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THE GEOMETRICAL CONSTRUCTIONS

LIFTING TENSOR FIELDS OF TYPE (0,2) ON MANIFOLDS

TO THE BUNDLES OF A-VELOCITIES

W. M. MIKULSKI

0. Introduction

Let A be a Weil algebra. The fibre bundle T M of i4-velocities over a mani-

fold M was described by A. Morimoto [15] as another description of the bundle of

near Λ-points by Weil [17]. In [4] for any tensor field τ of type (0,2) on M and

any functional λ ^ A we have defined the so called Λ-lift of r to T M. We recall

this construction in Example 1.3. The Λ-lift of r is a naturally induced tensor

field of type (0,2) on TAM.

In this paper we study the problem how a tensor field of type (0,2) on M can

induce tensor fields of types (0,1) and (0,2) on T M. In Section 1 we present some

constructions of such type. Some new lifts of tensor fields of type (0,2) to T M

are presented. In Section 2 we remark that the idea of such constructions is re-
rΛ , , .i , r . i , ^ ( 0 , 2 ) ^ ( 0 , 1 ) rpA . rp(0,2) ^,(0,2)^4

fleeted in the concept of natural operators 1 —> 1 1 and 1 —* 1 1 ,

cf. [6]. The rest of the paper is dedicated to the proof of the following classifica-

tion theorems.

THEOREM 0.1. Let A be a Weil algebra with p variables. For n-manifolds (n >

p + 2), the space of all natural operators T ' —• T ' T is a free finitely generated

module over C (S ), where S is a finite dimensional vector space depending canoni-

cally on A.

THEOREM 0.2. Let A be a Weil algebra with p variables. For n-manifolds (n ^

p + 3), the space of all natural operators T ' —* T ' T is a free finitely generated

module over C°°(S ), where S is a finite dimensional vector space depending canoni-

cally on A {the same as in Theorem 0.1).
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In the proofs of these theorems we construct explicitly the bases of these

C°°(S )-modules. The space S is defined in Section 1.

Problems of finding all some type natural operators has been studied by many

authors, cf. [1], [2], [3], [5]-[14]. Classifications of natural operators T ' —•

T ' T are useful in the cases: (a) (p, q) — (0,1) because of almost contact

structures; (b) {p> q) = (0,2) because of Riemannian and almost symplectic struc-

tures; (c) (p, q) = (1,1) because of almost tangent and almost complex structures;

(d) (p, q) = (0,0); (e) (p, q) — (1,0) because of vector fields. A classification in

the case (e) is given by I. Kolaf [5], Classifications in cases (d) and (e) are pre-

sented in [10] and [13] respectively. Hence this paper is a continuation of [5], [10],

[13]. A classification in the case (c) is unknown. A classification of all natural

operators T P'9 —> T P'Q TΛ for arbitrary p, qy p> q is unknown even in the case

TAM = M.

It will be interesting to obtain classifications of natural operators lifting some

other geometrical objects (for example, connections) to the bundles of ^-velocities.

In [14] we have solved the last problem in the case of foliations.

All manifolds and maps in this paper are assumed to be smooth, i.e. infinitely

differentiable. Manifolds are assumed to be finite dimensional and without bounda-

ries.

1. Main examples

Let C~(R ) be the algebra of all germs at 0 of maps R —> R. Let A S=

C~(R ) be a finite codimensional ideal (with respect to R). The factor algebra

A = C~(R )/A is called a Weil algebra with p variables.

Let M be a manifold. Two maps g, h : R*—• M, g(0) = h(0) = x, are called

to be A-equivalent if germo(<p ° g — φ ° h) e A for every φ : M —* R. Such an

equivalence class is denoted by j g and called an A-velocity on M. The set of all

^-velocities on M is denoted by T M. Then T M is a fibre bundle over M with

projection j g-+ g(0). Every chart ([/, φ) on M determines a chart φ on T M

over U given by φ(jΛg) = {j\φl • * ) , . . . , j\φn *)) €= A x X A = R*(dimU)).

Every / : M-+N is extended to TAf : TAM^ TAN defined by TAf(jAg) =jA(f°g).

Γ is a product preserving bundle functor from the category of all manifolds and

maps into the category of fibered manifolds and fibered maps, cf. [15], [6], [4].

Let J(Olflr)CM) be the C°°(M) -module of all tensor fields of type (0, a) on M.

Let A be as above. Let ΣΓ{°ta) (RP) be the CQ(RP) -module of all germs at 0 of

tensor fields of type (0,α) on R^. Let
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(1.1) QΛ = Jo° 1 )(R*)/(A^° 1 ) (R ί ) + C;(Rp)dA)

be the factor module, where AΣΓ^Λ)(RP) is the multiplication of ^'"(R") by A

and Co(Rp)dA is the submodule of ^'"(R") spanned by all df with f e A. Let

S A = ^ M ) (R*)/G45-; f t 2 ) (R') + (C;(RP)dA) ^ ° υ '

( L 2 ) + 5 ' i O l l ) (

be the factor module, where (C"(RP)dA) ® ^Ό*'1 (R*) is the submodule in

^"'^(R*) generated by all germ,,^ ® ω2) with germ,,^) e C~(R*)dA and

germo(ω2) e ^ " ' ' ( R * ) . Of course, QA and S'1 are finite dimensional vector

spaces over R. Given ω e ^ (R*) the equivalence class of germ0 ω modulo

ASΓ^iR") + Co(R")dA is denoted by [ω]A. Given τ e J (0>2>(R*) the equiva-

lence class of germor modulo ^°" 2 > (R*) + CΪQfidA) Θ J Γ ' Φ * ) +

^ O ' " ( R ' ) ® (C0"(R')d|) is denoted by [[τ]]A.

For example in the case A = C"(R)/O ), where t is the usual coordinate
on R and Q ) is the ideal in C~ (R) generated by the germ at 0 of t , we have

QA = (y>"-iτ<°.i>)oR = {jr-iω . ω e ^ - " - " ( R ) } a n d [ ω ] χ = ; o

r - 1

ω for any ω

e y l u ' ( E ) . For, dtr+1= (r+l)trdt, and hence tt'"1) ^ 0 > 1 ) (R) + C0"(R)d

<f+1> = α 1 " ) ^ " ® ) . Similarly, 5Λ = (Γ~V° 2 ))0R and [[r]]Λ = H~\ for any

reΓ(R).
In the case A — C~(R )/((t),(/)), where ί , t are the usual coordinates

on R2 and ((t1)2, (t2)2} is the ideal in C0°°(R
2) generated by the germs at 0 of

(t ) and (ί ) , we can compute the dimension of Q as follows. The module <(ί) ,

(*2)2>2C'υ(R2) is generated over C0°°(R
2) by the germs at 0 of (tYdt1, (tVdt2,

(tΎdt1 and (£2)2rfί2. Furthermore, diit'Ϋf) = 2ft'dt' + (t'fdf for any i = 1,2

and any / : R 2 - R . Thus the module <(tV, (.?)*>?"Λ)(R1) + C"(R2)d<(tY,

(t) ) is generated over Co (R ) by the germs at 0 of t dt , (t) dt , (t) dt ,

t dt . Hence the classes [dt ]A, [dt ]A, [t dt ]A and [t dt ]A form a basis over R

in QA. Similarly, the classes [[dt1 ® dt1]]^ [[dt1 ®dt*l]Λ, [[dt2 ® Λ 1 ] ] ^

[W/2 (8) Λ2]]^, [[ ί 1 ^ 2 (8) Λ 2]]A and [[f2^1 ® dtι]]A form a basis over R in SΛ.

Analogously, if A = Cζ(RP)/m2

Q, where m0 is the maximal ideal, then the

classes [dt(]A, [tJdtk] = j [tJdtk - tkdtJ]A, i = 1,..., p, 1 <j < k < p, form a

basis of QΛ and the classes [[Λ1 ® rf^]]^, [[ί*Λ* Θ d ί 1 ] A , i, = 1,..., p,

l<k<q<s<p, form a basis of S .

It is difficult to find explicit descriptions for Q and 5 with/) > 1.

Given a tensor field τ ^ ZΓ ' (M) of type (0,2) on M we define τs e
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by

(1.3) <τs, u®tu) = <r, w®u)y (u, w) e TM *MTM.

The linear isomorphism ^ ' ^ ( R * ) ^ τ—> τs ^ ?Γ(0'2) (RP) induces a linear iso-

morphism

(1.4) JA:S
A->SA, .

Let T ̂  ?Γ ' (M) be a tensor field of type (0,2) on M. We present some ex-

amples of tensor fields of types (0,1) and (0,2) on T M induced by r.

EXAMPLE 1.1. Let φ e (SΛ)* be a functional on SΛ. Define

r w : Γ * M - R τlφ](jAr) = ψ(l[r*τ]]A)

for any 7 : R^ —• M, where 7 τ is the pull-back of τ with respect to 7.

If η : R*—• M i s another map such that jAγ = jAη, then [[7*r]] A = [[7?*r]]A.

To see this one can assume that M = Rw and 17(0) = 7(0) = 0. Let r = a^dx* 0

dx ;, 17 = (771,..., r?w) and 7 = ( 7 1 , . . . , 7"). Then germo(r/ — 7O e A and

germo(α ί 7°7 — a^r}) ^ A for any ί, y = 1, . . . , n. Then

germo(7*r — ry*τ) = germo((aίj°γ — aίj°η)dγt ®dγ} + a

i γ i - 7/))

as well. Therefore r is well-defined. One can easily show that this is smooth.

Define τ = d\τ ) ^ Ό {T M). We observe that {τ ) — τ ,

where ( ) is described in (1.3) and JA is defined in (1.4).

EXAMPLE 1.2. Let φ e (Q A )* be a functional on ζT4. Define τ< Φ > 1 : TTAM~+

R as follows.

Let A = C;(RP x R)/04, (02> = (C0°°(R')/A) ® (C0~(R)/<ω2>) be the

factor algebra, where ί1,. . . , ^ , ^ are the usual coordinates on R^ X R and <CA,

(t)2> is the ideal in C~(RP x R) generated by the germ of (/)2 at 0 and all f{t\

. . . , t ) with / G A We identify T M with ΓT M by a canonical isomorphism,

Λ - ^ |p = 00VP). where γ :RP x R^ M, γ. .R" ^ M, γp ^ γ(-, p), p & R.

Let D = / r e ΓT^M, where γ RP x R-»M. Then A e J <0'2) (R* x R) .

Using the contraction C\, C\{Θ®w) = Θ(w,.), we have
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(R* x R). Then using i:RP^RP x R, i(x) = (x, 0), we get *

e ^ ' " ( R * ) . We put r V l ( V ) = 9(\i*(cl(r*T <8> | ) ) ] J .

If 17 : R^ x R—• M is another map such that jΛγ = jΛη, then I ί*( C^ί 7* τ ®

~d/7/ = M C I I 7 ? * 2 * ®"a7// ^ o r ' by t n e reasoning as in Example 1.1 with AM I I a7//

instead of A we have

germo(r*r- rj*r) e ^ M ) ( R * x R) + (C0"(R* x R)di) toST^CR* x R)

+ ^ 0 4 ) ( R ' x R) (8) (CΓ(R* x R)Λ|)

C Λ J Γ 2 > ( R ' X R) + (ί)2^0>2)(R* x R)

+ (C0"(R* x R)^)0^o°' 1 )(R ί x R) + tdt<S>SΓ^(Rp x R)

+ ^ " ( R * x R) ® (C^ίR* x R ) ^ ) + t^M(RP x R) ®dt,

where the germs of / and dt at 0 are also denoted by / and dt.

Then

germo(c i

1((r*r- η*τ) ®~)) e ^ J ) ( R ' X R) + (t)XΛ)(Rp x R)

+ t3r™(R* x R) + C0"(R* x R)dA + tC"(Rp x R)Λ

because any element from Λ is independent of t. Hence

germo( ί*(c i

1((r*r - η*τ) Θ ^ )

as well. Therefore r ^ x is well-defined. One can easily show that this is smooth. If

we consider av instead of υ then av = ^(yit1,. . . , tP, at)), where v = jAγ. Thus

aτ φ 1(v) — T φ 1(av). Therefore τ φ 1 is linear on each fiber over T M in view of

the homogeneous function theorem. Hence r ** 1 €= ΣΓ (T M).

Let τ<φ>2 = (τs)<Ψ>\ where τ s e J ( 0 ' 2 ) (M) is given by (1.3).

EXAMPLE 1.3. Let >ί e Λ* be a functional on A. Let r : Γ M x M Γ M - ^ R b e

the tensor field. Let / : TT M—• T TM be the canonical isomorphism given by

Define rO > 1 = λ>TAτ (J x i) : ΓΓ^M x TΛM TTAM^ R. Γ O > 1 is a tensor field of
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type (0,2) on TAM called the Λ-lift of τ to TAM, cf. [4].

Let τ 2 = (τ5) \ where ( ) is given by (1.3). We observe that r 2 =

2. Natural operators T —> T ' T and T —> T ' T

It is well-known that the concept of geometrical constructions can be formu-

lated in the form of natural operators, cf. [6],

EXAMPLE 2.1. Let n be a fixed natural number. Let A be a fixed Weil algeb-

ra. Let φ €= (S ) . The family B of functions

BJ : J (M) —* 3ί (Γ M), BM (r) = r ,

for any w-manifold M, where τ 0 is described in Example 1.1, is a natural oper-

ator T ' —• T ' T for w-manifolds. For, if / : M—+N is an embedding of two

w-manifolds and τ ^ OΓ ' (N) is a tensor field of type (0,2) on N, then

*̂Λf v r^ = ^ // -̂ iv ' r ^ Foremore, BM is regular, i.e. it transforms smooth-

ly parametrized families of tensor fields into smoothly parametrized families.

EXAMPLE 2.2. Let n, A be as above. Let φ ^ (Q ) . For a = 1,2 the family

B φ a of functions

for any w-manifold M, where τ φ a is described in Example 1.2, is a natural oper-

ator T —> T ' T for w-manifolds.

EXAMPLE 2.3. Let n, A be as above. Let λ ^ A . For a = 1,2 the family

C α of functions

M : ΣΓ (M)—* ΣΓ (T M), CM (τ) — τ ,

for any w-manifold M, where r α is described in Example 1.3, is a natural oper-

ator T —+ T ' T for w-manifolds.

EXAMPLE 2.4. Let B,B: T(0>2) —• Ti0>1)TA be natural operators for

w-manifolds. Then the families B ® B and dB of functions

(ίίβ)„ : J < 0 ' 2 ) (M) - SΓ(0 2 ) (T A M), (dB)M(τ) = d(BM(τ)),
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for any n-manifold M, are natural operators T ' —> T °' T for w-manifolds.

3. The main result

Let n be a fixed natural number and A = C™(RP)/A be a fixed Weil algebra.
ΛTΛ, r ΛΛ i . ^ ( 0 , 2 ) Λri(0,l) rj^A , ^ ( 0 , 2 ) rjΛ (0,2) rryA, ~

The set of all natural operators I —* 1 I (or I —• i i ) for

n-manifolds is a C°°(S )-module, where 5 is defined in (1.2). Actually, for any
D n rp(0,2) rp (0,1) rpA , τ-> n ^,(0,2) rp(0,2)rpA, , r <— /^°° f OA\ 4-U 4-

B , G : 7 —* i Γ ( o r B , C : 7 - ^ 7 / ) a n d f , g ^ L ( 6 ) t h e n a t u -
, , /•?-> i SΛ ™(0,2) φ(0,l) τ*A / / τ-» i SΛ rn(0,2) m(0,2) ^A, . ,

ral operator fB + gC:T —• T Γ (or / β + #C : Γ —> T T ) is de-

fined by

for any n-manifold M, τ ^ 3~ 0>2)(M) and γ :KP~^ M. We showed in Example

1.1 that [[7*!"]]^ depends o n / j .

In particular, the set of all natural operators T ' —• T ' T (or the set of

all natural operators T —* T T ) for n-manifolds is a vector space over R,

provided all real numbers are considered as constant functions on S . The set of

all linear natural operators T ' —• T ' T (or the set of all linear natural oper-

ators T —* T ' T ) for w-manifolds is a vector subspace in this vector space.

The main result of this paper is formulated in the following two theorems cor-

responding to Theorems 0.1 and 0.2.

THEOREM 3.1. Let n be a fixed natural number and A = Cζ(R )/A be a fixed

Weil algebra. Let φlf. . ., φs be a basis of the vector space (Q ) and φu . . . , 0, be a

basis of the vector space (S ) . If n > p + 2, then the natural operators

B Ψμ a, B Φp , μ = 1 , . . . , 5, a = 1,2, p = 1 , . . . , /

(described in Examples 2.1 and 2.2) form a basis of the C°°(S )-module (described

above) of all natural operators T —> T ' T for n-manifolds.

In particular, every natural operator T —• T ' T for n-manifolds is of finite

order, provided n > p + 2.

THEOREM 3.2. Let n be a fixed natural number and A — Cζ(RP)/A be a fixed

Weil algebra. Let φlt. . . , φs be a basis of the vector space (Q ) , φv . . . , φι be a

basis of the vector space (S ) and λlf. . . , λk be a basis of the vector space A . If

n ^ p + 3, then the natural operators
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(j = 1,. . ., A:, a, β — 1,2, pyπ = 1,. . ., I, μ, v — 1,. . ., 5 {described in Examples

2.1-2.4) /orm α 6α5Ϊ5 o/ ί/ιe C°°(S )-module {described above) of all natural operators
™(0,2) m (0,2) rr.Λ

i —• i i forn- manifolds.

In particular, every natural operator T —* T ' T for n-manifolds is of finite

order, provided n > p + 3.

In Section 1 we computed the dimensions of QA and SA for some A. If A =

C0"(R)/<f r + 1>, then Γ^M = Γ r M = {>0V : γ : R - * M}, QΛ = R r, SΛ = R r,

A = R r + 1 . If A = C C R ^ Λ C ί 1 ) 2 , (t2)2}, then T^M = TTM by / r - >

Λ I ("Λ I r(ί\ ̂ ) ) , ©A = R4, 5A = R6, A = R4. UA = C;(RP)/m2

0f then

Γ Λ M = T^M = {jlr :γ:Rp-+M},QA = RP+('\ SA = RP*+Φ, A = RP+\ Hence

we have the following Corollary of Theorems 3.1 and 3.2.

COROLLARY 3.1. (a) Let n ^ 3 and r >: 0. The module of all natural operators

-* 1 1 for n-manifolds is isomorphic to {C (K ) .

(b) Let n > 4 and r > 0. 77ι# module of all natural operators T —* T T

forn-manifolds is isomorphic to \C κii ))

(c) Let n > 4. 77i£ module of all natural operators T ' —• T (TT) /or

n-manifolds is isomorphic to (C°°(R6))14.

(d) L<?ί w > 5. T/ι̂  module of all natural operators T ' —• T (TT) for

n-manifolds is isomorphic to (C°°(R )) .

(e) Let n > p + 2. The module of all natural operators T °'2 —• T 0>1 TP for
•r ΛΛ - 1 - x /><>.oo/-r»/'2 + (3)\\2(/»2+(|))4-/>2+(§)

n-manifolds is isomorphic to (C (K ;
(f) L ί̂ n > p + 3. The module of all natural operators T —• T 7\ /or

./• »J ^/ x / ^ ~ / - D i > 2 + (f)\\(2(i)+(?))+/)2 + (§))2+2(/> + l4-/) + (?))

n- manifolds is isomorphic to (C (R )) .

Let us remark that B α, B , C a, dB a are linear natural operators.

Hence from Theorems 3.1 and 3.2 it follows the following fact.

COROLLARY 3.2. Let n be a fixed natural number and A = C~(R )/A be a fixed

Weil algebra. Let <plf. . ., ψs be a basis of the vector space (Q ) , φίt. . ., φι be the

basis of the vector space (S ) and λlt...,λkbea basis of the vector space A

(a) If n> p + 2, then the linear natural operators B u α, B p , μ = 1,. . ., 5,

α = l , 2 , p = l , . . . , / , form a basis {over R) of the vector space of all linear natural
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^ ( 0 , 2 ) v rp, (0,1) rjΛA r r i 1

operators I —> I 1 forn- manifolds.

(b) If n>p + 3, then the linear natural operators C ° σ > α , dB<<Pu>a, μ=l,...fs,

a = 1,2, p = 1 , . . ., k, form a basis (over R ) of the vector space of all linear natural

operators I ~+ I I forn-manifolds.

Proof of Corollary 3.2. Let B : Γ ( 0 ' 2 ) -> Tm)TA (or B : TW) - + t°'2)TA) be a

linear natural operator. Then B is a linear combination of the natural operators

presented in Theorem 3.1 (or in Theorem 3.2) with the uniquely determined

coefficients from C°°(S ). Since B is linear, the coefficients are constant (or the

coefficients corresponding to C λσ a, dB Ψu a are constant and the other ones are

zero). For, since B is linear, the coefficients are homogeneous of some weights (0

or — 1), and next we use the homogeneous function theorem, cf. [6]. CH

As a consequence of Corollary 3.2 and Theorems 3.1 and 3.2 we obtain

COROLLARY 3.3. Let n be a fixed natural number and A = CQ(RP)/A be a fixed

Weil algebra. Let Bv . . . , Bs be a basis (over R) of the vector space of all linear natu-

ral operators T •—• T T for n-manifolds. Let Cv . . ., CQ be a basis (over R) of

the vector space of all linear natural operators T ' —• T ' T for n-manifolds.

(a) // n > p + 2, then the natural operators Blf..., Bs form a basis of the

C°°(S ) -module of all natural operators T —• T ' T for n-manifolds.

(b) If n> p + 3, then the natural operators Cp, Bv ® Bβ, p = 1 , . . . , Q, v, μ

— 1 , . . . , S, form a basis of the C°°(S )-module of all natural operators T ' —•

T ' T forn-manifolds.

The proofs of Theorems 3.1 and 3.2 are given in Sections 4 and 5.

The purpose of the rest of this section is to explain Theorems 3.1 and 3.2 in

the case TrM. We do not use this explanation in the proofs of Theorems 3.1 and

3.2.

EXAMPLE 3.1. Let v = 0 , l , . . . , r. Given / : M—• R one can define / ( v ) :

TrM-+R by f(u)(jr

or) = - ^ Z / ( / ° γ)(0). Given a vector field X on M there

exists one and only one vector field X v on TrM such that X(v)f u = (Xf) v+u~r

for any / : Λf—>R and μ = 0,. . .,r (f(u) '-= 0, if μ < 0 or μ > r). Given a

1-form ω on M we denote the v-lift of ω to TrM in the sense of A. Morimoto [16]
iV) rΓΛ / (V) T7-(j«)\ / T Λ (P + U — r) - r A Λ Λ7- %JT 1

by ω . Then \ω , X ) — \ω, X) for any vector field X on M and μ =
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, 1 , . . . , r. The correspondence ω—*ω is a natural operator 1 —• i 7 .

For any tensor field r of type (0,2) on M we denote the v-lift of τ to T AT in

the sense of [16] by τ . Then \r , X (& Y ) = \τ, X (&) Y) for any

vector fields X, Y on M and any μ, p = 0 , . . . , r. The correspondence Cv : T

Γ
(0,2) rryT (U) . , . , . τ . T^(V) rπ(0,2) rry(Q,2) rryV -

1 , r—• r , is a linear natural operator. Let D : 1 —+ 1 1 be a

linear natural operator given by Z)^ (r) = CM (r ), where ( ) is defined by

(1.3).

EXAMPLE 3.2. Let σ-0 r—\ and a — 0,1,2. Let πM:TM^>M

denotes the tangent bundle projection. Let r ^ J ' (M). Define τ

e J m\TM) by: r<<0>) = rfr , where r : Γ M ^ R, τ(») = < r , ^ » > ; <r< α ) >,

M> - <r, (π Γ J f («)) ® (TπM(u))>, u e ΓΓM; <r<<2)), M> = <r, (TTTM(M)) ®

(jrΓ l f(«))>, u e ΓΓM. We put r ( σ Λ ) = i*((r ( ( β ) ) ) < σ > ) e J l w ) ( f i l ί ) , where ; M :

TrM—> Tr TM is the canonical embedding given by Jo7~~* j o

r [t~* ~J~\ ΐ(t +
\ flΐ lr=0

r)J and ( Γ

u β ; ; ) denotes the σ-lift of τ " e TU'L)(TM) to f ' T J I f described in

Example 3.1. It is clear that for α = 0,1,2 and o = 0 , . . . , r — 1 the correspond-
^ ίσ.α) ^.(0,2) rriiO.D^r^r (σ,α) , . t ^ ^ ,

ence B : 1 —> i i , r—^ r is a linear natural operator. By Example
o ^ i i i < jr>(σ,α) ^τ.(0,2) ^ , ( 0 , 2 ) ^ . ^

2.4 we have a linear natural operator dB : I —* 1 7 .

LEMMA 3.1. (a) // n ^ 2, ί/î n ί/ι# linear natural operators B ' , σ = 0 , . . . ,

r — 1, α = 0,1,2, are linearly independent in the vector space of all linear natural

operators 1 —• i i for n-manifolds.

(b) Ifn> 3, ί/ι̂ n ̂  linear natural operators C > D y dB ' , v = 0 , . . . , r,

σ = 0 , . . . , r — 1, α ^ 1 1,2, are linearly independent in the vector space of all linear

natural operators 1 —* 1 1 for n-manxfolds.

Proof of Lemma 3.1. Let x , . . . , χn be the usual coordinates on Rw and let

9 . Denote the induced coordinates on ΓRW = Rw x Rw by α: , . . . , .r", υ9 W

dx

— dx , . . . , υn = dχn. Let e = jl(t, 0 , . . . , 0) ^ ΓOΊRW, where t is the usual coor-

dinate on R. We use the notations of Examples 3.1 and 3.2. Of course, jKn(e) =

jl~l(t, 0 , . . . , 0,1,0,..., 0), 1 in n + 1-position.

ad(a) Consider τ = χng(χ1)dχ1 ®dχι +f(χι)dχι ®dχn + h(χι)dχn®dχ1

^ fΓ ' (Rw), where / , g, h:R—^ R. In the induced coordinates, τ —

χng(x )(v Ϋ + fix )v vn + hix )vnv and dn = "̂ ~̂ "» where X is the complete

lift of X to TM (defined by the lift of flows). Hence <r ( ( 0 ) ), 9W

C> = d°nτ =
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g(χι)(v1)2. Therefore

(σ,0)/ \ ~(r) / \ \ // ((O)K(σ) ,~C\(

Kn (τ), dn (e)> = <(r ) , (9n)
g(3.1) , ((0)) -jC\(σ)/. / xx 1 d g . v

= <^ > ^ > OR-W) = ^ f - — 7 ( 0 ) .

By the definitions of τ we have \τ , σn) = fix )v and <r , 9W> =

: )# . Then

(3.2) < 5 R , ' ( r , 9
' dt ' dt

The case (a) is a simple consequence of formulas (3.1) and (3.2).

ad(b) Consider

τ = f(xι)dxn~ι ® dxn + g(xι)dxn <g> d ^ " 1

+ Λ(J: ) (xwrfx Θ d^w~ ~ xw~ dx 0 d,rw)

ί^""1 ® dx1 - xn~1dxn ® rf^r1).

_ , / «1» ^C\ r / K M-l , / 1\ «-l 1 / (d» ~.C \ i \\ n i i / K n 1

Then <r , dn> = f(z )v — h(x )x υ , <r , 9M_!> = ^ ( J : )t; + «(x )x v .

Since 9M is equal to the complete lift of dn to T R and ./M : T Λf —* Γ TM is a

natural transformation, then TjR«°dn

r — (dn)
 r~ °jR». Therefore

<(dB(σΛ))RΛτ), (d^(

dC\ x (σ) /ΛC\(y-l)// ((1)) ^C

R.(e)) = - Λ — ( 0 ) .

Similarly,

9 ' ' f r ( 0 ) >

Foremore

V2'

The case (b) is proved. •
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Using Corollary 3.2, Lemma 3.1 and the dimension argument we deduce that

the operators of Lemma 3.1(a) and Lemma 3.1(b) form the bases of the vector
r ii i , i j *fi(0,2) rπ(0,V rryX , /-r̂  (0,2) rry (0,2) rjyY

spaces of all linear natural operators I —• i 1 and I —• I 1 re-

spectively. Hence we have the following consequence of Corollary 3.3.

COROLLARY 3.4. (a) Let n > 3 and r > 0 be fixed integers. Let B : T ' —*

T ' T be a natural operator for n-manifolds. Then there exist the uniquely deter-

mined smooth maps fσa : (J T ' )0R = R —• R, <τ = 0, . . . , r — 1, α = 0,1,2

such that

BM(τ)(jr

oγ) = Σ ΣV T O 0 ;~1(7*r)
a=0 σ=0

for any n-manifold M, any τ ̂  *J (M) and any γ : R—• M, where τ σ'a is de-

scribed in Example 3.2. If B is linear, then the maps fσa are constant.

(b) Let n > 4 and r > 0 be fixed integers. Let B : T —• T ' T be a natural

operator for n-manifolds. Then there exist the uniquely determined smooth maps fVJ gu,

he, Hσ-σfβ:(Jr-ιTm))0R = Rr^R, σ, σ = 0, . . . , r - 1, v = 0,. . . , r, a =

1,2, β, β = 0,1,2 such that

Bκiτ)(jr

or) =

+

+

ny n-manifold

2

Σ
α = l <

r

y=0

2

Σ

M,

r - 1

Σ Λ
7=0

Wo"1*

r-1

Σ i
) σ,σ=0

any ?

O'o ^ r * ^ ) ) ^

.r""τ))τ{v){jr

oj\

-T — —(i (Ύ Ί
x(J(7ββ\J0 W ι

•ey°'2)(iW)

• < σ > a > ( ; ' o r )

) ~~Γ" / ] P" w \Ύ T)) \T ) \1 Ύ)

:))(τ(σ'β) ®τ^~β))(jlγ)

and any y : R —• M, w / i ^ r ' i5 <î -

scribed in Example 3.2 and T v , (r ) are described in Example 3.1.

Remark. A classification of all first order natural operators T ' —> T ' Tίf

where 7\ M — Jo (R , M), has been studied by M. Doupovec and J. Kurek [1].

4. A preparatory proposition

We shall be proving Theorems 3.1 and 3.2 simultaneously. Parentheses will

deal with Theorem 3.2. In the proofs of Theorems 3.1 and 3.2 we shall use some

technical facts proved in this section.

From now on for a = 1,2 the C°°(S )-module of all natural operators T

—• T >a T for n-manifolds is denoted by 2Γ(A, n, a).
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Let xι

9. . ., χn be the usual coordinates on Rw, tι,. . . ,tp be the usual coordi-

nates on R , n > p. Let 9, = r, i = 1,. . ., n, be the canonical vector fields on

R". Let d x

(4.1) e:=jA(t\...,tp,0 0 ) e Γ D V .

Given a natural operator β e <T{A, n, 1) (or β e ^04., M, 2)) we define ΦB

(4.2) ΦB(r) : = <(BRΛτ))(e), TAdn(e)> (or

(4.2)' ΦB(χ) : = ^ ^

where Γ Z i s the complete lift of a vector field X on M to Γ M. If #>, is the flow

of X, then Γ V is the flow of TAX.

We start with the proof of the following lemma.

LEMMA 4.1. Let ί , C e J(Af n, 1), n > p + 1 (or B, C e ^"(A, w, 2), w

> £ + 2). // Φ β = Φc, then B = C.

Proof of Lemma 4.1. It is well-known (see Example 1.2) that 7T M = T M,

where i = A ® (C0°°(R)/<U)2» = C0°°(R' X R)/<A, (ί)2>, where ί1,. j , ^ , ^are

the usual coordinates on R x R. Similarly, TT M x ΓAM TT M = T M, where

A = C"(RP x R2)/C4, (/)2, W, α)2>, where t1,..., t\ t, t are the usual coordin-

ates on R x R . (Coordinates t ,. . ., t on R we identify (in obvious way) with

the coordinates t\..., tP on R* x R or on R* x_R2). Of course, TAdn(e) =jA(t\...y

tp, 0,.. ., 0, t) (or ( Γ ^ ω , Γ A 3 » ) = ; J ( Λ . .., tp, 0fJ .., 0, t, δ). If n >
£ + 1 (or w > p + 2), then by the rank theorem the orbit of jA(t\ .' . ., tP, 0,. . ., 0,

0 (or of jA(tι

y . . . , tP, 0, . . . , 0, t, I)) with respect to lifted diffeomorphisms is

dense in (TT )ORW (or in ((TT )ORW) χ

 TAR»((TT ) 0 R W ) ) . Using the assumption

and the invariancy of B and C we deduce that ( β R M ( r ) , v) = (CRn(τ), v) (or

CBRW(r), y ® w ) = <CR .(r), v®w>) for any r e *Γi0f2)(Rn) and any t; (or (v, w))

from some dense subset in (TTA)0R
n (or in ((TTA)QRn) X ^ R W ((ΓΓ Λ ) 0 R M ))

Then BRn(τ) = CRM(r) over 0 for any r ^ ^ (Rw). Using the invariancy of B

and C with respect to charts we get that BM(τ) = CM(τ) for any M and any
(02) D

LEMMA 4.2. Lei β , C e 5"(A, w, 1), n > p + 1 (or B, C e 2Γ(A, w, 2), w

> + 2). // Φβ(r) = Φ c(r) /or any τ e ^ ^ ( R 1 1 ) o/ ί^ /orm
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(4.3) τ = q*τQ + xnq*τι + (# *ω0) ® dxn + dxn ® (q*a>d {or

τ = q τ0 + x q τγ + .r # τ2 + j ; JJ # τ3 + (# ω0) OS) dx

+ <ίrw ® ( ί * ω i ) + (q*ω2) ® Λc*"1 + dxn~ι ® (^*ω3)

(4 3 ) ' + **Vω 4 ) ® d / " 1 + x 1 1 " 1 ^ ^ ) ® dx* + xndxn~ι ® (^*

+ ^ " ' Λ F 1 1 ® (^*ω7) +fQ(x\...,x*)dxn~ι

where τ0, τx ^ 3~ ' (R ), Q)o, ω1 ^ OΓ ' (R ) (or τ 0 , . . . , τ3 ^ tT ' (R ), α>0,. . . ,

tw = R^ X RnP -^ RP is the projection,ω7 €

(4.4)

- u v-tv ) , y0 ,

B = C.

Proo/ 0/ Lemma

f.

4 .2. Let

R)

τ

and ί

>r-i

ιj=l

x ®dχj

be an arbitrary tensor field of type (0,2) on Rw. By Lemma 4.1 it is sufficient to

show that ΦB(τ) = Φc(τ)

By the corollary of the non-linear Peetre theorem by Slovak, cf. Corollary

19.8 in [6], there is a natural number s = s(τ) such that ΦB(ϊ) = ΦB(τ) and

Φc(τ) — ΦcW f° r a n y T ^ ^ ' (Rw with ioΓ = i o r Hence we can assume that

fit are polynomials in x , . . . , χn of degree ^ s. Then we can write

(4.5) fti= Σ aiiax
a, α = ( α 1 , . . . ) α B ) e ( N U { 0 } ) " .

\a\<,s

Let us denote the restriction of ΦB to the finite dimensional vector space of

all tensor fields type (0,2) on Rn of the form (4.4) with f{j of the form (4.5) by ΦB.

Since B is regular, ΦB is smooth with respect to the aija.

For any ap+1,..., an G R — {0} the diffeomorphίsm η = (x1",..., x^,

/̂»+i ^ >•••, ^n 3^ ) t R —̂  R preserves β and sends dn into αw9n (or 9w_i, 9W

into dn-ιdn_lf dndn). Using the invariancy of B with respect to 7] we deduce that

anΦ
s

B(τ) = Φ*(A) (or an_ιanΦ
s

B{τ) = Φj(A)) .

Let A = A , + A « n + * * * (or A = £ 0 + Exan + ^ α ^ , + Ezan_xan + • • • ) ,

where Do, ^ (or 2?0, £ x , £ 2 , £ 3 are independent of ap+v . . ., an and the dots de-

note the linear combination of monomials in ap+1,. . ., an other than 1, an (or 1,

an> an-v <*n-i<*J w i t h coefficients from <5 r (0(2)(Rw). Let τ = Do + D1 (or f = Eo +

Eι~\- E2~^ E3). Then by the homogeneous function theorem, cf. [6], ΦB(τ) =
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ΦB(τ), and similarly for C.

It is easy to see that τ is of the form (4.3) (or (4.3)'). Then using the assump-

tion of the lemma we obtain ΦB{τ) = ΦB(τ) = Φc(τ) = Φ c (τ) . D

L E M M A 4 . 3 . Let B e ΣΓ(A, n y ϊ ) y n > p + 2 {or B e ^ ( A , n y 2 ) y n > p +

3). Givew ί e R « « /ntf <P, = Or1, . . . , # * , * r ί + \ ^ + 2 , . . . , x") : R n - > Rn. Lei p e

5 r ( 0 > 2 )(Rw) fe* such that φ*p = 0. Tten Φβ(τ) = Φ β (τ + p) for any τ e 5 r ( 0 > 2 )(Rw).

Proof of Lemma 4.3. We see that for / =£ 0 the diffeomorphism <p, preserves e

and 9W (or e, dn_v dn). Using the invariancy of B with respect to φt, t Φ 0, we

obtain ΦB(z) - ΦB(φfτ). If t~> 0, then Φ 5 (r) = ΦB(φ*τ). Since ^*p = 0, then

(^)*(r + p) = φtτ. Hence ΦB(r) = ΦB(φ%τ) = Φ β ( ^ * ( r + p)) = Φ 5 ( τ + p). Π

LEMMA 4.4. Let B , C e ^ (A, n,2), n>p + 3. If ΦB{τ) = Φ c (r) /or any

r G ί Γ (R ) of the form

τ = ^ τ0 + x q τx Λ- x q τ2 + \q ω0) v9 ax

+ dxn ® (?*ω:) + (^*ω2) ® dxw - 1 + dχn~ι ® (g*ω3)

(4.6) + ^w(^*ω4) ® rfr11'1 - xn~\q*ωϊ ® Jχw

+ x ax 09 (^ ω5) — x ax 09 {q ω5)

+ fo(x1,...,xp)dxn~1®dxn+f1(x\...,xp)dxn®dxn~1

where r0, r l f r 2 e ^ ^ ( R * ) , ω 0, . . . , ω 5 e ^ - ^ " ( R * ) , /0, Λ : R* ^> R and q : Rw

= R^ X Rn~P -* R^ i5 ffo projection, then B = C.

Proof of Lemma 4.4. Let r 0 , . . ., r 3 e ^ ( 0 ' 2 > (R*), ω 0 , . . ., ω 7 e 5 r (0>1) (R*) and

/0, Λ : R —• R. Let τ be given by (4.3)'. By Lemma 4.2 it is sufficient to show that

ΦB(τ) = Φ c ( r ) .

Let r be given by (4.6) with r0, τ^ τ2, ω 0, ω x , ω 2, ω 3, /0, fx as above and with

ύ)A — co5 O)6 — co7

P and p playing the role of ω 4 and ω5 respectively. Then by the

assumption, ΦB(τ) = Φ c ( r ) .

The diffeomorphism p = (x , . . . , x , x + x x , x , . . . , x : R —*

R κ preserves (Ί^d^ίe), TAdn(e)) = jχ(t\ . . . , tP, 0 , . . . , 0, ί, δ , where A =

C ( R ' x R2)/<A, ω2, tt, (tγ>.

^ /O)5 H~ O)Λ * ( Q)Ί ~\- CϋΛ

Let a/ — q ( p ) and ω" — q I p ). Using Lemma 4.3 with p =

xP+1q*τ3 + ω' 0 dx^4^1 + dxP+1 0 ωr/ and the invariancy of B with respect to β
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we have

xP+1q*τ3 + ω' <g> dxp+ι + dxp+1 ® ω")τ3

p+1dxp+1 + dx ί + 1 ® ω"))

= ΦB(τ + xP+1q*τ3 + α/

+ xM~ιxnq*τ3 + x V ® ίte""1 + r "~V <g> ώ *

x dx ®ω+x dx ® ω)

= ΦB{τ + χn~ιχnq*τ3 + χnωr ® dχw" x + xn'ιω' ® dχM

+ xwdxw - 1 ® ωΛ/ + / " V / " 1 (8) α/0 = ΦB(f)

and similarly for C. Hence ΦB(f) — Φc(f), as well. EH

LEMMA 4.5. LetB^SΓ(A9 n,l),n>p + 2 (orB^2Γ(Af ny 2), n>p + 3).

Suppose that τ0, τv r 0 , r x ^ 5" °'2 (R*), ω0, ω x, ώ 0 , ώi e ^ ^ " ( R * ) (or τ0, τ l f r2,

τ 0, τ l f τ 2 e ^ ( 0 ' 2 ) ( R ^ ) , ω 0 , . . ., ω5, ώ 0 , . . ., ά>5 e ^ " ( R * ) , /O, Λ, 7O, Λ : R ^

R) αr^ 5wc/ι. that:

llτa]]A = ί[τa]]A fora = 0,1 and [ωβ]A = [ώβ]A for β = 0,1

(or[[τa]]A= [[τa]]Afora = 0,1,2, [ ω ^ = [ώ^/orjS = 0,..., 5,

and jΛfr = jAfr for γ = 0,1).

Let τ be equal to the right side of (4.3) {or (4.6)) and τ be equal to the right side of

(4.3) (or (4.6)) with r 0 , . . . r#/αced byτ0,.... Then ΦB(z) = ΦB(f).

Proof of Lemma 4.5. Let τ be as in (4.3) (or 4.3/). Let F : R* —> J? be a map

in j ; 1 , . . ., xP and r̂  R ^ R b e a map in x\ . . ., ar* such that

t )) ^ A. Reminding the definitions of [[ .]]A, [ .]A and 7 ( .) (see Section 1)

and using Lemma 4.4 it is sufficient to show that

ΦB(τ) = ΦB(τ + FX°XιX2dXz <g)dX4),

where X\ X\ X\ X\ X4 e (1, η(χ\.. ., χ*)9 x\..., x\ χn) (or X\ X\ X\

X\ Z 4 e {1, ^ ( x 1 , . . . , ^ ) , ^ 1 , . . . , ^ , χw-\ χn})andcardaa:Xa= η}) = 1.

We put X** = x if J ί α = η and A* — Xa otherwise. The diffeomorphism β
/I P P+l 1 / 1 /»\ P+2 n\ , ^ / ^

= (J: , . . . ,x , x + 7 7 ( x , . . . , J 7 ) , x , . . . , ^ ) preserves 0 and αw (or ^, on_ι

and 9W). Then using Lemma 4.3 with p — FX X X dX ® dXΓ and the invariancy

of B with respect to β we have

φB(f) = φB(f + FΐfxΎdJfdT) = ΦB(β*(τ +
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= ΦB{τ + FX°X1X2dX>dX4 + FX°XιX2dX3dX*)

= ΦB(τ + FX^'x'dX^X4),

as well. CH

From Lemmas 4.2, 4.4 and 4.5 we obtain

PROPOSITION 4.1. Let A=Co<RP)/A. be a fixed Weil algebra. Let n^p + 2

(orn>p + 3) be a fixed natural number. For any B e J M , » , l ) {or B e SΓ(A, n, 2))

define GB: (SΛ)2 X (QΛ)2 = S* X SΛ X QA X QA - » R (or G 5 : (tf 1 ) 3 X (Q Λ ) 5 X

JXfA) = ΦB(τ)),

where f is given by (4.3) (or τ is given by (4.6)). Then the function

G : SΓ(A, n, 1) - C°°((SΎ x ( 0 x ) 2 ) , G(fl) = G β

(or G : ?(A, n, 2) — C"((SA)3 x ((?Λ) 5 x ( Γ Λ R ) 2 ) , GCB) = GB)

is α monomorphism of C (S )-nwdules, provided the C (S )-module structure in

C~«SA)2 x (QA)2) (or in C~«SA)3 x (QA)5 x (T^R) 2)) i* ^ . n ^ U/)(α 0 , α l f

b0, bλ) = λ(ao)f(ao, av b0, bj (or (λf)(a0,..., a2, b0,..., b5, c0, cx) = /i(α0)

/ ( α 0 , . . . , α2, 6 0 , . . . , 6β, c0, cj), where λ e C T O ( S ^ ) , / e C°°((S^)2 x (Q^)2)

(or / e CT O((5A) 3 x (QAΫ x (Γ A R) 2 )) and (a0, β l , 60, ft^ e (SA)2 x (Q^)2 (or

(a0, *!, fl2, 6 0 , . . . , 65, c0, cx) e (S^) 3 x (Q^)5 x (Γ A R) 2 ) .

Pooo/. By Lemma 4.5, GB is well-defined. From Lemma 4.2 (or Lemma 4.4) it

follows that G is injective. Reminding the definitions of the module structures it is

easy to verify that G is a homomorphism of C°°(S )-modules Π

5. Proof of Theorems 3.1 and 3.2

Let B e <?(A9 ny 1) (or β e J ( A , «, 2)). From the invariancy of B with re-

spect to (x ,. . ., χn~ , fcrM) preserving e and sending 9W into tdn (or with respect

to (x , . . . , χn , t r w ~ , £rn) preserving e and sending dn_v dn into i9w_i, ί9Λ) it

follows that

tGB(a0, av b0, bj — GB(a0, tav tb0, tbj

(or ttGB(a0, av a2, bOf..., b5, c0, cx)
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= GB(a0, talf ta2, tb0, tbv tb2, tb3, ttb4, ttb5, ttc0, ttc^)

for any (a0, av b0, bj e (SA)2 x (QΛ)2 and any t Ξ R — {0} or for any (a09 aίf

a2, b0,..., b5, c0, cj e (SA)3 x (QΛ)5 x (Γ^R) 2 and any ί, t e R - {0}). We

fix bases in S and Q (or in S , Q and T R ) . By the homogeneous function

theorem, cf. [6], GB is a linear combination of the coordinates of aί9 b0, bx (or a

linear combination of the coordinates of ύ4, b5, c0, cv a1 ® a2, Q>\ ®b2i d\ ®bz, a2

®bQya2®bl1 bQ®b2, bo®b3f bι®b2i bλ®bz) with respect to the bases with

coefficients being C -maps depending on a0. Thus owing to Proposition 4.1 we

see that Theorem 3.1 (or Theorem 3.2) will be proved after proving that:

(5.1) GB<Φ>(a, b) = φiaj,

(5.2) GB<Ψ>2(a, b) = φ(b0), GB<v>x(at b) = φ(b^)

for any (β, b) = (α0, al9 b0, bj e (S Λ ) 2 x (QA) 2, any ô e (QA)* and any 0 e

(S ) (or after proving that:

(5.3) GdB<φ>2(a, b, c) = ~ 2φ(b4), G^^ia, b, c) = - 2φ(b5),

(5.4) GB<x>M, b, c) = λ(c0), GB<λ>2(a, b, c) = / K ^ ) ,

GB«i»(g,B<t>(a, bf c) = ψiajψiaj, GB<Ψ >2(g)B<φ>(a, b, c) = φ(b2)ψ(aj,

GB<φ>1(S)B<ψ>(a, bf c) = φ{bz)φ{a^f GB<φ><S)B<φ>2(af b, c) = φ(a2)φ(b0),

(5.5) G5<0>(g)β<^»>1(α, 6, c) = φ(a2)φ(b1)9 GBw>2<^B^>2(af b, c) = φ(b2)φ(b0),

GB<φ>1<s>B<ϊ>2(a, b, c) — φ(b3)φ(b0), GB<φy2(S>B<^>1(ai b, c) — φibjφibj,

^y bf c) =

for any (α, i , c) = (βo» #i> «2» ύ0, . . . , 65, c0, cx) e (S"4)3 x (Q"4)5 x (Γ^R) 2 ,

any / 1 G / = (Γ^R)*, any φ, φ e (Q^4)* and any 0, 0 e (S Λ )*).

We prove (5.1)-(5.5) as follows.

Let φ e (Q^)*, 0 e (S Λ )* and A e A*. Let τ0, r l f τ 2 e J ( 0 ' 2 ) ( R ' ) , ω 0 , . . . ,

ω 5 e ^ ^ " ( R ^ ) and /0, /x : R*-^ R Let r, τ be given by (4.3) and (4.6) respec-

tively. Let A = C^ίR* x R)/04, (ί)2>. Then TA M = ΓΓ^M. We observe that

given α e R we have (see Examples 1.1, 1.2, 1.3, 2.1, 2.2, 2.3 and 2.4 for the

notation)
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ΪR» ι(τ), jA(tι,..., tp, 0,.. ., 0, α, t)}

( 5 6 ) /r / //
= ψ( [* * ( c ί ((τo

as r0, τv τ2, a>0, ω4 are independent of dt. It follows from (5.6) and the invariancy

of B with respect to the diffeomorphism permuting x and X that

(5.7) (B^iτ), fit1 t", 0 0, t, α)> = φ ( [ ω 3 ] J + α φ ( [ ω 5 ] Λ ) .

Since B R B

> 2 ( Γ ) = fi^f'(r5), it follows from (5.6) and (5.7) that

(5.8) <B^2(τ),/(t\..., tP,0,..., 0, a, t)> = φ{[ω^A) - aφ([ωJA).

(5.9) <B$2(τ), jλ{t\..., t",0 0, t, α)> = φdωJJ + aφ([ω4]A),

We see that

<Bg(τ), TAdn(e)> = <d(τ[φ]), TAdn(e)>

= j-tltjψ([[(t\...,tp,o o,t)\]]A))

From (5.10) and the invariancy of B with respect to the diffeomorphism per-

muting χn and χn it follows that

From (5.10) with r2 = 0, ω2 = = ω5 = 0 and/ 0 = fγ = 0 it follows (5.1).

From formula (5.6) and (5.8) with a = 0, τ2 = 0, α>2 — * * * = ω 5 = 0 and /0

= /1 = 0we obtain formula (5.2).

Since [TAdn_lf TAdn] = 0, it follows from (5.6)-(5.8) that

[[TX]]A, [[τ2]]A, [ ω 0 ] ^ , . . . , [ω5]A, jAf0, / / i )

£ , (TAdn_x(e)) ®(TAdn(e))>

^ \ τ ) 9 T A d n » - T A ^
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^ J ω . / V , . . . , Λ 0,..., 0, t, α)» = - 2φ([ω5lA)

and (similarly)

G d β<^> 2([[r 0]]A, [ [ r J ] A , [ [ τ J ] A , [ ω J A , . . . , [α>5]A, / / 0 , ;A/i) = ~ 2 p ( [ ω J A ) .

Therefore formulas (5.3) are proved.

We see that G B < g > 5 ([[rJ] A , [ [ τ j ] ^ [[r 2 ]] A , [ω o ] A , . . . , [ωJA, / / 0 , /Λ) =

R 4 ^ for any B,B^ 3T{A, n, 1). We

k n o w t h a t TAdn(e) = j A ( t \ . . . , tp, 0 , . . . , 0 , t) a n d TAdn_x(e) = j A { t \ ..., tP,Q,

. . . , 0, t, 0). Therefore formulas (5.5) are clear because of (5.10), (5.11) and

(5.6)-(5.9) with a = 0.

It remains to show formulas (5.4). We have

^ [ [ τ j ] ^ [ [ τ 2 ] ] A , [ ω o ] A , . . . , [ ω 5 ] A , / / 0 , jAft)

= (λ°TA«τ, dn_, ®dn»)(e) = a°TAf0)(e) = λ(jAf0).

The first formula of (5.4) is proved. Since BR« 2(τ) = BRn

1(τs), the second formu-

la of (5.4) is an immediate consequence of the first one. Π
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