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THE THETA FUNCTIONS OF SUBLATTICES

OF THE LEECH LATTICE
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To the memory of late Takehiko Miyata

Introduction

Let A be the Leech lattice which is an even unirαodular lattice with

no vectors of squared length 2 in 24-dimensional Euclidean space R9\

Then the Mathieu Group M2i is a subgroup of the automorphism group

• 0 of A and the action on A of M2i induces a natural permutation repre-

sentation of Mu on an orthogonal basis {et | 1 ^ ί <L 24} of R2\ For m e M24,

let Am be the sublattice of vectors invariant under m:

Am = {x e AI xm == x}

and Θm(z) be the theta function of Am:

where £(x) = £(x, x) and £(x, y) (x, y e Ru) is the inner product of Ru with

£(ei9 βj) - 2dtj.

One of the purposes of this note is to express Θm(z) explicitly by the

classical Jacobi theta functions θt{z) (ί = 2, 3, 4) and the Dedekind eta-

function. The results are given in Table 2 of Section 2. Furthermore,

by using these expressions of Θm(z), we will prove the following theorem:

THEOREM 2.1. Let Θm(z) (meM2i) be as above and let

yn(z) = Π V(tz)><
t

where η{z) is the Dedekίnd eta-function

η{z) = q^ Π (1 - Q2n) (Q - erΛz)
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and m has a cycle decomosίtίon Π trt = l r i 2 r 2 Then the functions

Θm(z)lηm(z) are modular functions which appear in a moonshine of Fischer-

Grίess's Monster [3].

For the statement of this theorem, we refer the readers to [3; p. 315]

and Remarks 2.1-2.2 in Section 2 of this paper. In Section 1, we explain how

to describe Θm(z) in terms of Jacobi theta functions, where a presentation

(1.1) of the Leech lattice (cf. Tasaka [9]) and Table 1 which can be obtained

from Todd [11] will be very important. In Section 2 we will prove the

results in Table 2 and Theorem 2.1. We note that, in the proof of Theorem

2.1, Table 3 of [3] and a result of Koike [4] are useful. But the main

works of Section 2 are the calculations of Jacobi theta functions in which

several formulas between them are applied effectively. Some of these

formulas can be found in [6] and [7], but we will also use those which

may be new, for example

θ1(z)θ2{Ίz) + Θ3(z)θd(7z) + Θ

= 2{θ2(2z)θ2(Uz) + θz(2z)θz(Uz)} ,

4v(z)V(llz) = 0,(*)0s(Π*) ~ 02(z)θ2(llz) - Θ4(z)θ,(llz)

(cf. (T15) and (T24) of Appendix respectively).

Such formulas are collected and proved in Appendix. In the proofs, Lemma

A. 1-2 will be fundamental.

§1. Leech lattice and its sublattices

The Leech lattice A in the Euclidean space R2i can be described as

disjoint sum in the following way;

(1.1) A = U {(iez + LQ) U (ieQ + \ex + L,)} .

Some explanations will be needed.

A) The set Ω = {1, 2, , 24} is a 24-point set and ^ c Pψ) is the

(binary) Golay code on Ω. For codes and Golay code, see [2] or [6].

B) The system of vectors {e*; ieΩ} is the orthogonal 2-frame of R2\

that is, denoting by £(x) the squared length of a vector x e R2\ and by

£(x, y) the corresponding inner product of vectors x and y,

(1.2) £(ei9 βj) = 2δiS .

C) We put L = ΣteflZβi, and for δ = 0 or 1, we define
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(1.3) L, = {x=Σ xa eL Σ*i = $ (mod 2)} .

Note that, after scaling by llVΊί, Lo is isomorphic to the (even) lattice

of type Du.

D) For a subset X of Ω, we put

(1.4) ex = Σei -
ίex

E) The characterization of Leech lattice (cf. [1]) shows that the

lattice A defined by (1.1) is (isomorphic to) the Leech lattice. (See [9] p. 708).

Also the formula

(1.5) f>(r£χ + Σ χiei) — 2 Σ χ2 + 2 Σ x-(%i + 1) + τ-\X\

is useful, where \X\ denotes the cardinality of the set X.

The Mathieu group M2i is the subgroup of the symmetric group S2i =

S(Ω) which leaves invariant the Golay code &. The element m of M2i

operates on the lattice A in natural way, that is, (β^)w = eim for ί e Ω.

Thus

(1.6) Gkr + Σ Xtet)m = \eΣm + Σ xtein ,

(1.7) {\eΩ + \ex + Σ x^)m - \e0 + \eXm + Σ xttm .

In this way, the group Mu is a subgroup of the group 0 of Conway which

is the automorphism group of the Leech lattice A. In view of [10] and

[3; p. 315], it is important to study the invariant sublattice Am and its

theta function Θm(z) for all element m of 0. Here we restrict ourselves to

the element m of the Mathieu group Mu. That is, for twenty-one "rational"

conjugate classes of M24, the theta functions Θm(z) of invariant sublattices

Λm will be expressed as homogeneous polynomials of Jacobi's theta func-

tions.

For an element m of M24, considered as an element of S24, let

(1.8) m =

be its cycle decomposition, where Uj are subsets of Ω, giving a disjoint

sum decomposition of Ω, and (U3) are certain cyclic permutations on U3.

That is, if we write Uj = {il9 ΐ2, , h} in appropriate order, then (U3) =

(iii2 h)' The class of m can be written as

m = \UA\U9\...\UA,
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where | Uό\ means the cardinality of U5. Thus m = 1828 means that m is a

product of eight mutually commutative transpositions, fixing the remaining

eight points. Also m = 38 means that m i s a product of eight mutually

disjoint cycles of length three, fixing no points, and so on.

From (1.6) and (1.7), it follows that x = \ex + Σ X& (or y = \eΩ +

\ex + Σ y^d is invariant under m if and only if, first the code word X

(the subset X contained in the Golay code ^) is invariant under m, secondly

x. = χ. (or ;y< = yd) if i, j e Uk9 and finally Σ xt = 0 (mod2) (or Σy< = l

(mod 2)). In this case, we have

i k

for example, where i(k) is a representative in each Uk. On the other

hand, it is clear that a code word X is invariant under m if and only if

the disjoint sum decomposition Ω = U Uk is a refinement of the decom-

position β = X U ( f l - X). We devide the subsets Uk into four categories

with respect to the code word X. That is, if Uk d X and |J7fc| is even,

then C7ft is called first category (type I). If Uk c X and |[7fc| is odd, then

Uk is called second category (type II). If Uk<z(Ω — X) and 117*1 is even,

then Uk is called third category (type III). Finally if Ukcz{Ω — X) and

|E7fc| is odd, then Uk is called fourth category (type IV).

Under these notations, the τrc-invariant vector x (or y) can be written

as

x = iex + 2 Xfcβ̂  (or y = ^ + Jβ x + 2 y ^ ) ,

where the condition J^xt = 0 (mod 2) (or 2 ^ Ξ 1 (mod 2)) is rewritten as

Σ ( Π ) ** + Σ ( I V ) x* = 0 (mod 2) (or Σ ( I I ) ̂ , + Σ ( I V ) Λ = 1 (mod 2)) .

Thus, denoting by &m the m-invariant subgroup (subcode) of the Golay

code ^, we have

(1.9) Λm = U { ( K + (L0)m) U QeΛ + Je x

(disjoint sum decomposition), where

(1.10) (L0)m = {Σ xkeUk; Σ ( Π ) x* + Σ ( I V ) x* = 0 (mod 2)} ,

(ΐ.ii) (L,)m = { Σ y ^ ; Σ ( I I ) ^ + Σ ( I V )y f c - ι (mod2)}.

Note that if the type II and the type IV are void then the set (Lj)m is an

empty set. Thus if m does not contain cycles of odd length, then
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(1.9)' Λm = U

where, in this case

For a (discrete) point set X in Euclidean space RN, we define its theta
function Θ(X, z) = Θx(z) (with respect to the origin 0) as

Θ(X, z) = Σ e*UHx) = Σ QHX) ,
xex

where z is a complex number such that Im(^) > 0 and q = e**2, so that
\q\ < 1. Note that we are interested in the cases where the right hand
side is convergent. It is easy to see that

(1.12) Θ(XUY,z) = Θ(X, z) + <9(F, z) ,

for "disjoint sum" X{J Y. And also

(1.13) Θ(X χY,z) = Θ(X, z)Θ(Y, z) ,

if X and Y are contained in mutually orthogonal (linear) subspaces.
Jacobi's theta functions (theta zeros) are defined in the following way:

(1.14) θ3(z) = Σeπίzn2 = Σqn\
nez

(1.15) ^ ) = E ( - l ) K 9 n 2 .
n

(1.16) Θ2(z) = Σ t f ( n + 1/2)a ,
n

where Im (z) > 0 and q = eπίz. Here we define two more functions pQ(z)

and p^z) as

(1.18) ί,1(2) = Σ ( - D V ' ! + I / 4 > i .
n

It is clear that Θ3(z), Θ2(z) and po(z) are the theta functions of Z, Z + j =
{n + j ; n eZ), and Z + \, respectively. It is easy to see that Z — \ has
£0(2) as its theta function, from its symmetry. Using these functions and
θA(z) and pλ(z), we can express the theta functions of point sets of various
type.

Assume that m contains cycles of odd length. Then from (1.11), it
follows that, for Y = \eΩ + \ex +
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Y = £ « (Z - \)eUt + Σ ( I Π ) (Z + \)eUk

Σ ( I V )

Thus we have

(1.19) Θ(Y,z) =

X I X {UmwY)Po(2\Uk\z) - Π(Π)U(Π>i(2|C/ fcμ)} ,

for y = \eΩ + \ex + (L^)m. See the remarks below for the details. The

right hand side of this formula is independent of the code word X. So

the contribution of these sets to the theta function of Λm is \&m\ times

of (1.19).

For the set X= \ex + (L0)my its theta function Θ(X, z) can be described

in the similar way. That is,

(1.20) Θ(X, z)=Y[ v Θ2(21 Uk 1 z) χ Π < Π I ) θ,(2 \ Uk \z)

χ | χ

if the type II is not void, and

(1.21) Θ(X, *) = Π(I) UZ\Uk\z)χγ\wβtf \Uk\z)

X i X {Π(IV) «,(2| Uk\z) + Π ( I V ) ^4(2 I Uk\z)} ,

if the type II is void. Note that if the type II and IV are void (that is,

m does not contain cycles of odd length), then

(1.22) Θ(X, z) = Π ( I ) Θ2{2\Uk\z)χ\\™ θz{2\Uk\z).

If the type I or III 'is void, the corresponding terms are to be replaced

by 1.

Summing up all these contributions, we get the theta function Θ(Λm, z)

= θjz). That is,

(Ξ) The theta function Θm(z) is expressed as the sum of terms given

by (1.19) and (1.20) (or (1.21) or (1.22)) for all code words Xe &m.

Remark 1. The exact structure of invariant subcode ^ m for each m

is discussed in the subsequent paragraphs,

Remark 2. It is clear that βz(z)n is the theta function of Zn with

respect to the standard metric. The function θ^z)71 is the "theta function"

of Zn with weight ( — l)Σxi at each point x = (xί9 χ2, ., xn) e Z \ Thus

W&Y + θt(z)n) is the "normal" theta function of (Zn\, and i(θz(z)n -

θlz)n) i s t h e o n e of (Z% w h e r e (Z% = {x = (xl9 -..,xn)eZn; Σ *< = S
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(mod 2)}, for δ = 0 or 1. Note that {Zn\ is the even lattice of type Dn.

Concerning to our 2-frame {et}, as £(e{) = 2, the theta function of

is θz(2zf\ for example.

Remark 3. The theta function of ( 2 (Z + j)eUk)0 is derived in the

similar way. But, in this case, as

this theta function is equal to iY\θ2(2\Uk\z). The same reasoning is used

for the formula (1.19).

Remark 4. Similarly, for a natural number p, we define

(1.23) Θ^(z) = Θ3(z)θ3(pz) + Θ2(z)θ2(pz) .

This is the theta function of (Ze + Zf) U {\{e + f) + Ze + Zf}, where £{e)

= 1, £(f) — p and £(e, f) = 0. If p is a prime number such that p ΞΞ 3

(mod 4), then this set is the integer ring of the imaginary quadratic field

Q(V— p), considered as a lattice in C = R X R in natural way. The cases

p — 3y 7? 11 and 23 will appear in the next section.

We call 8-point subset X of Ω an octad if X belongs to the Golay

code ^. Also 12-point subset belonging to ^ is called a dodecad. Next

16-point subset belonging to ^ will be called co-octad. A co-octad is

actually the complementary subset of an octad. The Golay code ^ con-

sists of one 0 — 0 (the empty subset), 759 octads and co-octads, 2576

dodecads and one Ω (the full subset). This will be written as

(1.24) ^ = 1(0) + 759(octad) + 257β(dodecad) + 579(co-octad) + 1(Ω)

= 1 + 759 + 2576 + 759 + 1.

For each class m, the invariant subcode ^ m is described in the similar

way, specifying its code words (octads, dodecads or co-octads) by its cycle

types. For example, if m = 1828, then

14(24) + 56(1422)} + 112{(1424)}

{(28) + 14(1824) + 56(1426)}

This means that the set of octads in <&m consists of one I8 (the fixed point

set of m), fourteen 24 and fifty-six 1422, for example. Also if m = 1636, then

{6(153) + 15(1232)} + 2O{(1333)} + {6(1^) + 15(1434)}
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These can be obtained from the table of Todd's paper [11]. In the Table

1, the description of ^m for each class m is given in this fashion. It is

notable that YSm\ = 2sβ, where s is the even integer determined in (1.8).

Using this table and (Ξ), we can describe the theta function Θm{z) com-

pletely. (This will be done in the next section).

Table 1

I2* 1 + 759 + 2576 + 759 + 1

1828 1 + {I8 + 14(2*) + 56(1*20} + 112{Γ24} + {28 + 14(Γ2*) + 56(1*20} + 1

Γ 3 δ 1 + {6(Γ3) + 15(Γ30} + 2O{1333} + {6(1.30 + 15(Γ34)} + 1

1*2244 1 + {1*22 + 2(40 + 8(122 4)} + {4(Γ42) + 4(2242)}

+ {4* + 2(1*2242) + 8(Γ2 40} + 1

1*5* 1 + 4(Γ5) + 6(1252) + 4(1.50 + 1

12223262 1 + ^232 + 2(1.2 2 3) + 2(2.6)} + 4(1 2 • 3 6)

+ {2262 + 2( l 3-62) + 2(122 326)} + 1

1373 1 + 3(1.7) + 0 + 3(Γ72) + 1

122 4 82 1 + (Γ2 4) + {2(4-8) + 2(Γ2 8)} + (80 + 1

I'll2 1 + 0 + 2(1-11)+ 0 + 1

1-2-7-14 1 + (1-7)+ 0 +(2-14) + 1

1-3-5-15 l + (3 5 ) + 0 + (l 15) + 1

1-23 1 + 0 + 0 + 0 + 1

2 1 2 1 + 15(2*) + 32(20 + 15(20 + 1

3 8 1 + 0 + 14(3*) + 0 + 1

2*4* 1 + {2* + 6(42)} + 0 + {4* + 6(2*42)} + 1

46 1 + 3(42) + 0 + 3(4*) + 1

64 1 + 0 + 2(62) + 0 + 1

22102 1 + 0 + 2(2-10) + 0 + 1

2-4-6-12 1 + (2-6)+ 0 + (4-12) + 1

12 2 1 + 0 + 0 + 0 + 1

3-21 1 + 0 + 0 + 0 + 1

EXAMPLE 1.1. For m = 212, we use (1.22) and

&n = 1 + 15(2*) + 32(20 + 15(20 + l

So we have

Θm(z) = θlAzY + 15 X Θ3(4zγθ2(4zy + 32 χ Θ3(4z)%(4zγ

+ 15 χ Θl4z)%(4zf + θ,(4z)n

- Θ2(4z)j} + 32θ3(4z)%(4zy .
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From (T4-6) of appendix, we have Θ3(4z)2 + Θ2(4z)2 = θz(2z)2 and Θ3(4z)2 -

Θ2(4zγ = θt(2z)2 and 2θ2(4z)θ3(4z) = Θ2(2z)\ So we have

(1.25) θΛ(z) = i{(?,(22)w + Θ2(2zr + ΘX2ZY2} .

EXAMPLE 1.2. For the class m = 1828, the contributions of types

\ea + \ex + (L,)m is \9n\ = 28 times of

P = Pa{4zγ X

by the formula (1.19). Using (T3) and (T8-9) and also (Til), we have

(1.26) 256P = 128 χ 2-1%(z)12(θ3(z)4 - θt(z)4) = 2-%(z)'<ί ,

For the calculus of remaining terms, we put

E4(z) = mW + UzY + θt(zf} .

From code word {0} + {Ω} and {I8} + {28}, we have

Q, = Θ3(4zγ χ mVzf + θtfzY) + Θ2(4zf χ |^(2^)8

+ ;R(4zM22)8 + IΘ14Z)\Θ12ZY + θi(2zY)

= Et(2zW£4zy + Θ2{4zf) .

From 14{24} + 14{1824}, we have

<?2 = ΊΘ2(4z)%(4z)\θ,(2zf + θt(2zY) + 7θ2(4z)%(4z)%(2zY

= 14Ei(2z)θ2(4zYθ3(4zY .

From 56{1422} + 56{Γ26} and 112{1424}, we have

Q3 = 2W2{2z)%{4zYΘ3{2zYθz{4zY + 28θ2(2zγβ2(4zγθ3(2zYθ3(4zY

+ 56θ2(2zYθ2(4zγθ3(2zYθ3(4zY

= 28θ2(2zYθ2(4zYΘ3(2zYθs(4zY(θ2(4z)2 + Θ3{4zf)2

= 7θ2(2zYΘ3(2zY = ihθ2{zY* f

using (T4) and (T5). Summing up all terms, we have

ΘJz) = Etfzψ^zY + 14^(4^)4^(42)4 + Θ2(4ZY}

As one can see easily from (T4-7) that

^3(42)8 + 1403(42y02(42>4 + ^2(42)8 = \{Θ3{2ZY + Θ2(

so we have

(1.27) θm(z) = EtfzY + - ^ -
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§2. Conway-Norton's conjecture

In this section, we will prove the following theorem:

THEOREM 2.1. For meM2i, let Θm(z) be the theta function of the in-

variant sublattίce Λm as in Section 1 and let

VnXz) - Π Vitz)rt

t

where η{z) = qι/ι2 Π«=iQ- — q2n) (q = eπiz) and m has a cycle decomposition

\[tt
Tt = lri2?"2 • ••. Then the functions Θm{z)jηm{z) are modular functions

which appear in a moonshine of Fίscher-Grίess's Monster constructed in [3].

Remark 2.1. In [3], the statement of this theorem was conjectured

for any elements of O ( = t h e automorphism group of Leech lattice) [3; p.

315]. But Koike has checked that, for some elements of O, similar state-

ments are not necessarily true.

Remark 2.2. In [4], Koike proved that, for all m e M24, there exist

modular forms θm(z) such that θm(z)/ηm(z) are modular functions which

appear in a moonshine of Fischer-Griess's Monster. These modular forms

θm{z) exactly coincide with our theta-functions Θm(z) (cf. [4; Table I and

Table II]).

The proof of this theorem will be done by showing that Θm(z) can be

expressed as in the following Table 2 and then using Table 3 of [3] or a

result of Koike [4] (see Theorem 2.2 below). But for an element m of

M24 with a cycle decomposition 1454, this method does not work well and

so we will check the case m = 1454 by comparing the Fourier coefficients

of our θjz) and Koike's θm(z) in [4].

Now we will give a table of expressions of Θm(z) by Jacobi theta

functions. Also, in this table, discrete subgroups Γm for function fields

C(Θm(z)lηm{z)) and the corresponding conjugacy classes in Fischer-Griss's

Monster are given by using the notations in [3]. Also we use the follow-

ing notations:

(2.1) Eiz) = \{θlzf + θlzf + θlzf)

= the theta function of the ^-lattice (cf. [6; p. 134])

(2.2) θ[(z) = θlz)θz{z)ΘSz) = 2v(zγ (cf. (A22))

(2.3) θ<*>(*) = Θ2(z)θ2(pz) + θlz)θz(pz)



m

1828 El2zf + ^QΘ,

= {κuzy 4
Γ3 6 0 ( 3 )(2z) 6 - K#<
142244 #3(22)10 - f 02(2,

1454 K^202 + ^303 4
+ 2φlφi) φt

-120202/22 /WSWsΛ/QWΛίίΛ

Λ^Π^ f)^H2z)3 ^-θ^(

Γ I Γ 0(11)(2z)2 - i(ft

1.2 7 14 Θ(7)(2^)©(7)(4^)

1 o 0 10 C \ΔZ)Ό ylλJZ^

ψ(z) = β 2 (^ 8 (ί

1-23 Θ(23)(2,ε) — 2^j

212 K^(2^)1 2 + 03(:

3 8 ^ 4 (3^)

2444 (έ(^3(2^)4 + 04(
4 6 ^ 3 (4,ε) 6

64 θz(6zY

22102 {\{θz{z)θz{bz) 4

2 4-6-12 θ(3)(42)Θ3(&ε)

122 ^3(12^)2

3-21 θ(7)(6^)

LEECH LATTICE

Table 2

>(z)16

- ΦY)Y - i{θlz)θi2z)f
{z)θ[(Zz))2

z)%(2z)X(4zY

- φlφd + 3φ2φ2φ,φd(2φlφl + <p2φ2<p,φ3

5 = θi(2z), φi = ^(10^)

)2 - |(^2(^)^(3^)^(2^)^(6^))2

z)θ[(7z)

%Θ2(2Z)2Θ2(AZ)ΘS2Z)ΘIAZ)2

2β2 _ 0ZQZ + ejjtf θt = fli(ii^)

) - ξψ(2z)f(6z)
5z) - θs(z)θ2(5z)

2zγ + θA(2z)12) = ^3(2^)1 2 - p{(2zY

- Θ4(z)θ4(5z)))2

•L m

1+ (1A)

14+ (14A)

3+ (3A)
4+ (4A)

5+ (5A)
6+ (6A)
7+ (7A)
8+ (8A)
11+ (11A)

14+ (14A)

15+ (15A)

23+ (23 A)

4+ (4 A)
3/3 (3C)

4/2 (4B)

8/2 (8B)

12/3+ (12D)

20+ (20A)

12/2+ (12C)

24/6+ (24E)

21/3+ (21C)

The following theorem is a consequence of Koike [4; Proposition 2.2]

which is useful for our proof of Theorem 2.1.

THEOREM 2.2. Let m, θm(z) and Γm be elements of M2i, functions and

discrete subgroups of SL(2. R) defined in the following table respectively.

Then θm{z)jr]m{z) is a generator of a function field corresponding to Γm which

is of genus 0:
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m

Γ28

Γ36

1 2 2 2 3 2 6 2

1 3 7 3

ΓIΓ

1-2-7-14

1 3 5 15
1-23

ejz)

0<»)(22)β

(β ( 3 )(2z)0< 3 )(42)) 2

Θ ( 7 )(2z)3

Θ(7)(22)0(7)(4z)

<9<3>(22)0<3>(lθz)

0(23>(2z)

2+
3+
6+
7+

11+
14+

15+

23+

Proof. We see from Table 3 of [3] t h a t Γm is of genus 0. Let θ(z; A)

be the theta function of an even integral, positive definite matrix A :

θ(z; A) = 2] eπίHtχAx) (n = the degree of A)

A result of Koike [4; Proposition 2.2] implies that a generator of a func-

tion field for Γm can be expressed in terms of θ(z; A), where

2
1
1
1

1
2
0
0

1
0
2
0

1
0
0
2

or
(P + 1)12

) (p = 3, 7, 11 or 23) .

These are positive definite symmetric matrices associated with a lattice

of type D4 or lattices of the ring of integers of Q(V— p) (cf. Remark 2

or 4 in § 1) and so we have

(*) θ{z\ A) = \φ,{zγ + θ,{zf) or θ<»(2s)

respectively. Now Theorem 2.2 follows from Koike's result and (*).

q.e.d.

Now we will begin the proof of Theorem 2.1.

(1) Let m = Γ28. Then by (1.27), we have

θm(z) = ^(#)

On the other hand, we have, putting θt = θ^z) (ί = 2, 3, 4),

= (01 + J + <?D/16 by (T5-6)

and
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ηn(z) = 02(z)804(2z)8/256 by (T20) & (T22)

Then, by using (T7) and (Til), we get

ΘJz) + 96ηm(z) = {UUzY + UzY)Y •

Then from Theorem 2.2 we get Theorem 2.1 for m = Γ28.
Now we will give another proof of Theorem 2.1 for m = 1828. We have

E,{2z) = (θl + Uθtθ\

= 04(2z)8 + {\{θ\ - θi)γ (T7)

= θt(2zY + 0J/16 (Til)

= η{z)κlη{2zf + 16η(2z)κlV(zy. (T20) & (T22)

Then from this and (#), we get directly

θΛ(z)lηn(z) = ηizΠifiZzy + 4096)?(22)
2V)?(2)24 + 32

which is a generator for 2+ by Table 3 of [3].
(2) Let m = Γ3\ Set

ψi = θt(2z) and & = θt(6z) .

By the statement (Ξ) in Section 1 and Table 1, we have

+ 6 X |p5

2Φ2^3ί03 + 15 X |(p2ώ2)2(ίo393)4+ 20 X

+ 6 X ί ^ ^ P s + 15 X ϊ(φ2φ2y(φsφ3T +

+ 64 χ

Now we will show

(*) θm(z) = θ^(2zy - 36Vm(z) (m =

which, by Theorem 2.2, yields Theorem 2.1 for m = Γ36. In the proof of
this equation, the identity

(T12) Θ2(z)θ2(3z) + θt(z)ΘJβz) = θz(zWz)

will be useful. Now we will calculate parts of the right hand side of (#)
in the following (i), (ii) and (iii).

- (Pι(2z)Pι(6z)y}

W - C?A)'} (T8-9)
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(Ti2)

(T4) & (T7)

(T12) .

( i i ) 6 xUψzΦlφlΦs + φlΦwzΦΐ)

(<p2φ2y + (ps03)
4 - ( $ - $ ) ( $ - $)}

(Ti l) & (T12)

(iii)

- (ψ3φ3 - φtφtf} (T12)

By (i), (ii) and (iii), we get

zφ%{φzφι — ψ/pίf

Then it follows from Theorem 2.2 that Θm(z)lηm(z) (m = I63β) is a generator

for 3 + .

(3) Let m = 142244. By (Ξ) in Section 1 and Table 1, we have

+ 2 X

+ 8 X i02(22)202(42)02(82)03(22)203(42)03(8z)3

+ 4 χ

+ 4 X

+ 2 χ

+ 8 X i02(2z)202(4z)02(8zM22)203(42)03(8z)

+ 32 χ iί,0(82)4

/0o(42)2( |0o(22)4 - Pl(2zY) .

Let Ψt = θt(2z). By (Tl-2) and (T5-6), we have
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Θ3(8z) = (φ3

θ2{Azy = (φl - φt)/2, Θ3(4zγ = (ψl + ψl)/2

Then, expressing θm(z) by φ3 and φ4, it is not difficult to see

ΘJz) = ψf + iφlφl - \ψlψ\ = φl° - \ψ\ψ\ψ\ = ψl° - 2 0 ^

since Vm(z) = φtφlφtllβ by (T20) & (T22). Then, by using

(T2i) ψiz) = η(2zyiη(zyη(4zγ

we get

ΘJz)lηJz) = η{2zYlη{z)uη(4zT - 20 ,

which is a generator for 4 + by Table 3 of [3].

(4) Let m = Γ223262. By (Ξ) in Section 1 and Table 1, we have

+ 2 X

+ 2 X

+ 4 X

+ 2 X

+ 2 χ

+ 16 χ

Then the calculations similar to the case m = 1636 yield

= (θ(3)(22)<9(3)(4z))2 _ i2Vm(z)

as ηm(z) = (Θ2(z)θ2(3z)θi(2z)θi(6z))2ll6 by (T20) & (T22).

The details are omitted, just noting that the formal (T12) should be

used. Now Theorem 2.1 for m = 12223262 follows from Theorem 2.2.

(5) The cases m = Γ73, 1-2-7-14 and 3-21. Dealing with these cases,

the formulas (T15-16) and (T19) will be particularly useful. Set

φt = θtfz) and φi = 0,(14*) .

Then we have
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Θ2(Z)Θ2(ΊZ) = φ2φ2 + φzφz — φAφ4

which can be derived from (T15-16).

(5-1) Let m = 1373. By (Ξ) and Table 1, we have

+ 8 X

By (T8-10), (T15-16) and (T19), we have

(po(2z)Po(Uz)Y - (Pl(2z)Pι(Uz)y

2ψl + ^303 +

and then we get easily

- 6Vm(z)

where, in the last equality, we used (T15-16) and (A22). Now Theorem

2.1 for m = 1373 follows from Theorem 2.2.

(5-2) Let m = l 2 7-14. By (Ξ) and Table 1, we have

±Θ2(2Z)Θ2(4Z)Θ2(UZ)Θ2(28Z)

4 χ ϊpQ(4z)pQ(28z){po(2z)Po(Uz) - pί(2z)pι(14z)}

+ ^03 + ^4}{#2(4z)02(28z) + Θ3(4z)θs(28z)}

+ 2po(4z)po(28z){po(2z)Po(Uz) - pι(2z)pι(Uz)} .

Then, by (T3) and (T19), we get

(Az) - 2ηm(z) .

Then Theorem 2.2 implies that Θm(z)lηm{z) is a generator for 14+.

(5-3) Let τn = 3-21. By (Ξ) and Table 1, we have
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Then, by (T15-16) and (T19), we have

ΘJz) = 02(6z)02(42z) + Θ3(6z)θ3(42z)

= θ(7>(6z) .

Let f(z) = 0m(2z)3lVn(z) (n = 1373). Then we have

f(3zy<* = θ*>(6z)lηn(z) = θm(z)lηm(z) (m = 3 21)

This means that θm(z)/j?(z) is a generator for 21/3+ (cf. Table 3 of [3]).

(6) Let m = Γ2-4-82. By (Ξ) and Table 1, we have

+ θi(2zY}θ3(4z)θ3(8z)θ3(lQzY

+ 2 X

+ 2 χ ^2(2z)202(4z)02(16z)03(8z)03(16z)

+ 8 X

Calculating parts of the summation, we have

( i ) (1st term) + (3rd term) + (5th term)

=03(4z)3{02(8z)3 + 03(8z)3}

(ii) (2nd term) + (4th term) + (6th term)

(iii) (7th term) = i02(2z)20s(2z)02(4z)3.

Thus we have

ΘJz) = 03(4z)3{02(8z) + 03(8z)}3

Using (T21), we get

ΘJ&hJz) = η(2zYη(4zγiη(zγη(8zy - 6

which is a generator for 8+ by Table 3 of [3].

(7) Let m = ΓIΓ, Set

ψt = θt(2z) and <pi = θt{22z) .
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By (Ξ) and Table 1, we have

2 X I ^ W a + iiψz

4 χ %{(Po(2z)Po(22z)y - (Pl(2z)Pl(22z)y}

+ ψsΦsY + H ί M + WAWA

where, in the second equality, we used (T7) and (T8-9). Now using

which can be easily derived from (T-6), we get

BJz) - (φ2φ2 + ψsφs)2 - MM + VAT + <PM

+ ψsφd2 - WA - OZΘZ + θA
2 - 4Vm(z)

where we used (T24). Then it follows from Theorem 2.2 that θm(z)lηm(z)

is a generator for 11 + .

(8) Let m = l 3-5-15. By (£) and Table 1, we have

θm(z) = i{ί8(22f)β8(6«)β,(10^,(302j) +

+ iθ2φz)θ2{10z)θ3(2z)θ3(30z)

+ Θ2(2Z)Θ2(6Z)Θ2(10Z)Θ2(30Z) + 4 χ

- Pl(2z)p1(βz)p1(10z)p1(β0z)} .

Applications of Schrδter's formula, which are similar to those in Example

A3-4 of Appendix, yield that the last term of the above summation is

equal to

Θ2(6Z)Θ2(10Z)Θ3(2Z)Θ3(30Z) + Θ2(2z)θ2(3θz)θ,(6z)θ,(lθz).

Also repeated applications of the formula (T12) yield

θi(2z)θi(6z)θA(10z)θi(30z)

= Θ2(2Z)Θ2(6Z)Θ2(10Z)Θ2(S0Z) + Θs(2z)θ3(6z)θ3(lθz)θ,(3θz)

- Θ2(2z)θ2(6z)θ3(lθz)θ3(3θz) - Θ2(lθz)θ2(3θz)θ3(2z)θs(6z) .

Then it is easy to see

where ψ(z) = Θ2(z)θ3(5z) - Θ2(5z)θ3(z).

Using (T25) (and (Tl-2)), we get
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Θm{z) = θ<3>(2z)θ<3>(10z) - 6Vm(z) .

Now it follows from Theorem 2.2 that Θm(z)lηm(z) (m = l 3-5-15) is a

generator for 15 + .

(9) Let m = 1-23. By (Ξ) and Table 1, we have

Θm(z) = m(^)θ2(46z) + Θ3(2z)θs(46z)} + iθi(2z)θi(46z)

+ 2 χ ϊ{Po(2z)Po(46z) - Pι(2z)Pι(46z)} .

Now we want to prove

(#) ΘJz) = Θ^{2z) - 2ηjz) .

For that purpose, we have to show

(*) Po(z)p0(23z) - Pi(z)Pl(23z) - ±{θ2(z)θ2(23z) + Θ3(z)θ3(23z) -

from which (#) clearly follows.

Applications of Schroter's formula yield that the left hand side of (*)

is equal to

where

σ(q) = θ{q\ g24) + q%q*\ qu)

On the other hand, it is not difficult to see

q-1/12η(z) = Σ (-l)nq3n* + n = σ(q>).
nez

Thus we get (#), which, by Theorem 2.2, implies that Θm(z)jηm{z) is a

generator for 23+.

(10) Let m = 212. By (1.25), we have

θ»(β) = m&r + θ3(2zΓ + θ

As θz(2zY - Θ3(2zy + θ&zY = 0 by (Til), we see

Thus we get

θm(z) = Θ3(2ZT - 24ηm(z)
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and so

- 24

which is a generator for 4 + by Table 3 of [3].

(11) Let m = 38. By (Ξ) and Table 1, we have

ΘJz) = WJlfizY + UβzY} + 14 χ tfjfrίfθjβzγ +

+ 16 X MM6*)8 - fcW} .

Set θt = ^i(3z). Then it is easy to see

θm(z) = 61 - # # + θ\

= ϊ0t + θi) + uόi - θty
= i(θl + θl + 0$
= Et(3z).

As is well known, Elz)zlη(z)u =j(z) - 720 is a generator for 1+ ( = SL(2, Z))

and so θm(z)lηj,z) is a generator for 3/3 (cf. Table 3 of [3]).

(12) Let m = 244\ Then we have

Jz) = Θ3(4Z)%(8ZY + {Θ2(4z)%(8z)1 + 6θ2(8z)%(4z)%(8zY}

+ {Θ2(8z)%(4zy + 6^(43)4(92(82)2^(82;)2} + Θ2(4z)%(8z)s

= (Θ2(4zy

Let /(«) = ffllzf + θlz)Jlηn{z) (n = 1828). Then f(z) is a generator for 2 +

by what we have already proved and we have f(2z)lβ = θm(z)[ηm(z) (m =

2444). This means that θm(z)lrjm(z) is a generator for 4/2+ by Table 3 of

[3].

(13) Let m = 4\ Then we have

θ(z) = Θ3(8zy + 3θ2(8z)2θs(8zy + SΘ2(8zyθ3(8z)2 + Θ2(8zf

So we have

which is a generator for 8/2+ by Table 3 of [3].
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(14) Let m = 64. Then we have

ΘJz) = θlVλzy + 2θ2{12z)%{12zf + 0,(122)4

= (0,(122)2 + 03(122)2)2

So we have

which is a generator for 12/3+ by Table 3 of [3].

(15) Let τn = 22102. Then we have

ΘJz) = (03(42)03(2θ2))2 + 202(42)0,(2θ2)03(42)03(2θ2) + (02(42)02(2θ2))2

+ 02(42)0,(2θ2))2

Set θt = θ^z). Then, by (T25), we have

θm(z) + 4Vm(z) = \{ΘA + ΘAY +

= m + ΘΪ)0I + ΘΪ)

Thus we get

em(z)iVm(z) = ^zYηiiozγiηizyηiAzyφzy^ozγ - A

which is a generator for 20+ by Table 3 of [3].

(16) Let m = 2 4-6-12. Then we have

θm(z) = Θ3(4z)θ3(12z)θ3(8z)θί(24:z) + Θ2(4z)θz(12z)θ3(8z)θ3(24z)

0,(42)0,(122)0,(82)0,(242)

= Θ(3>(42)Θ(3)(8z) .

Let f(z) = (Θm(2z)θm(4z)Ylηπ(z) (n = 12223262). Then f(z) is a generator for

6 + by what we have already proved and we have f(2zYβ = Θm{z)j-ηm(z)

(m = 2-4-6-12). This means that Θm(z)lηjz) is a generator for 12/2+ by

Table 3 of [3].

(17) Let m = 122. Then we have

Θm(z) = 03(242)2 + 02(242)2

So we get
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which is a generator for 24/6+ by Table 3 of [3].

Now we have proved Theorem 2.1 for all elements of M2i except for

an element with a cycle decomposition 1454. For such an element we argue

as follows.

Let m = 145\ Firstly we see from (Ξ) and Table 1 in Section 1 that

Θm(z) is as in Table 2. Secondly it is not difficult to see that the invariant

sublattice Λm has a discriminant 54 and so Θm(z) is a modular form of

level 5 and weight 4 (with a trivial character). Furthermore, it is known

that the vector space of such modular forms is 3-dimensional (cf. [5;

Theorem 2.23]). Thus the coincidence of the first three Fourier coefficients

of two modular forms of level 5 and weight 4 will imply that such two

modular forms must be identical. On the other hand, in [4], Koike proved

that there exists a modular form θm(z) of level 5 and weight 4 such that

θm(z)lηm(z) is a generator for 5 + . Then, by direct computations, we see

that the first three Fourier coefficients of our Θm(z) and Koike's θm(z)

certainly coincide (cf. Table II of [4]). Thus we must have θm(z) — θm{z).

This completes the proof of Theorem 2.1.

Appendix. Schrδter's formula

We define

(Ai) β(x, q) = Σ χκqκ2

nez

This power series in q has the convergent radius 1, for any non-zero x.

If we put q = eπίz, we have

(A2) Θ3(z) = ΣQn* = 0(1, Q) ,

(A3) θ2(z) = Σqin+1/2)* = qiμ0(q,q),

(A4) θ<(z) = Σ ( - l ) V 2 = 0 ( - l , q)

Note that we define qί/a = eπU/a for a natural number a. It is easy

to see that

(A5) Θ(-Qjq) = o.

Also one can easily represent the functions Θa(υ, z) of two variables v

and z by the functions θ{x, q), where 1 <̂  a ^ 4. On the other hand, for

q = eπίz, defining
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(A6) ft(2) = Σ f t W ,
n

(A7) Pi(2) = Σ ( - l ) V + 1 / 4 ) ! ,

we have

(A8) Po(z) = q1/uWt,q) and pt(z) = q1/uθ(-qι>*,q) .

From definition, it is clear that

(A9) θ(-x,-q) = θ(x,q),

(AIO) φ r \ q) = 0(«, g) ,

(All) θ(xq\q) = (xqyiθ(x,q),

(All)' 0(*r 2 , g) = xq-ιθ(x, q) .

Note that the formula (All) (and (All)') is derived from the calculus

Σ s W ' = (*?)"' Σ jc<»+ι>g<"+1)t

We fix a natural number a. In the definition (Al), writing n = am

+ p (0 5S ρ < α), we have the following

LEMMA A.I. For a natural number a, we have

(A12) 0(x, g) = Σ xpqp20(xaq^, qat) .

EXAMPLE A.I. For a — 2, putting x = ± 1 or +q, we have

0(1, q) = 0(1, <74)

% , Q) = θ{q\ qA) + q*θ{q\ q<) = 2θ(q\ q<) ,

0 = θ(-q, q) = θ(q\ q>) - q*θ(q\ g4) .

Note that, from (A2), (A3) and (A4), the first two formulas are equivalent

to

(Tl) θs(z) = 0,(42) + Θ2{AZ) .

(T2) θlz) = Θ3(4z) - Θ2{AZ) ,

respectively. The third one can be written

(T3) 2Po{Az) = θt(z) ,

using (A8).
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The following lemma is refered as "formula of Schrόter" in Tannery

and Molk's "Elements de la theorie des fonctions elliptiques" (n° 285).

LEMMA A.2. (Schrδter). Let a and β two natural numbers. Then

(A13) θ(x, qa)θ(y, qf)

Proof. In the summation

θ(x, q«)θ(y, qβ) =
τn n

we put

n = m + (a + β)σ + p (0 ^ p < a + β)

where σ runs over Z. Also we put μ = m + βσ. Then

am2 + βn2 = (a + β)μ2 + 2βpμ + aβ(a + β)σ2 + 2aβpσ + βp2 ,

and also we have

Thus it is easy to see that (A13) holds. q.e.d.

EXAMPLE A.2. (Duplication). In (A13), putting a = β = 1 and y = ±x9

we have

θ(x, q)2 = θ(x\ q2)θ{\, q2) + xqθ(x2q2, q2)θ(q\ q2) ,

θ(x, q)θ(-x, q) = θ(-x2, q2)θ(-l,q2) .

Specializing x = ± 1 or ±q, we have θ(l, q)2 = θ(l, q2)2 + qθ(q2, q2)2, θ(-l, q)2

= 0(1, q2)2 - qθ(q\ q2)2 and θ(q, qf = 2θ(q\ q2)θ(l, q2), noting t h a t θ(q\ q2) =

q~2θ(l, q2), for example. Also we have 0(1, g)0( — l, q) = 0 ( - l , g2)2- These

are equivalent to

<T4) Θ2(z)2 = 2θl2z)θl2z) ,

(T5) θz{z)2 = 03(2^)2 + 02(2z)2 ,

(T6) 04(^)2 = 03(2^)2 - Θ2(2z)2 ,

(T7) «,^4(2) -

Now putting x = δ = ± 1 and y = q, we have 0(3, q)θ(q, q) = 2Θ (δq, q2)2.

From these, we have
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(T8) 2p,{2z)2 = Θ2(z)θz(z) ,

(T9) 2Pl(2zY = Θ2{z)θlz) .

Also we can derive

(T10) pl2z)Pl{2z) = 2~%

Returning to the first formula in our example, we substitute x by ±x or

±xg. Then we have

θ(x, q)4 + x2qθ(-xq, qY = θ(-x, qY + x2qθ(xq, qY .

If we put A = 0(1, g2), B = θ(q\ q2), X - 0(x2, <f) and Y - 0(x2g2, q2), this

is equivalent to

θ(x9 qY + x2qθ(-xq, qY = (A2 + qB2)(X2 + x2qY2)

In the above formula, specializing x = 1, we have

(Til) 03(2)4 = W + ^4(2)4 .

Note that (Til) can be also derived from (T4), (T5) and (T6).

EXAMPLE A.3. In (A13), putting a = 3 and β = 1 and x = ± 1 or ±q$

and y = ± 1 or ±q, we have

θ(l, q3)θ(l, q)

= θ(l, ? m qκ) + ?^(g4, g4)0(g12, g12) + 2^(g2, 9

4)^(g6, q"),

θ(-l, q3)θ(-l, q)

= ^(1, qy(l, q") + q'θ(q\ <fWΆa, <f) - 2qθ(qι, tfWft, q12),

0 = θ{-q\ qs)θ(-q, q)

= θ(q\ cfiKl, q") + q*θ(l,

θ(q\ q3)θ(q, q)

= θ(q\ qWl, <?12) + cfθQ., q'Wq", qn) + 2θ{q\ q

Thus we have θ{q\ q3)θ(q, q) = 40(q2, qi)θ{q(>, qn), for example. Now it is

easy to show that

(T12) <?,(3z)0,(2) - θtfzMz) =

using (A2), (A3) and (A4). (cf. [7] p. 175). Also we have

(T13) Θ3(3z)θ3(z) +

= 2(03(42)03(122)
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In (A13), now we put a = β = 2, x = q and y = — q. Then we have

θ(q, q
2
)θ(-Q, q

2
) = θ(-q\

= θ(-q\qi)θ{-l,qi).

This formula can be written as

(T14) Po(2z)p1(2z) = Pl(4z)θi(4z) .

In this case, the other formulas to be obtained are equivalent to (T8) and

(T9).

EXAMPLE A.4. The case a = 7 and β = 1 is quite similar to the case

a = 3 and β = 1. Putting X = 0(1, q7)θ(l, q) + θ(-l, q )θ(-l, q), we see

that

X = 20(1, (fWX, <Z56) + 2g

160(g8, q*)θ(q™, q*) + Aq^q*, q*)θ(q2\ <?56)

Also we have

θ(q\ q')θ(q, <?) = 2θ(q\ q°)θ(l, q™) + 2q12θ(l, q*)θ{q™, q™)

Multiplying the latter term by q2, we have

(T15) Θ3(7z)θi(z) + θΠz)θίz) + ΘΠz)θlz)

= 2{θi(2z)θ3(14z) + ^(22)^(142)} - 2β

(T16) Θllz)θ3(z) + θtfztftz) - Θ2(7z)θ2(z) = 2θi(2z)θi(Uz) .

Note that, from Lemma A.1, we have

θ(3, q2) = 0(1, q°) + δq'θ(q\ q*) ,

with δ — ± 1. Using also the formula

θ(δq, g2) - θ(q\ q«) + δqθ(q\ q°) ,

and (A8), we can show that

(T17) Θ3(7z)θ3(z) - θtfzyiz) + θllz)θlz) = 4^(2^0(14^) ,

(T18) Θ3(7z)θ3(z) - θi{7z)θi(z) - Θ2(7z)θ2(z) = 4Pl(2z)Pl(Uz) .

Thus we have shown that

(T19) P*(2z)po{l4z) - Pl(2z)Pl(Uz) = 2-%(7z)θ2(z) .

The case a = 11 and β = 1 is similar to our example. But it is queer

that we can not find pretty formulas in the case a — 5 and β = 1.
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Jacobi's triple product theorem is described in the following way.

The infinite product

(A14) T(x, (?) = ft (1 - mn)

is absolutely convergent for \q\ < 1 and for any x. As the function of x,

T(x, q) has its zeros at x = q~n, for all natural number n. It is easy to

see that

(A15) T(x, -q) = T(x, <f)T(-xq-\ q2) ,

(A16) T(x, q) = (l- xq)T(xq, q) .

LEMMA A.3. (Jacobi) The following triple product theorem holds:

(A17) θ(x, q) = T(l, <f)T{-xq-\

The proof is omitted. In this notation, the Dedekind's eta function

is represented as

(A18) η(z) = qi/12T(l, g2) ,

for q = e"u. Also our theta functions Θ3(z), θ^z) and θ(z) are represented

as infinite products, specializing x = ± 1 or q in (A17):

(A19) Θ3{z) =

(A20) θt(z) = T(l, q2)T(q-\ qj ,

(A21) θ£z) = 2q^T{l, q2)T(-l, qj .

Note that T(-q'\ q2) = Π(l + 92""1), and

T(q-\ q2) = Π (1 - <f'!-') and Γ(-g- 2 , 9

2) = 2 Γ ( - 1 , ?2) = 2\\ (1 + α 2").

As Π (1 + <72") X Π (1 + ί 2 " 1 ) X Π (1 - r ' " 1 ) = 1, we have

(A22) θlz)θlz)θlz) = 2q^T(l, qj = 2V(zY .

EXAMPLE A.5. AS Π 0- - Q2a~ι) = Π 0- - Qn)IU C1 - QZn)> s o t h a t

Also as Π (1 + Q2n) = Π (1 - Qin)IU (1 - Q2"), so that

Lastly we also have
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T(-q-\ «?2) = T(l, <7)-'T(l, qJT(l, q

These give the following formulas:

(T20) θlz) = 2V(2zfη(z)-> = 2{l-'22} ,

(T21) Θl2z) = η{2zfη(Zy*η{Azy* = {1"2254-2}

(T22) Θ4(2z) = η{zfη{2zYι = {Γ2"1} .

We calculate θ{—q, q3) by (A17). Then we have

θ(-q, qs) = T(l, q°)T(q-\ qe)T(q-\ q°) =

This shows that

(T23) qι/nθ(-q,q*) = η{z),

with q = eπί\ On the other hand, θ(-q, q") = Σ ( - l ) V n 2 + % from defi-

nition. (This gives Euler's identity)

EXAMPLE A.6. We consider the case a = 11 and β = 1. Just as in

Example A.4, we calculate X = 0(1, qn)θ(l, q) - θ(-l, qn)θ(-l, q) and Y =

θ(qn, qn)θ(q, q). From these we have

X - q*Y = Aq{θ(q\ q") - q2θ(q'\ q")} X {Θ(q2\ q™) - q22θ(qm, qm)} .

On the other hand, to the function θ( — q,qd), applying (A12) with

a = 2, we have

Thus we have shown that

(T24) θt(llzMz) - θ,(llz)θiz) - Θ2(llz)θ2(z) =

The case a = 5 and β = 1 is different from the other cases. Here

we calculate

l, q) - θ(l, ?5)0(-l, q) = 4qθ(-q\ q*)θ(-f\ g30) .

Using (T23) direclty, we have

(T25) Θ4(5ZMZ) - θ^z)θlz) = Aη(2z)V(10z) .

Finally we make a mention of the formulation of theta formula.

LEMMA A.4. For the function θ(x, q), the following "theta formula"

holds:
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(A23) θ(e\ eδ) = κθ{e% eβ) ,

(A24) κ = e « w X V^JΪπ ,

where a and β are complex number such that Re (β) < 0, and βδ = π2 and

a2δ + Γβ = 0. ?%α* te, 5 = π2//5 and ϊ = ττΐαr/iS (or ϊ = -πia/β). Note also

that we assume Re(V— β/π) > 0.
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