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MULTIPLICITY AND +ISOMULTIPLE IDEALS
M.E. ROSSI AND G. VALLA

Introduction

Let V be an irreducible non degenerate variety in P"; a classical
geometric result says that degree (V) > codim V + 1 and, if equality holds,
V is said to be of minimal degree. Varieties of minimal degree has been
classified by Del Pezzo and Bertini and they all are intersections of
quadrics. The local version of this result is due to J. Sally who proved
that if (A4, N) is a regular local ring and (R = A/I, M = N/I) is a Cohen-
Macaulay local ring of minimal multiplicity, according to the bound
e(R) > height (I) + 1 given by Abhyankar, then the tangent cone gry(R)
of R is intersection of quadrics and it is Cohen-Macaulay.

On the other hand if T N* and Sp(M) is the symmetric algebra of
the R-module IR, then by a result of A. Micali we know that Sp(I) is
not a domain; however J. Risler proved that, if R is reduced, then S;(3R)
is reduced if and only if gry(R) is intersection of quadrics.

Recently J. Elias considered the case I is a perfect codimension 2
ideal of the regular local ring (A, N); if v = v(I) is the minimal number

of generators of I, he proved that e(A/I) > (g) and, if equality holds,

grq(R) is intersection of hypersurfaces of degree v — 1.

Further if one tries to extend the theory of normal flatness along
permissible ideals to the non regular case, then it is natural to consider
ideals whose corresponding tangent cone is intersection of hypersurfaces
of the same degree ¢ (see [Br]).

We say that an ideal I is ¢-isomultiple if gry(R) is defined by equa-
tions of the same degree #; this means that I has a standard base of
elements of order ¢. As it turns out by the preceding examples, very
often ideals with “minimal” multiplicity are Z-isomultiple. In this paper
we pursue this line in order to identify some interesting classes of ¢-
isomultiple ideals.
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In section 1 we consider a complete intersection codimension A ideal
Ic 9 and prove that I is t-isomultiple if and only if e(A/I) = t* (see
Theorem 1.8). The main tool to prove this result is to investigate the
condition e(A/xA) = te(A), where ¢ is the order of x and (A, N) is a local
ring not necessarily regular. If we assume gry(A) to be Cohen-Macaulay,
then we can prove that e(A/xA) = te(A) if and only if the initial form
of x in gry(A) is a non zero divisor (see Corollary 1.6).

The main result of section 2 is Theorem 2.1, which gives us the
possibility to reduce our problems to the 0-dimensional case and also
throws light on the relationship between ¢-isomultiple ideals and the
Cohen-Macaulay property of gry(R). We are dealing with a perfect codi-
mension h ideal I N of the regular local ring (A, N). Hence the ring
(R = A/I, M = N/I) is Cohen-Macaulay of dimension say d and we can
consider a minimal reduction J = (x,, - - -, x,) modulo I. Then we have
that (I + J)/J is t-isomultiple if and only if I is t-isomultiple and gry(R)
is Cohen-Macaulay. It would be interesting to know whether the con-
dition I t-isomultiple implies gry(R) to be Cohen-Macaulay.

Now if I is a perfect codimension A ideal such that IcC 9%‘ with
t >3, it is clear that the bound e(A/I) > h + 1 is not sharp. One can

prove e(A/l) > (h + }tl - 1) and thus it is natural to consider ideals for

which equality holds.
In section 3 we call these ideals t-extremal and prove that I is ¢-
extremal if and only if I is t-isomultiple, gry(R) is Cohen-Macaulay and

v(l) = (h + tt - 1) (see Theorem 3.2). This result extends to a considerable

extent theorems of Sally and Elias and also explains the connection
between the notion of f-extremal ideals and that of t-extremal Cohen-
Macaualy graded algebras introduced by P. Schenzel in [Schl].

Perfect ideals I with e(A/I) = h + 2 have been extensively studied
by Sally in [Sa,]; here we say that the perfect codimension A ideal I is

almost z-extremal if I C N¢ and e(A/I) = (h + }tl o 1) + 1. In the second

part of section 3 we prove that I is almost f-extremal and gry(R) is
Cohen-Macaulay if and only if the Poincare series of R is P(R,z) =

a1 - z)“[ = (h + ll o 1)2i + z‘] (see Proposition 3.8). Further I is ¢-

h+t—1
t

isomultiple, grg/R) is Cohen-Macaulay and u(I) = ( > — 1 if and
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1
Cohen-Macaulay type of the local ring R (see Theorem 3.10). Again this

only if I is almost #-extremal and z(R) < (h j_t . 2), where z(R) is the

theorem not only extends the main result of Sally in [Sa,] from the
case t = 2 to the general case, but also gives a complete picture of the
problem.

Section 4 is devoted to study perfect ideals which can be obtained
as the specialization of t-isomultiple generic ideals (see Definition 4.1).
Here we prove that for such an ideal I, the multiplicity of the local ring
A/l is bigger or equal to the multiplicity of the generic case and, if
equality holds, then [ is f-isomultiple (see Theorem 4.2). As a corollary
we get again Elias result on perfect codimension two ideals, but also a
very easy proof that if I is a Gorenstein codimension three ideal then e(A/I)
> [v@)* — v(I)]/24 and, if equality holds, I is [(v(I) — 1)/2]-isomultiple
and gry(R) is Gorenstein. The first assertion is the main result in [E-I],
while the second gives a positive answer to a conjecture stated in the
same paper. Other interesting applications are given.

In the last section of the paper we prove two main results. The first
gives an upper bound for the multiplicity of the local ring A/I, when I
is a 2-isomultiple codimension A ideal such that A < 6 (see Theorem 5.9).
Suitable examples show that the bound is sharp and suggest that for a
t-isomultiple codimension A ideal I the following inequality could hold:
e(A/I) < t"*(f* —t+ 1).

The second, see Theorem 5.15, gives a lower bound for the multiplicity
of the local ring A/I, when I is a t-isomultiple codimension A ideal such
that v(I) = h + 1 and gryg(R) is Cohen-Macaulay. It is perhaps worthy
to remark that, without any assumption on v(I), the trivial bound e(A/I)

> (h + }tL - 1) is sharp. Here we prove that e(A/I) > d, where, given the

integers h and ¢, we define s to be the integer part of [(h + 1)t — 1)]/2
and we let (3122 = 3, d2"

§1.
Let (A, ) be a noetherian local ring with an infinite residue field
k= A/%; let IC N be an ideal in A of height A such that R = A/l is
a local ring of dimension d and maximal ideal I = N/L
A system of elements f, ---,f, in I is called a standard base of I if
the initial forms f¥ in gry(4) = @, (N?/N?*") generate the ideal I* of
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initial forms of I. This is equivalent to saying that INN? = > 7_ f,Nr-"
holds for all p >0, where N* = A if s<0 and v, = v(f,) is the largest
integer ¢ such that f, e N’, the order of f,. It is clear that if f,, ---,f, is
a standard base of I, then gry(A/I) = gr,(A)/(f¥, ---,f¥). Further one
can prove that f¥, ..., f¥ is a regular sequence in gry(A) if and only if
fi, -+, f, is a regular sequence in A and a standard base of (f, ---,f,)
(see [V-V]). The ideal I is said to be t-isomultiple if I has a standard
base f,, - - -, f, of elements of the same order t.

It is clear that I is t-isomultiple if and only if %7+ N I = N*I for all
p=0.

Also if I is t-isomultiple, then I and I* have the same minimal
number of generators. For example if & is a field and JC P = E[X,, - - -, X,]
an ideal generated by homogeneous elements of the same degree ¢,
then the ideal I = JA is t-isomultiple in the ring A = k[X,, ---, X,] or
A = kX, -, X.)x....xn- The following result aroused our interest in
the study of ¢-isomultiple ideals; a proof has been given in [R,], but it
is rather involved. We insert here an easy proof, also for the sake of
completeness.

Let us assume A regular and I N?; we let Sp(M) be the Symmetric
algebra of 9! over R. By a result of Micali (see [M]) we know that
S(M) is not a domain since R is not regular. As for reduceness one
can prove the following.

ProrositioN 1.1. If R is reduced, then Sz(IMM) is reduced if and only
if Iis 2-isomultiple.

Proof. By the universal property of the Symmetric algebra, we have
Se(M) = @,», NP/ IN?-Y).  Since the ring gr,(A) = P, (N?/N**") is a
domain and the Rees algebra R,(N) = @,., N*/INN?), which is a subring
of R[T1], is reduced, we get that the ideals @,»,N**' and P,.,(I N N?)
are radical ideals in the ring @,.,N?. We claim that Rad(®,.,IN?") =
(B2 NN N (Bpso N**Y) and from this the conclusion follows. Now
IR c(INNP) N N*+'; on the other hand, by the Artin Rees lemma, there
exists a positive integer r such that INN"**C IN* for all £ >0. Thus
if xelIN N?*, then x™'elN NEHE-H C INPT-D-1: this proves the other
inclusion and the proposition.

In the following for a local ring R, e(R) denotes the multiplicity of
R.
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Exampre 1.2. If R is a reduced hypersurface ring then S,(MM) is
reduced if and only if e(R) = 2.

Moreover, if I is a complete intersection ideal of height A and
Sz(M) is reduced or, which is the same by the above proposition, if I is
2-isomultiple, then e(R) = 2" (see [R,]).

It is suggested in [B] that the converse is a corollary of the following
exercise: If (A,MN) is a local ring such that gry(A4) is a complete in-
tersection and if f, ---,f, are elements of | of order v, .-, v,, then
e(Alf,, -+, ) = e(A) Ti..v; if and only if [}, -- -, f¥ is a regular sequence
in gry(A) (see [B], ex. 4 pg. 104).

Unfortunately this is not true even if A is a regular local ring.

Exampre 1.3. Let A = k[X, Y, Z], I= (X’ XY, XZ — Y"). Then
e(A/I) = 8 but f¥ = X* fFf = XY, f¥ = XZ is not a regular sequence in
gra(A).

However, if we assume that r=1 or that f, ---,f, is a regular
sequence in A, then the above result holds even with the weaker assump-
tion that gr,(4) is Cohen-Macaulay.

In the following if M is a finitely generated A-module (M) will
denote its length.

ProposiTioN 1.4. Let (A, N) be a local ring of dimension d and x «
parameter in A with t = v(x). Then
i) e(A/xA) > te(A)
i) If x* is a non zero divisor in gry(A), then e(A/xA) = te(A)
1) If e(AjxA) = te(A), then x* is a parameter in gry(A).
Proof. We have exact sequences:
0—> AN x —> AN —> AR + x—>0
0—> N x/N* —> AN ——> A" x—>0
from which we get:
WA = UA/N" + x) + WAR) — IR x/R"-9).

Since dim A/xA =d — 1, we get from this that I(9": x/N**) is for all
large n a polynomial f(n) of degree d — 1 with leading coefficient
[e(A]xA) — te{A)]/(d — 1)!. This proves i) and also ii) since if x* is a non
zero divisor in gry(A), then x is a non zero divisor in A and N" N (x4)
="N""Y(xA). Further e(4/xA) = te(A) if and only if deg(f(n)) <d — 2.
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Now it is clear that dim,(0: x*),.,., = I((R™: x)) N N"~'/N"-%) hence, if
e(A/xA) = te(A) then, for all large n, dim,(0: x*),_,_, is a polynomial in
n of degree less or equal to d — 2. This proves that the gr,(4)-module
0: x* has Krull dimension less or equal to d — 1, or, which is the same,
that the ring gry(A)/(0: (0: x*)) has Krull dimension less or equal to
d —1. Now it is easy to see that this implies x* is a parameter in
gry(A).

Remark. The assertions i) and ii) are well known (see [B]), while iii)
has been proved in [S] in the case t = 1. Here we used many of the
central ideas of the original proof.

Since we need to cover also the case where x is not a parameter,
we add the following result which is more or less known.

ProposITION 1.5. Let (A, M) be a local ring of dimension d and x an
element in A with t = v(x), such that dim A/xA = d. Then we have:

1) e(A/xA) = e(A) if dim (A/0: x) < d

i) e(A/xA) = e(A) — e(A/0: x) if dim (A/0: x) =d

Proof. We have an exact sequence

0 >xA A A/xA—>0.

Since xA ~ A/0: x the result follows by the additivity of the multiplicity.

CoroLLARY 1.6. Let (A, N) be a local ring such that gry(A) is Cohen-
Macaulay. If x is an element in A of order t, then the following conditions
are equivalent:

1) e(A/xA) = te(A)

1) x* is not a zero divisor in gry(A)

Proof. If x* is not a zero divisor in grq(A), then Xis not a zero divisor
in A, hence e(A/xA) = te(A) by Proposition 1.4. Conversely if x is a non
zero divisor in A, by Proposition 1.4 we get that x* is a parameter in
gry(A), hence a non zero divisor. If x is a zero divisor, since A is Cohen-
Macaulay, 0: x is contained in a minimal prime p of A, hence dim A/0: x
> dim A/p = dim A which implies, by Proposition 1.5., e(A4/xA) < e(A).

The following example shows that in the above Corollary we cannot
delete the condition grge(A) is Cohen-Macaulay.

ExampLe 1.7. Let A = k[&, £, £5] = E[X, Y, Z]/(X* — 2, Y* — XZ),
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then A is a complete intersection domain of multiplicity 6 and x a non
zero divisor in A. Since gry(A) is not Cohen-Macaulay and has dimension
1, x* i1s a zero divisor in gry(A) and e(A/xA) = 6 = e(A).

TrHEOREM 1.8. Let (A, N) be a local ring such that grq(A) is Cohen-
Macaulay; if f,, - - -, f, is a regular sequence in A and v,, - - -, v, are positive
integers such that u(f,) > v,, then with R = A(f,, ---,f,), the following
conditions are equivalent:

1) e(R) =e(A) [[ia v,

) fF -+, fF is a regular sequence in gry(A) and vu(f,) = v, for all
i=1,---,r.

Proof. After Corollary 1.6 we need only to prove that i) implies ii).
If r = 1, we have v(f))e(A) < e(R) = e(A)v, < e(A)v(f,), hence v, = v(f) and
we can apply Corollary 1.6. We argue by induction on r; let J =
(fy - fro), B=AlJ, M =N/J and f= f,. Then we have:

e(R) = e(A) [[i.1v; = e(B[f) = v(f)e(B) = v(fle(A) [1721 v(f)
> e(A) [T u(f) > e(A) [Ti-1vs;

hence v, =uv(f;) for all i and e(B) =e(A) [[/-iv; which implies by
inductive assumption that f§, --.,f%, is a regular sequence in gry(4A).
Further gry(B) = gra(A)/(f¥, ---,fF), hence gry(B) is Cohen-Macaulay;
since e(B[f) = v(f)e(B) we get that f* is a non zero divisor in gry(B).
But since u(f) = v(f,) this implies f¥ is a non zero divisor modulo
(f¥, ---,f¥) and the conclusion follows.

§2. Reduction to the Artinian case

One of the main tool in the following sections is the reduction to
the 0-dimensional case. Thus we are led to consider the problem of
lifting a standard base from a quotient ring to the ring itself and con-
versely. Some results on this topics have been obtained in [R-V]; we
recall here what we need in the following.

Let (A, N) be a local ring, I and J ideals of A, and denote by “—"
reduction modulo J and by ** ~” reduction modulo I. Let I =(f, ---,f,)
and v, = u(f,).

1. Iff,---,f is a standard base of I and v, = v(f;) for all f, e,
then the following conditions are equivalent:
iy 7, ---,f, is a standard base of I
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i) NAd+J)=.Nf,+N"NJ for all p > 0.
iii) There exist elements x,, ---,x, in J such that %, -.-, %, is a
standard base of J and v(%,) = v(x,) for i =1, - --, d.

2. Assume that f,, ---,f, is a standard base of I and u(f,)) = v, for
i=1,.--,r. If there exists a minimal base x,, - - -, x, of J such that

1) xf, .-+, x¥ is a regular sequence in gry(A)

il) %, ---, %, is a regular sequence in A
then f,, ---,f, is a standard base of I

For the proof of these two facts see [R-V], Theorems 2.2 and 2.6.
For the rest of the paper (A, N) is a regular local ring with an infinite
residue field k, I CN* a codimension h ideal of A such that (R = A/l
M = N/I) is a Cohen-Macaulay local ring of dimension d.

Let x,, -- -, x; be a minimal reduction modulo I and J = (x,, - - -, x,),
then %, ---, %, is a regular sequence in R and e(R) = e(R/J) = UR/J).
Further since J NI = IJ, we have a canonical isomorphism of k-vector
spaces I/IN ~ I/IM. We denote by R the ring A/I = A/l + J = R/J and
call it an artinian reduction of R.

3. grg(R) is Cohen-Macaulay if and only if %, ---, X, is a standard
base of . A proof of this result can be found in [Ro], Proposition 2.4.
However it is also a trivial consequence of the fact that for every
minimal reduction a,, - - -, @, of the maximal ideal of the Cohen-Macaulay
ring (R, M) one has M"** = (a,, -+ -, a,))M" for some n > 0, hence af, - - -,
a¥ is a system of parameters in gry(R).

Collecting all these facts one can prove the following theorem which
will be used extensively for the rest of the paper. As before we denote

”

by “—” reduction modulo J and by “ ~" reduction modulo I.

TaEOREM 2.1. If for some integer t >2 we have IC N, then the
following conditions are equivalent:

1) I is t-isomultiple and gry(R) is Cohen-Macaulay

il) I is t-isomultiple.

Proof. Since gry(R) is Cohen-Macaulay, by 8 %, -- -, X; is a standard
base of J and of course v(%) = v(x)) = 1. Hence condition iii) of 1
holds and it suffices now to check that if fe I and v(f) = ¢ then v(f) = .
But if feR'*' 4+ J, then f= > ,a.x, + b with be'*'; it follows that
S A eJNT = JN, hence Y, d.% =3, b& with b,eR. Since
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%y, - -+, X, is a regular sequence in A = R, this implies for all i = 1, - - -, d,
a; — b, = > .C% + d; with ¢;; = —c;,; and d; e I. Thus >, a;x; — >, b,x;
e IN, hence >, a.x, € N'*' which implies fe N‘*', a contradiction.

Conversely let f,, ---, f, be a standard base of I with ¢t = u(f,), i =
1, ---,r. This implies ¢ = v(f,), i =1, ---, r; since x,, - - -, x, is a minimal
base of J such that x¥, ---,xf is a regular sequence in gry(4) and
&, - -, &, is a regular sequence in A = R, we can apply 2 and get that

fi, -+, f, is a standard base of I. Now, again by 1, we get N*N{I + J)
= >N, + NN J = 3, N, + N for  all p>0; hence
T+ DN + I) =1+ N*~'J which means that %, ---, %, is a standard
base of J and grq(R) is Cohen-Macaulay.

Remark 2.2. It is clear that if gry(R) is Cohen-Macaulay, the ideal
I does not need to be t-isomultiple for some t. For example if A =
RX,Y,Z] and I =(X*—YZ Y*' — X*Z, Z' — XY?), then R = k[t}, t*, "]
and thus gro(R) = k[X, Y, ZI(YZ, Y* — X*Z, Z*) is Cohen-Macaulay, but
I* is not generated by elements of the same degree.

Remark 2.3. We don’t know if the condition “I is ¢-isomultiple”
implies that gry(R) is Cohen-Macaulay. In [H-R-V] we gave an example
of a 3-isomultiple ideal such that R and gru(R) have different Betti
numbers (here and in the following the Betti numbers of the A-module
M are the ranks of the free modules in a minimal free resolution of ).
However, in this example, gry(R) is Cohen-Macaulay (see Remark 4.11).

§3. t-extremal and almost r-extremal ideals

As before (A, M) is a regular local ring and I a perfect ideal of A
of codimension A such that (R = A/I, I = N/I) has dimension d. It is
well known that e(R) > h + 1 and, if the equality holds, then I is 2-iso-
multiple and gryu(R) is Cohen-Macaulay (see [Sa,]).

If Ic RN with ¢ > 3, then this bound is not sharp. If x,, ---, x, is
a minimal reduction modulo I, then we know that e(R) = e(R) = I(A/NY)
T D) = (h Tl 1) + (/D); thus e(R) > (h e 1) and the equal-
ity holds if and only if T = W. Of course this bound is sharp since for

all ¢, the ring R = k[X,, - - -, X,J/(X,, - - -, X,) has multiplicity (h i 1).

DeriniTioNn 3.1. We say that the perfect codimension A ideal I is
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t-extremal if I N* and e(R) = (h +Ii — 1)‘

Thus Sally’s theorem says that 2-extremal ideals are 2-isomultiple.
On the other hand if h =2 and v = v(l) is the minimal number of
generators of I, then by the Hilbert-Burch theorem we have I v,
Recently Elias proved that if I is (v — 1)-extremal, then I is (v — 1)-
isomultiple (see [E]).

Both these results are particular cases of the following general result
which clarifies also the connection between the notion of f-extremal ideal
and that of t-extremal Cohen-Macaulay graded ring introduced by Schenzel
in [Sch].

Recall that if G = k[X,, - -, X,]/J is a Cohen-Macaulay standard k-
algebra of dimension d and codimension A, we denote by H(G, n) = dim, G,
and 2(G, n) respectively the Hilbert function and the Hilbert polynomial
of G. We define the index of regularity of G as:

i(G) — max {n ¢ Z/H(G, n) ++ WG, n)} + 1.

Further let ¢ be the initial degree of </, which is the minimum degree of
the generators of J. Schenzel proved that i(G) + d > t.

DerFiNiTION 3.2. (see [Sch]) We say that G is t-extremal if i(G) + d
=t

It follows from the paper of Schenzel that G is t-extremal if and only
if G is Cohen-Macaulay and P(G,2) = (1 — 2)¢ Zz;é(h + : o 1)2" where
P(G, 2) is the Poincare series of G, which is by definition the series
2 s H(G, n)z".

Remark. We note that G is a t-extremal graded Cohen-Macaulay

ring if and only if the function H;? is maximal according to the defini-

tion given by Orecchia in [O]. Also G is a t-extremal graded Cohen-

I
according to the definition given by Froberg and Laksov in [F-L] (see

also [I]).
THEOREM 3.3. For a perfect codimension h ideal I of A, the following

Macaulay ring if and only if G is compressed of type (

conditions are equivalent:
i) I is t-extremal

ii) I is t-isomultiple, gry(R) is Cohen-Macaulay and v(I) = (h + : B 1)
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i) P(R,2) = (1 —2) - <h+ L= 1)

iv) gry(R) is t-extremal

Proof. Let I be t-extremal; then I = 9, hence I is t-isomultiple and
u(I) = <h + i - 1) = v(I). Using Theorem 2.1, we get that I is ¢-isomul-

tiple and gry(R) is Cohen-Macaulay.
If condition ii) holds we have gry(R) = k[X,, ---, X;,,]/[* is Cohen-
Macaulay, hence we may assume X,., ---, X,,, is a regular sequence

modulo I*. Now the condition v(l) = (h + i - 1) implies

grim(R)/(XhH, Tty Xd+n) = k[Xh Ty X)L]/(Xh Ty Xh)[

hence
P(R,2) = P(gra(R),2) = (1 — 2)™* 32 (h +i— 1)
On the other hand if
P(R,2) = (1 — 2)~¢ 3= 1(h + ; — 1) ,-

then
h-{—z——l h+t—1
«r) =z (") = (PR

but 37 1(" ti- )z" = (1—2)~" mod (2'7), hence P(R, z) = P(A, z) mod (")

which implies I C R and I is t-extremal, so that iii) implies 1). Using
Schenzel’s results, we conclude the proof of the theorem.

Remarks. 1. It is clear from the proof of the theorem that if I is
t-extremal, then R and gry(R) have the same Betti numbers, namely the
Betti numbers of k[X,, ---, X, ]/(X, ---, X,)".

2. In condition ii) we dannot delete the hypothesis on the number
of generators of I: if A = [X, Y] and I = (X?, X*Y, Y?), then h =2, [ is
3-isomultiple but e(R) = 7.

3. The equivalence between i) and ii) has been proved by Orecchia
in [O] in the case d = 1.

4, If h=2,t=v({l)—1 and I is #-isomultiple then, by the main
result of [R-V], gry(R) is Cohen-Macaulay (see Remark 2.3 and [E]).

5. As remarked in [O], the above theorem applies to various classes
of affine space curves, locally requiring an arbitrary large number of
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generators (see [Mc], [Mo], [Ma]). It turns out that the tangent cone at
the origin of these curves is projectively Cohen-Macaulay.
6. It is worthy to remark that if a graded k-algebra G has Poincare

series P(G,2) = (1 — 2)7? > '5} (h + l o 1)2”’, then G is not necessarily

i
Cohen-Macaulay. In fact let G = k[X, Y, Z1/(X*, XY, XZ, Y?®), then P(G, 2)
= (1 + 22)(1 — 2)”’" but G is not Cohen-Macaulay.

7. It is clear that if I is a principal ideal such that I c %‘, then
e(R) = t. We remark that for a perfect ideal I also the converse holds;

in fact if TC M with £> 2, e(R) = ¢ and & > 2, then t2<h+z_ 1)>

t(t + 1)/2, so that ¢ < 1, a contradiction. Thus h =1 and I is principal.

The case of local rings R with multiplicity 2 4+ 2 has been extensively
studied by Sally in [Sa,]. She proved that if the Cohen-Macaulay type
of R is strictly less than A, then I is 2-isomultiple and grp(R) is Cohen-
Macaulay. This suggested us to consider the following class of perfect
ideals.

DerFINITION 3.4. We say that the perfect codimension A ideal I is
almost t-extremal if I C N* and e(R) = (h + }tL_ 1) + 1.
ExampLe 3.5. (Sally) Let R = k[t £%, t"] then
gro(R) = kX, Y, Z)[(Z*, XZ, YZ, Y?*)
so that I is almost 2-extremal but gry,(R) is not Cohen-Macaulay.
ExampLE 3.6. (Sally) Let R = k[?, ¢’ ¢, t°] then
gro(R) = R[X, Y, Z, WI/(XW — YZ, ZW, Z*, W*, YW, X*Z — Y°).

In this case I is almost 2-extremal, gry(R) is Cohen-Macaulay but [ is
not 2-isomultiple.

In the next lemma we collect some properties of almost f-extremal
ideals. We denote by z(R) the Cohen-Macaulay type of E.

Lemma 3.7. Let I be an almost t-extremal ideal such that
dim R = dim A/l = 0. Then
) IR =1
n) Wl
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i) «(R) < (h HY 2) and equality holds if and only if
IR M= 1
iv) o(R) = (gra(R))

Proof. i) We have e(R) = I(A/I) = [(A/T) + [(N/T) = (" - 1) +
I(R/I), hence I(R/I) = 1.

i1) We have ' D N*' + I D I, hence 1 = I[(N'/I) = (NN + I) +
IR+ + I/I). Since, by Nakayama, ' == N‘*' + I, we must have N'*' C L.

ii) We have 'S I: RO Tand I © % — M-, hence (hjt‘2)+1

= IR N) + =(R). Since N' ¢ I, we have N'"' = 1I; N, hence the
conclusion follows.

iv) It is clear that we always have z(R) < z(gry(R)). On the other
hand if x* e IM?/IMP*' is an element of 0: gry(R),, then XIIN c M2+
hence s I+ N**2. Now if p <t —1 then p+ 2< ¢, hence I C Nr+?
which implies xeN?*', a contradiction. Thus p >t —1 and we get
et N < I, so that xN < I and £e€0: IN. This gives the conclusion.

ProprosiTioN 3.8. Let I be a perfect, codimension h ideal in A

PR, 2) = (1 — 2) [ “(h“ )zi+zt]

i
if and only if I is almost t-extremal and gry(R) is Cohen-Macaulay.

Proof. Let gry(R) be Cohen-Macaulay, J = (x, ---, x,) a minimal
reduction modulo I. Then we have

P(R, 2) = P(gru(R), 2) = (1 — 2)""P(gra(R)/(ZF, - - -, X¥), 2)
= (1 — 2)~*P(gras(RIJ), 2),

hence we may assume dim R = 0. But then, if I is almost ¢-extremal,
we have, by the above lemma, R‘*' I and the conclusion follows. Con-
versely, if

R R D= (U Ay S o

then e(R) = ,1<h+l )+1=(h+z“1>+1. Also P(R, 2) =

i
P(A, 2) mod (z%), which implies I C R‘, so that I is almost f-extremal. In
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order to prove gry(R) is Cohen-Macaulay, we need to show M?NJ =
Mr-J for all p > 1. Now if p < ¢, then IC R*C N and we have M*NJ
=RNT+ NI=T+ RN/ =T+ Ne-'J)/I = M-'Jd. On the other
hand we have MDOJDJM' and JI* < M+ — I, hence (M T MY =
WMJT) + UTJTME) — (DM/ME*Y).  Now

JJTMY) = U + IR + I) = UJINIR + INJ)) = I(J/TRY)
= 2z dim gre(J), = 20520 dim gra(J)(— 1),
= (by [H-R-V], Lemma 3)
2z dim (J*),,, = 2k dim (J*), = [(1/(1 — 2)***) — (11 — )M
where if F(z) = > ,,,a,2" is a power series, we let [F(2)]i= > ,a,.

Thus if f(z) = ﬁ;},(h + i B l)zi + z' we get

UM JTMY) = [f@)) + [AA — 2% — QA — 2D — [f@/A — 2)*);
=[(fE1 - 2"+ 1 -1 -2 — f(e)1 — )1 — 2)*"];
=[1 -1 - 291 - f&A - 2")/A — 2)*"].
Now f(z) = 1/(1 — 2)* mod (2), hence (1 — (1 — 21 — f(z(1 —2*) =0

mod (z'*'), from which we deduce I(**'/JIM’) = 0. This implies M+ =
JIM" for all r > ¢+ 1 and the conclusion follows.

Remark 3.9. It is worthy to remark that if a graded k-algebra G of
dimension d and codimension A has Poincare series

PG 2 =0—2 [z (" T i+ 2],

1

then G is not necessarily Cohen-Macaulay. In fact let

G= k[X’ Y’ Z]/(XZ’ XY’ XZZ’ Y4)a
then G has codimension 2, dimension 1 and P(G, z) = (1 + 2z + 2)/(1 — 2)
but G is not Cohen-Macaulay.

TurOREM 3.10. For a perfect codimension h ideal I of A, the follow-

ing conditions are equivalent:

1) I is almost t-extremal and (R) < (h ;I__t 1 2)

1) I is t-isomultiple, grq(R) is Cohen-Macaulay and
@- (1
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i) P(R,2) = — z)""[ g;g(h i l)zf + z‘] and
«(B) < (h i 2).
Further if one of the above equivalent conditions holds, then =(R) =
(gry(R))

Proof. We prove i) implies ii). If I is almost t-extremal, then I is
almost t-extremal hence, using again Theorem 2.1 and the equalities
v(I) =v(I) and =(R) = (R), we may assume dimR =0. Let %N =
(%, -+, x,); since (N'/I) =1 there exists a monomial m of degree ¢ in
Xy, -+, X, such that me I, hence R* = (I, m).

We claim that if =(R) < (h i 2), then mtC IN; this would imply

N+ = IN, from which it follows that N**NIT = N*I for every k& > 0 and
also o(I) = UI/IN) = RN+ — (RYT) = (h - 1) — 1 which is exact-

ly what we need for our implication.
We prove the claim by contradiction along the following line:

mty e IN = x"' & IN —> «(R) = <h i 2)

As for the first implication, it is enough to prove that if m = x,p and
mx, ¢ IN, then pxie IN. But we have m, x,p € N'\I, hence for some ce N,
m — cx,;p eI; thus cxip = x;m — x(m — cx,p) ¢ IN as required.

Now let xi*'e¢IR; after reordering the x,’s, we may assume

xt, 2y, - xt a2 I and xi'x,,,, - -, xi7'x, € I for some s >1. We are
going to prove that '~' = I: N + (x!~") which implies by Lemma 3.7 iii),
that =(R) = (h i 2).

Step 1. If p e R\1, then px; ¢ IN for every j < s.

In fact for some a, b¢ N we have xi — axi~'x,, xi — bp € I, hence x!*'
= x,(xf — axi~'x;) + ax;(x; — bp) + abpx,. Since xi*'¢IN, this implies
px; e I,

Step 2. If > " n, =1, then we have p = x%...x» el if and only if
Ir > s with n, > 0.

If n, >0 with r > s and pe I, then by repeated use of step 1, we
get xi7'x, ¢ I, a contradiction. Conversely, if n, = 0 for every r > s and
n, >0 with 1 < k < s, since xi'x, ¢ I, we get, by repeated use of step 1,
pel
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Step 3. N1 =1 N+ (227

If m=axp. .. with > ;n, =t — 1 and n, > 0 for some r > s, then
mel: N by step 2. Let n, = 0 for every r > s; then, again by step 2,
we have x,m ¢ I, hence x! — axme I for some ¢ 2N. We claim that xi-!
—amel: N as required. But, if for some j we have x,(x!™' —am)e I,
then for some b¢ N we have x| — bx,(xi”' — am) € I, hence

x* = x [ — bx,(xi" — am)] + bx,(xi — ax,m) e IN,

a contradiction.

We prove now 1i) implies iii).

If condition ii) holds, then gru(R) = k[X,, .-, X;.,J/I* is Cohen-
Macaulay, hence we may assume X,,,, - - -, X,,4 18 a regular sequence mod-
ulo I'*; thus we have P(R, 2) = P(gra(R), 2) = (1 — 2)¢P(k[X,, - --, X,]/, 2)
where % is an homogeneous ideal of codimension A&, generated by
(h +t—1

¢
that S,,, C ¥, then we get P(S/, 2) = >} (h + i - 1)21' + 2’ as re-

quired.

> — 1 elements of degree ¢t in S = k[X,,---,X,]. If we prove

Now we can find a term ordering on the set of monomials in S and
a suitable linear changing of coordinates, such that if X, < X, for all
J > i, then all the monomials of degree ¢ in S, save X!, are in M(Y), the
ideal generated by the maximum monomials of elements of A. Now since
S/ and S/M() have the same Hilbert function, % and M(Y) have the
same codimension, hence M(Y) must contain some other monomials. By
a theorem of Giusti (see [G], Theorem 2.6), we can prove that X:*' ¢ M(¥),
hence S.,, = M®¥),,, = %U,_, as required.

In order to complete the proof of ii) implies iii), we must show that
if A is a 0-dimensional homogeneous ideal of S = k[X,, - - -, X,] generated

by forms of degree ¢ such that u(¥) = (h + i - 1) — 1 and P(S/¥, z) =
3 (h Ti 1)zi + 2, then «(S/) < (h i 2). Since dim S,/¥, = 1
and the socle of S/% is concentred in degree ¢ — 1 and ¢, it is enough

to show that dim (: S),., < <h j_f 1_ 2

diction, that dim (%: S),., =dim S,_, — 1.

) — 1. Let us assume, by contra-

Step 1. If P, @ are monomials of degree ¢ — 1 such that for some i
and j, X;P, X,Q ¥, then X,Pe%.
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We have P, @¢: S,. Now if P = @, then X,Q = X,P ¢ %, otherwise
P+ aQeU: S, for some aeck; hence X,(P+ aQ)ec and this implies
X,Pe.

Step 2. For some i >1, Xte .

If Xt ..., Xt e¥, then by step 1 we get S, =, a contradiction to
dim S,/%, = 1.

After reordering the X,’s, we may assume X, ---, X.e¥, X¢,, ---
Xt e for some s > 1.

b

Step 3. If M is a monomial of degree ¢, then M e if and only if
M e (X,) for some r > s.

If r>s and M = X,Pz¥, then by step 1, X. ¢ %, a contradiction.
Conversely if M is monomial in X, ---, X,, then by repeated use of step
1, it is clear that M 9.

Now for every j = 2, ---, s we have X{°X, ¢ (U: S,),_, by step 3, hence
we can find ¢, = 1, ¢, - -+, ¢, € k — {0} such that X! — ¢,X!*X, e (U: S),_..

Step 4. Let @ be a monomial of degree t — 2 such that for some
cek, Xt —cX,Qe¥U: S,. Then, for every j=1,--.,5, we have
Ximt—cc,X;QeU: S,

We have X,(X!"' —cX,@e¥ and X(X!:"' —c¢,Xi°X)eU, hence
X! —ce, X X,Qed. If P=Xi{"—cc,X;QeU: S, X,PeA and for some
dek, Xi' —dPe¥U: S,. Hence X/(X!'—dP)=X!—dX,Pec¥, which
implies X! e ¥, a contradiction.

If M=Xp...Xp with 3, n, =t and n, <t, then we let ¢, = [];s, 7"

Step 5. X! — c,Me.
If n,=t—1and M= X{"'X,, then
Xt —eyM = X! — ¢, Xi7'X, = X(Xi™' — ¢, X' X)) e U
If n,<t—1 and M= X,X/N, then X{" — ¢, X!{?X e¥%: S,, hence by

repeated use of step 4, we get Xi™' — (cy/c, )X ,Ne: S, Thus X X! —
(cylc,)yM € A which implies X} — c,,Me ¥, since ¢, X!{"'X, = X! mod 2.

Step 6. height (W) < A — 1, a contradiction.
By step 5 we have X! — ¢,,M ¢ % for every M of degree ¢t in X, ---, X,
M =+ X!, while, by step 3, all the other monomials of degre ¢ are in .

Since v(@) = (h i 1) — 1, this implies
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AN X —cexM, X0y, -, X)X, — Xy, -+, X, — e, X, Xoyyy -+, X3)
hence
height (%) < height (X, — ¢ X,, -+, X, — ¢, X, X1, -+, X,)
<h—s8s+s—1=h-—1.

Finally iii) implies i) by Proposition 3.8, ii).

As for the last assertion of the theorem, if one of the equivalent
conditions holds then gry(R) is Cohen-Macaulay, hence we may assume
dim R = 0 and apply Lemma 3.7., iv).

Remarks 1. The implication i) = ii) has been proved by J. Sally in
the case ¢ = 2 (see [Sa,]). The first example where our result applies is
the following. Let R = k[{', ¢, t'°], then we have IC R, e(R)=7=
(2 + g - 1) + 1 and =(R) < 2, hence gry(R) is Cohen-Macaulay and I is
3-isomultiple.

2. If I is almost 2-extremal and R is Gorenstein, then it is easy to
see that grp(R) is compressed of type 2*, hence R and gry(R) have the
same Betti numbers (see [F-L]). We do not know if the same result
holds for an almost t-extremal ideal I such that 1 < #(R) < (h j_f 1_ 2).
We can only remark that if (R) > <h j_t "1— 2) — h + 1 then gry(R) is

not compressed.

§4. Deformation of isomultiple ideals and Gorenstein ideals

We have seen that if I is a perfect codimension two ideal of the
regular local ring (A, N) then e(R) > <v(2l)) and, if equality holds, I is
(v(I) — 1)-isomultiple and gry(R) is Cohen-Macaulay. Recently, Elias and
Iarrobino proved that if I is a Gorenstein codimension three ideal of A,
then e(R) > [v(I)* — v(1)]/24 (see [E-I]).

In both cases the lower bound for the multiplicity of R is given by
the multiplicity of the “generic” case. Thus we are led to consider
ideals which can be obtained, in a sense easily made precise, as the
specializaton of t-isomultiple ‘“‘generic” ideals.

DerFiniTION 4.1. Let B be a regular local ring and J an ideal of B.
We say that the local ring 7 = B/J is a deformation of R = A/l if R ~
T/x where z = x,, - -+, x, is a regular sequence in 7. If this is the case,
then we say that R is a specialization of T and we get e(R) > e(T).
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TuEOREM 4.2. Let T = BJJ be a deformation of R such that gr(T) is
Cohen Macaulay. If J is a t-isomultiple ideal and e(T) = e(R), then I is
a t-isomultiple ideal and gr(T) is a deformation of gr(R).

Proof. Let X, ---, X, be elements of B such that x, = X, mod J with
R ~ T/z. By Theorem 1.8 we have v(x,) = 1 for every i and x¥, ..., x* is
a regular sequence in gr(7"). This implies that X, - - -, X, can be extended
to a minimal base of the maximal ideal of B. Further it is clear that we
may assume emb. dim B = emb. dim T. Thus emb. dim R = emb. dim A =
emb.dim T — s = emb.dim B — s. If n=dim A, then gr(R) = k[Y,, - - -, Y,]/I*
=~ gr(T)z) = gr(T)/(xf, - - -, x¥) = gr(B)[(J*, XF, ---, XF) = k[Y,, -, YV, ]/ U
where % is an ideal generated by homogeneous elements of degree ¢.
This implies that I is a t-isomultiple ideal and gr(7T) is a deformation of
gr(R).

This result can be applied in the following case.

Let I be the ideal of A generated by the r X r minors of a matrix
M=(a),1<i<nl<j<mr<n<m, a;eN; if JC B = A[X,;]a.x,
is the corresponding ideal associated to the generic matrix X = (X;;), it
is clear that R = A/[I= B/(J, X,; —a;;)), 1 <i<n, 1 <j< m.

Now it is easy to see that {X;, — a,,} is a regular sequence in B mod J,
hence if T = B/J, then T is Cohen-Macaulay, gr(T) ~ T and T is a
deformation of R.

This gives the following interesting examples of isomultiple ideals.

ExampLE 4.3. Let I be a perfect codimension 2 ideal. Then we have:

D e® = ("Y)

i) The following conditions are equivalent:

a) e(R) = (”(21)>

by Iis (v(I) — 1)-isomultiple
c¢) Iis (v(I) — 1)-isomultiple and gry(R) is Cohen-Macaulay.

ExavpLE 4.4. Let I be a Gorenstein codimension 3 ideal. Then we
have:
1) e(R) = [vl) — vl)]/24
ii) The following conditions are equivalent:
a) e(R) = [u(I)* — v(])]/24
b) I is [v(I) - 1)/2]-isomultiple
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¢) Iis [(v(I) — 1)/2]-isomultiple and gry(R) is Gorenstein.

ExampLE 4.5. Let I be a Gorenstein codimension 4 ideal generated
by the n X n minors of an (n + 1) X (n + 1) matrix of elements in %. Then
we have:

1) e(R) = [n(n + 1'(n + 2)]/12

ii) If equality holds in i) then gry(R) is Gorenstein and I is n-
isomultiple.

ExampPLE 4.6. Let I be a perfect ideal generated by the r X r minors
of an r X s matrix of elements in N. If I has codimension s —r + 1,
the maximum possible, then we have:

i) e(R)2(s—i+1>

i) If equality holds in i), then gry(R) is Cohen-Macaulay and I is
r-isomultiple.

ExampLE 4.7. Let I be a perfect ideal generated by the (n — 1) X

(n — 1) minors of a symmetric n X n matrix of elements of %. If I has
codimension 3, then we have:

i) eR)>n(n*—1)
i) If equality holds in i), then gru(R) is Cohen-Macaulay and I is
(n — 1)-isomultiple.

Remarks 1. The computation of the “generic” multiplicity for all
these examples can be done using the nice formula given by Huneke and
Miller in [H-M].

2. The inequality i) of Example 4.4 is the main result of [E-I]. As
for ii), it gives a positive answer to the following conjecture stated by
Elias and Iarrobino in the same paper: if e(R) = [v(])* — v(I)]/24 is
gry(R) Cohen-Macaulay?

3. In Examples 4.3 and 4.4 one can use Corollaries 4.4 and 5.5 in
[R-V] to prove that b) implies a) and ¢). For the other examples we don’t
know if the same conclusion holds.

4. If I is Gorenstein of codimension 3, one can prove that e(R) =
= [v(I)* — v(I)]/24 if and only if R is an extremal Gorenstein ring (see
[E-I]).

Here, a Gorenstein ring R is said to be extremal if j(R) = 2t — 2,
where ¢ is the initial degree of R and j(R) is the socle degree of R which
is defined as the degree of P(R, 2) for an artinian reduction R of R. In
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general one has j(R) >> 2t — 2, an inequality proved by Schenzel in the
graded case and by Elias and Iarrobino in the local case. We can reprove
this result as a Corollary of the following theorem whose proof is the
same as that of Corollary 4.13 in [H-R-V].

TurcreMm 4.8. Let (A, ) be a regular local ring and I < N* a Goren-
stein ideal such that R = A/l is artinian. Then IN'~': N & L

Now if R = A/I is a Gorenstein local ring with I %, and if R =
A/I is an artinian reduction of R, we can find an element @e IN"": N,
adel. Hence gt ¢ I < N*', which implies @€ 9* % Thus W2 ¢ I
and j(R) > 2 — 2.

5. Since extremal graded Gorenstein algebras of codimension A and

initial degree ¢ have multiplicity (h T 1) + (h T 2) (see [Schi),

one can state the following conjecture: if I is a Gorenstein ideal of

codimension A and I < N, then e(R) > (h + ;L B 1) + (h + ;L_ 2) and, if

equality holds, I is t-isomultiple.

For example, let A =4 and ¢t = 2; then we have to prove e(R) > 6.
But, as usual, we may assume R is artinian, hence e(R) = I(A/N*) + I(N*/I)
=54+ (MI) > 6 since I = N*. If e(R) = 6, then I(N*/I) = 1; by Theorem
4.8 we can find an element a¢l, aeN® such that ot C IN. Hence
N = (I, a) and N® = IN, which implies I is 2-isomultiple.

6. Let I be a Gorenstein codimension 3 ideal not a complete inter-
section; we have, as a corollary of Example 4.4 that I is 2-isomultiple if
and only if e(R) = 5.

If we let I © * with ¢t > 3, then things are not so easy. For example,
for a 4-isomultiple ideal we can have e(R) = 30, 40, 49 but we don’t know
if other values are allowed.

ExampLi 4.9. Let I, I, be the ideals generated by the 4 x 4 pfaffians
of the matrices:

(0 w o oxt -2 0 ] 0 w 0 —2¢ 0

| —w* 0 » 0 —x° —w 0 ¥ 0 0
M, =] —x* —y* 0 w —z | M, = 0 —» 0 w ¥
2 0 —-w 0 y 2 0 —w 0 Z
L 0 ¥ =z —y O [ 0 0 —2 —y 0|
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Then e(R,) = 49 and R, has socle degree j(R,) = 8; but e(R,) = 40 and
j(Ry) = 7. Further I, and I, are 4-isomultiple ideals. Of course e(R) = 30
is given by the generic 9 X 9 matrix for which the socle degree is 6.

For a 3-isomultiple codimension 3 Gorenstein ideal with gry(R) Cohen-
Macaulay, we have v(l) = 3,5,7. If v(I) = 3, then e(R) = 27; if v(I) =7,
then e(R) = 14 (see Example 4.4). If v(I) =5 we have e(R) = 19 as the
following Proposition shows.

ProrosiTiON 4.10. Let I be a Gorenstein codimension 3 ideal such that
v(I) =5 and ICN. Then we have:

i) e(R) > 19

i) If I is 3-isomultiple and gry(R) is Cohen-Macaulay, then e(R) = 19.

Proof. As usual we may assume R is artinian. If 9° C I, then
j(R) = 4, hence by Theorem 2 in [E-I], we get

PR 2 =i (" 5 %) + o (P )
=1+ 3z 4 62" + 32° + 2*.

This implies dim, I¥ = 7 which is a contradiction to v(I) = 5 and I C N®.
Hence j(R)>5 and H(R,5) >0. Thus eR)>>:  HR,i)=1+ 3+
6 + (10 — dim, I}) + (15 — dim, I}). Let s = dim, I}; since I} = I/IN N*
we get dim(I N NH/IN =5 —s. Also I = (f, ---,f;) where f, ---,f, have
order 3, and f,,,, ---,f; have order >4. Let J=(f, --,f) and ¥ =
(fes1, - -+ f5). We have

INCAN+JNNcIn N,

Since I N NYAN + J N N* = AAN we get IN = AN + J N N*, from which
it follows J N N* = JN. Thus I = (I N N*) + NY/N° = (A + JN) + R°/N°.
If s<4, then we easily get e(R) >19. If s=05, then I N N* = IN,
hence If = IN + N°/N°* and we have a surjection of k-vector spaces
o: (NN — I'f which is given by ¢(@,, - - -, @;) = >, @.f, and whose kernel we
denote by V. Now it is clear that dim V > 3, otherwise at least three rows
(and hence three columns) of the skew-symmetric matrix whose pfaffians
generate I, must have entries of order > 2 which implies that at least
two generators of I have order > 4, a contradiction to dim, I} = v(I) = 5.
Hence in any case e(R) > 19.

Now let us assume I 3-isomultiple and gry(R) Cohen-Macaulay. As
usual we may assume dim R = 0. If JJ is the ideal generated by a max-



MULTIPLICITY 103

imal regular sequence of elements of I, then it is well known (see for
example [H-R-V] Proposition 4.2) that %" < J, hence, since I/J is a non
zero ideal in the Gorenstein ring A/I, we get N° C J: N < I which implies
Jj(R) = 5. Thus again by Theorem 2 in [E-I], we have P(R,2) <1+ 3z
+ 62" + 62° + 3z* + 2°. But H(R, 3) = 10 — dim, [ = 5, hence e(R) < 19
and since the other inequality holds, the conclusion follows.

Remark 4.11. Using the structure of the Gorenstein codimension
three ideal I, we can prove that if e(R) = 19 then I is 3-isomultiple and
gra(R) is Cohen-Macaulay. For example if A/l = k[¢", ¢*, t*, t*], then
I is 3-isomultiple and gry(R) is Cohen-Macaulay, not Gorenstein (see
[H-R-V], Remark after Lemma 3.3).

§5. Upper and lower bounds for the multiplicity of isomultiple
ideals

Let I be a perfect codimension A ideal of the regular local ring
(A, N) such that (R, M) = (A/I, N/I) has dimension d. If I N* we have
seen that e(R) > (h + ;z—— 1) and, if equality holds, I is #-isomultiple and
grq(R) is Cohen-Macaulay.

We start this section with a slight modification of this result.

LEMMA 5.1. Let I be a perfect codimension h ideal of A such that
Ic N Then e(R) > (h ;{L_ t> — u(I) and, if equality hold, I is t-isomultiple
and gry(R) is Cohen-Macaulay.

Proof. Let x,, ---, x; be a minimal reduction modulo I; then we have
e(R) = e(R) and v(I) = v(I). Hence, using Theorem 2.1, we may assume
dim R = 0. Now we have

e(R) = I(R) = IR/T) + URT) = KRN + IR YR + (RHIRN) — oI
_ (h + t) — o) + UR+IR).

Hence e(R) > (h ;l_ t) — v(I) and, if equality holds, then Jt'*' = IN; this

implies N? = IN?-* for all p >t -+ 1, hence I is t-isoraultiple and the
conclusion follows.
It is clear that if I is a complete intersection 3-isomultiple ideal of

codimension two, we have e(R) = 9 + <h 7{ t) — v(I). However, in some
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particular case, we have a partial converse to the above result. The
following lemma is possibly well known, but we insert here a proof for
the sake of completeness.

Lemma 5.2. Let J = (f, ---,f,) be a t-isomultiple complete intersection
ideal of dimension zero in A and let (R, M) = (A/J, N/J). Then with
p = h(t — 1), we have:

1) There exists an element x € A, such that N? = (JN*-¢, x)

i) 0: WM* = (0: P)*

i) M W = (0: M) + WM*~* for every n > 1

iv) I WM = (0: M) + WM?~* for every s, 1 <s<p

v) J: WP = (J, N for every s, 1 < s < p.

Proof. i) Since f¥, ---,f¥ is a regular sequence of elements of
degree t we have dim M?/PM?*' =1 and IM?*' =0. But M?/M?+ =
NP+t 4+ oJ N N2 = N#/RF+ 4 JNP-4, thus for some element x € N? we have
N2 = Ne+t + JNP-¢ + xA. The conclusion follows by Nakayama lemma.

i) This is Lemma 4.15 in [H-R-V].

iii) If for some n we have ot C IN" and a has order r < n — 1,
then a* € 0: M* = (0: M)*, hence ae (0: M) N M" + M"*!. Repeating this
argument we get the conclusion.

iv) If s = 1 the conclusion follows by iii). Using induction on s, if
as C M? we get aM < M?: P! = (0: M) + M2+, Sincep —s+ 1< p,
this implies a € M?-*+': M = (0: M) + M?-* as wanted.

v) We have J: 75 = (J: N): N2~ = (J, x): NP~ = (J, N?): Np--!
= (J: N) + N = (J, NP) + N+t = (J, N

ProrosiTioN 5.3. Let I be a perfect codimension h ideal of A. Let
us assume that I is t-isomultiple and gry(R) is Cohen-Macaulay. If one
of the following conditions holds

i) h=t=2
i) h=2t=3 and v(l) > 2
i) h=3,t=2and v(l) >3

then e(R) = (h Z t) — u(I).

Proof. If h =2 =1t and v(l) =2, then e(R) =4 =6 — v(I); if v(I)
= 3, then e(R) = (g) = 6 — v(I) by the result of Elias (see Example 4.3).
As for the other cases, we have gry(R) = k[X,, ---, X,,,]/I* is Cohen-
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Macaulay, hence we may assume X,,;, ---, X,.q 18 a regular sequence
modulo I*: thus we have to compute the multiplicity of the graded ring
k[X, - -, X,]/% where U is generated by forms F,, ---, F, of degree ¢ and
r = v(I). For this we may assume that F,, ---, F, is a regular sequence
and let J be the ideal they generate. If B = k[X,, ---, X,], we have by
the above lemma B,,_, = Fk + J,B,,.,.,- Since every non zero ideal
in a Gorenstein ring contains the socle, and we have A2 J, we get
B,y = Uyuy. Now it is clear that if A(t — 1) = ¢+ 1, then

= ("I (P = (M) -

Thus the conclusion follows.

The following examples show that we cannot improve the above
proposition

Exampie 5.4. Let A = k[X, Y] and I = (X*, X*Y, Y*. Then I is 4-

244 B
5 >~3_12.

ExampLE 5.5. Let A = k[X, Y, Z, W] and I= (X, Y?, 2%, W, XY).

Then I is 2-isomultiple but e(R) = 12 = (2 ¥ 4) — 5= 10.

isomultiple, but e(R) = 13 == (

ExampLE 5.6. Let A =Fk[X,Y,Z] and I= (X’ Y% Z° X*Y). Then

3+ 3

I is 3-isomultiple but e(R) = 21 + ( 3 ) — 4 = 16.

Remark 5.7. It is clear that if I is a codimension three 2-isomultiple
ideal then v(l) < 6. For each values of v(I) = 4, 5, 6 we want to exhibit
a typical example. Let R = k[, ¢, ¢, *]; then v(l) =4 and e(R) = 6.
Let I be the ideal generated by the pfaffians of a 5 X 5 skew-symmetric
generic matrix, then v(I) = e(R) = 5. Let I be the defining ideal of the
Veronese surface in P° or of the Segre embedding P' X P®-— P7; then
v(l) = 6 and e(R) = 4.

As we have seen in Remark 6 of the last section and Examples 5.5
and 5.6 show, it is difficult to control the multiplicity of the ring R when
I is a t-isomultiple ideal. As soon as A or t increase, we cannot say
what values for the multiplicity are allowed. Thus we restrict ourselves
to an ideal I which is 2-isomultiple and try to give an upper bound for
the multiplicity of the ring R = A/I, when I is not a complete intersec-
tion.
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The following result is the key point for our further investigations.

ProposiTioN 5.8. Let I be an homogeneous ideal of A = k[X,, - - -, X,]
such that R = A/l is Gorenstein, Artinian and with socle degree j(R) =

h — 2. If P(R,2) = > '2;a,2" and I contains a maximal regular sequence
of forms of degree two, then we have:
i) a>h—2

i) If a, = h — 2, then I is a complete intersection
i) If h < 6 then e(R) > 2"*

Proof. i) Let a,=h —p with 0 < p < h; then diml, = p and we
may assume X,, ---, X, €1. By the assumption made on I, we can find
elements F,,,, - -+, F, in I of degree two such that X, ---, X, F,,,, ---, F,
is a regular sequence in I. Of course we may assume F,,,, ---, F,e B =
k[X,.:, - -+, X,] and denote by < the ideal they generate in B. Then we
have a,_,,, = dim(A/I),_,,, < dim(B/J),_,,, = 0; hence h —p+ 1> h — 2
which implies ¢, =h —p >h — 2.

ii) If a, = h — 2 then, as before, we can find elements F;, ---, F,el
of degree two such that X, X,, F,, ---, F, is a regular sequence in I
Also we may assume F,, ---, F,e B = k[X,, ---, X,] and we denote by J
the ideal they generate in B and by I the ideal I/(X,, X;) in B. Then we
have h — 2 =a, = a,_; = dim(B/I),_, = dim (B/J),.,, hence I, , = ¢,
Now if Fel, with d < h — 3, then FB,_ ,_.cdJ, hence Fed: B, ;.. =
(J, B,,,) where the last equality follows by Lemma 5.2 iv). This implies
Fed, hence J = I, and I is a complete intersection.

i) If h <5 we get the conclusion using i). If h =6, using the
numerical characterization of Hilbert functions due to Macaulay (see for
example [St] Theorem 2.2) we can prove that if a, = @, =5 then a, >4,
and if @, = @, = 6 then a, > 5. Since, if ¢, = a, = 4 then ¢, = 6 by part
i1), this gives the conclusion.

TueoreM 5.9. Let I be a 2-isomultiple codimension h ideal of the n-
dimensional regular local ring (A, N). If v(I) > h and h < 6, then e(R) <
3.27-%,

Proof. We have gry(R) = k[X,, ---, X,]/I* where I* is generated by
forms of degree two, v(I*) = v(l) and h = height(I*). Thus we may
assume A = k[X,, ---, X,] and I is an homogeneous ideal generated by
forms of degree two. Let F,, --., F,, F be elements in a minimal base of
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Isuch that F,, - - -, F, is a regular sequence in I and let % = (F,, - - -, F,, F).
Then e(A/I) = e[(A/M)/(I/N)]; since dim A/ = dim A/I we have, by Pro-
position 1.5, e(A/I) < e(A/%). Hence we may assume v(I) = h 4+ 1, and
let I =(F,---,F,,F) where F, -.--, F, is a regular sequence in A. If
n=nhand we put J = (F,, ---, F,), then A/J: F is an artinian graded
Gorenstein ring (see [K] Proposition 3.1). Also, by Lemma 5.2 v), Fed: A, _,,
hence A, ,C J: F, while if A, ,CJ: F then Fe A, a contradiction.
Thus A/J: F has socle degree h — 2 and since J C J: F we may apply
Proposition 5.8. to get e(A/J: F) > 2"~

But we have an exact sequence 0— A/J: F— A/J — A/l — 0; hence
e(AlI) = e(AlJ) — e(Ald: F) < 2* — 2"% = 3.2"7%,

Now we can use induction on n — h. Let n > h; then we can find
an element x e A, which is a non zero divisor modulo J. Since x is a
parameter modulo I we get height (I + x/x) = A. If v(I + x/x) = h + 1,
then we have by Proposition 1.5 and the inductive assumption: e(A/I) =
e(AlI + x) = e[(Alx)/(I + x)/(x)] < 3-2"% If (I + x/x) = h, then Fe (J, x)
and I = (J, xy) for some ye A,. Now y is zero divisor modulo J, hence we
have dim (A/(J, y)) = dim A/J = n — h; also I. y D (J, x) hence dim A/I: y
< dim(A/(J,x)) =n —h — 1. We can apply Proposition 1.5 i) to infert
e(AlI) = e(A[(L, y)) = e(A/(J, ). But height ((/, y)/y) = height (J,y) — 1
= h — 1, hence we get e(A/I) = e(A/(J, y)) < 2" < 3-2"%, as required.

Remark 5.10. In the above theorem, unlike the rest of this paper,
we assume neither I nor I* to be perfect.

Remark 5.11. Let A=Fk[X, - -, X,] and I= (X, .-, X}, XI"'X)).
Then (X!, ---, X0): Xi7'X, =(X,, X¢', X4, -+, XY, hence e(A[ll) =
— Nt — 1) = e — t + 1)

The above theorem and this example suggest the following question:
if I is a tisomultiple codimension A ideal, is it true that e(R) <
t*** — t + 1)? For example, let o = 2; as in the proof of Theorem 5.9
we need to prove that if A = k[X, Y] and I = (F,, F,, F), where F, F, F
are forms of degree ¢ such that F,, F, is a regular sequence, then e(A/l) <
?—t+1. Nowif A,_,CJ: F then, by Lemma 5.2, F e J; hence e(A/J: F)
>t — 1 which implies e(A/I) =t — e(A/(J: F)) < —t+ 1.

Remark 5.12. Let k be an algebraically closed field, A = E[X,, - - -, X,]
and I = (F, ---, F,,,) a codimension h ideal with deg F, = 2. Let C be
the curve in P" which is defined by F,, ---, F,_, and which we assume
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to be non singular. Let D, = CNF, and D, = CNF,,,; D, and D, are
divisors on C and we have deg (D,) = 2.

Further if 3, P, is a divisor defined by I, then D, — >, P, = D, — >, P,,
but D, — >, P, +# D, — >, P, as Cartier divisors. Let d be the minimum
degree for a divisor D on C such that dim|D| > 1; then it is clear that
e(A/I) < 2" — d. Now we can compute d by using Riemann-Roch theorem
which says

h(O(D)) — R(O(D)) = d + 1 — g(C).

Since g(C) = 2"*h — 3) + 1, we get d = 2"*(h — 3) + 2 — h*(0O(D)), hence
e(AlI) < 2"(T — h) — 2 + K (O(D)). Thus we are led to compute A'(O(D))
which probably is not easy; but the above formula could justify the
assumption A < 6 in our Theorem 5.9.

On the other hand if we assume C is a generic curve (in the sense
of the moduli space), then by the theorem of Brill-Noether we have that
there exists on C a linear system of degree d and dimension r if and
only if d > [rg/(r + 1)] + r; since we may assume r = 1 we get e(A/l) <
P —d<2"—gl2—-1=2"—2"3%h —3)— 1/2 —1=2"?%11 — h) — 3/2.
If we compare this bound with the one given in Theorem 5.9 we see that
they coincide until A = 4, but for A = 5 we get 3-2"~* = 24 while 2*-*(11 — h)
— 3/2 =22+ 1/2. We remark that for A =5 the corresponding curve
has genus 17 and ask weather our result could have some application
to the study of the moduli space of curves with such a genus.

Remark 5.13. The converse of the above theorem does not holds.
Let A=Fk[X,Y,Z] and I = (X? Y? Z* XY, XZ); then e(R) =6 < 3-2""7,
but I is not 2-isomultiple.

Strangely enough, if we assume I to be homogeneous and v(l) =
h + 1, then we can prove that I is an intersection of quadrics.

ProposiTiON 5.14. Let I be an homogeneous codimension h ideal of
A=Fk[X, - -, X,] such that v(I)=h+ 1. If h<6 and e(R) < 3-2""%
then I can be generated by forms of degree two.

Proof. Let r,j and s be the number of generators in a minimal base
of I of degree 2, 3 and 4 respectively. Then we have dimIl, = r, dim I,
< hr +j and

i (5 o[ )=o) - ()4
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hence we get:
e®zt+h+ (") —re ("T2) -+ ("1

(P (G) - hi s

Since r+j+s< h+1 we get
h+2 h+3 r h+1
)= ("3 + ("I + () -+ (" T

If r< h <6 it is easy to see that the term on the right is strictly bigger
than 3.2""%, a contradiction. Hence r >> h, which implies r = h + 1; the
conclusion follows.

The last result of this paper deals with the problem of finding a
lower bound for the multiplicity of A/I, where I is a f-isomultiple co-

dimension A ideal. If we don’t make any assumption on v(I), the bound is

(h + ;1— 1> as proved in section 3. But if we assume I to be an almost

complete intersection, then we can prove the following result, where given
the integers h and ¢, we define s to be the integer part of (h + 1)(t — 1)/2
and we let (3 b2 = 3>, d,2%

THEOREM 5.15. Let I be a perfect codimension h ideal of the regular
local ring (A, ). If v(I) = h + 1, I is t-isomultiple and gry(R) is Cohen-
Macaulay, then e(R) > d,, and the equality holds if and only if the socle
degree of R is s.

Proof. We have gry(R) = k[X, ---, X,,,]/I*; since this is Cohen-
Macaulay, we may assume X,,,, ---, X;,, 1s a regular sequence modulo
I*, hence e(R) = e(gry(R)) = e(k[X, - --, X,]/%) where % is a codimension
h ideal generated by A + 1 forms of degree t. Let A =(F, ---, F,, F)
where F,, ---, F, is a regular sequence in B = k[X|, ---, X,]; further let
J be the ideal generated by F,, ---, F,. We have that B/J and B/J: F
are graded artinian Gorenstein rings with socle degree A(t — 1) and
h(t — 1) — t respectively (use Lemma 5.2). Then we have P(B/J,2) =
2"¢YP(B[J, 1/z) and P(B/J: F, 2) = z"¢-"-*P(B/J: F, 1/z). Hence we get
P(B/, 2) = P(B/J, z2) — z'P(B/J: F, z) = P(B|J, z) — z*“""P(B/J: F, 1/z).
But it is clear that we have P(B/Y, 1/z) = P(B/J, 1/z) — z*P(B|J: F, 1/z2),
hence P(B/, z2) = P(B/J, z) — z"*-"*[P(B/J, 1/z) — P(B/Y, 1/2)] = P(B/J, 2)
— 2'P(B/d, z) + 2"V P(B/¥, 1/2) = (1 — 2")P(BJdJ, 2) + z*“- "+ P(B/U, 1/z)
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= (1 — 2)(Tih ) + 2 IHPBM, 1/2) = (1 — (i 2 + 2h¢n+
P(B/Y, 1/z).

Now we remark that B/% has socle degree less or equal to h(t — 1)
— 1 and we let (3]i2;2)" = 3,d,2* and P(B/%, 2) = 3 ,;a,2". Then it is
easy to prove that

e(R) = d, + 2 ¢ a, if (b4 1) —1) =25
eR)=d, + a,,, - 2500 a,  if (b + 1)t —1) = 25 + 1.

Of course, this gives the conclusions.

Remark. If h = 2, then by the above theorem, we get e(R) > 3n® if
t=2nand e(R) >3n"+3n+1if t =2n + 1.

In this case the bound is sharp as the following examples show.

Let A=Fk[X, Y], I=X" Y™ X"Y") or I=(X**, Y™ X Y"*).

If £ — 2 then we get e(R)z(h;: 1) if 7= 2n and e(R)ZZ(Z) it h=2n+1.

Also in this case the bound is sharp: let 2 be a field of characteristic
zero and A = kX, -, X, ], I=(X3, -, X0, X X, + XX, + -« + X,_ X))
ifth=2nI=WX3 -, X XX,+ XX, + -+ X,.X,.)if h=2n+ 1.

We can give examples which prove the bound is sharp for many other
values of h and ¢ and we think that this should be always possible. But,
for the moment, we do not have a general proof of this fact.

We would like to thank P. Francia, J. Herzog, F. Mora and L.
Robbiano for many helpful conversations and suggestions while preparing
this paper. In particular Remark 5.12 is due to P. Francia and the main
idea for section 4 is due to J. Herzog. The authors are also indebted
with the referee for the correction of a wrong version of Theorem 2.1.
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