2}, \cdots, i_{m}\right) \in \mathbf{N}^{m}$ and $\left(j_{1}, j_{2}, \cdots, j_{m}\right) \in \mathbf{N}^{m}$ with $1 \leq i_{k}, j_{k} \leq r$, we denote by $\left(i_{1} i_{2} \cdots i_{k} \mid j_{1} j_{2} \cdots j_{m}\right)$ the determinant of the minor of the r by r symmetric matrix

$$
X=\left(x_{i j} ; x_{i j}=x_{j i}\right)
$$

with row indices $\left(i_{1}, i_{2}, \cdots, i_{m}\right)$ and column indices $\left(j_{1}, j_{2}, \cdots, j_{m}\right)$.
To each $O(n, K)$-tableau of weight $\underline{d} \in \mathbf{N}^{r}$;

$$
T=\left(\begin{array}{ccccc}
a_{11} & b_{11} & a_{21} & b_{21} & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdots \\
a_{1 m_{1}} & b_{1 m_{1}} & a_{2 m_{2}} & b_{2 m_{2}} & \cdots
\end{array}\right),
$$

we associate an element $x(T)$ of $K\left[x_{i j} ; 1 \leq i, j \leq r\right]$ by

$$
x(T)=\prod_{i \geq 1}\left(a_{i 1} a_{i 2} \cdots a_{i m_{t}} \mid b_{i 1} b_{i 2} \cdots b_{i m_{i}}\right) .
$$

Then by Theorem 5.1 of [D-P], the set

$$
\{x(T) ; T \text { is an } O(n, K) \text {-tableau of weight } \underline{d}\}
$$

constitutes a K-basis of $\left(K\left[x_{i j} ; 1 \leq i, j \leq r\right] / I\right)_{d}$. Combining this with the fundamental theorem of vector invariants for the orthogonal group $O(n, K)$, we obtain

Proposition 1.4. The set

$$
\left\{U_{n, r, \underline{d}}(x(T)) ; T \text { is an } O(n, K) \text {-tableau of weight } \underline{d}\right\}
$$

is a K-basis of the vector space of simultaneous $O(n, K)$-invariants of type \underline{d}.
In particular, we have the following
Proposition 1.5. The set

$$
\left\{\hat{U}_{n, r, d}(x(T)) ; T \text { is an } O(n, K) \text {-tableau of weight }(d \cdots d) \in \mathbf{N}^{r}\right\}
$$

is a K-basis of the vector space $K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle_{r}^{o(n . K)}$.
An $O(n, K)$-tableau T of weight $(d \cdots d) \in \mathbf{N}^{r}$ with, say, s columns is called indecomposable if, for any $0<t<s$, the sub-tableau T_{t} is not an $O(n, K)$-tableau of weight $(d \cdots d) \in \mathbf{N}^{k}, \quad 0<k<r$. Then the following theorem follows from Proposition 1.5 and the Lane-Kharchenko theorem.

Theorem 1.5. The set
$\left\{\hat{U}_{n, r, d}(x(T)) ; r \in \mathbf{N}\right.$ and T is an indecomposable $O(n, K)$-tableau of weight $\left.(d \cdots d) \in \mathbf{N}^{r}\right\}$ constitutes a set of free generators of the (non-commutative) invariant ring $K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle^{o(n, K)}$.
1.4. In this section we shall be concerned with simultaneous invariants for the symplectic group $\operatorname{Sp}(n, K)$. Let n be an even positive integer and r an integer with $r>n$. Let $x_{i j}, 1 \leq i, j \leq r, i=j$, be independent commutative variables and let I be an ideal of the polynomial ring $K\left[x_{i j} ; 1 \leq i, j \leq r\right]$ generated by
(1) $x_{i j}+x_{j i}, 1 \leq i, j \leq r$, and
(2) the Pfaffians of the $(n+2) \times(n+2)$ principal minors taken from the upper corner of the skew-symmetric matrix

$$
\left(\begin{array}{rlll}
0 & x_{12} & \cdots & x_{1 r} \\
-x_{12} & 0 & \cdots & x_{2 r} \\
\cdot & \cdot & \cdots & \cdot \\
-x_{1 r} & \cdot & \cdots & 0
\end{array}\right)
$$

By giving each $x_{i j}$ degree $e_{i}+e_{j} \in \mathbf{N}^{r}, K\left[x_{i j} ; 1 \leq i, j \leq r\right]$ has an \mathbf{N}^{r}-graded structure. For each monomial $x_{i_{1} j_{1}} x_{i_{2} j_{2}} \cdots x_{i_{k} j_{k}}$ of degree $\underline{d} \in \mathbf{N}^{r}$, we set

$$
U_{n, r, \underline{\alpha}}\left(x_{i_{1} j_{1}} x_{i_{2} j_{2}} \cdots x_{i_{k j} j_{k}}\right)=U\left(\left[x^{\left(i_{1}\right)}, x^{\left(j_{1}\right)}\right] \cdots\left[x^{\left(i_{k}\right)}, x^{\left(j_{k}\right)}\right]\right),
$$

where U is the umbral operator and

$$
\begin{aligned}
& {[x, y]=\left(x_{1} y_{1}^{\prime}-x_{1}^{\prime} y_{1}\right)+\cdots+\left(x_{m} y_{m}^{\prime}-x_{m}^{\prime} y_{m}\right), \quad n=2 m, \quad \text { with }} \\
& x=\left(x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} \cdots x_{m} x_{m}^{\prime}\right), \quad y=\left(y_{1} y_{1}^{\prime} y_{2} y_{2} \cdots y_{m} y_{m}^{\prime}\right) .
\end{aligned}
$$

Then we obtain $a K$-linear map

$$
U_{n, r, \underline{q}}: K\left[x_{i j} ; 1 \leq i, j \leq r\right]_{\underline{q}} \longrightarrow\left(S_{n, \underline{q}}\right)_{(1 \cdots 1)},
$$

and, by using the fundamental theorem of vector invariants for the
symplectic group $\operatorname{Sp}(n, K)$, we obtain the following
Theorem 1.6. For each $\underline{d} \in \mathbf{N}^{r}$, the image of $U_{n, r, d}$ is the vector space of simultaneous $S p(n, K)$-invariants of type \underline{d} and

$$
\operatorname{Ker} U_{n, r, \underline{q}}=I \cap K\left[x_{i j} ; 1 \leq i, j \leq r\right]_{\underline{Q}} .
$$

In other words the K-linear map $U_{n, r, q}$ induces a K-linear isomorphism from the space ($\left.K\left[x_{i j} ; 1 \leq i, j \leq r\right] / I\right)_{d}$ to the space of all multi-linear simultaneous $\operatorname{Sp}(n, K)$-invariants of type \underline{d}.

For a $2 m$-tuple ($i_{1}, i_{2}, \cdots, i_{2 m}$) of positive integers with $1 \leq i_{1}<i_{2}<$ $\cdots<i_{2 m} \leq r$, we denote by $\left[i_{1} i_{2} \cdots i_{2 m}\right]$ the Pfaffian of the principal minor taken from the upper corner of the r by r skew-symmetric matrix $X=$ $\left(x_{i j} ; x_{i j}=-x_{j i}\right)$, with row and column indices $i_{1}, i_{2}, \cdots, i_{2 m}$. Let λ be a partition of length $\leq n$. A Young tableau T of shape λ is called an $S p(n, K)$-tableau if the transpose ${ }^{t} \lambda$ of λ is an even partition. To each $S p(n, K)$-tableau

$$
T=\left(\begin{array}{ccc}
a_{11} & a_{21} & \cdots \\
\cdot & \cdot & \cdots \\
\cdot & \cdot & \cdots \\
\cdot & \cdot & \cdots \\
a_{1 k_{1}} & a_{2 k_{2}} & \cdots
\end{array}\right)
$$

of weight $\underline{d} \in N^{r}$, we associate an element $x(T)$ of $K\left[x_{i j} ; 1 \leq i, j \leq r\right]$ by

$$
x(T)=\left[a_{11} \cdots a_{1 k_{1}}\right]\left[a_{21} \cdots a_{2 k_{2}}\right] \cdots
$$

Note that, since ${ }^{t} \lambda$ is an even partition, k_{1}, k_{2}, \cdots are even integer. Then it follows from Theorem 6.5 of [D-P] the set

$$
\{x(T) ; T \text { is an } S p(n, K) \text {-tableau of weight } \underline{d}\}
$$

is a K-basis of the vector space $\left(K\left[x_{i j} ; 1 \leq i, j \leq r\right] / I\right)_{q}$. Therefore by the fundamental theorem of vector invariants for the symplectic group $S p(n, K)$, we obtain the following two propositions.

Proposition 1.6. The set

$$
\left\{U_{n, r, \alpha}(x(T)) ; T \text { is an } S p(n, K) \text {-tableau of weight } \underline{d}\right\}
$$

constitutes a K-basis of the vector space of all simulataneous multi-linear $S p(n, K)$-invariants of type \underline{d}.

Proposition 1.7. For $d \in \mathbf{N}$, let ${\hat{U_{n, r, d}}}$ be the K-linear map defined by $\hat{U}_{n, r, d}=\Psi_{r} U_{n, r,(d \ldots d)}$. Then the set
$\left\{\hat{U}_{n, r, d}(x(T)) ; T\right.$ is an $S p(n, K)$-tableau of weight $\left.(d \cdots d) \in \mathbf{N}^{r}\right\}$
is a K-basis of the vector space $K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle_{r}$.
An $S p(n, K)$-tableau of weight $(d \cdots d) \in \mathbf{N}^{r}$ with, say, s columns is called indecomposable if, for any $0<t<s$, the sub-tableau T_{t} is not an $S p(n, K)$-tableau. Then we, as before, obtain

Theorem 1.7. The set
$\left\{\hat{U}_{n, r, d}(x(T)) ; r \in \mathbf{N}\right.$ and T is an indecomposable $S p(n, K)$-tableau of weight $\left.(d \cdots d) \in \mathbf{N}^{r}\right\}$ is a set of free generators of the (non-commutative) invariant ring $K\left\langle a_{\alpha} ; \alpha \in \mathbf{N}^{n},\right| \alpha|=d\rangle^{s p(n, K)}$.

§ 2. S-Generators of tensor invariants

2.1. Let V be a finite dimensional K-vector space and G a subgroup of $G L(V)$ acting on $K\langle V\rangle$ as a group of graded algebra homomorphisms on $K\langle V\rangle$. For each $m \in N$, the symmetric group S_{m} acts on the space $\otimes^{m} V$ by

$$
\sigma\left(v_{1} \otimes \cdots \otimes v_{m}\right)=v_{\sigma-1(1)} \otimes \cdots \otimes v_{\sigma-1(m)}, \quad \sigma \in S_{m} .
$$

In general a graded sub-algebra $R=\oplus_{m \geq 0} R_{m}$ of $K\langle V\rangle$ is called an S-algebra if each R_{m} is a sub- S_{m}-module of $\otimes^{n} V$. The invariant ring $K\langle V\rangle^{a}$ is an S-algebra, since the actions of $G L(n, K)$ and S_{m} on $\otimes^{m} V$ centralize each other. Let $\left\{f_{i}\right\}_{t \in I}$ be a system of homogeneous elements of $K\langle V\rangle^{G}$. We denote by $S K\left\langle f_{i} ; i \in I\right\rangle$ the algebra generated by the f_{i}, $i \in I$, together with the actions of the symmetric groups. If $S K\left\langle f_{i} ; i \in I\right\rangle$ $=K\langle V\rangle^{a}$, then $\left\{f_{i} ; i \in I\right\}$ is called a homogeneous system of S-generators. If $K\langle V\rangle^{a}$ has a homogeneous system of S-generators consisting of finitely many tensor invariants, then $K\langle V\rangle^{G}$ is called finitely generated as an S-algebra. A. N. Koryukin [Ko] proved that if G is a reductive algebraic subgroup of $G L(V)$, the invariant ring $K\langle V\rangle^{G}$ is finitely generated as an S-algebra. We now consider the commutative ring $K\left[\oplus^{n} V\right]^{G}, n=\operatorname{dim} V$, of all simultaneous polynomial invariants. To each homogeneous element f of $K\left[\oplus^{n} V\right]^{G}$, we can associate an element \hat{f}, called complete polarization, of $K\langle V\rangle^{a}$. For details, consult [Te1].

Theorem 2.1. (Theorem 2.1 [Te1]). Let G be a subgroup of $G L(V)$ and $\left\{f_{i}\right\}_{i \in I}$ a homogeneous system of generators of the (commutative) invariant ring $K\left[\oplus^{n} V\right]^{G}, n=\operatorname{dim} V$. Then $\{\hat{f}\}_{t \in I}$ is a homogeneous system of S generators of $K\langle V\rangle^{a}$.

Theorem 2.1 enables us to find such a number $N_{\tilde{G}, V}$ that the invariant ring $K\langle V\rangle^{\theta}$ is generated as an S-algebra by invariants of degree $\leq N_{\widetilde{G}, v}$.

Theorem 2.2. If the field K is algebraically closed and G is an algebraic subgroup of $G L(V)$, then
(1) if G is a finite group, we can take $N_{\tilde{G}, V}=\# G$,
(2) if G is a torus, we can take $N_{\widetilde{G}, V}=n^{2} C\left(n^{2} s!t^{s}\right)$,
(3) if G is semi-simple and connected, we can take

$$
N_{\tilde{G}, V}=n^{2} C\left(\frac{2^{r+s} n^{2(s+1)}\left(n^{2}-1\right)^{s-r} t^{r}(s+1)!}{\left.3^{s}(((s-r) / 2))!\right)^{2}}\right) .
$$

Here $n=\operatorname{dim} V, s=\operatorname{dim} G$, and $r=r a n k$ of G. For a positive integer k, $C(k)=$ L.C.M. $\{a \in \mathbf{N} ; 0<a \leq k\}$. For the definition of t, see [P1] Theorem 2.

Proof. By Theorem 2.1, the problem can be reduced to the commutative case, and we obtain the desired result by Theorem 2 of [P1].

Remark. T. Tambour (Theorem 7 [T]) proved (1) by a different method. In the commutative case, the proof of (1) was given by E. Noether [N], of (2) by G. Kempf [K], and of (3) by V. L. Popov [P1].
2.2. T. Tambour [T] has investigated a generating function associated with the graded S-algebra $K\langle V\rangle^{G}$ and proved that the generating function is equal to the Poincare series of the graded ring $K\left[\Lambda^{2} V \oplus V\right]^{G}, \Lambda^{2}=$ the exterior square. Then one can naturally expect some relationship between structure of the S-algebra and that of $K\left[\Lambda^{2} V \oplus V\right]^{G}$. In this section we will establish a relationship between them. For a partition λ, we denote by $s_{\lambda}\left(x_{1}, x_{2}, \ldots\right)$ the Schur function corresponding to λ. The Littlewood identity ([M] Chap. 1)

$$
\sum_{\lambda} s_{2}\left(x_{1}, x_{2}, \cdots\right)=\Pi_{i}\left(1-x_{i}\right)^{-1} \Pi_{i<j}\left(1-x_{i} x_{j}\right)^{-1}
$$

shows that the $G L(n, K)(=G L(V))$-module $K\left[\Lambda^{2} V \oplus V\right]$ is decomposed into the irreducible parts

$$
K\left[\Lambda^{2} V \oplus V\right]=\oplus_{2} W_{2},
$$

where λ is over all the partitions of length $\leq n$ and W_{λ} denotes the irreducible $G L(n, K)$-submodule corresponding to λ. Let

$$
x_{i j}, 1 \leq i<j \leq n, \quad \text { and } \quad x_{k}, 1 \leq k \leq n,
$$

be indeterminates, then

$$
K\left[\Lambda^{2} V \oplus V\right]=K\left[x_{i j}, x_{k} ; 1 \leq i<j \leq n, 1 \leq k \leq n\right] .
$$

For each $m, 1 \leq m \leq n$, we define a polynomial J_{m} in $x_{i j}$ and x_{k} by

$$
J_{m}=\left\{\begin{array}{l}
\sum_{i_{1} \cdots i_{m}} \varepsilon^{i_{1} \cdots i_{m}} x_{i_{1} i_{2}} \cdots x_{i_{m-1} t_{m}}, \text { if } m \text { is even }, \\
\sum_{i_{1} \cdots i_{m}} \varepsilon^{i_{1} \cdots l_{m}} x_{i_{1} t_{2}} \cdots x_{i_{m-2} t_{m-1}} x_{i_{m}}, \text { if } m \text { is odd, }
\end{array}\right.
$$

where

$$
\varepsilon^{i_{1} \cdots i_{m}}=\left\{\begin{array}{l}
1, \text { if }\left(i_{1}, \cdots, i_{m}\right) \text { is an even permutation of } 1, \cdots, m \\
-1, \text { if }\left(i_{1}, \cdots, i_{m}\right) \text { is an odd permutation of } 1, \cdots, m \\
0, \text { otherwise. }
\end{array}\right.
$$

When m is even, J_{m} is the Pfaffian relative to the principal m by m minor taken from the upper corner of the n by n skew-symmetric matrix $X=$ $\left(x_{i j} ; x_{i j}=-x_{i j}\right)$.

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ of length $\leq n$, we set

$$
f_{\lambda}\left(x_{i j}, x_{k}\right)=J_{1}^{l_{1}} J_{2}^{l_{2}} \ldots J_{n}^{l_{n}},
$$

where $l_{i}=\lambda_{i}-\lambda_{i+1}, 1 \leq i \leq n$, with $\lambda_{n+1}=0$. Then it is easily seen that $f_{k}\left(x_{i j}, x_{k}\right)$ is an weight vector under the action of the group of all upper triangular n by n matrices and

$$
\left[\begin{array}{ccc}
t_{1} & & \\
& \ddots & t_{i j} \\
& & t_{n}
\end{array}\right] f_{2}\left(x_{i j}, x_{k}\right)=t_{1}^{\lambda_{1} t_{2}^{\lambda_{2}}} \cdots t_{n}^{\lambda_{n}} f_{\lambda}\left(x_{i j}, x_{k}\right)
$$

Therefore $f_{\lambda}\left(x_{i j}, x_{k}\right)$ is the highest weight vector of the irreducible $G L(n, K)$ module W_{2} and hence we have

$$
W_{\lambda}=G L(n, K) \cdot f_{\lambda}\left(x_{i \jmath}, x_{k}\right) .
$$

We denote by e_{λ} the Young idempotent corresponding to a partition λ.
Let

$$
T_{\lambda}=e_{2} \cdot \otimes^{m} V
$$

Then T_{λ} is an irreducible $G L(n, K)$-submodule of $\otimes^{m} V$ and hence there exists a $G L(n, K)$-isomorphism

$$
a_{2}: W_{\lambda} \longrightarrow T_{\lambda},
$$

for each partition λ of length $\leq n$. We define an isomorphism of $G L(n, K)$ modules

$$
a: K\left[\Lambda^{2} V \oplus V\right] \longrightarrow \oplus_{l(2) \leq n} T_{\lambda}
$$

by $a=\oplus_{t(2) \leq n} a_{2}$.
For partitions λ and μ of length $\leq n$, consider the $G L(n, K)$-map Ψ and $\Psi^{\prime}: W_{2} \otimes W_{\mu} \rightarrow W_{2+\mu}$, defined as follows: for $f_{1} \in W_{2}$ and $f_{2} \in W_{\mu}$,

$$
\Psi\left(f_{1} \otimes f_{2}\right)=f_{1} \cdot f_{2} \text { (usual multiplication of polynomials) }
$$

and

$$
\Psi^{\prime}\left(f_{1} \otimes f_{2}\right)=a_{\alpha_{+\mu}}^{-1}\left(e_{2+\mu} \cdot\left(a_{2}\left(f_{1}\right) \otimes a_{\mu}\left(f_{2}\right)\right)\right),
$$

where $e_{\lambda+\mu}$ the Young idempotent associated with the partition $\lambda+\mu$. Since $W_{2}=G L(n, K) \cdot f_{k}\left(x_{i j}, x_{k}\right)$ and $f_{2}\left(x_{i j}, x_{k}\right) \cdot f_{\mu}\left(x_{i j}, x_{\mu}\right)=f_{k+\mu}\left(x_{i j}, x_{k}\right)$, the map Ψ is well-defined.

Hereafter we asssume that the field K is algebraically closed. Because W_{λ} and W_{μ} are irreducible $G L(n, K)$-modules and the decomposition of the tensor product $W_{2} \otimes W_{\mu}$ into irreducible parts contains the irreducible $G L(n, K)$-module $W_{2+\mu}$ with multiplicity one, it follows from Schur's lemma that Ψ and Ψ^{\prime} coincide, up to a non-zero scalar in K. Therefore the following diagram of $G L(n, K)$-isomorphisms is commutative up to a nonzero scalar:

where ψ is defined by $\psi(x \otimes y)=e_{2+\mu}(x \otimes y), x \in T_{1}, y \in T_{\mu}$.
Theorem 2.3. Let the field K be algebraically closed and G a subgroup of $G L(V)$. If $\left\{f_{i}\right\}_{t \in I}$ a homogeneous system of generators for the (commutative) invariant ring $K\left[\Lambda^{2} V \oplus V\right]^{a}$, then $\left\{a\left(f_{t}\right)\right\}_{t \in I}$ is a homogeneous system of S-generators for the (non-commutative) invariant ring $K\langle V\rangle^{a}$.

Proof. For each $k \in \mathbf{N}$, we regard $\otimes^{k} V$ as a $G L(n, K) \times S_{k}$-module. Then by H. Weyl's reciprocity theorem, it decomposes as

$$
\otimes^{k} V=\oplus_{t(2) \leq n}^{|x|=k} \mid T_{k} \otimes V_{2}^{s_{k}}, \quad n=\operatorname{dim}_{K} V .
$$

Here $V_{\lambda_{k}^{k}}^{s^{k}}$ denotes the irreducible S_{k}-module corresponding to the partition入. Denoting by $K\left[S_{k}\right]$ the group ring of S_{k}, we have

$$
T_{2} \otimes V_{2_{k}}^{s_{k}} \simeq\left(K\left[S_{k}\right] e_{2}\right) \cdot T_{2},
$$

and hence

$$
\left(\otimes^{k} V\right)^{G}=\underset{\substack{\left|(\lambda) \leq \sum_{k}\\\right| \lambda \mid}}{\oplus_{k}}\left(K\left[S_{k}\right] e_{\lambda}\right) \cdot\left(T_{\lambda}\right)^{a}
$$

This together with the diagram above completes the proof.
§3. Non-commutative invariants of rings of 2 by 2 generic matrices with zero trace

In this section we will study invariant rings of 2 by 2 generic matrices with zero trace under linear actions of finite groups. Let K be a field of characteristic zero and let $X_{1}, X_{2}, \cdots, X_{n}(n \geq 2)$ be 2 by 2 generic matrices with trace zero over K. That is

$$
X_{1}=\left[\begin{array}{rr}
x_{11} & x_{12} \\
x_{21} & -x_{11}
\end{array}\right], \quad X_{2}=\left[\begin{array}{rr}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{array}\right], \cdots, \quad X_{n}=\left[\begin{array}{rr}
z_{11} & z_{12} \\
z_{21} & -z_{11}
\end{array}\right]
$$

where $x_{11}, x_{12}, x_{21}, y_{11}, y_{12}, y_{21}, \cdots, z_{11}, z_{12}, z_{21}$ are commuting indeterminates over K. The K-subalgebra

$$
R_{n}=K\left[X_{1}, X_{2}, \cdots, X_{n}\right]
$$

generated by $X_{1}, X_{2}, \cdots, X_{n}$ is called the ring of n generic 2 by 2 matrices with zero trace. This is a K-subalgebra of the 2 by 2 matrix algebra $M_{2}\left(K\left[x_{i j}, y_{i j}, z_{i j}\right]\right)$ over the polynomial ring $K\left[x_{i j}, y_{i j}, z_{i j}\right]$.

Let $M_{2}^{o}(K)$ denote the set of 2 by 2 matrices with zero trace. The group $G L(2, K)$ acts on $\oplus^{n} M_{2}^{o}(K)$ by

$$
\begin{aligned}
& g \cdot\left(A_{1}, A_{2}, \cdots, A_{n}\right)=\left(g A_{1} g^{-1}, g A_{2} g^{-1}, \cdots, g A_{n} g^{-1}\right) \text {, with } \\
& g \in G L(2, K) \text { and }\left(A_{1}, A_{2}, \cdots, A_{n}\right) \in \oplus^{n} M_{2}^{o}(K) .
\end{aligned}
$$

Then in a natural manner (cf. [Pr]), R_{n} can be identified with the ring of polynomial $G L(2, K)$-concomitants

$$
f: \oplus^{n} M_{2}^{o}(K) \longrightarrow M_{2}(K) .
$$

We denote by C_{n} the invariant ring $K\left[\oplus^{n} M_{2}(K)\right]^{\sigma L(2, K)} . \quad C_{n}$ can be identified with center of R_{n} (cf. [Pr] Sec. 2). The general linear group $G L(n, K)$ acts on R_{n} and C_{n} by the left multiplication on the column vector ${ }^{t}\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ of 2 by 2 generic matrices with zero trace X_{1}, X_{2}, \cdots, X_{n}.

Theorem 3.1. Let G be a reductive subgroup of $G L(n, K)$. Then the invariant ring R_{n}^{G} is a finitely generated K-algebra.

Proof. By a well-known theorem in invariant theory, C_{n}^{G} is finitely generated K-algebra. Since R_{n}^{G} is a finitely generated C_{n}^{G}-module, R_{n}^{G} is finitely generated K-algebra.

We now prove that for any finite subgroup G of $G L(n, K), R_{n}^{G}$ is a Cohen-Macaulay module over C_{n}^{a}. First we recall a result of Le Bruyn.

Theorem 3.2 ([L] Theorem 5.1). R_{n} is Cohen-Macaulay over C_{n}.
We are going to prove the following
Theorem 3.3. If G is a finite subgroup of $G L(n, K)$, then R_{n}^{G} is a Cohen-Macaulay $C-{ }_{n}^{G}$ module.

Proof. Because

$$
C_{n}^{G}=K\left[\oplus^{n} M_{2}(K)\right]^{a \times S L(2, K)},
$$

C_{n}^{G} is a Cohen-Macaulay ring, by the fundamental theorem of Hochstar and Roberts. Let $\left(\theta_{1}, \cdots, \theta_{s}\right)$ be a homogeneous system of parameters of C_{n}^{G}. By a standard argument, we see that $\left(\theta_{1}, \cdots, \theta_{s}\right)$ is a homogeneous system of parameters for C_{n}. By Le Bruyn's theorem, R_{n} is a CohenMacaulay module over C_{n}. Hence $R_{n} /\left(\theta_{1}, \cdots, \theta_{n}\right)$ is a finite dimensional K-vector space. Since the group $G \times S L(2, K)$ is reductive, there exists a Raynord's operator

$$
\#: R_{n} \longrightarrow R_{n}^{G} .
$$

Let $W=\left\{f \in R_{n} ; f^{\#}=0\right\}$. Then W is an R_{n}^{G}-module and

$$
R_{n}=R_{n}^{G} \oplus W
$$

We choose a basis $\left(\bar{f}_{1}, \cdots, \bar{f}_{t}\right)$ of $R_{n} /\left(\theta_{1}, \cdots, \theta_{s}\right)$ so that $\left(\bar{f}, \cdots, \bar{f}_{u}\right)$ is a basis of $R_{n}^{G} /\left(\theta_{1}, \cdots, \theta_{s}\right)$ and $\bar{f}_{u+1}, \cdots, \bar{f}_{t}$ is a basis of $W /\left(\theta_{1}, \cdots, \theta_{s}\right) W$. Let f_{1}, \cdots, f_{u} be representative in R_{n}^{G} for $\bar{f}_{1}, \cdots, \bar{f}_{u}$, respectively. Then we have

$$
R_{n}^{G}=\oplus_{i=1}^{u} f_{i} K\left[\theta_{1}, \cdots, \theta_{s}\right] .
$$

This completes the proof.
For a Young diagram λ (possibly $\lambda=\phi$) of length ≤ 1 and a Young diagram μ, we define an integer $\kappa(\mu, \lambda) \in\{-1,0,1\}$ as follows:
(1) if $l(\mu) \leq 1, \kappa(\mu, \lambda)= \begin{cases}1, & \text { if } \mu=\lambda . \\ 0, & \text { otherwise },\end{cases}$
(2) if $l(\mu)>1$ and μ has no skew-hook of length $2 l(\mu)-3$ through the node $(l(\mu), 1)$, then $\kappa(\mu, \lambda)=0$,
(3) if $l(\mu)>1$ and μ has a skew-hook h of length $2 l(\mu)-3$ through the node $(l(\mu), 1)$, then $\kappa(\mu, \lambda)=(-1)^{\omega(h)} \kappa(\mu \backslash h, \lambda)$, where $\omega(h)$ denotes the leg length of h.
Let G be a finite subgroup of $G L(n, K)$. In the commutative case, the Poincare series of the invariant ring $K\left[x_{1}, \cdots, x_{n}\right]^{a}$ is given by Molien's classical formula

$$
P\left(K\left[x_{1}, \cdots, x_{n}\right]^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}\left(1_{n}-g \cdot t\right)} .
$$

The invariant ring R_{n}^{G} is an N -graded ring by giving each X_{i} degree 1. We consider the Poincare series of R_{n}^{σ} :

$$
P\left(R_{n}^{G}, t\right)=\sum_{r \in N} \operatorname{dim}_{K}\left(R_{n}^{G}\right)_{r} t^{r}
$$

Theorem 3.4. Let G be a finite subgroup of $G L(n, K)$. Then the Poincare series of the invariant ring R_{n}^{G} is given by

$$
P\left(R_{n}^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \sum_{\mu} \frac{(\kappa(\mu, \phi)+\kappa(\mu, \square)) \operatorname{Tr}\left(\rho_{\mu}(g)\right) t^{|\lambda|}}{\operatorname{det}\left(1_{N}-\rho_{\square \square}(g) t^{2}\right)},
$$

where $N=n(n+1) / 2, \mu$ is over all the partitions of length $\leq n$ and ρ_{μ} denotes the irreducible representation of $G L(n, K)$ corresponding to μ.

Proof. We denote by R_{n}^{o} the K-vector space of polynomial concomitants:

$$
f: \oplus^{n} M_{2}^{o}(K) \longrightarrow M_{2}^{o}(K) .
$$

Since $M_{2}(K)=M_{2}^{o}(K) \oplus K \cdot 1_{2}$, we have a direct decomposition

$$
R_{n}=R_{n}^{o} \oplus C_{n}
$$

We can make R_{n} an N^{n}-graded ring by giving each X_{i} degree $\underline{e}_{i} \in \mathbf{N}^{n}$, and consider the Poincare series

$$
P\left(R_{n}, t_{1}, t_{2}, \cdots, t_{n}\right)=\sum_{d \in \mathbb{N}^{n}} \operatorname{dim}_{K}\left(R_{n}\right)_{q} t_{1}^{d_{1}} \cdots t_{n}^{d_{n}}
$$

of R_{n} in this multi-gradation.
In general, let G be a group and let V and W be G-modules of finite rank. G acts on $\oplus^{n} V, n \in \mathbf{N}$, diagonaly. We denote by $K\left[\oplus^{n} V, W\right]^{a}$ the K-vector space of G-equivariant polynomial maps

$$
f: \oplus^{n} V \longrightarrow W .
$$

Let $M\left(=K^{3)}\right.$ be the standard $S O(3, K)$-module. Because $S L(2, K)$
and $S O(3, K)$ are isogenous, we have

$$
\begin{aligned}
R_{n} & =K\left[\oplus^{n} M_{2}^{o}(K), M_{2}(K)\right]^{S L(2, K)} \\
& =K\left[\oplus^{n} M_{2}^{o}(K), M_{2}^{o}(K)\right]^{S L(2, K)}+K\left[\oplus^{n} M_{2}^{o}(K)\right]^{s L(2, K)} \\
& =K\left[\oplus^{n} M, M\right]^{S(3, K)} \oplus K\left[\oplus^{n} M\right]^{s o(3, K)}
\end{aligned}
$$

Then by Theorem 5.3 [Te3], we obtain

$$
P\left(R_{n}, t_{1}, \cdots, t_{2}\right)=\sum_{\mu} \frac{\left(\kappa(\mu, \phi)+\kappa(\mu, \square) s_{\mu}\left(t_{1}, \cdots, t_{n}\right)\right.}{\Pi_{1 \leq 1, j \leq n}\left(1-t_{i} t_{j}\right)},
$$

where μ is over all the partition of length $\leq n$.
Let, in general, V be a finite dimensional K-vector space and G a finite subgroup of $G L(V)$. If M is a $G L(V)$-module of finite rank, we denote by M^{a} the fixed subspace of M under the action of G. Then we have

$$
\operatorname{dim}_{K} M^{G}=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(M, g)
$$

where $\operatorname{Tr}(M, g)$ denotes the trace of g as a linear operator on M.
Therefore

$$
\begin{aligned}
P\left(R_{n}^{G}, t\right)= & \frac{1}{|G|} \sum_{g \in a} \sum_{l(\mu) \leq n} \frac{\left(\kappa(\mu, \phi)+\kappa(\mu, \square) s_{\mu}\left(t_{1} \cdots t_{n}\right)\right.}{\Pi_{1 \leq i, j \leq n}\left(1-t_{i} t_{j} t^{2}\right)} t^{|\mu|}, \\
= & \frac{1}{|G|} \sum_{g \in G} \sum_{t(\mu) \leq n} \frac{\left(\kappa(\mu, \phi)+\kappa(\mu, \square) \operatorname{Tr}\left(\rho_{\mu}(g)\right)\right.}{\operatorname{det}\left(1_{N}-\rho_{\square \square 口}(g) t^{2}\right)} t^{|\mu|} .
\end{aligned}
$$

This completes the proof.
By a result of L. Le Bruyn ([L] Chap. 4), the Poincare series of R_{n} satisfies the functional equation

$$
P\left(R_{n}, 1 / t\right)=(-1)^{n-1} t^{3 n} P\left(R_{n}, t\right), \quad n \geq 3 .
$$

It follows from Theorem 3.5 with an easy verification that the Poincare series of the invariant ring R_{n}^{ϵ} satisfies the same functional equation as $P\left(R_{n}, t\right)$, if G is a finite subgroup of $S L(n, K)$.

Proposition 3.1. If G is a finite subgroup of $S L(n, K)$, then the Poincare series of R_{n}^{G} satisfies the functional equation

$$
P\left(R_{n}^{G}, 1 / t\right)=\left\{\begin{array}{l}
(-1)^{n-1} t^{3 n} P\left(R_{n}^{G}, t\right), \quad \text { if } n \geq 3 \\
-t^{4} P\left(R_{n}^{G}, t\right), \quad \text { if } n=2
\end{array}\right.
$$

The following theorem is a generalization of [L] (Chap. 3, Theorem 4.2).
Theorem 3.6. Let G be a finite subgroup of $S L(n, K)$. Then the invariant ring $R_{n}^{G}(n \geq 2)$ has finite global dimension if and only if $n \leq 3$ and $G=\{e\}$.

Proof. By [L] (Chap. 3. Theorem 4.2), R_{n} has finite global dimension if and only if $n \leq 3$. Hence it is enough to prove the "only if" part. Suppose that the invariant ring R_{n}^{G} has finite global dimension. Then its Poincase series $P\left(R_{n}^{G}, t\right)$ has the form

$$
P\left(R_{n}^{\theta}, t\right)=\frac{1}{f(t)},
$$

for some monic polynomial with integer coefficients (cf. [L], p. 87). Since R_{n}^{G} is a Cohen-Macaulay module over C_{n}^{G}, the Poincare series has the form

$$
P\left(R_{n}^{G}, t\right)=\frac{F(t)}{\left(1-t^{\alpha_{1}}\right)\left(1-t^{\alpha_{2}}\right) \cdots\left(1-t^{\alpha_{r}}\right)},
$$

where $F(t)$ is a monic polynomial with no-negative integer coefficients and $\alpha_{1}, \cdots, \alpha_{r}$ are some positive integers. Therefore $f(t)$ is product of some cyclotomic polynomials. By the functional equation, we see that

$$
\operatorname{deg} f(t)= \begin{cases}3 n, & \text { if } n \geq 3 \\ 4, & \text { if } n=2\end{cases}
$$

If $n \geq 3$, then one sees easily that $P\left(R_{n}^{G}, t\right)$ has a pole of order $3 n-3$ at $t=1$ and hence $f(t)$ has the form

$$
f(t)=(1-t)^{3 n-3} g(t)
$$

for some $g(t) \in \mathbf{Z}[t]$ of degree 3 with $g(t) \neq 0$. Moreover, since $g(t)$ is product of cyclotomic polynomials, one sees that

$$
g(t)=1+t^{3}, \quad(1+t)\left(1 \pm t+t^{2}\right), \quad \text { or } \quad(1+t)^{3}
$$

This implies that $3 n-6 \leq \operatorname{dim}_{K}\left(R_{n}^{G}\right)_{1},\left(R_{n}^{G}\right)_{1}$ is the vector space of invariants of degree one. Since, clearly, $\operatorname{dim}_{K}\left(R_{n}^{G}\right) \leq n$, we have $n \leq 3$. If $n=3$, we have $\operatorname{dim}_{K}\left(R_{n}^{G}\right)_{1}=\operatorname{dim}_{K}\left(R_{n}\right)_{1}=3$, and hence $G=\{e\}$. If $n=2$, by the same argument as before, we find that

$$
f(t)=(1-t)^{3}(1+t)
$$

This implies, $\operatorname{dim}_{K}\left(R_{2}^{G}\right)_{1}=\operatorname{dim}_{K}\left(R_{2}\right)_{1}=2$, and hence $G=\{e\}$.

References

[D-P] C. De Contini and C. Procesi, A characteristic free approach to invariant theory, Adv. in Math., 21 (1976), 330-354.
[D-R-S] P. Doubilet, G. -C. Rota, and J. Stein, On the foundation of combinatorial theory: IX. Combinatorial method in invariant theory, Stud. Appl. Math., 53 (1974), 185-216.
[K] G. R. Kempf, Computing invariants, pp. 81-94 in "Invariant Theory", Lecture Notes in Math., No. 1278, Springer, 1987.
[Kh] V. K. Kharchenko, Algebras of invariants of free algebras, Algebra i Logika, 17 (1978), 478-487 (Russian) ; English translation: Algebra and Logic 17 (1978), 316-321.
[Ko] A. N. Koryukin, Noncommutative invariants of reductive groups, Algebra i Logika, 23 (1984, 419-429 (Russian) ; English translation: Algebra and Logic, 23 (1984), 290-296.
[K-R] J. P. S. Kung and G. -C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (New Series), 10 (1985), 27-85.
[L] D. R. Lane, Free algebras of rank two and their automorphisms, Ph. D. Thesis, Betford College, London, 1976.
[Le] L. Le Bruyn, Trace rings of generic 2 by 2 matrices, Mem. Ams Amer. Math. Soc. 363 (1987).
[M] I. G. MacDonald, "Symmetric Functions and Hall Polynomials", Oxford University Press, Oxford, 1979.
[N] E. Noether, Der Endlichkeitessatz der Invarianten endlichen Gruppen, Math. Ann., 77 (1916), 89-92.
[P1] V. Popov, Modern development in invariant theory, pp. 394-406 in "Proc. of I. C. M. Barkeley 1986".
[P2] - Constructive invariant theory, Asterisque, 87-88 (1981), 303-334.
[Pr] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. of Math., 19 (1976), 306-381.
[T] T. Tambour, Examples of S-algebras and generating functions, preprint.
[Te1] Y. Teranishi, Noncommutative invariant theory, 321-332, in "Perspectives in Ring Theory", Nato ASI Series 233, Kluwer Academic Publishers, 1988.
[Te2] - Noncommutative classical invariant theory, Nagoya Math. J., 112 (1988), 153-169.
[Te3] ——, Universal induced characters and restriction rules for the classical groups, Nagoya Math. J., 117 (1990), 173-205.
[W] H. Weyl, "The Classical Groups", Princeton University Press, Princeton, 1946.

Department of Mathematics
School of Science
Nagoya University
Chikusa-ku, Nagoya, 464-01
Japan

[^0]: Received February 6, 1990.

