A. Noda

Nagoya Math. J.
Vol. 105 (1987), 89-107

GENERALIZED RADON TRANSFORM AND LÉVY'S BROWNIAN MOTION, II*)

AKIO NODA

§ 1. Introduction

As a continuation of the author's paper [19], we shall investigate the null spaces of a dual Radon transform R^{*}, in connection with a Lévy's Brownian motion X with parameter space $\left(R^{n}, d\right)$. We shall follow the notation used in (I), [19].

We begin with a brief review of the general framework behind the representation of Chentsov type:

$$
\begin{equation*}
X(x)=\int_{B_{x}} W(d h)=W\left(B_{x}\right), \tag{1}
\end{equation*}
$$

with $B_{x}:=\{h \in H ; x \in h\}$. It consists of the following:
(i) A Lévy's Brownian motion $X=\{X(x) ; x \in M\}$ with mean 0 and variance $d(x, y)=E\left[(X(x)-X(y))^{2}\right]$, where $d(x, y)$ is an L^{1}-embeddable (semi-)metric on M;
(ii) A Gaussian random measure $W=\{W(d h) ; h \in H\}$ based on a measure space (H, ν) such that $H \subset 2^{M}$ and ν is a positive measure on H satisfying $\nu\left(B_{x}\right)<\infty$ and

$$
\begin{equation*}
d(x, y)=\nu\left(B_{x} \triangle B_{y}\right)=\int_{H} \pi_{h}(x, y) \nu(d h) \quad \text { for all } x, y \in M \tag{2}
\end{equation*}
$$

where

$$
\pi_{h}(x, y):=\left|\chi_{h}(x)-\chi_{h}(y)\right|=\left|\chi_{B_{x}}(h)-\chi_{B_{y}}(h)\right| .
$$

As a bridge connecting the metric space (M, d) and the measure space (H, ν), the equation (2) guarantees the existence of a representation of the form (1) for a Lévy's Brownian motion X with parameter space (M, d).

The representation (1) of Chentsov type played in (I) (and will play

[^0]also in the present (II)) an important role, and led us to introduce a pair of integral transformations; one is the generalized Radon transform,
\[

$$
\begin{equation*}
(R f)(h):=\int_{h} f(x) m(d x), \quad f \in L^{1}(M, m), \tag{3}
\end{equation*}
$$

\]

and the other is the dual Radon transform

$$
\begin{equation*}
\left(R^{*} g\right)(x):=\int_{B_{x}} g(h) \nu(d h), \quad g \in L^{2}(H, \nu) . \tag{4}
\end{equation*}
$$

Definition 1. For each subset $A \subset M$, we define

$$
\begin{equation*}
N_{1}(A):=\left\{g \in L^{2}(H, \nu) ;\left(R^{*} g\right)(x) \equiv 0 \text { on } A\right\}=\left[\chi_{B_{x}}(h) ; x \in A\right]^{\perp} . \tag{5}
\end{equation*}
$$

This closed subspace of $L^{2}(H, \nu)$ is called the null space of R^{*} relative to the subset A.

The study of such null spaces $N_{1}(A)$ is of great importance for the following reason. For each Lévy's Brownian motion X with parameter space (M, d), we have a representation of the form (1). Consider an increasing family of closed linear spans $\left[X(x) ; x \in A_{\rho}\right]$ corresponding to each increasing family of subsets A_{ρ} with $\cup_{0<\rho<\infty} A_{\rho}=M$. Just as in the wellknown theory of canonical representations of Gaussian processes, we wish to give a description of these $\left[X(x) ; x \in A_{\rho}\right]$ in terms of a Gaussian random measure W; they are all contained in the big closed subspace

$$
\left\{\int_{H} g(h) W(d h) ; g \in L^{2}(H, \nu)\right\}
$$

of $L^{2}(\Omega, P)$. Since one can easily see that

$$
\begin{equation*}
[X(x) ; x \in A]=\left\{\int_{H} g(h) W(d h) ; g \in N_{1}(A)^{\perp}\right\} \tag{6}
\end{equation*}
$$

for every $A \subset M$, our problem is to determine completely the null space $N_{1}\left(A_{\rho}\right)$ of the dual Radon transform R^{*}.

So the main purpose of this paper is to investigate the null spaces $N_{1}\left(A_{\rho}\right)$ for a certain increasing family of closed subsets A_{ρ} of M, such as $A_{\rho}=V_{\rho}$ in the case $M=R^{n}$, where V_{ρ} denotes the closed ball of radius ρ about the origin $O, 0<\rho<\infty$. Examples of L^{1}-embeddable metrics d on R^{n} in which we have succeeded in finding a complete description of $N_{1}\left(V_{\rho}\right)$ as well as of $\left[X(x) ; x \in V_{\rho}\right]$ will be explained below.

Sections 3 and 4 concern rotation-invariant distances d on $M=R^{n}$ which are derived, via the equation (2), from the following choice of H :

$$
\begin{aligned}
& H=\left\{h_{t, \omega} ; t>0, \omega \in S^{n-1}\right\} \text { is the set of all half-spaces } \\
& h_{t, \omega}:=\left\{x \in R^{n} ;(x, \omega)>t\right\} \text { not containing the origin } O .
\end{aligned}
$$

The Euclidean distance $|x-y|$ is a familiar example of such a distance.
The generalized Radon transform $(R f)\left(h_{t, \omega}\right)$ is then given by the integral of f over the half-space $h_{t, \omega}$ and hence closely related to the classical Radon transform. This observation leads us to apply the fruitful theory of the classical Radon transform (see, for example, [9], [12] and [16]) and solve the problem concerning the null spaces of R^{*}. In fact, by using the theorem of Ludwig [16] (cf. [20] and [21]), we are able to find a complete description of $N_{1}\left(V_{\rho}\right)$ (Theorem 7) as well as that of $\left[X(x) ; x \in V_{\rho}\right]$ (Theorem 8).

Our result on the structure of $\left[X(x) ; x \in V_{\rho}\right]$ can be restated in terms of mutually independent Gaussian processes $M_{m, k}(t)$ introduced by McKean [17]:

$$
\begin{equation*}
M_{m, k}(t):=\int_{S^{n-1}} X(t \omega) S_{m, k}(\omega) \sigma(d \omega), \quad t>0 \tag{7}
\end{equation*}
$$

where σ denotes the uniform probability measure on the unit sphere S^{n-1} and $\left\{S_{m, k}(\omega) ;(m, k) \in \Delta\right\}, \Delta:=\{(m, k) ; m \geq 0$ and $1 \leq k \leq h(m)\}$, is taken to be a CONS in $L^{2}\left(S^{n-1}, \sigma\right)$ consisting of spherical harmonics. The basic representation (1) of X yields

$$
\begin{equation*}
M_{m, k}(t)=\int_{0}^{t} \lambda_{m}(u / t) d B_{m, k}(u) \tag{8}
\end{equation*}
$$

where the kernel $\lambda_{m}(t)$ is expressed in terms of the Gegenbauer polynomial $C_{m}^{q}(u)$ of degree m with $q:=(n-2) / 2$:

$$
\lambda_{m}(t)=(\text { const. }) \int_{t}^{1} C_{m}^{q}(u)\left(1-u^{2}\right)^{q-1 / 2} d u
$$

It turns out that the representation (8) of $M_{m, k}(t)$ is canonical only for $m \leq 2$ (Theorem 10). Moreover, for $m \geq 3$, we determine the dimension of $\left[B_{m, k}(t) ; t \leq \rho\right] \ominus\left[M_{m, k}(t) ; t \leq \rho\right]$ (orthogonal complement in $L^{2}(\Omega, P)$) which can be regarded as the degree of non-canonicality of (8). In this, way, our Theorems 8 and 10 might be viewed as a development (or refinement) of the result in [17] proved for a Brownian motion with n-dimensional parameter.

In Section 2 we shall give various kinds of L^{1}-embeddable metrics d on R^{n}. Some of them should be mentioned here.

The first kind of d depends on the choice of a bounded subset $K \subset R^{n}$ such that $|K|>0$ and $O \in K$. Take the following measure space $\left(H_{K}, \nu_{K}\right)$:

$$
H_{K}:=\left\{h_{\alpha, p}:=\left\{x \in R^{n} ; \alpha(x-p) \in K\right\}=\alpha^{-1} K+p ; \alpha \in S O(n) / \Sigma_{K}, p \in R^{n}\right\}
$$

and

$$
d \nu_{K}\left(h_{\alpha, p}\right):=c d \alpha d p, \quad c>0
$$

where $\Sigma_{K}:=\{\alpha \in S O(n) ; \alpha K=K\}$ and $d \alpha$ denotes the normalized Haar measure on $S O(n) / \Sigma_{K}$. Then, the equation (2) gives us an L^{1}-embeddable metric d_{K} invariant under every rigid motion on R^{n} :

$$
\begin{aligned}
d_{K}(x, y) & =c \int_{S O(n) / \Sigma_{K}}\left|\left(\alpha^{-1} K+x-y\right) \Delta \alpha^{-1} K\right| d \alpha \\
& =c \int_{S O(n)}|(K+\alpha(x-y)) \Delta K| d \alpha=r_{K}(|x-y|) .
\end{aligned}
$$

The typical choice of $K=V_{\rho}$ allows us to compute the explicit form of $r_{V_{\rho}}$ and get a large class of invariant distances by forming a superposition of the family $\left\{d_{V_{\rho}} ; 0<\rho<\infty\right\}$ (cf. Section 2, 2-1). This idea of superposition is due to Takenaka [24] who gave a nice account of representations of self-similar Gaussian random fields.

It deserves mention that the generalized Radon transform

$$
(R f)\left(h_{\alpha, p}\right)=\int_{K} f\left(\alpha^{-1} x+p\right) d x, \quad h_{\alpha, p} \in H_{K},
$$

was discussed in connection with the Pompeiu problem (cf. [26]).
The next kind of d is of the form $\|x-y\|$, where $\|x\|$ is a norm of negative type ([6] and [8]). Such a norm is characterized as the support function of a special convex body in R^{n} called a zonoid ([5]), and therefore admits of the following expression in terms of a bounded symmetric positive measure τ on S^{n-1} :

$$
\begin{equation*}
\|x\|=\int_{S^{n-1}}|(x, \omega)| \tau(d \omega) \tag{9}
\end{equation*}
$$

With the help of this well-known expression, the measure space (H, ν) combined with $\|x-y\|$ via (2) is naturally taken to be

$$
\nu\left(d h_{t, \omega}\right)=d t \tau(d \omega) \quad \text { on the set } H \text { of half-spaces } h_{t, \omega} .
$$

Note that rotation-invariance of τ yields the Euclidean distance $|x-y|$ up to a constant multiple.

It is worthwhile to remark that every Lévy's Brownian motion X with parameter space ($\left.R^{n},\|x-y\|\right)$ possesses a notable property: For each line L in R^{n}, restrict the whole parameter space R^{n} to the one-dimensional set L; then the Gaussian process $X_{1 L}=\{X(x) ; x \in L\}$ coincides with a standard Brownian motion. In order to get at his definition of Brownian motion with n-dimensional parameter, Lévy [15] added one more simple condition that the probability law of $X(x)-X(O)$ is invariant under every rotation $\in S O(n)$. The class of Lévy's Brownian motions corresponding to norms of negative type is thus thought of as a nice extension of Lévy's original one.

§ 2. $\quad L^{1}$-embeddable metrics on Euclidean space

This section is devoted to the study of the equation (2) connecting a metric space (R^{n}, d) with a measure space (H, ν). Indeed we describe a variety of L^{1}-embeddable metrics d on R^{n} and corresponding measures ν on $H \subset 2^{R^{n}}$. Among them, we should like to mention the following class of rotation-invariant distances:

$$
\begin{equation*}
d(x, y)=c|x-y|+\int_{0}^{\infty} \mu(d t) \int_{S^{n-1}}\left|e^{t(x, \omega)}-e^{t(y, \omega)}\right| \sigma(d \omega), \tag{10}
\end{equation*}
$$

where $c \geq 0$ and μ is a non-negative measure on ($0, \infty$) such that

$$
\int_{0}^{\infty} t e^{a t} \mu(d t)<\infty \quad \text { for any } a>0
$$

This class will be further discussed in Sections 3 and 4.
2-1. The first type of an L^{1}-embeddable metric d on R^{n} is derived from the d_{K} in Section 1 with the choice of $K=V_{u / 2}$. For each $u>0$, we set

$$
H_{u}:=\left\{k_{p}:=V_{u / 2}+p ; p \in R^{n}\right\} \quad \text { and } \quad \nu_{u}\left(d k_{p}\right):=d p / 2\left|S^{n-1}\right|(u / 2)^{n-1},
$$

to get the desired distance

$$
d_{u}(x, y):=\int_{H_{u}} \pi_{k_{p}}(x, y) \nu_{u}\left(d k_{p}\right)=r_{u}(|x-y|),
$$

where

$$
\begin{align*}
r_{u}(t) & =\left|\left(V_{u / 2}+t e_{1}\right) \Delta V_{u / 2!}\right| / 2\left|S^{n-1}\right|(u / 2)^{n-1} \tag{11}\\
& =u \int_{0}^{\min (t / u, 1)}\left(1-v^{2}\right)^{(n-1) / 2} d v, \quad e_{1}=(1,0, \cdots, 0) \in R^{n} .
\end{align*}
$$

Observe that $\lim _{u \rightarrow \infty} r_{u}(t)=r_{\infty}(t)=t$ for each $t>0$. Hence we put $d_{\infty}(x, y)$: $=|x-y|$.

Having found the family $\left\{d_{u} ; 0<u \leq \infty\right\}$, we now form its superposition by means of a positive measure $G(d u)$ on ($0, \infty$]:

$$
\begin{equation*}
d(x, y):=\int_{(0, \infty]} d_{u}(x, y) G(d u) \tag{12}
\end{equation*}
$$

The corresponding measure space (H, ν) is obviously taken as follows:

$$
H=\left\{k_{u, p}:=V_{u / 2}+p ; 0<u<\infty, p \in R^{n}\right\} \cup\left\{h_{t, \omega} ; t>0, \omega \in S^{n-1}\right\}
$$

(disjoint union) and

$$
\nu\left(d k_{u, p}\right)=\frac{2^{n-2}}{\left|S^{n-1}\right|} u^{-n+1} G(d u) d p, \quad \nu\left(d h_{t, \omega}\right)=G(\{\infty\}) \frac{(n-1)\left|S^{n-1}\right|}{\left|S^{n-2}\right|} d t \sigma(d \omega)
$$

Here is a brief comment on the choice of (H, ν). Even if $\nu\left(B_{x}\right)=\infty$ for some $x \in R^{n}$, the equation (2) still has a meaning under the condition that $\nu\left(B_{x} \triangle B_{y}\right)<\infty$ for all $x, y \in R^{n}$. We therefore impose the condition $\int_{(0, \infty]} \min (u, 1) G(d u)<\infty$ on the measure G. In order to get at the stronger conclusion that $\nu\left(B_{x}\right)<\infty$ for all $x \in R^{n}$, it suffices to change every element $h \in H$ containing the origin O for its complement h^{c}, so that B_{o} is empty and $\nu\left(B_{x}\right)=\nu\left(B_{x} \triangle B_{0}\right)<\infty$. This manipulation was explained in (I), Section 2.

The above distance (12) is invariant under every rigid motion on R^{n} and takes the form $r(|x-y|)$ with

$$
\begin{equation*}
r(t)=\int_{(0, \infty]} r_{u}(t) G(d u) \tag{12'}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
r^{\prime}(t)=\int_{(t, \infty]}\left(1-t^{2} / u^{2}\right)^{(n-1) / 2} G(d u) . \tag{13}
\end{equation*}
$$

In the one-dimensional case, this expression (13) immediately shows the following

Proposition 1. Suppose $r(t)$ is a continuous function on $[0, \infty), r(0)$ $=0$ and has the right derive $r_{+}^{\prime}(t) \geq 0$ which is non-increasing on $(0, \infty)$ and satisfies $\left|\int_{0}^{1} t d r_{+}^{\prime}(t)\right|<\infty$. Then the distance $d(x, y):=r(|x-y|)$ on R^{1} is L^{1}-embeddable.

For $n \geq 2$, we devote our attention to the case where $G(d u)$ is absolutely continuous on $(0, \infty)$ with density $g(u)$ and $G(\{\infty\})=0$. The equality (13) becomes

$$
r^{\prime}(t)=\int_{t}^{\infty}\left(1-t^{2} / u^{2}\right)^{(n-1) / 2} g(u) d u
$$

which coincides with the classical Radon transform $\hat{f}\left(\delta h_{t, \omega}\right)$ applied to the radial function $f(y):=g(|y|) /\left|S^{n+1}\right||y|^{n}$ on R^{n+2}, i.e., the integral of f over the hyperplane $\delta h_{t, \omega}:=\left\{y \in R^{n+2} ;(y, \omega)=t\right\}$ in R^{n+2} ([9], p. 103). By appeal to the inversion formula ([9], p. 120), we get

$$
\begin{equation*}
g(u)=d_{n} \int_{u}^{\infty}\left\{\left(-\frac{d}{d t}\right)^{n+1} r^{\prime}(t)\right\}\left(t^{2}-u^{2}\right)^{(n-1) / 2} d t \tag{14}
\end{equation*}
$$

with

$$
d_{n}:=\frac{2^{n-1}}{\pi}\left\{\frac{\Gamma(n / 2)}{\Gamma(n)}\right\}^{2} .
$$

We consider the functions $\psi_{\lambda}(t):=\left(1-e^{-\lambda t}\right) / \lambda, \lambda>0$; every $\psi_{\lambda}(t)$ satisfies $(-d / d t)^{n+1} \psi_{2}^{\prime}(t) \geq 0$ for all $n \geq 2$. By (14), the L^{1}-embeddable metric $\psi_{\lambda}(|x-y|)$ on R^{n} is of the form (12) with the corresponding density

$$
g_{\lambda}(u)=d_{n} \lambda^{n+1} \int_{u}^{\infty} e^{-\lambda t}\left(t^{2}-u^{2}\right)^{(n-1) / 2} d t .
$$

Thus, the method of superposition gives us the following
Proposition 2 (cf. [2] and [3]). Suppose a function $r(t)$ on $[0, \infty)$ is expressed in the form

$$
\begin{equation*}
r(t)=c t+\int_{0}^{\infty} \psi_{\lambda}(t) r(d \lambda) \tag{15}
\end{equation*}
$$

where $c \geq 0$ and γ is a non-negative measure on $(0, \infty)$ such that

$$
\int_{0}^{\infty} \min \left(1, \lambda^{-1}\right) r(d \lambda)<\infty .
$$

Then the distance $d(x, y):=r(|x-y|)$ on R^{n} is L^{1}-embeddable.
2-2. The second type of d is an extension of the norm $\|x-y\|$ admitting of the expression (9).

Proposition 3. Suppose $r(t)$ is a function described in Proposition 1. Then the distance

$$
\begin{equation*}
d(x, y):=\int_{S^{n-1}} r(\mid x-y, \omega) \mid \tau(d \omega) \quad \text { on } R^{n} \tag{16}
\end{equation*}
$$

is L^{1}-embeddable.
Proof. The proof is carried out by constructing a measure space (H, ν) combined with (16) via the equation (2). Since $r(t)$ is of the form

$$
\begin{equation*}
r(t)=c t+\int_{0}^{\infty} \min (t, u) G(d u), \quad c:=G(\{\infty\}), \tag{17}
\end{equation*}
$$

it is convenient to divide d into two parts:

$$
d_{1}(x, y):=c \int_{S^{n-1}}|(x-y, \omega)| \tau(d \omega)=c\|x-y\|
$$

and

$$
d_{2}(x, y):=\int_{0}^{\infty} G(d u) \int_{S^{n-1}} \min (|(x-y, \omega)|, u) \tau(d \omega)
$$

We have already described a measure space $\left(H_{1}, \nu_{1}\right)$ for the first part d_{1} in Section 1. On the other hand, a measure space (H_{2}, ν_{2}) combined with d_{2} is easily found; it is
$H_{2}:=\left\{k_{u, t, \omega}:=\left\{x \in R^{n} ;|(x, \omega)-t|<u / 2\right\} ; 0<u<\infty, t \in R^{1}\right.$ and $\left.\omega \in S^{n-1}\right\}$ equipped with $\nu_{2}\left(d k_{u, t, \omega}\right):=G(d u) d t \tau(d \omega) / 2$.

The proof is thus completed.
For a given norm $\|x\|$ of negative type, we consider the distance $\|x-y\|^{\alpha}, 0<\alpha<1$. It is known ([8] and [14]) that $\|x-y\|^{\alpha}$ can be expressed in the form (16) with $r(t)=t^{\alpha}$. Hence the method of superposition again shows that the distance $d(x, y):=\psi(\|x-y\|)$ on R^{n} is L^{1}-embeddable if $\psi(t)=\int_{(0,1]} t^{\alpha} m(d \alpha)$, where m is a bounded positive measure on $(0,1]$.

2-3. In connection with the theory of continuous functions $\phi(x)$ of negative type on the semigroup ($R^{n},+$) ([4]), we proceed to discuss a new class of L^{1}-embeddable metrics on R^{n}.

First recall the known expression of ϕ ([4], p. 220):

$$
\phi(x)=a+(b, x)-Q(x)+\int_{R^{n} \backslash\{0\}}\left(1-e^{(x, \xi)}+\frac{(x, \xi)}{1+|\xi|^{2}}\right) \gamma(d \xi),
$$

where $a \in R^{1}, b \in R^{n}, Q$ is a non-negative quadratic form on R^{n} and γ is a non-negative measure on $R^{n} \backslash\{0\}$ such that

$$
\int_{0<|\xi|<1}|\xi|^{2} \gamma(d \xi)<\infty \quad \text { and } \quad \int_{|\xi|>1} e^{(x, \xi) \gamma} \gamma(d \xi)<\infty \quad \text { for all } x \in R^{n}
$$

Set $d(x, y):=2 \phi(x+y)-\phi(2 x)-\phi(2 y)$, to get

$$
d(x, y)=Q(x-y)+\int_{R^{n} \backslash\{0\}}\left(e^{(x, \xi)}-e^{(y, \xi)}\right)^{2} \gamma(d \xi)
$$

This form of d gaurantees the existence of a centered Gaussian random field $X=\left\{X(x) ; x \in R^{n}\right\}$ such that $d(x, y)=E\left[(X(x)-X(y))^{2}\right]$.

We are ready to state the following
Proposition 4. Suppose $r(t)$ is a function described in Proposition 1, and define a distance on R^{n} by

$$
\begin{equation*}
d(x, y):=\int_{R^{n} \backslash 0 \mid} r\left(\mid e^{(x, \xi)}-e^{(y, \xi)}\right) \gamma(d \xi), \tag{18}
\end{equation*}
$$

where \tilde{r} is a positive measure on $R^{n} \backslash\{0\}$ such that

$$
\int_{0<|\xi|<1} r(|\xi|) r(d \xi)<\infty \quad \text { and } \quad \int_{|\xi|>1} e^{(x, \xi)} \gamma(d \xi)<\infty
$$

for all $x \in R^{n}$. Then d is L^{1}-embeddable.
Proof. In view of the general form (17) of r, it suffices to treat the two special cases: (i) $r(t)=t$ and (ii) $r(t)=\min (t, u), 0<u<\infty$.
(i) The case $r(t)=t$. A measure space corresponding to (18) is given by

$$
\nu\left(d h_{t, \omega)}\right)=\int_{R^{n} \backslash\{0\}} \gamma(d \xi)\left\{|\xi| e^{|\xi| t} d t \delta_{\xi / \xi \mid}(d \omega)\right\}
$$

on the set H of half-spaces $h_{t, \omega}, t>0$ and $\omega \in S^{n-1}$, where δ_{a} denotes the Dirac measure at the point $a \in S^{n-1}$.
(ii) The case $r(t)=\min (t, u)$. Consider the following subset parametrized by $(t, \xi) \in R^{1} \times R^{n}$:

$$
\tilde{k}_{t, \xi}:=\left\{x \in R^{n} ;\left|e^{(x, \xi)}-t\right|<u / 2\right\} .
$$

Then it is easy to verify that the measure

$$
\nu_{u}\left(d \tilde{k}_{t, \xi}\right):=\operatorname{dtr}(d \xi) / 2 \quad \text { on } H_{u}:=\left\{\tilde{k}_{t, \xi} ; t \in R^{1}, \xi \in R^{n}\right\}
$$

yields the desired distance (18) in this second case, which completes the proof.

If a rotation-invariant distance of the form (18) is requested, we must take a rotation-invariant measure γ, which is of the form

$$
\gamma(d \xi)=d \mu(|\xi|) d \sigma(\xi /|\xi|) \quad \text { with a positive measure } \mu \text { on }(0, \infty)
$$

such that $\int_{0}^{\infty} r(t) e^{a t} d \mu(t)<\infty$ for all $a>0$. It also deserves mention that one can derive the distance $\|x-y\|^{\alpha}$ in Section $2-2$ as the limit of distances of the form (18) with $r(t)=t^{\alpha}, 0<\alpha \leq 1$. Indeed, for each $\rho>0$, take the measure $\gamma_{\rho}(d \xi):=d \tau(\xi / \rho) / \rho^{\alpha}$ concentrated on the sphere δV_{ρ} of radius ρ; then one can see that

$$
\left.\lim _{\rho \downharpoonright 0} \int_{\partial V_{\rho}}\left|e^{(x, \xi)}-e^{(y, \xi) \mid \alpha_{\rho}^{\alpha}}(d \xi)=\int_{S^{n-1}}\right|(x-y, \omega)\right|^{\alpha} \tau(d \omega)=\|x-y\|^{\alpha} .
$$

2-4. Let X be a centered Gaussian random field with homogeneous increments ([25]). Then the variance $d(x, y):=E\left[(X(x)-X(y))^{2}\right]$ takes the analogous form

$$
d(x, y)=Q(x-y)+\int_{R^{n} \backslash\{0\}}\left|e^{i(x, \xi)}-e^{i(y, \xi)}\right|^{2} \gamma(d \xi),
$$

where γ is a spectral measure on $R^{n} \backslash\{0\}$ satisfying $\int \min \left(|\xi|^{2}, 1\right) r(d \xi)<\infty$. On the lines of Proposition 4, we can prove the following

Proposition 5. Suppose $r(t)$ is a function described in [19], Proposition 2. Set

$$
\begin{equation*}
d(x, y):=\int_{R^{n} \backslash(0\}} r\left(d_{G}\left(e^{i(x, \xi)}, e^{i(y, \xi)}\right)\right) r(d \xi), \tag{19}
\end{equation*}
$$

where d_{G} denotes the geodesic distance on the unit circle $S^{1}=\{z \in C:|z|=1\}$ and γ is a symmetric positive measure on $R^{n} \backslash\{0\}$ such that

$$
\int_{R^{n} \backslash\{0\}} \min (r(|\xi|), 1) r(d \xi)<\infty
$$

Then the distance d on R^{n} is L^{1}-embeddable.

§ 3. Null spaces of dual Radon transforms

In this section we are concerned with every rotation-invariant distance d on R^{n} of the form (10). The corresponding measure space is then taken to be the set H of half-spaces $h_{t, \omega}$ equipped with the rotation-invariant measure

$$
\begin{equation*}
\nu\left(d h_{t, \omega}\right)=\left\{c+\int_{0}^{\infty} u e^{t u} \mu(d u)\right\} d t \sigma(d \omega) . \tag{20}
\end{equation*}
$$

Our aim is to determine the null space $N_{1}\left(V_{\rho}\right)$ of the dual Radon transform R^{*} on this $L^{2}(H, \nu)$ (see (5)). In view of the relation (6) for a Lévy's Brownian motion X with parameter space (R^{n}, d), our result on $N_{1}\left(V_{\rho}\right)$ will show a gap between the two closed subspaces $\left[X(x) ; x \in V_{\rho}\right]$ and $\left[W\left(d h_{t, \omega}\right) ; h_{t, \omega} \in H(\rho)\right]$ in $L^{2}(\Omega, P)$, where $H(\rho):=\left\{h_{t, \omega} \in H ; 0<t \leq \rho, \omega \in S^{n-1}\right\}$ is the set of all half-spaces intersecting V_{ρ}.

3-1. We shall start with a brief discussion of the restriction $X_{\mid V_{\rho}}$ of the whole parameter space R^{n} to the closed ball V_{ρ}. Since $B_{x} \subset H(\rho)$ for every $x \in V_{\rho}$, the complement of $H(\rho)$ is of no importance. That is, a measure space combined with the distance $d_{\mid V_{\rho}}$ on V_{ρ} via (2) is given by

$$
\tilde{H}_{\rho}:=\left\{\tilde{h}_{t, \omega}:=h_{t, \omega} \cap V_{\rho} ; h_{t, \omega} \in H(\rho)\right\} \quad \text { and } d \tilde{\nu}\left(\tilde{h}_{t, \omega}\right)=d \nu\left(h_{t, \omega}\right),
$$

which is isomorphic to the original $(H(\rho), \nu)$.
The relevant dual Radon transform R_{ρ}^{*} is, therefore, considered to be a Hilbert-Schmidt operator from $L^{2}(H(\rho), \nu)$ to $L^{2}\left(V_{\rho}, d x\right)$, although both R_{ρ}^{*} and R^{*} take the same form

$$
\int_{B_{x}} g\left(h_{t, \omega}\right) \nu\left(d h_{t, \omega}\right), \quad g \in L^{2}(H(\rho), \nu) .
$$

As was shown in (I), Theorem 5, the singular value decomposition of R_{ρ}^{*} is expressed by means of $\lambda_{\rho, i}>0, f_{\rho, i}(x)$ and $g_{\rho, i}\left(h_{t, \omega}\right), i \in I_{\rho}$:

$$
\left(R_{\rho}^{*} g\right)(x)=\sum_{i \in \Lambda_{\rho}} \lambda_{\rho, i}\left(g, g_{\rho, i}\right)_{L^{2}(H(\rho), \nu)} f_{\rho, i}(x),
$$

where $\left\{f_{\rho, i} ; i \in I_{\rho}\right\}$ (resp. $\left\{g_{\rho, i} ; i \in I_{\rho}\right\}$) forms an ONS in $L^{2}\left(V_{o}, d x\right)$ (resp. $\left.L^{2}(H(\rho), \nu)\right)$.

The Gaussian system $X_{\mid V_{\rho}}$ now admits of the Karhunen-Loève expansion

$$
\begin{equation*}
X(x)=\sum_{i \in I_{\rho}} \lambda_{\rho, i} \xi_{\rho, i} f_{\rho, i}(x), \quad x \in V_{\rho} \tag{21}
\end{equation*}
$$

where the system

$$
\xi_{\rho}=\left\{\xi_{\rho, i}:=\int_{H(\rho)} g_{\rho, i}\left(h_{t, \omega}\right) W\left(d h_{t, \omega}\right) ; i \in I_{\rho}\right\}
$$

is an i.i.d. sequence of standard Gaussian random variables. Moreover we have

$$
\begin{equation*}
\left[X(x) ; x \in V_{\rho}\right]=\left[\xi_{\rho, i} ; i \in I_{\rho}\right]=\left\{\int_{H(\rho)} g\left(h_{t, \omega}\right) W\left(d h_{t, \omega}\right) ; g \in N_{\rho}^{\perp}\right\} \tag{22}
\end{equation*}
$$

with the null space N_{ρ} of R_{ρ}^{*} :

$$
N_{\rho}:=\left\{g \in L^{2}(H(\rho), \nu) ;\left(R_{\rho}^{*} g\right)(x) \equiv 0 \text { on } V_{\rho}\right\}
$$

Note that $N_{1}\left(V_{\rho}\right)=N_{\rho} \oplus L^{2}\left(H(\rho)^{c}, \nu\right)$, which implies that (22) coincides with (6) for $A=V_{\rho}$.

3-2. We are now going to determine the null space N_{ρ} of $R_{\rho}^{*}, 0<\rho$ $<\infty$.

For that purpose we need

Lemma 6. We have an expansion

$$
\begin{align*}
\chi_{B_{x}}\left(h_{t, \omega}\right) & =\sum_{m=0}^{\infty} \lambda_{m}(t| | x \mid) \sum_{k=1}^{h(m)} S_{m, k}(x /|x|) S_{m, k}(\omega) \tag{23}\\
& =\sum_{m=0}^{\infty} \lambda_{m}(t /|x|) h(m) \Phi_{m}^{q}((x, \omega) /|x|),
\end{align*}
$$

where $\Phi_{m}^{q}(t):=C_{m}^{q}(t) / C_{m}^{q}(1)$ with $q:=(n-2) / 2$, and

$$
\begin{equation*}
\lambda_{m}(t)=\frac{\left|S^{n-2}\right|}{\left|S^{n-1}\right|} \chi_{(0,1]}(t) \int_{t}^{1} \Phi_{m}^{q}(u)\left(1-u^{2}\right)^{q-1 / 2} d u . \tag{24}
\end{equation*}
$$

Furthermore we have

$$
\begin{equation*}
\lambda_{m}(t)=\frac{\left|S^{n-2}\right|}{\left|S^{n-1}\right|(n-1)} \Phi_{m-1}^{q+1}(t)\left(1-t^{2}\right)^{q+1 / 2} \tag{25}
\end{equation*}
$$

for $m \geq 1$ and $0<t<1$.
Proof. Since $\chi_{B_{x}}\left(h_{t, \omega}\right)=\chi_{h_{t, \omega}}(x)=\chi_{\langle t||x|, 1]}\left(\left(x^{\prime}, \omega\right)\right), x^{\prime}:=x /|x|$, the above \cdot assertions for the variables $\omega, x^{\prime} \in S^{n-1}$ coincide with (I), Lemma 7 stated in terms of the variables $x, y \in S^{n}$.

Now, take an arbitrary function g from $L^{2}(H(\rho), \nu)$. Such a function is written in the form

$$
g\left(h_{t, \omega}\right)=\sum_{(m, k) \in \Delta} g_{m, k}(t) S_{m, k}(\omega),
$$

where

$$
g_{m, k}(t):=\int_{S^{n-1}} g\left(h_{t, \omega}\right) S_{m, k}(\omega) \sigma(d \omega), \quad 0<t \leq \rho
$$

The density in the expression (20) of ν is simply denoted by

$$
v(t):=c+\int_{0}^{\infty} u e^{u t} \mu(d u)
$$

Then all functions $g_{m, k}(t)$ belong to $L^{2}((0, \rho], v(t) d t)$, because

$$
\sum_{(m, k) \in \Delta} \int_{0}^{\rho} g_{m, k}^{2}(t) v(t) d t=\|g\|_{L^{2}(H(\rho), \nu)}^{2}<\infty .
$$

Lemma 6 implies that

$$
\left(R_{\rho}^{*} g\right)(x)=\sum_{(m, k) \in \Delta} S_{m, k}(x /|x|) \int_{0}^{|x|} \lambda_{m}(t /|x|) g_{m, k}(t) v(t) d t
$$

We now assume that $g \in N_{\rho}$. Then we have

$$
\begin{equation*}
\int_{0}^{u} \lambda_{m}(t / u) g_{m, k}(t) v(t) d t \equiv 0, \quad 0<u \leq \rho \tag{26}
\end{equation*}
$$

for every $(m, k) \in \Delta$.
In case $m=0$, we make use of (24) to get

$$
\begin{equation*}
\int_{0}^{u}\left(1-t^{2} / u^{2}\right)^{(n-3) / 2} G_{0,1}(t) d t \equiv 0, \quad 0<u \leq \rho, \tag{26}
\end{equation*}
$$

where we have put

$$
G_{0,1}(t):=\int_{0}^{t} g_{0,1}(s) v(s) d s
$$

As is well known ([12]), p. 14), the integral equation (26) ${ }_{0}$ yields the unique solution $G_{0,1}(t) \equiv 0$, i.e., $g_{0,1}(t) \equiv 0$ on $(0, \rho]$.

The equation (26) for $m \geq 1$ takes a different form: By (25), we have

$$
\begin{align*}
& \int_{0}^{1} C_{m-1}^{q+1}(t)\left(1-t^{2}\right)^{q+1 / 2} G_{m, k}(u t) d t \tag{26}\\
& \quad=\int_{-1}^{1} C_{m-1}^{q+1}(t)\left(1-t^{2}\right)^{q+1 / 2} G_{m, k}(u t) d t / 2 \equiv 0, \quad 0<u \leq \rho
\end{align*}
$$

where

$$
G_{m, k}(t)=g_{m, k}(t) v(t) \quad \text { for } \quad 0<t \leq \rho \quad \text { and } \quad G_{m, k}(t)=(-1)^{m-1} g_{m, k}(-t) v(-t)
$$

for $-\rho \leq t<0$. The theorem in Ludwig [16] for the Gegenbauer transform (see also [20] and [21]) now concludes that $G_{m, k}(t), t>0$, is a polynomial of the form $\sum_{j=1}^{[(m-1) / 2]} a_{m, k, j} t^{m-1-2 j}$ with some coefficients $a_{m, k, j} \in R^{1}$, We have thus proved that g in N_{ρ} is necessarily of the form

$$
\sum_{(m, k, j) \in J} a_{m, k, j} p_{m, k, j}, \quad \text { where } p_{m, k, j}\left(h_{t, \omega}\right):=S_{m, k}(\omega) t^{m-1-2 j} / v(t)
$$

and $J:=\left\{(m, k, j) \in Z^{3} ; m \geq 3,1 \leq k \leq h(m)\right.$ and $\left.1 \leq j \leq[(m-1) / 2]\right\}$.
Conversely, the functions $p_{m, k, j}\left(h_{t, \omega}\right),(m, k, j) \in J$, form an orthogonal system in $L^{2}(H(\rho), \nu)$ and we can check that every $p_{m, k, j}$ belongs to the null space N_{ρ}.

What we have proved is summarized below.
Theorem 7. Let R_{ρ}^{*} be the dual Radon transform on $L^{2}(H(\rho), \nu)$, where ν is a measure of the form (20). Then we have

$$
N_{\rho}=\left[p_{m, k, j}\left(h_{t, \omega}\right) ;(m, k, j) \in J\right]
$$

In other words, a function g belongs to N_{ρ} if and only if g is expressed in the form

$$
\begin{equation*}
g\left(h_{t, \omega}\right)=\sum_{(m, k, j) \in J} a_{m, k, j} S_{m, k}(\omega) t^{m-1-2 j} / v(t) . \tag{27}
\end{equation*}
$$

Let ρ go to infinity in the above theorem. Then we obtain, as a byproduct of Theorem 7, a complete description of the full null space of R^{*} :

$$
N_{\infty}:=\left\{g \in L^{2}(H, \nu) ;\left(R^{*} g\right)(x) \equiv 0, x \in R^{n}\right\}
$$

Theorem 7^{\prime}. If the measure μ in (20^{\prime}) is equal to 0 (in other words, if $d(x, y)=c|x-y|, c>0)$, then $N_{\infty}=\{0\}$, i.e., R^{*} is injective on $L^{2}(H, \nu)$. While, if μ is positive we have $N_{\infty}=\left[p_{m, k, j}\left(h_{t, \omega}\right) ;(m, k, j) \in J\right]$.

3-3. We are now in a position to state noteworthy consequences of the preceding results. By virtue of the relation (22), our conclusion follows from Theorems 7 and 7^{\prime}.

Theorem 8. Let X be a Lévy's Brownian motion with parameter space (R^{n}, d), where d is of the form (10). Then we have, for $0<\rho<\infty$,

$$
\begin{aligned}
{\left[X(x): x \in V_{\rho}\right]=} & \left\{\int_{H(\rho)} g(h) W(d h) ; g \in L^{2}(H(\rho), \nu)\right. \text { satisfying } \\
& \int_{0}^{\rho} t^{m-1-2 j} d t \int_{S^{n-1}} S_{m, k}(\omega) g\left(h_{t, \omega}\right) \sigma(d \omega)=0 \\
& \text { for all }(m, k, j) \in J\} .
\end{aligned}
$$

For the case $\rho=\infty$, we have

$$
\begin{gathered}
{\left[X(x) ; x \in R^{n}\right]=\left\{\int_{H} g(h) W(d h) ; g \in L^{2}(H, \nu)\right\}} \\
\text { if } d(x, y)=c|x-y|, \quad c>0
\end{gathered}
$$

and

$$
\begin{aligned}
{\left[X(x) ; x \in R^{n}\right]=} & \left\{\int_{H} g(h) W(d h) ; g \in L^{2}(H, \nu)\right. \text { satisfying } \\
& \int_{0}^{\infty} t^{m-1-2 j} d t \int_{S^{n-1}} S_{m, k}(\omega) g\left(h_{t, \omega}\right) \sigma(d \omega)=0 \\
& \text { for all }(m, k, j) \in J\},
\end{aligned}
$$

if d is given by (10) with positive μ.
3-4. With a suitable choice of $\alpha(x)>0$ satisfying $\int_{R^{n}} \nu\left(B_{x}\right) \alpha(x) d x<\infty$, the Hilbert-Schmidt operator $R \circ T_{\alpha}$ from $L^{2}\left(R^{n}, \alpha(x) d x\right)$ to $L^{2}(H, \nu)$ was discussed in connection with a factorization of the covariance operator of $X((\mathrm{I})$, Theorem 3). As a counterpart of the exterior Radon transform (cf. [21] and [22]), it would be interesting to study the exterior halfspace transform

$$
\begin{equation*}
\left(R \circ T_{\alpha} f\right)\left(h_{t, \omega}\right):=\int_{h_{t, \omega}} f(x) \alpha(x) d x, \quad f \in L^{2}\left(V_{\rho}^{c}, \alpha(x) d x\right) \tag{28}
\end{equation*}
$$

where the resultant function $R \circ T_{\alpha} f$ is considered to be in $L^{2}\left(H(\rho)^{c}, \nu\right)$.
Under the assumption that α is a radial function, $\alpha(x)=\alpha(|x|)$ on V_{ρ}^{c}, we can determine the null space of $R \circ T_{\alpha}$:

$$
N_{\rho}(\alpha):=\left\{f \in L^{2}\left(V_{\rho}^{c}, \alpha(|x|) d x\right) ;\left(R \circ T_{\alpha} f\right)\left(h_{t, \omega}\right) \equiv 0 \text { on } H(\rho)^{c}\right\} .
$$

First observe that, for a given $f \in L^{2}\left(V_{\rho}^{c}, \alpha(|x|) d x\right)$,

$$
\begin{equation*}
\left(R \circ T_{\alpha} f\right)\left(h_{t, \omega}\right)=\left(R_{\alpha}^{*} \tilde{f}\right)(\omega / t), \quad t>\rho \quad \text { and } \quad \omega \in S^{n-1} \tag{29}
\end{equation*}
$$

where $\tilde{f}\left(h_{t, \omega}\right):=f(\omega / t) \in L^{2}\left(H\left(\rho^{-1}\right), \nu_{\alpha}\right), \nu_{\alpha}$ being a measure on $H\left(\rho^{-1}\right)$ defined by

$$
\nu_{\alpha}\left(d h_{t, \omega}\right):=\left|S^{n-1}\right| t^{-n-1} \alpha(1 / t) d t \sigma(d \omega),
$$

and R_{α}^{*} is the dual Radon transform defined on $L^{2}\left(H\left(\rho^{-1}\right), \nu_{\alpha}\right)$. On the lines of Theorem 7, we can prove the following

Proposition 9. For $0<\rho<\infty$, we have

$$
N_{\rho}(\alpha)=\left[f_{m, k, j}(x) ;(m, k, j) \in J(\alpha)\right]
$$

where

$$
f_{m, k, j}(x):=S_{m, k}(x /|x|)|x|^{-m-n+2 j} / \alpha(|x|), \quad|x| \geq \rho
$$

and

$$
J(\alpha):=\left\{(m, k, j) \in J ; \int_{\rho}^{\infty} t^{-2 m-n+4 j-1}(\alpha(t))^{-1} d t<\infty\right\} .
$$

§4. The McKean processes

As in Section 3, we shall assume that $X=\left\{X(x) ; x \in R^{n}\right\}$ is a Lévy's Brownian motion with parameter space (R^{n}, d), where d is a rotationinvariant distance of the form (10). Since the representations (8) of the McKean processes $M_{m, k}(t),(m, k) \in \Delta$, follow from the original representation (1) of X, we can answer, as a byproduct of Theorem 8 , the basic question concerning the canonical property of (8).

We being by applying Lemma 6 to the representation (1) of X; we get

$$
\begin{align*}
X(x) & =\sum_{(m, k) \in \Delta} S_{m, k}(x \| x \mid) \int_{H(|x|)} \lambda_{m}(t /|x|) S_{m, k}(\omega) W\left(d h_{t, \omega}\right) \tag{30}\\
& =\sum_{(m, k) \in \Delta} S_{m, k}(x \| x \mid) \int_{0}^{|x|} \lambda_{m}(t /|x|) d B_{m, k}(t),
\end{align*}
$$

where the Gaussian processes $B_{m, k}(t),(m, k) \in \Delta$, are defined by

$$
\begin{equation*}
B_{m, k}(t):=\int_{H(t)} S_{m, k}(\omega) W\left(d h_{u, \omega}\right), \quad t>0 . \tag{31}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
E\left[B_{m, k}(t) B_{m^{\prime}, k^{\prime}}\left(t^{\prime}\right)\right] & =\int_{H(t) \cap H\left(t^{\prime}\right)} S_{m, k}(\omega) S_{m^{\prime}, k^{\prime}}(\omega) \nu\left(d h_{u, \omega}\right) \\
& =\delta_{(m, k),\left(m^{\prime}, k^{\prime}\right)} \int_{0}^{\min \left(t, t^{\prime}\right)} v(u) d u,
\end{aligned}
$$

where $v(u)$ was given by (20^{\prime}). This shows that the processes $B_{m, k}(t)$ are mutually independent Gaussian additive processes with common spectral density $v(t)=E\left[\left(B_{m, k}(d t)\right)^{2}\right] / d t$.

In view of the expression (30) of X, we are naturally led to the following

Definition 2 (cf. [17]). The Gaussian process

$$
\begin{equation*}
M_{m, k}(t):=\int_{S^{n-1}} X(t \omega) S_{m, k}(\omega) \sigma(d \omega), \quad t>0 \tag{7}
\end{equation*}
$$

is called the McKean process with index $(m, k),(m, k) \in \Delta$. In the case $m=0, M_{0,1}(t)$ has a more familiar name, the $M(t)$-process (cf. [15]).

With this definition, the expression (30) is rewritten as follows:

$$
X(x)=\sum_{(m, k) \in \Delta} S_{m, k}(x \| x \mid) M_{m, k}(|x|),
$$

and

$$
\begin{equation*}
M_{m, k}(t)=\int_{0}^{t} \lambda_{m}(u / t) d B_{m, k}(u) \tag{8}
\end{equation*}
$$

where the kernel $\lambda_{m}(t)$ was computed in Lemma 6.
Now, Theorem 8 is rephrased in terms of these Gaussian processes $M_{m, k}(t)$ and $B_{m, k}(t),(m, k) \in \Delta$.

Theorem 10. (i) In the case $m \leq 2$, the representation (8) of $M_{m, k}(t)$ is canonical, i.e.,

$$
\left[M_{m, k}(t) ; t \leq \rho\right]=\left[B_{m, k}(t) ; t \leq \rho\right] \quad \text { for every } \rho>0
$$

(ii) In the case $m \geq 3$, the representation (8) of $M_{m, k}(t)$ is not canonical. Furthermore we have

$$
\begin{aligned}
& {\left[B_{m, k}(t) ; t \leq \rho\right] \ominus\left[M_{m, k}(t) ; t \leq \rho\right]} \\
& \quad=\left[\int_{0}^{\rho} t^{m-1-2 j}(v(t))^{-1} d B_{m, k}(t) ; 1 \leq j \leq[(m-1) / 2]\right]
\end{aligned}
$$

for every $0<\rho<\infty$, and

$$
\begin{aligned}
& {\left[B_{m, k}(t) ; t>0\right] \ominus\left[M_{m, k}(t) ; t>0\right]} \\
& \quad=\left\{\begin{array}{l}
\{0\} \quad \text { if } d(x, y)=c|x-y|, \quad c>0 \\
{\left[\int_{0}^{\infty} t^{m-1-2 j}(v(t))^{-1} d B_{m, k}(t) ; 1 \leq j \leq[(m-1) / 2]\right]}
\end{array}\right.
\end{aligned}
$$

otherwise.
Concluding remarks. (i) Our discussions in Sections 3 and 4 can be extended to the case with other parameter spaces such as $M=S^{n}$ (n-sphere) or H^{n} (n-dimensional real hyperbolic space). In particular, consider a familiar Lévy's Brownian motion X with parameter space $\left(M, d_{G}\right), d_{G}$ being the usual geodesic distance on $M=S^{n}$ or H^{n} (cf. [18] and [23]). Such an X admits of a nice representation ([23]) analogous to (1) for a Brownian motion with n-dimensional parameter. By making use of this known representation of X, we can show that Theorems 8 and 10 have respective counterparts in these two cases of $\left(S^{n}, d_{G}\right)$ and $\left(H^{n}, d_{G}\right)$. The details are omitted.
(ii) In their study of conformal invariance of white noise, Hida, Lee and Lee [13] introduced a generalized Gaussian random field $Y=\{Y(x)$; $\left.x \in R^{n}, 0<|x|<1\right\}$ defined by

$$
\begin{equation*}
Y(x)=\int_{B_{x}} F\left(x, h_{t, \omega}\right) W\left(d h_{t, \omega}\right), \tag{32}
\end{equation*}
$$

where the kernel F is given by

$$
\begin{equation*}
F\left(x, h_{t, \omega}\right)=a(x) t^{-n+1} /\{(x, \omega)-t|x|\}, \tag{33}
\end{equation*}
$$

and $W=\left\{W\left(d h_{t, \omega}\right) ; h_{t, \omega} \in H(1)\right\}$ is a Gaussian random measure (white noise) with variance $\nu\left(d h_{t, \omega}\right):=t^{n-1} d t \sigma(d \omega), \nu$ being a measure on the set $H(1)$ of half-spaces $h_{t, \omega}, 0<t<1$ and $\omega \in S^{n-1}$.

This representation (32) of Y might be thought of as a multi-dimensional version of canonical representations of Gaussian processes, and takes a more general form than the representation (1) of Chentsov type (which corresponds to the choice of $F\left(x, h_{t, \omega}\right) \equiv 1$). This generality would cause us many difficulties in investigating the integral transformation R_{F}^{*} associated with (32):

$$
\begin{equation*}
\left(R_{F}^{*} g\right)(x):=\int_{B_{x}} F\left(x, h_{t, \omega}\right) g\left(h_{t, \omega}\right) \nu\left(d h_{t, \omega}\right), \tag{34}
\end{equation*}
$$

g being in a suitable class of functions on $H(1)$. But in the persent situation where the kernel F is specified by (33) with the additional condition that $a(x)>0$, we can prove analogous results on the null spaces $N_{\rho}(F)$ of $R_{F}^{*}, 0<\rho<1$:

$$
N_{\rho}(F):=\left\{g\left(h_{t, \omega}\right) ; \text { supp } g \subset H(\rho) \quad \text { and }\left(R_{F}^{*} g\right)(x) \equiv 0,0<|x| \leq \rho\right\}
$$

Indeed, similar arguments to Section 3-2 lead us to the following conclusion:

$$
N_{\rho}(F)=\left[g_{m, k, j}\left(h_{t, \omega}\right) ; m \geq 2,1 \leq k \leq h(m) \text { and } 1 \leq j \leq[m / 2]\right],
$$

where we put

$$
g_{m, k, j}\left(h_{t, \omega}\right):=t^{m-2 \jmath} \chi_{(0, \rho]}(t) S_{m, k}(\omega) .
$$

References

[1] R. V. Ambartzumian, Combinatorial integral geometry, with applications to mathematical stereology, John Wiley \& Sons, Chichester, 1982.
[2] P. Assouad, Produit tensoriel, distances extrémales et realisation de covariance, I et II, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 649-652 et 675-677.
[3] P. Assouad et M. Deza, Espaces métriques plongeables dans un hypercube: Aspects combinatories, Ann. Discrete Math., 8 (1980), 197-210.
[4] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, 1984.
[5] E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc., 145 (1969), 323345.
[6] J. Bretagnolle, D. Dacunha-Castelle et J. L. Krivine, Lois stables et espaces L^{p} Ann. Inst. H. Poincarè Sect. B, 2 (1966), 231-259.
[7] N. N. Chentsov, Lévy Brownian motion for several parameters and generalized white noise, Theory Probab. Appl., 2 (1957), 265-266 (English translation).
[8] G. Choquet, Lectures on analysis, Vol. III, W. A. Benjamin, New York, 1969.
[9] S. R. Deans, The Radon transform and some of its applications, John Wiley \& Sons, New York, 1983.
[10] L. E. Dor, Potentials and isometric embeddings in L_{1}, Israel J. Math., 24 (1976), 260-268.
[11] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions (Bateman manuscript project), Vol. II, McGraw-Hill, New York, 1953.
[12] S. Helgason, The Radon transform, Birkhäuser, Boston, 1980.
[13] T. Hida, Kei-Seung Lee and Sheu-San Lee, Conformal invariance of white noise, Nagoya Math. J., 98 (1985), 87-98.
[14] P. Lévy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1954.
[15] ——, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1965.
[16] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math., 19 (1966), 49-81.
[17] H. P. McKean, Brownian motion with a several-dimensional time, Theory Probab. Appl., 8 (1963), 335-354.
[18] A. Noda, Lévy's Brownian motion; Total positivity structure of $M(t)$-process and deterministic character, Nagoya Math. J., 94 (1984), 137-164.
[19] -, Generalized Radon transform and Lévy's Brownian motion, I, Nagoya Math. J., 105 (1987), 71-87.
[20] E. T. Quinto, Null spaces and ranges for the classical and spherical Radon transforms, J. Math. Anal. Appl., 90 (1982), 408-420.
[21] - Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform, J. Math. Anal. Appl., 95 (1983), 437-448.
[22] R. S. Strichartz, Radon inversion-variations on a theme, Amer. Math. Monthly, 89 (1982), 377-384 and 420-423.
[23] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric spaces of constant curvature, Nagoya Math. J., 82 (1981), 131-140.
[24] S. Takenaka, Representation of Euclidean random field, Nagoya Math. J., 105 (1987), 19-31.
[25] A. M. Yaglom, Some classes of random fields in n-dimensional space related to stationary random processes, Theory Probab. Appl., 2 (1957), 273-320.
[26] L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly, 87 (1980), 161-175.

Department of Mathematics

Aichi University of Education
Kariya 448
Japan

[^0]: *) Received September 12, 1985.
 *) Contribution to the research project Reconstruction, Ko 506/8-1, of the German Research Council (DFG), directed by Professor D. Kölzow, Erlangen.

