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§1. Introduction

Throughout this note, A denotes a commutative local Noetherian ring
with maximal ideal m and M a finitely generated A-module with dim (M)
=d. Let x,---,x; be a system of parameters (s.o.p. for short) for M
and I the ideal of A generated by x, ---,x,. We consider the length
I(M(x2, -+ -, x7¢)M) over A as a function in the positive integers n,, - - -, ng.
J-L. Garcia Roig and D. Kirby [5] have shown that this function is
generally not a polynomial for n, ---, n, > 0 (sufficiently large) but, if
M 1is a generalized Cohen-Macaulay module, then

KMIGE, o, 339M) = g neels M) + 21 (T 7 V)i

for n,, ---, ng > 0, where e(l; M) denotes the multiplicity of M relative to
I and Hi(M) is the i-th local cohomology module of M with respect to m.
Therefore, it is natural to ask under which conditions I(M/(x™, - - -, x")M)
is a polynomial for n,, :--,n, > 0?7 (see [9], Question 1.1).

The purpose of this note is to give an answer to this question. Before
stating the main result we need the following definition. Let x,, ---, x4
be a s.0.p. for M. We say that x, ---,x, is a p-system of parameters
(p-s.o.p. for short) for M if there exists a positive integer n, such that

(xp, - -, xOM: X = (af, - -, xM)M: &

for all n,, ---,ng=>ny, i =1, ---,d (x, = 0).

We say that x,, - - -, x, is an unconditioned p-s.o.p. if for every per-
mutation of the sequence x,, - - -, x,;, the above condition holds with respect
to the same integer n,.

THEOREM 1. The function UM|(x¥, ---, x2)M) is a polynomial for
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Ny, o, ne > 0 if and only if x,, -+, x4 is an unconditioned p-s.o.p. for M.

We will prove this theorem in Section 2. In Section 3, we will
relate p-s.0.p.’s to some special s.0.p.’s in the theory of local ring such
as filter regular s.o.p.’s [3] and standard s.o.p.’s [11] and show that a
generalized Cohen-Macaulay module can be characterized by p-s.o.p.’s.
At the end of this note, in Section 4, we consider the case dim (M) = 2
more closely. In this case, we will see that a p-s.0.p. can be characterized
by the finitely generated condition of certain relative Rees ring by using
a recent result of P. Schenzel (see [6]).

§2. Proof of Theorem 1

For convenience, we will use following notations.

Let n,, ---,n; be positive integers. Then we put n(i) = (n, - -+, n,)
and I, = (a, -, M)A, I =1, = (x;, - - -, xg)A.

If « is an element of the group of permutations S;, @ = (a(1), - - -, a(d))
we set L,y = (X050, - - -, xk$)A.

We first note that if a s.o.p. x,, - - -, x; for M is a regular M-sequence
then it is obviously an unconditioned p-s.o.p.. Furthermore, if x, - .., x7%
is a d-sequence which has been introduced by Huneke [13] for all n,, - - -,
ne> 0 then «x, ---,x, is a p-s.o.p. Therefore, by [3], every s.o.p. for a

generalized Cohen-Macaulay module is an unconditioned p-s.o.p. The
property of p-s.0.p.’s has been examined more closely by the author in
[12]. Here, we only give some characterizations of unconditioned p-s.o.p.’s
which we need for the proof of Theorem 1.

LEmMmaA 2. The following conditions are equivalent:

(i) x, -+, x; is an unconditioned p-s.o.p.

(ii) There exists a positive integer n, such that for all n,, - -+, ny > n,
and any permutation « of Sy, we have the equality

(I‘n(a(i—-l))M: xf‘(’i‘)“) n In(lx(‘t))M = In(a(i*l))M’

foreachi=1,---,d.
(iii) There exists a positive integer n, such that for all n,, - -, ng > n,
and any permutation « of S,;, we have the equality

. d
(In(n(d—l))M' xg'('é))) N LM = I, a-1pM.

(iv) There exists a positive integers n, such that for all n,, ---, ng > n,
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and any permutation o of S;, we have the equality
Lya-yM: x50 = L@ 1M X%, -

Proof. (i) = (i1). By renaming the permuted sequence it suffices to
show that

Lg-oM: x)N LM < I, M.

Let ae (I,-yM: x3) N I, (nM. Write a = 33!, y;x™ for some y; € M. Since
ax® € I,,_,,M therefore y,x e I, ,_,M. Hence, for n, > ny, y, € L, M: x*™
= La_yM: x%. It follows that yx*el,,.,M and e € L,,_,,M.

(i1) = (iii) is trivial.

(iii) = (iv). For n,, -+ -, ny > n, we have

(In(d—l)M: x7°) N (In(d—l) + x)M = In((l—l)M'
Dividing both sides of this relation by x%, we get
Log-oM: x7° = I, 4.M: x3°.

From this we can deduce that

. — . k
LiayM: 20 = I, M: xiro

for all n,, ---,ny > n, and k> 1. Since our proof is independent of the
order of the sequence x,, - -+, x;, we obtain (iv).
(iv) = (i). By Krull’s Intersection Theorem and (iv) we get

LaooM: x5 S () ((Lygoyy + &s 4 -+ + KM: x)

E=no

=N ((In(i—l) + xb, 4 - 4 DM x)
k=no

=Ly oyM: x S L, ,M: x

for each i =1, ---,d and all n, ---,n, > n,. Since the proof is inde-
pendent of the order of the sequence x,, ---, x, we conclude Lemma 2.

Lemma 3. If M|I, M) is a polynomial for n,, ---,n, > 0 then it is
linear in each n,.

Proof. Straightforward.
The following formula for the multiplicity, found by Auslander and
Buchsbaum (see [1, § 4]), is the starting point for the proof of Theorem 1.

LemMma 4. For every s.o.p. x,, - -+, x, for M we have
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d-1
M(x,, - -, x.)M) = I, M: Zolly M) + ;e(Id/It; I_M: x,/I, M),

where e(I,/1,; I,_.M: x,/I,_ M) = e(I;; M) for i = 0.
Proof of Theorem 1. (=). Using Lemma 4 we have

Z(M/In(d—l)M + xkra M) — Z(M/]n(d)M)
= l(I'n(d—l)M: xgnd/[n(d—-l)M) - l(In(d-l)M: xzd/In(d-nM)

a-1
+ ;e(In(d-—l) + xék—l)naA/In(“; In(£~1)M: x?‘/In(i~l)M)

= lpa-vM: x5 qyM) — UTLq-nM: x5/ 1o M)
+ l(M/In(d~l)M+ xF-Ime M) — Z(In(d—l)M: xz(ikAI)nd/In(d~l)M)

for all positive integers k. For arbitrary n(d — 1) = (n,, - - -, ny_,), we can
find 2 (in general depending on n,, - --, n,_,) such that

. K . k-1
LogyM: xtre = I, M: x§=0"e,
Thus,

l(In(d—l)M: x:ild/In(d—l)M)
= IM|L, M) + (ML, M+ x§-0%M) — UM, .M+ xkM).

By Lemma 3 each summand of the above right term is a polynomial,
linear in each n,, for all n,, ---, n, > 0. Therefore I(I,4_M: x3¢/I,4-,M)
is a polynomial. For fixed n°(d — 1) = (n, - - -, n}_,), there exists a positive
integer ¢t such that

Ino(d—l)M: xgd = I‘n,U(d—l)M: xfl

for n, >t This implies that the polynomial I(I,_,,(M: x3¢/L,4_,,M) is
independent of n,. Hence, there exists a positive integer n, such that
L owM: x2¢ = I,,.,M: x3 for n,, ---, ng > n,. As our proof is independ-
ent of the order of the sequence x,, .-, x,, it follows by Lemma 2(iv)
that x,, - -+, x, is an unconditioned p-s.o.p. («&). For convenience, we set

l(In(d-l)M: x:d/In(d—l)M) = e(In(d)/In(d); I’n(d—l)M: xft“/ln(d--x)M)-

Then, by Lemma 4, it suffices to show that for each i =0,1, -..,d,
eyl luay; Lug-vyM: x3I,,_yM) is a polynomial for n, ---,n, > 0. We
will argue by induction on d and i.

If d =1 or i =0 and d arbitrary, the statement is trivial.

It d> 1 and i > 1, we suppose that the result is true for d — 1 or
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[ — 1, and it suffices to show that
e(In(d)/In(t); In(i~l)M: X7 Ly M)

is a polynomial. Consider a permutation « = («(1), - - -, a(d)) of S, such
that i — 1) =i, ai) =i — 1 and aj) =j for all j+=i— 1, i. Then by
Lemma 3 and the assumption, there exists a positive integer n, such that

0 = (M, M) — UM/, M)
= e(Lyay/ -1 Luo-oyM: X724/ 1,0 M)
+ e(In(d)/Iﬂ(i); In(i—l)M: x?O/I"““)M)
— e/ Lwi-1ps Ln-oyM: xP/1, -0y M)
— e(Lyayacactyys Lntaii-vyM: 24 Loy M)

for all n,, -+, n; > n,. It follows that

Ly Luis—rys Lnco-nM: %721, 0y M)
— e(Lyar/Tcaiyys Lncai-mMe 2124/ L o1y M)
= e(In(d)/In(a(i—l)); In(i—Z)M: x?"/[,,“_g)M)
— e(LyayTnciys Tn-oyM: xP[Ly -y M) .

Denote the function on the rihgt of the above formula by F. Since the
above left term is a function independent of n,_,, so is F. For n,, ---, n,
> n,. we have

F = e(xpo,, xpiyy, - - -, 4395 L-nM: x;'m/In(i—Z)M)
- e(In(d)/In(i); (In(i~2) + xp)M: x?n/In(i—i)M + xp M),

Set M = Mjx7 M. As dim(M) = d — 1, by induction on d, it follows that

e(In(d)/In(i); (In(i~2)M+ a0 M): x?“/(In(i—z) + ap )M
= e(In(d)/Iﬂ(i); In(i—Z)M: x?o/In(i—Z)M)

is a polynomial for n,, ---, ny, > n,. On the other hand, by induction on
i, e(xpey, apyy, oo xndy Ly o M: x™[I, M) is a polynomial. Thus, F is a
polynomial because F is the difference of two polynomials. Consequently,
by induction on i,

e(In(d)/In(i); In(i—l)M: xZ“’/Ina-nM)
== e(In(d)/In(a(i—~1)); In(l—Z)M: x?"/In(i~z)M) + F

is a polynomial for all n,, -+, ny > n, The proof of Theorem 1 is now
complete.
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Remark. For the case n, = --- = n, = n as treated in [5] Theorem 1
leads to the following questions:

1. Let x,---,x; be a s.o.p. for M. Then I(M/(x?, ---,x)M) is a
polynomial for n » 0 if and only if I(M/(x}, - -, x%¢)M) is a polynomial
for ny, - -+, ng > 0?

2. Is Theorem 1 still true for this case? That is, I(M/(x2, - - -, x%)M)
is a polynomial for n;, > 0 if and only if there exists a positive integer
n, such that, for all n > n, and any permutation « of S,.

(%) (x;l(x), Ty, xZ(i—l))M: Xawy = (x:zl(l)) Ty, xZ(t—n)M: X2y »
for eachi=1,...,d?

Unfortunately, these questions do not always have an affirmative
answer as the following example shows: For d >2, let B, = k[ Y, - -+, Y;..]

/(Y Y,, -+, Y, Y,,), where kis a field and Y,, -- -, Y,,, are indeterminates.
We denote by x; the natural image of Y, + Y,,, in B,, i =1, ---,d, then
x, + -+, x; form an s.o.p. for B,. It can be verified that

Z(Bd/(x;lly ] xzd)Bd) =Nyt Ng + mln {n/ly ) nd} )
for all n,, ---, n,>1 and
(x;ba Y x’g’—l)Bd: xf = (yh t '7y?—1) yd+1)Bds l’ = 19 R d9

for all 2> 1, where y, is the natural image of Y, in B,. Therefore
x, -+ -, x; satisfy the condition (x) but I(B,/(x?, ---, x2*)B, is not a poly-
nomial.

§3. Generalized Cohen-Macaulay modules

In this section we will see that p-s.o.p.’s are closely related to some
specified s.0.p.’s like filter regular s.o.p.’s [3] or standard s.o.p.’s [11] and
that one can use the notation of p-s.o.p.’s to characterize the generalized
Cohen-Macaulay module which has been first introduced in [3].

Recall that an s.o.p. x;, - -+, x, for M is called a filter regular s.o.p.
if x, ¢ P for all Pe Ass(M/(x,, - -+, %, )M — {m}, i =1, ---,d. It is called
an unconditioned filter regular s.o.p. if for any order of the sequence
X, -+, Xy 1t is always a filter regular sequence. This notion was intro-
duced in [3] and has led to some interesting results. For instance, M,
is a Cohen-Macaulay module and dim (M;) + dim(A/P) = dim (M) for all
PeSupp (M) — {m} if and only if every s.o.p. for M is a filter regular
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s.0.p. [3, Satz 2.5]. In this case, M is called an f-module. M is called
a generalized Cohen-Macaulay module if I[(H{(M)) < + oo for i =0, -- -,
d — 1. Tt is well-known that every generalized Cohen-Macaulay module
is an f-module and that the converse holds if A is a factor ring of a
Cohen-Macaulay ring [3]. But in general, an f-module is not a generalized
Cohen-Macaulay module. Ferrand and Raynaud [4] have constructed a
two-dimensional local integral domain R such that the m-adic completion
R has a one-dimensional associated prime ideal. Thus, R is an f-ring
but it is not a generalized Cohen-Macaulay ring.

An s.o.p. x;, - -+, x, for M is called a standard s.o.p. if {(M/I,M) —
e(ly; M)y = (M[(x2, - -+, x5)M) — e(x?, - -+, x%; M). Trung [11] has shown
that M is a generalized Cohen-Macaulay module if and only if there exists

a standard s.o.p. for M and that if x,, ---, x, is a standard s.o.p., then
for all n,, -+, ng > 1, IM/(x?, - - -, x2)M) — e(x?, - -+, x%; M) is a constant.
Therefore x,, - -+, x, is an unconditioned p-s.o.p. for M with respect to

the integer n, = 1. As for the converse, we have the following

ProposiTiON 5. M is a generalized Cohen-Macaulay module if and

only if there exists an unconditioned filter regular s.o.p. x,, ---,x; Such
that I(M|(x>, - -, x39)M) is a polynomial for all n, ---,n,>1. And in
this case, x,, - -+, x, is a standard s.o.p.

Proof. By the above remark it suffices to show the “if”” part of the
proposition. Let x,, ---, x; be an unconditioned filter regular s.o.p. for
M. Using the notations as in Section 2, by Corollary 4.8 of [1] we have
for n, « -, n,>1

Z(M/Inw)M) — e(l,ay; M) = I(1,4-\M: x:im)/-[n(d—l)]‘/[)

is a polynomial for every permutation of x,, ---, x,. Then it follows that
this difference is independent of n,, ---,ns;. So x, ---, %, is a standard
s.0.p. for M and M is a generalized Cohen-Macaulay module.

Remark. The condition that x,, ---,x, is a filter regular s.o.p. for
every permutation of the sequence x,, - - -, x; is necessary as the following
example shows. Let A = k[X, Y, Z)/(X*? XYZ, XZ*) and let y, z be the
images of Y, Z? in A. Then it is easy to see that y, z is an unconditioned
p-s.0.p. of A and a filter regular s.o.p. But A is not a generalized Cohen-
Macaulay module since 2z, y is not a filter regular s.o0.p. of A.
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COROLLARY 6. Let M be an f-module. If M is not a generalized Cohen-
Macaulay module then, for every s.o.p. x,, - - -, x5 for M, UM|(x™, - - ., x2)M)
is never a polynomial for n,, ---,n, > 0.

Proof. Note that there always exists an unconditioned filter regular
s.0.p. for M (see [2]). Then the proof is immediate from Proposition 5.

CoroLLARY 7. The following conditions are equivalent:
(1) M is a generalized Cohen-Macaulay module
(ii) Every s.o.p. for M is a p-s.o.p.
(i1) For every s.o.p. x,, - -+, x4 for M,
M|xy, - -, x2)M) is a polynomial for n,, ---,n, > 0.

Proof. Immediate.

§4. The case dim (M) = 2
In this section we always assume that dim(M) = 2. We will first
show that the property of being a p-s.o.p. is stable under permutations.
LEMMA 8. Every p-s.o.p. is unconditioned.
Proof. Let x,y be a p-s.o.p. for M. By Lemma 4 we have
UM[(x*, y")M) = Ux"M: y™[x*M) + me(y; 0: yx") + nme(x, y; M)
= l(y"M: x*|y"M) + ne(x; 0: ,y™) + nme(x,y; M).
Thus
W(y™M: x*|y"M) — me(y; 0: yx™) = Ux"M: y"/x*M) — ne(x; 0: ,y™),
since x,y is a p-s.o.p., it follows that the above difference is a constant,
say k for n, m > 0. Then
W(x"M: y"|x"M) = ne(x; 0: ,y™) + k,
W(y"M: x*|y"M) = me(y; 0: 4x*) + k
are polynomials for n, m > 0 and we get the result by Theorem 1.
THEOREM 9. The following conditions are equivalent:
(1) =x,y is a p-s.o.p. for M.
(ii) UM]x", y~)M) is a polynomial for n,m > 0.
(iii) I(H(x", y™; M)) is a polynomial for n,m > 0,

where H,(x,y; M) is the homology of the Koszul-Complex K, (x,y; A)® M
with respect to the elements x,y of A.



ON THE LENGTH OF THE POWERS OF SYSTEMS OF PARAMETERS 85

Proof. (1) & (i1) by Theorem 1 and Lemma 8. (ii) & (iii) arises most
directly from

M|z, y)M) — I(H,(x", y™, M)) = nme(x, y; M) — 0: ,(x", y™))

which is a polynomial for n, m > 0.
Let N M a submodule and J & A an ideal. We set

N: (JY = {ae M; aJ* < N for some k > 1}.

We will see that for a filter regular s.o.p., the property of being a p-s.o.p.
can be expressed in terms of only one element,

ProposITiON 10. Let x,y be a filter regular s.o.p. for M. Then the
following conditions are equivalent:

(i) UM(x", y)M) is a polynomial for n,m > 0.

(i1) There exists a positive integer k such that

Yy(y*M: {m)) + 0: (m) =y M: (m)
for all m > 0.

Proof. (i) = (i1). Note that if x, y is a filter regular s.o.p. rhen x*, y"
is also a filter regular s.o.p. for all n,m > 1. By Lemma 4 and Corollary
4.8 of [1] we get

UM[(x", y")M) — nme(x, y; M) = W(x"M: y™[x"M)
= l(y"M: x"[y"M) + ne(x; 0: ,y™).
This shows that the above difference is a polynomial depending only on
n. Thus there exists a positive integer k& such that I(y"M: x*/y"M) is a
constant for all n,m > k. As x,y is a p-s.o.p. we can choose a sufficiently
large k such that y"M: x" = y"M: m* = y"M: (m) and 0: {y) = 0: y»*
for n,m > k. We have
Wy M: x*[y"M) = W(y"M: {my[y™M)

= l(y"M: {ud/y™M + 0: {m)) + (™M + 0: {md[y™M)

= I(y"M: (mdyly*M + 0: {md) + 1(0: (),
since, by Lemma 2 (i1)

M A4 0 (mdfy™M = 0: {mdfy™M 0 0: {m) = 0: {m)y.

Thus I(y™"M: {(m)[/y"M + 0: {m)) is a constant for m > k. Now we consider
the mapping
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fu: "M o[y M 4 02 (my —> y** M (npfy* "M 4 0 (m)

defined by f.(a) = a-y™ for ae M. We will show now that f,, is injective
for all m > 0. In fact, since

ker (f,) = (y*M: <)) N (Y*M + 01 yy™)[y*M + 0: {m)y
and

(Y*M: ) N (M + 0: ™) = y*M + (y*M: () N (00 ™),

we only need to show that (0: ,y™) N (y*M: (ud) S 0: (md. Let ae (0: ,y™)
N(y*M: (m>), for arbitrary be m*, ab = y*c for some ce M. As ay* = 0,
0 = ay*b = y*c. Thus ce€0: ,y"* = 0: 4y* = 0: {y> and ab = y*c = 0 for
all bem”*. So it follows that ae0: ,m* = 0: {m). Since I(y**"M: (m)
[y**™ M 4 0: (m)) is a constant and f, is injective for m > 0, it follows
that f,, is surjective for all m > 0 and this proves that y™(y*M: (m)) +
0: {m) = y**™M: {m) for all m > 0.

(i1) = (i). By Theorem 1 and Lemma 8 it is enough to show that
v, x 1s a p-s.0.p. There existe integers {, s such that y*M: () = y*M: x*
and 0: (x> = 0: yx’. Let n, = max{k, ¢, s}. Then, for all m > n,,
yrM: (n)y = y Ty M () + 0 (nd
= y"Hy*M: x™) 4 0: () S ymM: x™.,
This completes the proof of Proposition 10.

The Proposition 10 has the following consequences.

CoroLLARY 11. Let x, y be a filter regular s.o.p. for M. If I(M/(x*, y")M)
is a polynomial for n, m > 0 then, for every ze A such that 2, y is a s.0.p.
for M, z, v is a filter regular s.o.p. for M and I(M/(z", y")M) is a poly-
nomial for n,m > 0.

Proof. By Proposition 10 we need only to show that if z,y is a s.o.p.
for M, then z,y is a filter regular s.o.p. for M. In fact, we have

0: {2) STy EM: (2) = y™**M: {m) = y™(y*M: {m)) 4+ 0: (md
for all m >0 and %k as in Proposition 10. It follows that

0: (s> < mFJO(y’"(y"M: md) + 0: dmd) = 0: (md

by Krull’s Intersection Theorem. Hence we can conclude that 0: (z) =

G: o,
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As for the next corollary, we recall a notation from [6]. Let x,y
be an s.o.p. of A and ¢ an indeterminate over A. Then one call the graded
algebra R,(x) = @;= . (x"A: (m))t* the m-relative Rees ring with respect
to the ideal xA. Let R(x) = @;=_ .. (x"A)t* be the ordinary Rees ring of
A with respect to xA.

CorOLLARY 12. Let M = A and x,y form an s.o.p. of A. Then the
following conditions are equivalent:

(i) R.(x) is finitely generated over R(x).

(i1) depth(A) > 0 and I(A/(x", y)A) is a polynomial for n, m > 0.

Proof. It is well-known [6] that (i) is equivalent to the following
condition

(i) There exists a positive integer k such that for all n>0 x™(x*A: (m))
= x"**A: (m).
Thus, (ii) = (') by Proposition 10. (@) => (ii) follows from the Proposition
10 and

0: wy © F’w (x" A (yD) = Fﬁo (" FA: () = ﬁo (x"(x*A: (m))) =0,

ACKRNOWLEGEMENT. This note was written while the author was
visiting the Department of Mathematics of the University of Genova by
a grant of Consiglio Nazionale delle Ricerche. He would like to thank
both institutions for support and hospitality. Also, he would like to
thank G. Valla and N.V. Trung for their useful suggestions.

REFERENCES

[ 1] Auslander, M. and D. A. Buchsbaum, Codimension and multiplicity, Ann. Math.,
68 (1958), 625-657.

[2] Brodmann, M., Kohomologische Eigenschaften von Aufblasungen an lokalen
vollstdndigen Durchschnitten, Habilitationsschrift, Miinster 1980.

[ 3] Cuong, N. T., Trung, N. V. and P. Schenzel, Verallgemeinerte Cohen-Macaulay
Moduln, Math. Nachr., 85 (1978), 57-73.

[4] Ferrand, D. and M. Raynaud, Fibres formelles d’un anneau local Noetherien,
Ann. Sc. Ecole Norm. Sup., 3 (1970), 295-311.

[ 5] Garcia Roig, J-L and D. Kirby, On the Koszul homology modules for the powers
of a multiplicity system, Mathematika, 33 (1986), 96-101.

[ 61 Schenzel, P., Finiteness of relative Rees ring and Asymptotic Prime Divisor, Math.
Nachr., 129 (1986), 123-148.

[ 7] Serre, J-P., Algébre locale: Multiplicités, Lecture Notes in Math. No. 11, 1965.

[ 8] Stiickrad, J. and W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay Ringe
und Anwendungen auf ein Problem der Multiplizitatstheorie, J. Math. Kyoto Univ.,
13 (1973), 513-528.



88 NGUYEN TU CUONG

[ 9] Sharp, R. Y. and M. A. Hamieh, Lengths of certain generalized fraction, J. pure
Appl. Algebra, 38 (1985), 323-336.

[10] Trung, N. V., Absolutely superficial sequence, Math. Proc. Cambrige Phil. Soc.,
93 (1983), 35-47.

[11] ——, Toward a theory of generalized Cohen Macaulay modules, Nagoya Math. J.,
102 (1986), 1-49.

[12] Cuong, N. T., Generalized Cohen-Macaulay modules with non-Cohen-Macaulay
locus of positive dimension, preprint.

[13] Huneke, C., Theory of d-sequences and powers of ideals, Adv. in Math., 46 (1982),
249-279.

Institute of Mathematics
P.O. Box 631, Bo Ho
Hamnoi

Vietnam





