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ON THE LENGTH OF THE POWERS OF SYSTEMS OF
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NGUYEN TU CUONG

ί 1. Introduction

Throughout this note, A denotes a commutative local Noetherian ring

with maximal ideal m and M a finitely generated A-module with dim(M)

= d. Let xu - -, xd be a system of parameters (s.o.p. for short) for M

and I the ideal of A generated by xu '--,xd. We consider the length

/(M/OJC?1, , xn

d

d)M) over A as a function in the positive integers nl9 , nd.

J-L. Garcia Roig and D. Kirby [5] have shown that this function is

generally not a polynomial for nu , nd > 0 (sufficiently large) but, if

M i s a generalized Cohen-Macaulay module, then

1{MI(&\ •, xT)M) = Λ l nde(I; M) +

for nu • , nd > 0, where e(I; M) denotes the multiplicity of M relative to

I and Wm{M) is the i-th local cohomology module of M with respect to m.

Therefore, it is natural to ask under which conditions l{Mj(xψ, , xd

d)M)

is a polynomial for nu - , nd > 0? (see [9], Question 1.1).

The purpose of this note is to give an answer to this question. Before

stating the main result we need the following definition. Let xu , xd

be a s.o.p. for M. We say that xu *-,xd is a p-system of parameters

(p-s.o.p. for short) for M if there exists a positive integer n0 such that

(xl\ - - '.xVs^M: xγ = (Λ?1, , x^ήM: xf

for all nu , nd > n0, i = 1, , d (x0 = 0).

We say that xu , xd is an unconditioned p-s.o.p. if for every per-

mutation of the sequence xu • , xd, the above condition holds with respect

to the same integer nQ.

THEOREM 1. The function l(M/(x^\ , xn

d

d)M) is a polynomial for
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ni9 - -, nd > 0 if and only if xu , xd is an unconditioned p-s.o.p. for M.

We will prove this theorem in Section 2. In Section 3, we will

relate p-s.o.p.'s to some special s.o.p.'s in the theory of local ring such

as filter regular s.o.p.'s [3] and standard s.o.p.'s [11] and show that a

generalized Cohen-Macaulay module can be characterized by p-s.o.p.'s.

At the end of this note, in Section 4, we consider the case dim(M) = 2

more closely. In this case, we will see that a p-s.o.p. can be characterized

by the finitely generated condition of certain relative Rees ring by using

a recent result of P. Schenzel (see [6]).

§ 2. Proof of Theorem 1

For convenience, we will use following notations.

Let nl9 , nd be positive integers. Then we put n(ί) = (nl9 , n^

and Inii) = (*?s , x?)A, I = Id = (xu , xd)A.

If a is an element of the group of permutations Sd9 a = (αr(l), , a(d))

we set 7n(α(<)) = (tfffi\ ,xζΐX>)A.

We first note that if a s.o.p. xl9 , xd for M i s a regular M-sequence

then it is obviously an unconditioned p-s.o.p.. Furthermore, if xψ , , xn

d

a

is a rf-sequence which has been introduced by Huneke [13] for all nu ,

nd > 0 then xu , xd is a p-s.o.p. Therefore, by [3], every s.o.p. for a

generalized Cohen-Macaulay module is an unconditioned p-s.o.p. The

property of p-s.o.p.'s has been examined more closely by the author in

[12]. Here, we only give some characterizations of unconditioned p-s.o.p.'s

which we need for the proof of Theorem 1.

LEMMA 2. The following conditions are equivalent:

( i ) xu - , xd is an unconditioned p-s.o.p.

(ii) There exists a positive integer nQ such that for all nu , nd > n0

and any permutation a of Sd9 we have the equality

(InM_mM: *;#>) Π Jn(β(i»M = /n(«(<-i))Af,

for each i = 1, , d.

(iii) There exists a positive integer n0 such that for all nu , nd > nQ

and any permutation a of Sd9 we have the equality

(ίn(.(d-i))Af: αΐfif) Π Inia)M = IHa{Λ^M.

(iv) There exists a positive integers n0 such that for all nu , nd > n0
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and any permutation a of Sd, we have the equality

T Ά/f' <rna(d:> T Ά/Γ' vno
In{a(d-l))lvl *>a(d) — l-n^id-l))1*1 Xa(d)

Proof, (i) => (ii). By renaming the permuted sequence it suffices to

show that

(I«(,-i>M: xT) Π In(t)M c 7n ( ί_υM.

Let a 6 (JΛ(ί_i)ilf: xf) Π /»(t)M Write α = ΣUiyjχ7 f° r s o m e ^ 6 M- Since

αx?* e /n(4-i)Λί therefore y^xf' e I^.^M. Hence, for nt > no, yt e / n ( i _ υ M: xfi

= IMI-DM: *?*. It follows that ^x^ e / „ ( , . , ) ! and α e L^-^M.

(ii) =$> (iii) is trivial.

(iii) ^ (iv). For 721? , nd > n0 we have

( / n ( d M ) M : xS°) Π (/,(,_!) + ) ^ v

Dividing both sides of this relation by x2°, we get

Inid-»M: xT° - Inta^M: xn

d°.

From this we can deduce that

T Ά/T' v w o T Ά/ί' vknQ
•Ln(d-l)1¥1 ' ^d — J-n{d-\)lv-L x d

for all nu , nd ̂  ^0 and ̂  > 1. Since our proof is independent of the

order of the sequence xl9 , xd we obtain (iv).

(iv) =Φ (i). By KrulΓs Intersection Theorem and (iv) we get

/ „ < , . # : xγ c Π ((/n(i-D + Λf+i + + xί)M: x?)
Jc—no

= ίΊ ((/,«-» + «f+i + + ίeί)Af: *?•)

for each i = 1, ,'d and all ΛI1? , π.d > ^0 Since the proof is inde-

pendent of the order of the sequence xu , xd we conclude Lemma 2.

LEMMA 3. If l(MjIn{d)M) is a polynomial for nu , nd > 0 then it is

linear in each n^

Proof. Straightforward.

The following formula for the multiplicity, found by Auslander and

Buchsbaum (see [1, § 4]), is the starting point for the proof of Theorem 1.

LEMMA 4. For every s.o.p. xl9 , xd for M we have
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l(M/(xu • - ,xΛ)M) = Kh-iM: xJh^M) + Σe(IΛ/It; It.,M:

where e(IJIt; It-iM: xJIt^M) = e(Id; M) for i = 0.

Proof of Theorem 1. (=». Using Lemma 4 we have

- K.Inld.»M: *2'

for all positive integers β. For arbitrary n(d — 1) = (n^ , Λd_i), we can

find £ (in general depending on nu , ̂ . j ) such that

Thus,

l{Inid.x)M: xγlL^M)

- l(M/InWM) + Z(M//w(d_1)M+ Λ ^ - ' M ) - l(MIIHd^M+ x^M).

By Lemma 3 each summand of the above right term is a polynomial,

linear in each ni9 for all ^ , , nd > 0. Therefore lil^^^M: xn

d

dIIn^-\)M)

is a polynomial. For fixed no(d — 1) = (n°u , rcS_i), there exists a positive

integer ί such that

for nd > ί. This implies that the polynomial /(/n(d_1)(M: XT/IΠ^-DM) is

independent of τιd. Hence, there exists a positive integer n0 such that

Jn«f-i>-W: xSd = I^t^M: xn

d° for ΛJ, , nd > T2O. As our proof is independ-

ent of the order of the sequence xu •• ,xd, it follows by Lemma 2(iv)

that xί9 - - , xd is an unconditioned p-s.o.p. (<=). For convenience, we set

ί(/«w-i)Af: Λ3 -//W W.I)A0 = e(In{d)IIvΛd); In{d^M: xΠh^M).

Then, by Lemma 4, it suffices to show that for each i = 0, 1, < , G£,

e(Inid)IIn«)', In«-»M: xTlI^^M) is a polynomial for 7il5 •• ,n d > 0 . We

will argue by induction on d and ί.

If d = 1 or i = 0 and d arbitrary, the statement is trivial.

It d > 1 and i > 1, we suppose that the result is true for d — 1 or
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i — 1, and it suffices to show that

e(Inid)/Iniί); In{i^M: WlI^^M)

is a polynomial. Consider a permutation a = (a(ΐ), , a(d)) of Sd such

that oc(i — 1) = i, #(£) = i — 1 and #0') = j for all j Φ ί — 1, i. Then by

Lemma 3 and the assumption, there exists a positive integer nQ such that

0 = l(MIInWM) - l(MIIMaW)M)

= β(7, ( 4 )/J, ( <_υ): InH_t)Λί: x%.JI,

+ e(IπWIInW; Inli.nM: x?IIΛli

- e(Inm/In,„(,.,„; /B ( <-ί)M: xr//n(ί_2)Λί)

€\-*-n(d)l-Ln(a(ί))l * n(a(i - 1 ) ) ^ ^ί-ll^n(a(.i - 1 ) ) ^ /

for all 72j, ., /la > 7τ0. It follows that

eCWJ»(i-i>; In(i-2)M: x?JIHί-2)M)

= e(In{d)IInW^\ Iniί-2)M: xΠIn{i_2)M)

- e(IMd)IIMί); Inii-OM: xrlInii-»M).

Denote the function on the rihgt of the above formula by F. Since the

above left term is a function independent of n ^ , so is F. For n1? - -, nd

> 7i0. we have

- e(Inid)IIn0); (I, ( ί_2 ) + Λ ^ J M : xf/J n ( ^ 2 ) M+ x ^ M ) .

Set M = M/x^iM. As dim(M) = d — 1, by induction on d, it follows that

e(In(d)IInW; (IHί_2)M+ xn^M): x?l(Iniί.2) + xT-i)M

= e(Inid)IInii); Iniί-2)M: x^/Iniί_2)M)

is a polynomial for n1? , nd ,> n0. On the other hand, by induction on

i, e(x?°l5 xγ+γ, - ,xT; I n ( ί _ 2 ) M: xn

%»IIn{i_2)M) is a polynomial. Thus, F is a

polynomial because F is the difference of two polynomials. Consequently,

by induction on ί,

e(InWIIn(i); In{i-X)M: xTJI^^M)

= eί/nw/Inuc,-!)); I W W - Ϊ ) M : x?IIn{i_2)M) + F

is a polynomial for all rc^ , rcd > AT0. The proof of Theorem 1 is now

complete.
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Remark. For the case nx— = nd = n as treated in [5] Theorem 1

leads to the following questions:

1. Let xU'"9xd be a s.o.p. for M. Then l(Mj(xΐ, -'-,xd)M) is a

polynomial for ra > 0 if and only if l(MI(xl\ , x5d)M) is a polynomial

for nu - - -, nd > 0?

2. Is Theorem 1 still true for this case? That is, l(MI(xΐ\ • , xn/)M)

is a polynomial for rii > 0 if and only if there exists a positive integer

720 such that, for all n> n0 and any permutation a of Sd.

for each £ = 1, , d?

Unfortunately, these questions do not always have an affirmative

answer as the following example shows: For d > 2 , let Bd = k\Yu , Yd+ίJ

l(YίYd+1, , YdYd+ι), where k is a field and Yu , Yd+1 are indeterminates.

We denote by xt the natural image of Yt + yd + 1 in J3d, ϊ = 1, , d, then

xl5 , xd form an s.o.p. for Bd. It can be verified that

KBJixψ, , xn/)Bd) =, n,'" nd + m i n ^ , , w d},

for all Tii, , nd> 1 and

(Λ?, , xU)Bd: x\ == (yΐ, •,y?.1,yd+i)Bi, i = 1, , d,

for all A > 1, where ^ is the natural image of Yt in Bd. Therefore

î) •» Xd satisfy the condition (*) but l(Bd/(xΊ\ , xd

d)Bd is not a poly-

nomial.

§ 3. Generalized Cohen-Macaulay modules

In this section we will see that />-s.o.p.'s are closely related to some

specified s.o.p.'s like filter regular s.o.p/s [3] or standard s.o.p.'s [11] and

that one can use the notation of p-s.o.p.'s to characterize the generalized

Cohen-Macaulay module which has been first introduced in [3].

Recall that an s.o.p. xu , xd for M is called a filter regular s.o.p.

if x, e P for all P e Ass (M/(xu , x^M - {m}, i = 1, , d. It is called

an unconditioned filter regular s.o.p. if for any order of the sequence

xu - , xd it is always a filter regular sequence. This notion was intro-

duced in [3] and has led to some interesting results. For instance, MP

is a Cohen-Macaulay module and dim (MP) + dim (A/P) = dim (M) for all

P e Supp (M) — {m} if and only if every s.o.p. for M is a filter regular
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s.o.p. [3, Satz 2.5]. In this case, M is called an /-module. M is called

a generalized Cohen-Macaulay module if l{Hl

m{M)) < +00 for ί = 0, ,

d — 1. It is well-known that every generalized Cohen-Macaulay module

is an /-module and that the converse holds if A is a factor ring of a

Cohen-Macaulay ring [3]. But in general, an /-module is not a generalized

Cohen-Macaulay module. Ferrand and Raynaud [4] have constructed a

two-dimensional local integral domain R such that the m-adic completion

R has a one-dimensional associated prime ideal. Thus, R is an /-ring

but it is not a generalized Cohen-Macaulay ring.

An s.o.p. xu , xd for M is called a standard s.o.p. if l{MjIdM) —

e(Id; Af) = l(M/(xl • •, *J)M) - e(*J, . . . , * | ; M ) . Trung [11] has shown

that M is a generalized Cohen-Macaulay module if and only if there exists

a standard s.o.p. for M and that if xu , xd is a standard s.o.p., then

for all nu , nd > 1, l(MI(xΊι, , xϊd)M) — φ ? 1 , , xd

dl M) is a constant.

Therefore xu •• , # d is an unconditioned p-s.o.p. for M with respect to

the integer nQ = 1. As for the converse, we have the following

PROPOSITION 5. M is a generalized Cohen-Macaulay module if and

only if there exists an unconditioned filter regular s.o.p. xu •• , # d such

that l(Mj(xψ, '-'yXad)M) is a polynomial for all nu •• , τ ι d > l . And in

this case, xu , xd is a standard s.o.p.

Proof. By the above remark it suffices to show the "if" part of the

proposition. Let xu --',xd be an unconditioned filter regular s.o.p. for

M. Using the notations as in Section 2, by Corollary 4.8 of [1] we have

for nu - - , nd > 1

l{MjIn{d)M) - e(In(d); M) - l(In(d^M: x^/I^^M)

is a polynomial for every permutation of xί9 , xd. Then it follows that

this difference is independent of nu , nd. So xu , xd is a standard

s.o.p. for M and M i s a generalized Cohen-Macaulay module.

Remark. The condition that xu - -, xd is a filter regular s.o.p. for

every permutation of the sequence xu , xd is necessary as the following

example shows. Let A = k{X, Y, ZJ/(X\ XYZ, XZ2) and let y, z be the

images of Y, Z2 in A. Then it is easy to see that y, z is an unconditioned

p-s.o.p. of A and a filter regular s.o.p. But A is not a generalized Cohen-

Macaulay module since z, y is not a filter regular s.o.p. of A.
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COROLLARY 6. Let M be an f-module. If M is not a generalized Cohen-

Macaulay module then, for every s.o.p. xu , xd for M, l(Mj{xψ, , xY)M)

is never a polynomial for nu , nd > 0.

Proof. Note that there always exists an unconditioned filter regular

s.o.p. for M (see [2]). Then the proof is immediate from Proposition 5.

COROLLARY 7. The following conditions are equivalent:

( i ) M is a generalized Cohen-Macaulay module

(ii) Every s.o.p. for M is a p-s.o.p.

(iii) For every s.o.p. xu , xd for M,

liMjx7?, , xld)M) is a polynomial for nu , nd > 0.

Proof. Immediate.

§ 4. The case dim (M) = 2

In this section we always assume that dim (M) = 2. We will first

show that the property of being a p-s.o.p. is stable under permutations.

LEMMA 8. Every p-s.o.p. is unconditioned.

Proof Let x, y be a p-s.o.p. for M. By Lemma 4 we have

l(MI(xn,ym)M) = l(xnM: ym/xnM) + me(y; 0: Mxn) + nme(x,y; M)

= l(ymM: xnlymM) + ne(x; 0: Mym) + nme(x,y; M).

Thus

l(ymM: xnjymM) - me(y; 0: Mxn) = Z(xnM: ym/xnM) - ne(x; 0: jV;ym),

since x, y is a p-s.o.p., it follows that the above difference is a constant,

say k for π, m > 0. Then

l(xnM: ym/xnM) = ra<x; 0: ^y*) + fe,

l(ymM\ xnlymM) = τw(y; 0: ^xn) + Jfe

are polynomials for n, m > 0 and we get the result by Theorem 1.

THEOREM 9. The following conditions are equivalent:

( i ) x, y is a p-s.o.p. for M.

(ii) l(M/xn,ym)M) is a polynomial for n, m > 0.

(iii) l(Hλ(xn, ym; M)) is a polynomial for n, m > 0,

where H*(x,y;M) is the homology of the Koszul-Complex K*(x,y\A)® AM

with respect to the elements x, y of A.
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Proof, (i) (=$ (ii) bjr Theorem 1 and Lemma 8. (ii) Φ̂  (iii) arises most

directly from

l(Ml(x\y™>)M) - l(Hx{xn,ym, M)) = nme(x,y; M) - 1(0: M(xn,ym))

which is a polynomial for n, m > 0.

Let J V g f a submodule and J c A a n ideal. We set

N: <J> = {a e M; aJk c JV for some k ^ 1}.

We will see that for a filter regular s.o.p., the property of being a p-s.o.p.

can be expressed in terms of only one element,

PROPOSITION 10. Let x,y be a filter regular s.o.p. for M. Then the

following conditions are equivalent:

(i) l(MI(xn,ym)M) is a polynomial for n, m > 0.

(ii) There exists a positive integer k such that

ym(ykM: <m» + 0: <m> = / + w M : <m>

for all m > 0.

Proof, (i) :=> (ii). Note that if x, y is a filter regular s.o.p. fhen xn, ym

is also a filter regular s.o.p. for all n, m > 1. By Lemma 4 and Corollary

4.8 of [1] we get

l(MI(xn,ym)M) - nme{x,y; M) = Z(xnM: ym/xnM)

= Z(3/mM: xn/ymM) + ra?(x; 0: „ / * ) .

k

This shows that the above difference is a polynomial depending only on

n. Thus there exists a positive integer & such that l(ymM: xnlymM) is a

constant for all n, m> k. As x, y is a p-s.o.p. we can choose a sufficiently

large k such that j>mM: xn = ymΛf: m* = j>wM: <m> and 0: <y> = 0: My

for n, m > k. We have

/(ymM: xn/ynM) = /(^Af: <ra>/3/mM)

= /(ymM: <m>/ymM+ 0: <m» + /(y w M+ 0: (m)jymM)

= /(^WM: <m>/^M+ 0: <m» + /(0: <m»,

since, by Lemma 2 (ii)

ymM + 0: (m)lymM ~ 0: (m)/ymM Π 0: <m> - 0: <m>.

Thus l(ymM: (x\\)lymM + 0: <τu» is a constant for m> k. Now we consider

the mapping
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fm: ykM: <m>//M+ 0: <m> >yk+mM: (m)lyk¥mM + 0: <m>

defined by fm(a) = a-y™ for a e M. We will show now that fm is injective

for all m >̂ 0. In fact, since

ker(/J = ((ykM: <w» Π (ykM + 0: J f f ) ) / / M + 0: <nt>

and

(ykM: <m» Π (y'M + 0: xy
m) = / M + (y"M: <m» Π (0: M / n ) ,

we only need to show that (0: Mym) Π (ykM: <m» g θ : <m>. Let αe(0 : Mym)

Π(yfcM: <m», for arbitrary b e mfc, ab = ^&c for some c e M . As αyfc = 0,

0 = aykb = y*c. Thus c e 0: 3 //
f c - 0: Myk = 0: <j> and αfe = / c = 0 for

all 6em f c. So it follows that αeO: Mmk = 0: <m>. Since l(yk+mM: <m>

lyk+mM + 0: <(m)) is a constant and /m is injective for m > 0, it follows

that fm is surjective for all m > 0 and this proves that ^m(3/fcM: <ni)) +

0: <BI> - / + T O M: <m> for all m > 0.

(ii) zφ (i). By Theorem 1 and Lemma 8 it is enough to show that

y, x is a p-s.o.p. There exists integers t, s such that ykM: <τπ) = 3̂ fcM: xί

and 0: (x) = 0: ^xs. Let τz0 = max{^, t, s}. Then, for all m > nQi

ymM: <m> = 3/m-fc(3/fcM: <m» + 0: <nt>

= ^ - ^ / M : xno) + 0: <m> ^ynM: xno.

This completes the proof of Proposition 10.

The Proposition 10 has the following consequences.

COROLLARY 11. Let x,y be a filter regular s.o.p. for M. If l(M/(xn, yn)M)

is a polynomial for n, m > 0 then, for every z e A such that z, y is a s.o.p.

for M, z, y is a filter regular s.o.p. for M and l(M/(zn, ym)M) is a poly-

nomial for n, m > 0.

Proof. By Proposition 10 we need only to show that if z, y is a s.o.p.

for M, then z, y is a filter regular s.o.p. for M. In fact, we have

0: (z) c y™ + kM: <z> = ym+kM: <m> = ym(y*M: <m» + 0: <nι>

for all m > 0 and £ as in Proposition 10. It follows that

0: (z) c Π (ym(^*M: <m» + 0: <m» = 0:
0

by KrulΓs Intersection Theorem. Hence we can conclude that 0:

G:
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As for the next corollary, we recall a notation from [6]. Let x, y

be an s.o.p. of A and t an indeterminate over A. Then one call the graded

algebra Rm(x) = φ^_O0(xnA: <m»ίn the m-relative Rees ring with respect

to the ideal xA. Let R(x) = ®^_o0(xnA)tn be the ordinary Rees ring of

A with respect to xA.

COROLLARY 12. Let M = A and x,y form an s.o.p. of A. Then the

following conditions are equivalent:

(i) Rm(x) is finitely generated over R(x).

(ii) depth (A) > 0 and l(A/(xn, y)A) is a polynomial for n, m > 0.

Proof. It is well-known [6] that (i) is equivalent to the following

condition

(i7) There exists a positive integer k such that for aΠ n>0 xn(xkA: <m»

= xn + kA: <m>.

Thus, (ii) => (i') by Proposition 10, (i) => (ii) follows from the Proposition

10 and

0: My £ Π (xn'kA: < » ) - f) (xn + kA: <nι» - f) (xn(xkA: <m») - 0.
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