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POSITIVE DEFINITE HYPERFUNCTIONS

JAEYOUNG CHUNG, SOON-YEONG CHUNG AND DOHAN KIM

§0. Introduction

S. Bochner proved the following theorem in [B].

THEOREM 1 (Bochner). / / / is a continuous function in R then the following

conditions are equivalent:

(i) / is positive definite, that is, for any xlf . . . , xm ^ Rw and for any complex

numbers ζv . . . , ζ m

(0.1) Σ f ( X i - ,

(ii) / is the Fourier transform of a positive finite measure μ, i.e.,

(0.2) fix) = fe~iλm*dμ(λ).

(iii) For any C°° function φ with compact support

(0.3) / / / ( * - y)φ(pc)φ(y)dxdy = </, φ*φ*> >0

where φ(x)* = φ(— x).

The definition (0.1) of the positive definiteness for the continuous functions

cannot carry over to generalized functions. Instead, the equivalent definition (0.3)

will be used to define the positive definiteness for the space of generalized func-

tions, which can be represented as a dual space of test functions.

Thus the above Bochner theorem was generalized by L. Schwartz for the

space of distributions and tempered distributions, which are the dual spaces of the

spaces Cc°° and the Schwartz space s& as follows.
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THEOREM 2 (Bochner-Schwartz). (i) Every positive definite distribution is the

Fourier transform of a positive tempered measure, and vice versa.

(ii) Every positive definite tempered distribution is the Fourier transform of a posi-

tive tempered measure, and vice versa.

Recall that a generalized function u is said to be positive if u(φ) > 0 for ev-

ery nonnegative test function φ and is said to be positive definite (or of positive type

in Schwartz [S]) if u(φ * φ ) > 0 for any positive test function φ. Also, a positive

measure β is said to be tempered if for some p ^ 0

(1 +\x\2)~Pdμ< oo.

Also, note that every positive definite distribution is a positive definite tempered

distribution, that is, the class of positive definite distributions and the class of

positive definite tempered distributions are the same.

Also, the above theorem are generalized to the more general case of hyper-

functions and Fourier hyperfunctions as follows:

THEOREM 3 [CK]. (i) Every positive definite Fourier hyperfunction is the Fourier

transform of a positive infra-exponentially tempered measure.

(ii) Every positive hyperfunction is a measure.

(iii) Every positive Fourier hyperfunction is an infra-exponentially tempered mea-

sure.

(iv) Every positive Aronszajn trace is a measure.

Here, a positive measure β is said to be infra-exponentially tempered if for ev-

ery k > 0

-k\x\ i ^

e dβ < oo.

Note that Theorem 3 (i) is nothing but the Bochner-Schwartz theorem for the

space $F' of Fourier hyperfunctions, which is the dual space of the space & (see

Definition 1.4).

In this paper we prove the Bochner-Schwartz theorem for the hyperfunctions.

In other words, every positive definite hyperfunction is the Fourier transform of

an infra-exponentially tempered measure, consequently the class of positive defi-

nite Fourier hyperfunctions and the class of positive definite hyperfunctions are
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the same, which is the parallel result of Theorem 2 for the theory of hyperfunc-

tions.

In order to prove this main result we note that a hyperfunction is defined

locally as analytic functions, in other words, that the space 3) of hyperfunctions is

defined locally as the space of analytic functionals which is the dual space of an-

alytic functions, but not globally. Hence it is difficult to define the global concept

of positive definiteness for the hyperfunctions. To overcome this difficulty we ap-

ply the heat kernel method of T. Matsuzawa as in [M, KCK, CK]. We first make

use of the representations of the generalized functions including distributions,

hyperfunctions and Fourier hyperfunctions as the initial values of the solutions of

the heat equation (see Theorems 1.5 and 1.6) and then we define the positive defi-

nite generalized functions in terms of the defining function.

As a consequence of these results we define the positive definite hyperfunc-

tions (see Definition 2.2). As the natural definition of positive definiteness for the

hyperfunctions is given we can easily prove the Bochner-Schwartz theorem for

the hyperfunctions.

§1. Generalized functions as boundary values of solutions of the heat equation

We first briefly introduce analytic functionals, hyperfunctions and Fourier

hyperfunctions. See [H, Ka, KCK] for more details.

DEFINITION 1.1 Let K c Rw be a compact set. Then A(K) is the space of all

real analytic functions in some neighborhood of K. In other words, φ ^ A(K) if φ

is a C°° function in a neighborhood of K and there are positive constants C and h

such that

I ~a / \ I

I d φ(x) I
S U P ^ C

a

, | α l .

h α!

We denote by Af(K) the strong dual space of A(K) and call its element an an-

alytic functional carried by K.

Here we use the multi-index notations: | a | = aλ + + ctn for a — (av...,

an) e NQ where No is the set of non-negative integers and da = d"1 ... d"n, dj =

j

We set A'(Rn) = ΌKA'(K) and the support of u^Af(Rn) is the smallest

compact set K c Rw such that u e A(K).

We now define the space SB of hyperfunctions following A. Martineau as in

[HI.
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DEFINITION 1.2. Let Ω be a bounded open set in Rw. Then the space $(Ω) of

hyperfunctions is defined by

»(Ω) =A'(Ω)/A'(dΩ).

We now state the localization theorem to define hyperfunctions in every open

set in Rw.

THEOREM 1.3. Let ΩJf j = 1,2, . . . , be bounded open subsets of R such that

Ω = U°°=1β; If Uj G 38(Ω}) and for all i, j we have u{ = Uj in Ω{ Π Ωj, (that is,

supp(w, — Uj) Π Ωj Π Ωj = 0) then there is a unique u ̂  %(Ω) such that the res-

triction of u to Ωv is equal to Uj.

We introduce a real version of the Fourier hyperfunctions.

DEFINITION 1.4 [KCK]. (i) We denote by $F the set of all infinitely differenti-

able functions φ in R such that for some h> k > 0

daφ(x) I e x p k\x\

I*.*= S U P T ^ Γ T
S U P T ^ Γ T <
αeN8

(ii) We say that φ} —* 0 as /—* oo if | φy |ΛJk—> 0 as j — • °o for some h, k > 0.

(iiί) We denote by ί P the strong dual of 2F and call its elements Fourier hyper-

functions.

We denote by E(x, t) the n-dimensional heat kernel

E(χ t) = f (4τr/)"M/2exp(- UΓ/40, t> 0

lo, ^<o.

Note that £Cr, ί) belongs to the space & for each / > 0. Thus

(1.1) U(x, t) =uy(E(χ-y,t))

is well defined in R++ 1 = {(x, f) \x *Ξ Rn, t > 0} for all u^W and called the

defining function of u. We now represent some generalized functions as the initial

values of smooth solutions of heat equation.

THEOREM 1.5 [M]. (i) Let « e ί ' ( R " ) , Then there exists U(x,t)

C°°(R+ ) and satisfies the following conditions:

(1.2) (d/dt - Δ) t/Cr, f) = 0 in R^+1.
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For any compact set K c R there exist positive integers N — N(K) and Cκ such

that

(1.3) I *7Cr, t) I < CKΓN, t > 0, x e A"

and ί/Cr, ί) —•* u as £•—• 0 in the sense that for every φ €= Cj°

(1.4) «(φ) = lim Γ t/Cr, OφCz) dx

Conversely, let U(x, t) e C°°(R++1) satisfy (1.2) and (1.3). Then there exists

a unique ft e ®'(RW) satisfying (1.4).

(ii) Let u e S(RW). Then C/(x, f) e C°°(R++1) satisfies the heat equation,

and the following conditions: For every compact subset K c R and for every ε >

0 there exists a constant CεK > 0 such that

(1.5) I U(x, t) I < Cε>κ exp(ε/f), ί > 0, x e A

and

(1.6) t/U, t)-*u as t-+0+

in the sense that U(x, f) - Uj(x, t) —> 0 as ί-* 0+ in fi; , = 1,2,. . ., where f/;

is the defining function of w; as in (1.1) and u = (Uj) ^ S(RW), and Rw = U ; ίQ ; .

The converse is also true as in (i)

(iii) Let ued'(R*). Then U(x, t) = uy(E(x - y9 /)) belongs to C°°(R"+1)

and satisfies (1.2) and the following condition: There exist positive constants

C, M and JV such that

(1.7) I ί/Cr, t) I £ CΓ^Q + \x \ iin

iand U(x, f) —• u as t—* 0 in the following sense: for every φ ̂  s£

u(φ) = lim I U(x, t)φ(x) dx.

Conversely, every C°°-function defined in R++ satisfying (1.2) and (1.7) can

be expressed in the form U(x, t) = uy(E(x — y, t)) for some u e j£'.

THEOREM 1.6 [KCK]. Let w e f ( R w ) , Then the defining function U(x,t)

satisfies (1.2), (1.4) for every φ ^ 2F and the following growth condition', for every

ε > 0 there exists a constant C? > 0 5wc/ι ί/iαί

(1.8) I t/Cr, ί) I < C ε exp[ε( |x |
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for t > 0, x e Rw

Conversely, lei

unique u ^ ίF(R w ) such that U(x, t) = uy(E(x — y, t)).

Conversely, let U(x, t) ^ C°°(R++1) satisfy (1.2) and (1.8). T/wn there exists a

§2. Bochner- Schwartz theorem for hyperfunctions

If a continuous function/(.r) is positive definite then it is easy to see that

/(-*) =7ω, /(o) ^o
and

(2.1) | / ( x ) | < / ( 0 ) .

We first restate the Bochner-Schwartz theorem for the Fourier hyperfunc-

tions.

Theorem 2.1 [CK]. Every positive definite Fourier hyperfunction is the Fourier

transform of a positive infra-exponentially tempered measure μ in the sense that

(2.2) u(φ) = f φ(X)dμ,

where φ(λ) denotes the Fourier transform of φ(x).

Conversely, the functional u defined by (2.2) is a positive definite Fourier hyper-

function.

We are now in a position to define the positive definite hyperfunction in

terms of the defining function and the growth condition.

DEFINITION 2.2. A hyperfunction u is positive definite if there exists a defining

function U(x, t) of u is a positive definite function for each t > 0, that is,

Σ Ufy-xt, #ζ; ζ f e>0
J,k=ί

for every xlf...,xn& Rw, ζlf..., ζn ^ C and for each t > 0.

To justify the above definition for the positive definiteness of the hyper func-

tions we prove the equivalence of our new definitions and the original definitions

of the positive definiteness for the continuous functions, distributions, tempered
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distributions and Fourier hyperfunctions respectively.

THEOREM 2.3. Let f{x) be a continuous positive definite function and Et(x) ~

E(x, t) be the heat kernel. Then Et * f is well defined for each t > 0 and is the

Fourier transform of a measure exp(— tλ )dμ(λ), where dμ is a finite positive mea-

sure, whence Et* f is a positive definite function, and vice versa.

Proof. Let / be a positive definite continuous function. Then by the Bochner

theorem we have

(2.2) (Et*f)(x) = JE(yft)f(χ-y)dy

= ff E(y,t)e~iiχ-y)-λdμU)dy

= f(fE(y, t)e-iy'λdμ)e-ιx'λdμ{λ)

= f E(- λ, t)e~ix'λdμ(λ)

= / e x p ( - tλ2)e~ix'λdμ(λ)y

where E(λ, t) is the partial Fourier transform of E(x, t) with respect to x. Thus

Et * / is the Fourier transform of the measure exp(— tλ )dμ(λ) where dμ is

positive-finite measure. By Theorem 1, Et * / is a continuous positive definite

function. The converse is also proved by (2.2).

The following theorem gives a new definition of the positive definite tempered

distribution.

THEOREM 2.4. Let u ^ s3r(R ). Then the following conditions are equivalent:

(i) u is a positive definite tempered distribution.

(ii) The defining function U{', t) of u is a positive definite function for each t >

0.

We first need the following lemma which is used to prove the Bochner

theorem in [GS, pp.153-155].

LEMMA 2.5 [GS]. A positive definite continuous function is a positive definite

tempered distribution. Conversely, if a continuous function f (x) is positive definite tern-
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pered distribution, that is,

f(φ*φ*) =

for all φ ^ ώ thenfix) is a positive definite function.

Proof of Theorem 2.4. By Theorem 2.1 it suffices to prove the implication

(i) => (ii) that for all φ e d and each t > 0

<£/(-,*), φ*φ*> > 0 .

Let Et denote the w-dimensional heat kernel E(x, t). Then

•, t), φ*φ*> = <u*Etφ*φ*>

since Et/2*φ G ^ and w is a positive definite tempered distribution.

Conversely, let C/(x, 0 be a positive definite defining function. Then for each

ί > 0 w e have <t/( , f), p * φ*> ^ 0 for all <p e J by Theorem 1. Also it fol-

lows from Theorem 1.5 (iii) that

, φ*φ*> = lim / U(xf t)(φ*φ*)(x) dx

= lim <C/( , ί), φ*φ*>

Thus w is a positive definite tempered distribution. This completes the proof.

The following theorem gives a new definition of the positive definite distribu-

tions.

THEOREM 2.6. Let u e ®'(RΛ). 77κ?n the following conditions are equivalent:

(i) u is a positive definite distribution.

(ii) T/ie defining function U(', t) of u is a positive definite continuous function

for each t > 0.
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Proof If u is a positive definite distribution, then u is a positive definite tem-

pered distribution by the Bochner-Schwartz theorem. The defining function U(x, f)

is given by U(x, t) = (u*Et)(x) which is a positive definite continuous function

for each t > 0 by Theorem 2.4. Conversely, if the defining function U(x, t) is a

positive definite function for each t > 0 then U(x, t) is a positive definite gener-

alized function on sS for each t > 0. Thus <£/(•, t), φ * φ > > 0 for all φ ^ Cc°°

and for each ί > 0. By Theorem 1.5 (i) we have

<w, <p * <p*> = lim J C/Cr, 0 (φ * φ*) Cr) ώr

= lim (U(', f), φ*φ ) ^ 0 .

This completes the proof.

Applying the same method as in Theorem 2.4 we obtain the following

theorem.

THEOREM 2.7. Let u ^ ^ ' ( R ). Then the following conditions are equivalent:

(i) u is a positive definite Fourier hyperfunction.

(ii) The defining function U(- , t) of u is a positive definite function for each

t>0.

By virtue of the previous theorems we give new definitions for the positive

definite distributions, positive definite tempered distributions and positive definite

Fourier hyperfunctions as in Theorem 2.6 (ii). Theorem 2.5 (ii) and Theorem 2.7

(ii), respectively. In accordance with these new definitions we define the positive

definite hyperfunctions as Definition 2.2.

We are now in a position to state and prove the main theorem.

THEOREM 2.8. The following conditions are equivalent:

(i) u is a positive definite hyperfunction.

(ii) u is a positive definite Fourier hyperfunction.

Proof. Let u be a positive definite Fourier hyperfunction. Then by Theorem

2.7, the defining function U(x, t) is a positive definite function for each t > 0

and attains its maximum at the origin. Also by Theorem 1.6 the defining function

U(x, f) satisfies (1.8). Thus we have the following growth condition: for every

ε > 0 there is a constant CP > 0 such that
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I U(x, f)\< U(O,t) < C ε e x p ( ε / ί ) .

Thus U{x, f) defines a hyperfunction by Theorem 1.5 (ii), that is, u is a hyper-

function. The converse assertion is clear by putting K = {0} in (1.5).

Combining the Theorem 1.5 and Theorem 1.6 with the Bochner-Schwartz

theorem we have the following result:

COROLLARY 2.9. The following conditions are equivalent:

(i) u is a positive definite distribution.

(ii) u is a positive definite tempered distribution.

(iii) u is the Fourier transform of a positive tempered measure.

(iv) The defining function U(' , t) of u ^ ®' is a positive definite function for

each t > 0.

(v) The defining function U(' , t) of u ^ ώ' is a positive definite function for

each t > 0.

As a parallel result of the Bochner-Schwartz theorem we have the following:

THEOREM 2.10. The following conditions are equivalent:

(i) u is a positive definite hyperfunction.

(ii) u is a positive definite Fourier hyperfunction.

(iii) u is the Fourier transform of a positive infra-exponentially tempered measure.

(iv) The defining function U(' , t) of u ^ W is a positive definite function for

each t>0.
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