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ON THE CONVERGENCE OF THE ZETA FUNCTION

FOR CERTAIN PREHOMOGENEOUS VECTOR SPACES

AKIHIKO YUKIE1

Introduction

Let (G, V) be an irreducible prehomogeneous vector space defined over a

number field k, P ^ k[V\ a relative invariant polynomial, and χ a rational char-

acter of G such that P(gx) = χ(g)P(x). Let Vk

ss = ix e Vk\ P(x) Φ 0}. For

x e VΛ

SS, let Gx be the stabilizer of x, and G^ the connected component of 1 of Gx.

We define LQ to be the set of x ^ Vfc such that Gx does not have a non-trivial

rational character. Then we define the zeta function for (G, Y) by the following

integral

Z(Φ,s) = f \χ(g) Γ Σ Φ(gx)dg,
JGA/Gk χ<=L0

where Φ is a Schwartz-Bruhat function, s is a complex variable, and dg is an in-

variant measure.

Shintani showed the convergence of Z(Φ, s) for Re(s) > 0 for the spaces

Sym2λ;w and Sym3Λ;2 (see [4], [5]). F. Sato showed the convergence of Z(Φ, s) when

Gx Π Ker(χ) is connected semi-simple (which implies that LQ — Vk ) (see [1]).

Note that his assumptions in [1] were later proved by other people. Also he consi-

dered prehomogeneous vector spaces over Q, but if (G, V) is a prehomogeneous

vector space over k, we can consider (G, V) as a prehomogeneous vector space

over Q. Then the zeta function of (G, V) over k and the zeta function of (G, V)

over Q are the same. So his result implies the convergence of the zeta function for

prehomogeneous vector spaces as above over an arbitrary number field k. In [8],

we showed the convergence of Z(Φ, s) when dem G = dim V (in this case

Lo = Vk

s also). These cover 23 types of irreducible reduced prehomogeneous vec-

tor spaces. Ying recently showed the convergence of Z(Φ, s) for a few cases when
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Lo Φ V^s. In this paper, we prove the convergence of Z(Φ, s) for prehomogeneous

vector spaces of the form (G/Γ, V), where G, Vare as follows:

( 1 ) G = GL(2) x GL(2) x GL(2), V = k2 ® k2 <g> /c2,

(2) G = GL(3) x GL(3) x GL(2), 7 = kz®k*®k2,

(3) G = GL(4) x GL(2), V= Λ 2 / 4 2

(4) G - GL(6) x GL(2), V= Λ2

and T= Ker(G~• GL(V)) for all the cases. These are the D4, E6, D5, E7 cases

in [6].

Note that since Lo = V^ for the case (4), the result of M. Sato and Shintani

(see [3]) on the meromorphic continuation and the functional equation of the local

zeta function at an infinite place implies the meromorphic continuation of Z(Φ, s)

and the functional equation of the form

Z(Φ,s) =Z(Φ,N-s),

where Φ is an appropriate Fourier transform and N is a number which can easily

be figured out depending on the normalization, (see §0.3 of [8]). For the cases

(1)—(3), the meromorphic continuation of Z(Φ, s) is unknown.

In [7], Ying considered three types of prehomogeneous vector spaces, one of

which is the case where G = GSpin(Q) X GL(2) for a non-degenerate quadratic

form Q in n > 4 variables, and V is the tensor product of the standard repre-

sentations. When GSpin(Q) is split, the case n = 4 (resp. n = 6) is the case (1)

(resp. case (3)) of this paper. So cases (1) and (3) of this paper are covered by

Ying. However, our method is totally different from Ying's method. For example,

his method is based on the consideration of Tamagawa numbers as in F. Sato's

paper [1] and does not prove that the incomplete theta series ΣxeLo Φ(gx)

satisfies the assumption of Shintani's lemma (see §3.4 of [8]). Our method is to

estimate the incomplete theta series on a Siegel set. Therefore, we can show that

Σ x e I o Φ{gx) satisfies the assumption of Shintani's lemma.

We handle the cases (1), (2) in §2, and the cases (3), (4) in §3.

§1. Preliminaries

We basically follow the notations of [8], but we recall the most basic ones.

For a finite set X, # X is its cardinality. If / , g are functions on a set X (not

necessarily finite), / X g means that there exists a constant C such that

f{χ) < Cgix) for all x ^ X. We also use the classical notation x < y when y is a

much larger number than x. We hope the meaning of this notation will be clear

from the context. The ring of adeles (resp. the group of ideles) over k is denoted
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by A (resp. A x ) . For a vector space F o v e r k, VA is the adelizaίί,ϋ auct J 3 ( V A ) is

the space of Schwartz-Bruhat functions. We define R + = {x r:~ ίi\x> 0}. For
1

λ ^ R+, λ is the idele whose component at any infinite place is /ί^:Q] and whose

component at any finite place is 1. Let | x \ be the adelic absolute value of x ^ A.

Then | Λ| =/ί . Let an(tv- , tn) be the n-dimensional diagonal matrix whose

(i, 0-entry is t{ for all I We define GL(n) A = {g e GL(w) A | \detg\ = 1}.

For all the four cases in this paper, G is of the form G = GLC^) x x

GL(nf). (f is either 2 or 3). Let Gt = GL(nt) for all i. Let Tt c G, be the set of

diagonal matrices, and T = Tλ X X Tf. Let ε > 0 be a sufficiently small con-

stant. We define

G°iA = ^

i ί + — ifl^Ufi, , Λtn) I / j ! , * , λin. ^ R+, / j ! * λin. — 1),

3 3 -2 , -,-1 ^
ΛilΛt2 t ' ' ' t ΛιnΓl

Λιni — ε

i* = iϋi = <v,i, . yin)
 e RK/1 va + + yinι = o).

For Cj = ( c α , , CjM î) ^ RM'~ , we define

^(c.) = cn(l, - 1,0, , 0) + ca(0,1, ~ 1, 0, • • •, 0) + + cιnrl(0, , 0,1, - 1).

Let t/tPC be the cone generated by positive weights, i.e.

Cc = ^i(ct) e tf I ciV , cίlfj_! > 0}.

Apparently, the set of interior points of tipc consists of points of the form

wt(Ci) where ctV , c < Λ / - 1 > 0. For c = (cv - -, cf), we define

w(c) = (w^cj,- , wf(Cf)).

Let

τl =τl=
t * = t
ι ρc ι

( j - » x\ * * "

7i°+ x * * •

τlε x •

:* c X

X

X

X

X

7>°+

<

t *
V.PC

For t ^ T+ and y = (^x, • ,:yf) ^ t , we can define ^ ^ R + in the usual

manner. Let p G t be half the sum of positive weights. This means that t =
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t = (ani(λni , λln), , an/(λn, , λjn)).

The Weyl group FF of G is the product of the Weyl groups of

GL(nf) and we identify the Weyl group of GL(wf) as the set of permutation mat-

rices for all i. The group W acts on T+ from the left by t-+ gtg~ι for g e Pf, / e

Γ+. We define the left action of W on t* by t'" = (g^tgY for g e Pf, */ e t*,

For the cases in this paper, up to a constant, Z(Φ, 5) coincides with the fol-

lowing integral

Γ / Σ Φ{λ/x)cΓλdg\
JΈt+xG°A/Gk χ<=L0

where the action of λ is the usual multiplication by λ_, d*λ — λ~ dλ, and dg is an

invariant measure on GA. We define

Z+(Φ, s)= f λs Σ Φ(λgox)dxλdg°.
J[l,°o) χG°A/Gk χ<BL0

It is well known that there exists a compact set Ω c GA such that <O T£

surjects to G°A/Gk. Therefore, by Proposition (1.2.3) [8], there exists 0 < Ψ^

s3(VA) such that Z(Φ, s), Z+(Φ, s) are bounded by constant multiples of the fol-

lowing integrals

(l.i) Γ / e ( s ) Σ ψatχ)Γ2l>dxλdΊ,

f / e ω Σ ΨUtx)Γ«'d*λdxt
Jll,oo) xT°ε χeL0

respectively, where d t is an invariant measure on T+.

In the following sections, we choose a coordinate system x — Cr, , xN) of

V for each case so that there exists γt ^ t for / = 1, , JV and te = (f^r, ) for t

^ Γ+, x e VA. The element 7f is called the weight of the coordinate x{. For x —

(xv , xN) e V̂ , we define Ix = {1 < i < N\ xt•, Φ 0}. Let Convx be the convex

hull of the set {7, | i e 4 } .

DEFINITION (1.2). A ^oinί x e 7Λ is k-stable if for all g e GA, ίλe con^jc ΛMW

Conv^ contains a neighborhood of the origin of t .

We showed in Proposition (3.1.4) [8] that if LQ coincides with the set of

A-stable points, Z(Φ, s) converges absolutely for Re(5) > 0 and Z+(Φ, s) is an
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entire function.

We need the following lemma in §2 to show that Lo coincides with the set of

λ -stable points for the cases (1), (2).

LEMMA (1.3). Suppose that L c Vk

ss is a Gk-invariant subset such that Convx

contains an interior point of tp c for any x ^ L. Then x is k-stable for all x ^ L.

Proof Suppose x ^ L Let g *Ξ W, t *Ξ Γ+°. We define

e, = (0, ,0 , l ,0 , , 0 ) € : Vk

for i = 1, *, N. Then te{ = t^_ e{. So

tgef = gg~1tgei = g(g~ιtg)Ti et = ^ ^ .

Therefore, Convlgx = £Convx. Since Z,o is Gfe-invariant, gx G Lo. This implies

that ^Conv^ contains an interior point of tpc. So Convx contains an interior point

of ^ " ^ P C Note that this statement is true for all g ^ W.

Suppose that Convx does not contain a neighborhood of the origin of t . Since

Convx is a finite convex polytope, this implies that Convx is contained in a half

space containing the origin, say iy ^ t | l(y) < 0} where l(y) is a non-zero

linear form on t . There exists an element g G ίFsuch that l{g~ y) is of the form

lt(yt) = anyn+ ••• + aiHiyint

for y = (yv * *, yf) e t where α α > > aiH{ are constants for i = 1, , / .

Since ya +••••+ yiHj = 0 for all i, we may assume that α ί ; > 0 for all i, j .

Also since the linear form / is not identically zero, we may assume that there exist

i09 j 0 such t h a t aioJQ > aioio+1.

We showed that there exists an interior point w(c) = {wλ{c^y' , wf(cf)) of

tp c such that Conv^ contains the point g~ w(c). Then

- l S~Λ
 n£?

ί = l j=\

By assumption, all the terms are non-negative and at least one term is positive.
- 1

Therefore, l(g w(c)) > 0. This is a contradiction. So we can conclude that Convx

contains a neighborhood of the origin. Q.E.D.
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§2. D4, E6 cases

We consider the cases (1), (2) in the introduction in this section. We consider

these prehomogeneous vector spaces as M(2,2) ® k or M(3,3) ® k , i.e. the

space of 2 X 2 or 3 X 3 matrices whose entries are linear forms in two variables

υ = (vlf v2). We express a general element of V as Mx(v) = vιxι + v2x2 where
xi ~ ( î,/y), x2 ~ (χ2jj) are 2 x 2 or 3 x 3 matrices. We choose x = (xv x2) as

the coordinate system of V. If g — (glf g2, g3) is an element of GL(2) x GL(2) x

GL(2) or GL(3) x GL(3) x GL(3), the action of g is defined by

gMx(v) = g1Mx(vg3)
tg2.

We define Fx(v) = detMx(v). Then Fx is a binary quadratic or cubic form.

It was proved in [2] that Vk is the set of x such that Fx has distinct factors over

the closure k of k. We showed in [6] that Lo is the set of x such that Fx is irre-

ducible.

THEOREM (2.1). The set Lo coincides with the set of k-stable points. Therefore,

Z(Φ, s) converges absolutely for Re(s) > 0 and Z+(Φy s) is an entire function.

Proof Suppose that Fx is irreducible. Then for any υ^k \ { ( 0 , 0 ) } ,

Fx(v) Φ 0, i.e. Mx(v) is a non-singular matrix. In particular xv x2 are

non-singular matrices. Let t — (tv t2, t3) ^ T+, where

tx = a2ttll9 λ ϊ l ) , t3 = a 2 ( λ 2 1 , λ 2 ι ) 9 t3 = a 2 ( λ 3 1 , λ3f) _i case (1),

The set Lo is clearly GA-invariant. So by Lemma (1.3), we only have to show

that for any x €Ξ L09 Conv̂ , contains an interior point of tp c. Let γiJk be the weight

of the coordinate xiJk for all /, , k. The element γiJk can be expressed in the form

ϊijk ~ w(dijk) (dijk may not be in t p c ).

We first consider the case (1). The following lemma is easy to verify and the

proof is left to the reader.

LEMMA (2.2). (1) dltll = (^, j , ^ ) .

i,i2 - ^ 2 ' 2' 2/*
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1 1 V

Note that d2Jk can be obtained by replacing the last ~κ in d1Jk by — ~κ.

Suppose x G Lo. If x1Λ1 Φ 0, then ft n ^ Conv^ and fu l is an interior point

of tp c by the above lemma.

Suppose x i n = 0. Then since xx is non-singular. xίΛ2, x121 Φ 0. Moreover if

•̂2,11 = ^, w e c a n c n o o s e v ^ k \ {0} so that Mx(v) is singular. This contradicts

to the assumption x ^ Lo. So we may assume that x2Xl Φ 0. Therefore, γ112, Ti,2v

7*2,11 e Conv^. This implies that γ112 + γ121 + 72>11 ̂  Conv^ also and

1,12 ' βl,21 "" β2,ll \2* 2̂  2/

So Ti,u ~^~ Tι,2\ "^ 2̂,11 ^s a n interior point of Convx. This completes the proof of

Theorem (2.1) for the case (1).

Next, we consider the case (2). The following lemma is easy to verify and the

proof is left to the reader.

LEMMA (2.3). (1) d1>n = ((f, | ) , ( | , | ) , γ ) .

(2) dhl2 = ^3-, 3"J, [- -3, -gj, jj.

_ ί/2_ 1\ I l_ _ 2_\ _1_\
(3) d1Λ3 - ^g-, 3-j, ^ - 3 , g-j, -gj.

(4) rflf2i = ( ( - 3", -g j , (3", "3 j , 2

(5) rfi,22 = ( ( - 3-, -3), ( - 3-, -3 j , ^ j

of t*.

3"̂  ~ -3 j» (3"̂  3-)̂  2j

Note that d2 ; f c can be obtained by replacing the last TT in dlJk by — ^-.

Suppose x e Lo. If x l n ^ 0, then 7 1 U e Convx and 71>n is an interior point

Suppose x ι n = 0, xίl2, xl2l Φ 0. Then γltl2, γl2l ^ Convx. So γlΛ2 + γί2l

also and
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)

So 71)12 + 71>21 is an interior point of tpc.

Consider the following two cases:

(1) #1,11 = 0, x1Λ2 = 0, and xh21 Φ 0,

(2) x ι n = 0, x121 = 0, and x1Λ2 Φ 0.

Since these cases are similar, we only consider the case (1). Since xx is a

non-singular matrix, x1Λ3 Φ 0. If x2Λl = x2Λ2 = 0, we can choose v ^ k \ {0} so

that vxxlΛ3 + v2x2Λ3 = 0. This contradicts to the assumption x ^ Lo. So we may

assume that either x211 Φ 0 or x212 Φ 0. Since

2̂.11 = ^2.12+ ((0,0), (1,0), 0),

we only consider the case x2Λ2 Φ 0.

With these assumptions, 71 2 1, 7 U 3 , 7 2 1 2 ^ Convx. Then

37Ί,2i + 27i>13 + 272>12 ^ Conv^

also and

^5 7\ (2 1\ 3

4<

So 371)21 H- 271>13 + 2^ 2 1 2 is an interior point of tpc.

Suppose x1Λ1 = x 1 4 2 = x 1 2 1 = 0. Then since x1 is a non-singular matrix,

xι>22, xh3l Φ 0. Suppose x2U Φ 0. Then

ri.13 + 7Ί.22

and

2,11 = \\~2 9 ~%)> \^t "3/>

tSo 7Ί>13 + 7 1 2 2 + 7i,3i + ^ n is an interior point of tpc.

Suppose x ι n — xlΛ2 — xl2l = x2Λ1 — 0. Then if either x2Λ2 — 0 or x2t21 = 0,

we can choose v ^ k \ {0} so that f^ + v^ is singular, which is a contradic-

tion. So .r2>12, .r2>21 Φ 0. By assumption, xίΛ3, x122, xh3l Φ 0 also. Then

Γl,13 + Γl,22

and
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+A +Λ +Λ + Λ = / ί I 2 \ / I 2 W \
1,13 ' ^1,22 ' ^1,31 ' ^2,12 *" β2,21 \ \ 3 ' 3/> \3> 3/' 2/

So )Ί,i3 + Ti,22 ~^~ Ti,3i ~^~ 7*2,12 "^ 7*2,21 * s a n interior point of tpc. This completes the

proof of Theorem (2.1) for the case (2). Q.E.D.

§3. D5, E7 cases

We consider the cases (3), (4) in the introduction in this section. We consider

these cases as the space of 4 X 4 or 6 x 6 alternating matrices whose entries are

linear forms in two variables υ = (vl9 v2). We express a general element of V as

Mx(v) = vxxx + v2x2 where xλ = (xUJ), x2

 = (x2fy) are 4 X 4 or 6 X 6 alternat-

ing matrices. We choose x = (xlf x2) as the coordinate system of V (we only con-

sider xiJk such that > A). If ^ = (^lf ft) i s a n element of GL(4) x GL(2) or

GL(6) x GL(2), the action of g is defined by

Λ ( r f = gιMx{υg2)
tgv

Since Mx(v) is an alternating matrix, there exists a binary quadratic or cubic

form Fx(v) such that detM^z;) = Fx(v)2(Fx(υ) is the Pfaffian of Mx(υ)). It was

proved in [2] that VA

SS is the set of .r such that Fx(υ) has distinct factors. We

showed in [6] that Lo is the set of x such that Fx is irreducible for the case (3)

and that Lo = V^s for the case (4).

THEOREM (3.1). The integral Z(Φ> s) converges absolutely and locally uniformly

for Re(5) > 0 and Z+(Φ, s) is an entire function.

Proof. Unlike the cases (1), (2), there are no /c-stable points, so we have to

be a little more subtle for these cases. Let Ψbe as in §1. For L c Vk, we define

(3.2) ΘL(Ψ, λt) = Σ ΨUtx)

for i G R + , ί G Tl

We estimate θLo(Ψ,λt). Note that if y e t*. the integral j/~2pd*t

converges absolutely if — {y — 2p) is an interior point of tpc.

L e t t = (tίf t2) w h e r e

tx = a A ( λ l v λ 1 2 , λ ί 3 , λ l 4 ) , t2 = a 2 ( λ 2 1 , λ 2 1 ) _i c a s e ( 3 ) ,
tι — a β ( λ n , λ 1 2 9 λ 1 3 , λ 1 4 , λ 1 5 f λ 1 6 ) , t2 = a 2 ( λ 2 1 f λ 2 1 ) c a s e ( 4 ) .
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Let γiJk be the weight of the coordinate xiJk for all i, j , k (j > k). The ele-

ment yiJk can be expressed in the form γUk = w(dijk), where dUk ^ R or R .

Let σ = Re(5). We will prove that the function λσΘLo(Ψ, λt)i~2p is integrable

on R + x Tε for σ > 0. What we are going to do is to divide Lo into a union of fi-

nite number of (not necessarily Gfc-stable) subsets L{ and to estimate ΘL(Ψ,

λt)t P by a finite number of functions of the form λ NtWCN where pN €= R, cN €Ξ

R or R depend on a finite number of positive numbers N. These numbers should

have the property that if we choose N appropriately, pN C 0 and all the entries of

cN are negative.

If λ ^ 1, for any d ^ R , we can choose N depending on σ so that σ + pN

< 0 and all the entries of cN are negative. This implies that the function λ ΘL(Ψ,

λf)Γ2p is integrable on [1, °°) x Tε°. If λ < 1, we fix N so that all the entries of

CN are negative. Then if σ + pN > 0, the function λσΘL{Ψ', λf)t~2p is integrable

on (0, 1] X T ε . Since σ is arbitrary for the convergence of the integral on [1, °°)

x Tε, this proves the convergence of Z(Φ, s) for Re(5) > 0 and Z + (Φ, s) for

all s.

Let

j = ί « ί , y , A) If = 1 , 2 , 1 < /c < > < 4} case (3),
1 ' } ° 1 {(ί, , A) I i = 1,2, 1 < ft < < 6} case (4).

For / c /0, we define

(3.4) A7U, t) = Π sup(l , ^ "V"^)

for A e R + , ί e Γε°.

Functions of the form hj(λy i) often appear in estimates of various incomplete

theta series because our main tool is Lemma (1.2.6) [8]. So we first consider the

function ht{Xy t). We start with the following two observations whose proofs are

easy and are left to the reader.

LEMMA (3.5).

(1) ϊflx c I2 a Io, then hh(λ, f) < hIz(λ9 f).

(2) /// = I, II I2 c 4 then hj(λ, t) = hh(λ9 t)hΪ2(λ, t).

LEMMA (3.6).

hjiλ, t) = sup Π

Next, to simplify the situation, we estimate hjiλ, t) by functions of the form
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Let

We define

for all / and put

ή _ ί ((dijk,v"•> di,jk,?)> dUkΛ)
Uk \((d d ) d )

VWui,jk,l> > ut,jk,5'f uijk,6/

case (3),

case (4).

Cj j 2-f ditjkιl,
(ι,j,k)Gl
di.Jk.i<0

ί ((<?/,!,* *', cIt3), cIA) case (3),/» — <

7 I ((c/,i» '"t c / i 5), c/j6) case (4).

LEMMA (3.7). A 7 U, A) < s u p ( l , X"")t~"lCl) on R + x Tε°.

Froo/ Note that

π or1*"™*) = i - # r π r w i d m )

(ιJ,k)eΓ
and A" < sup(l, λ~ ).

Let dijk ^ R or R be the element obtained by replacing positive entries of

dUk by 0. Then

π t-widiJk) c π t-wCdt,Jk) = r Σ w > ι > 4 ) β / . W ( 5 W 4 ) #

(zj,fe)eΓ (i,j,k)<ΞΓ

However, since all the entries of dtJk are non-positive for all i, j , k.

f-ΣUJ,k)eιM~dIJk) <^ f-Σ(U,k)eIw(dIJk) = t~W{Cl).

This proves the lemma. Q.E.D.

For the rest of this section, λ €= R+ , t^ Tε. So in inequalities like Lemma

(3.7), we will not mention that it is uniform with respect to λ ^ R + , t ^ Tε.

We first consider the case (3). The following lemma is easy to verify and the

proof is left to the reader.

LEMMA (3.8). (1) dlt21 = ( ( ^ 1, g ) , jί).
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(3) dίA1 = ( ( ^ 0, -

(4) dh32 = ( ( - -g, 0, j), 2-j.

(5) ί/1,42 — \\~ ~2> 0, — ~2J, TJ

Note that d2Jk can be obtained by replacing the last y in d1Jk by — y . Also if

we put d0 = ((— 3, - 4, — 3), - 1), then - 2p = w(d0). By Lemma (3.7),

hIoU, f) « sup(l, Γ12)t~w(Co\ where

Io
(3.9) co = cIo= - ((3, 2, 3), 3).

DEFINITION (3.10). (1) Lλ = {x <Ξ LO \ x1>21 Φ 0}.

(2) L2= ix <Ξ Lo\ x1>21 = 0, «r1>31 ^ 0}.

(3) L3 = {x e Lo I χ l ι 2 1 = 0, x l i 3 1 = 0}.

Apparently, Lo = Lx U L 2 U L3. So we estimate θ^ίiF, ^ f 2 " for i = 1,2,3.

(1) Consider Lv

Let / = / 0 \ {(1,2,1)}. By Lemma (1.2.6) [8], for any N > 1,

ΘLI(Ψ, λt)r2p«^"^^ri 2 iA7α, t)r2p.

By Lemma (3.7),

*7w, t)«supd, r^r^3 '2 '3^3^,

Since all the entries of d121 are positive, λ ΘLi(Ψ, λt)t is integrable on R +

Γε° for σ > 0 and on [1, 00) x 7ε° for all σ.

(2) Consider L2.

Let / = J o \ {(1,2,1), (1,3,1)}. By Lemma (1.2.6) [8], for any N > 1,

By Lemma (3.7),

1 (Ί i\ // ίΛ j-10

/*2vl, t) < sup(l, /I
7 /-, .\.-2p // (Λ Ί-ί0\,w(((0,-2,0),2))

h2(λ, t)t < sup(l, λ )t ,

So for any N > 1,
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9h(W, λt)Γ2p « λ'N sup(l, rio)r(((o,-2,o),2)^((ioi) i))

Since all the entries of ((0, - 2, 0), 2) - NU^y 0, -gj, -~\ are negative if

N > 4, λσθLι(W, λί)f2p is integrable on R+ x Γε° for σ > 0 and on [1, oo) x

Γε° for all σ.

(3) Consider L3.

Suppose x ^ L3. Then since ^ is non-singular, xh32, #1,41 ̂  0. We define / =

Io\ {(1,2,1), (1,3,1), (1,3,2), (1,4,1)}. Then by Lemma (1.2.6) [8], for any N > 1,

ΘL3(Ψ, λt)Γ2p « r 2 V" ( r i ' 3 2 + r i ' 4 i ) MΛ, t).

By Lemma (3.7),

A,CU) «sup(l, r 8 )r(^ 2 ' t ) ' 3 )) ,

A7Glf 0 Γ 2 p « sup(l, Γs)tw«-2'-2'-^'2h.

So for any N > 1,

ΘL3(Ψ, λt)Γ2e « r 2 W s u p ( l , ^ r ^ ί - ^ - ϊ ) - 2 ) - ^ ' 1 ^ 1 - ' ) .

Since dh32 + d1 4 1 = ((0,0,0), 1), all the entries of

- | , - 2 , - | ) , 2 ) -

are negative if iV > 2. Therefore, λσΘLJίΨ, λf)t~2p is integrable on R + x Γε° for

σ > 0 and on [1, 00) x Γε° for all σ.

This completes the proof of Theorem (3.1) for the case (3).

Next, we consider the case (4). The following lemma is easy to verify and the

proof is left to the reader.

LEMMA (311) (1) d (( 1 )(3.11). (1) dlt21 = ( ( ^ , 3-, 1, 3-, 3-), -gj.

(2) dh31 = ^ 3 - , -3, 1, 3-, 3-j, g-j.

(3) rfi,4i = ((-3, ̂ , 0, 3-, 3-j, 2"j.-3, ^ , 0, 3-, 3-j, 2

(4) rflf5i = ((3-, 3-, 0, - 3-, 3-), 2").
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0 J(5) di,βι ~ [[-3, 3". 0, - -3, - g-J, "2 j .

(6) rfW2 = ( ( - - 3 . "3. 1- 3". 3-). 2")-

(7) d1M = ( ( - 3-, 3", 0, 3-, 3-), 2").

(8) dh52 = ( ( — 3 , -3, 0, - g , 3-), -2).

(9) 1̂,62 = [[- 3". 3". °. - 3". ~ j j . 2/

(10) rfli43 = ( ( - -g, - 3-, 0, 3-, -3), 2").

(11) î,53 = {{- -3. - 3-. 0, - 3", 3-j, 2"].

π ? w - ( ( - 1 I n - I ^ M
(12) rf1>63- ^ 3. - 3.O. 3 . - 3J. 2l

(13) rfli54 = ( ( - ̂ , - 3-, - 1, - 3-, 3-), 2").

(14) dιM = ( ( - -3, - g , - 1, - 3-, - 3-), 2").

(!5) dlι6S = ^ - -3, - -3, - 1, - 3-, - 3-j, 2"j.

Note that d2Jk can be obtained by replacing the last τ>- in d1Jk by — τ>". Also if

we put dϋ = ((— 5, — 8, — 9, — 8, — 5), — 1), then — 2p — w(d0). By Lemma

(3.7), hhQ, t) « sup(l, ^-3 0)Γw < C l > ), where

(3.12) c = «,.= -((f, 8.6.8, f ) , f ) .

DEFINITION (3.13). (1) Lx = {x e V^ss | χ 1 2 1 or xί31 or x 1 4 1 # 0}.

\Δ) Li2 » «^ ' jfc I *^χ 21 *^1 31 *^1 41 ^ » * ^ Ί 32 ^̂ * *^1 42 ^ '

(3) L3 = XX ̂  Vk I X 1 2 i — «£i)3i
 = ^i,4i — ^1,32 ~~ -̂ 1,42 ~" 0 ) .

(4) L4 = {χ<ΞL3\xιA3,xlMΦ0}.

(5) ^ 5 = \X ^ ^ 3 I Xi,5i ~ 0, ^1,43, «̂ i,52 ^ 0/

(b) iv6 \X £Ξ /^3 I tΓ1 > 5 1 «̂ i,52 U, «^if43, «̂ l,61 ^ ^^

(/) LΊ \X ^ X>3 I X151 «̂ 1,52 "^1,61 ^> ̂ "1,43^ ^1,62 ^ "•* •
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1*1,43 = 0, ΛΓlf51 Φ0}.(9) L9 = {x G L 3

(10) Z, — ίx ε Z> I x == x = 0 x x ^ 0}

(11) Ln = { i e ί s | χ 1 > 4 3 = χ l j 5 1 = χlβl = 0, xh52 Φ 0}.

(12) L 1 2 = ix^

(13) L 1 3 = ( x e

(14) Lu = ix^ Li\x]

(15) L 1 5 = {χ^Lx

= xΛ sl =

^1,43

ίA3

°1,51

α,52

^1,52

= 0 ,

I #1.45 # 1 ςi #1 *9 #1 R5 ^> # 1 61> # 1 54 ^-* •c l , 5 3

1> #1,53

^1,61>

x}
Ί,51

0).

(16) L 1 6 = {x G L 1 4 1 z 1 ) 5 3 = 0, x1>62, x 1 ) 5 4 =£ 0) .

(17) L 1 7 = ix G L 1
1 j ;

l f β 2

= 0 , j?
l f 5 3

0}.

PROPOSITION (3.14). (1) V* = II

//x G

//x G L6,

If x G L7,

7A

SS, there exist 1 < ί < 2, 2 < < 6(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10) ί / χ e L16, x2f21 or J : 2 3 1 # 0.

(11) IfχtΞL17orL18,x2>21Φ0.

ίΛαί x Λ n Φ 0.

exisί 2 < < 5, 1 < k < 2(j > k) such that x2>jk Φ 0.

exists 2 ^ j ^ 5 5tic/ι ί/iαί X2,;i ^ 0.

or L l o, ί/iβr̂  exist 1 < k ^ j ^ 4 such that x2tjk Φ 0.

Ifx G L u , χ2f21 orx2>31 orx2>41 # 0.

Ifx G Z,12, ί/^rg wisί 2 < j < 4, 1 < k < 2(j > k) such that x2Jk Φ 0.

7/x G L13, x 2 2 1 orx23l orx232 Φ 0.

7/x ^ L15, x 2 2 1 orx23l orx2Al Φ 0.

7fx e L t

Proof Note that if 1 < ί, > < 18, ί, # 3,14, and i Φ j , then L f Γ\ Lj = 0 .

It is easy to see that if x G l^ s s and x ^ Llf L2, then x G L3. Suppose that

x G L 3 and x 1 4 3 # 0. Then if x ^ L4, , L7, xUj = 0 for i = 1,2, = 2, , 6.

Suppose «r2f2i = 0. Then by considering the cofactor expansion with respect to the

first two columns, det Mx(v) is a product of v2 and a sum of determinants of mat-

rices of the form

5JC 5jC

The determinant of the above matrix clearly is divisible by v2. So Fx(v) is

divisible by v2> which contradicts to the assumption x ^ Vk . This implies that

#2,2i ^ 0 a n ^ # e ^8

0
0

0
0

*

0
0

0
0

*

+ ϋ2
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Suppose that x ^ L3 and xh43 = 0. If x151 or xh52 Φ 0, then x ^ II I 9 L t. So

we assume that x ^ L3 and xlΛ3 = x1)51 = x 1 5 2 = 0. Then x1>61 Φ 0 or x e L14. If

^l.βi* 1̂,53 ^ M G Ll2. Suppose x1M Φ 0, x153 = 0. Then if x1M = 0, x l j Λ = 0

for j , k = 1, * , 5. So by the cofactor expansion with respect to the last row and

the last column, det Mx(υ) is divisible by υ2> which is a contradiction. Therefore,

χlM Φ 0, which implies that x ^ Ll3.

Suppose x ^ Lu. If x162, x153 Φ 0, then x e- L15. Also if x1>62 = 0, xlt53 Φ 0,

then x e L1 7. Suppose x 1 6 2 # 0, jr1>53 = 0. If xlM = 0, then xljk = 0 for j ' , A: =

1,* * *, 5, which cannot happen. So xlM Φ 0, which implies that x ^ L16. Suppose

= 0. Then x 1 5 4 Φ 0 for the same reason. If.x1>63 = 0, the first three= x
153

columns of xx are zero. So detM x (^) is divisible by υ2. But since Mx(v) is an

alternating matrix, det Mx(v) is divisible by υ2, which is a contradiction. This

proves (1).

The statements (2), (3), (5) are clear.

Consider the statement (.4). Let x €Ξ LΊ. Then the first column of x1 is zero.

Suppose x2jl = 0 for j = 2 , . . . , 5. Then by the cofactor expansion with respect to

the (6,1), (l,6)-entries, det Mx(v) is a product of xlt61v2 and the determinant of an

alternating matrix of the form

0

0

0

0

0

0

*

*

0
*
0

*

0 "
*

*

0 .

+ v2

0

0 *
* 0

0 J

The determinant of the above matrix is divisible by v2. So Fx(v) is divisible

by v2, which is a contradiction. Therefore, if x ^ L7, there exists 2 < < 5 such

L n . If the statement of (6) in false,

that x2Jl Φ 0.

Consider the statement (6). Suppose x

there exists x L3 such that

(3.15) = 0, xh52 Φ 0.

We show that (3.15) cannot happen. Suppose (3.15) is satisfied. Then Mx(v)

is of the following form

Γ0 0 0 0 0 0

0 0 0 0 * *

0 * * * 0 *

0 * * * * 0

0 0 0 0 * *

0 0 * * * *

0 0 * * *

0 * * 0 * *

* * * * 0 *

* * * * * o
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If #2,5i ~ #2,6i = 0, det Mx(v) is identically zero, which is u. contradiction. So

we assume that x251 or x261 Φ 0. Let gx e GL(6)Λ be an element oi the form

where A ^ GL(2)Λ. By applying an element of the form g = (gv I2) e GL(6)Λ

fc, we may assume that x2t2l = x23l = x2A1 = x2>51 = 0, x2M Φ 0. Note that

by the action of g, άetMx(v) changes by a non-zero constant and the form of xx

does not change.

Therefore, d e t M ^ ) is a product of x\Mv\ and the determinant of an alter-

nating matrix of the form

0
0
0

0
•0

0

0
0
0

* •

*

* + v2

* * 0
2

The determinant of the above matrix is divisible by v2. This implies that

Fx(v) is divisible by v2, which is a contradiction.

Consider the statement (7). Let x ^ L12. If x2Jk = 0 for j = 2,3,4, k = 1,2,

MΛυ) is of the form

v
0 A2

1 I Δ 5k

0 B2

1 / 1 L ^ *
where A l f Bx are 2 X 2 and A2, 5 2

 a r e 4 x 4 . Also the first now of Av the first

and the second columns of A2 are zero. Since det Mx(v) = det {vγAγ +

fl^)det(z;^ + v2B2), άetMx(v) is divisible by υ\. Since Mp(ί ) is an alternat-

ing matrix, det Mx(v) is divisible by v2, which is a contradiction. Therefore, there

exists 1 < k < j < 4 such that x2Jk Φ 0.

Consider the statement (8). Let x ^ L

of the form

If x221 = jjr2>31 = x2>32 = 0, Mx(v) is

*
+v1 *

where ^4,

Mx{v) =

are 3 x 3 and the first and the second rows of A are zero. Since det

+ v2B) , άetMx(v) is divisible by v\, which is a contradiction.
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Therefore, x22l or x231 or x2>32 Φ 0.

Consider the statement (9). Let x e L15. Suppose x2t2l = x 2 3 1 = x 2 4 1 = 0.

Then by the cofactor expansion with respect to the first row and first column,

det Mx(v) is a product of v2 and the determinant of a matrix of the form

Γ 0 0 0 *

0 0 0 *

0 0 0 *
5fC 5JC 5jζ 5JC

Therefore, detMpdO is divisible by v2, which is a contradiction. So x2ι21 or

2 31 2 41

Consider the statement (10). Let x ^ L16. Suppose x2f21 = x231 = 0. Then by

the cofactor expansion with respect to the first row and the first column,

det Mx(v) is a product of v2 and the determinant of a matrix of the form

0 0 * 1

0 0 * 1

0 0 * 1

Therefore, det Mx(v) is divisible by v2. Since Mx(v) is an alternating matrix,

det Mpίt;) is divisible by υ2, which is a contradiction. So x 2 2 1 or x231 Φ 0.

Consider the statement (11). Let x ^ L17 or L18. Then x 1 6 2 = 0. Suppose # 2 f 2 1

= 0. Then by considering the cofactor expansion with respect to the first row and

the first column, det Mx(v) is a product of υ2 and the determinant of a matrix of

the form

*

So, det Mx(v) is divisible by υ\, which is a contradiction. Therefore, x2>2l Φ 0.

This completes the proof of Proposition (3.14). Q.E.D.

The following proposition is an immediate consequence of Proposition (3.14).

PROPOSITION (3.16).

=• Σ θL.(W,λt).
1 ̂  i < 18 '
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We now consider individual cases.

(1) Consider Lv

Note that Γ r ' 21, Γrί>31 « Γ r < 41. So by Lemma (1.2.6) [8] and Lemma (3.7), for

any N > 1,

ΘLI(W, *t)r2p«λ~NrNriA%oat t)twido)

Since

d0 - c0 - NdlAΪ = ( ( ^ , 0, - 3, 0, 3-), -2") - N((3-, 3-, 0, 3-, -3), -g),

all the entries of — NdίA1 — co + d0 are negative if N is large. Also if N is large,

the exponent of λ tends to — °°.

Therefore, λσθLι(Ψ, λf)t~2p is integrable on R + x Tε° for σ > 0 and on [1, oo)

X Tε° for all σ.

(2) Consider L2.

L e t / = / 0 \ {(1,2,1), (1,3,1), (1,4,1)}. For 2 < β < 6, we define

•L*2,lβ ^ ^ 2 I ^ 1 , 3 2 > * ^ 1 , J S 1 ^ >

0/

(We only consider β = 5,6 for Z,2fl iS, L2,2ig.)

By Proposition (3.14)(2), L2 = Uaj3L2al3. So

We consider L2>ljS first.

Let / ' = {(1,3,2), (1, β, 1)}, / " = J\ {(1,3,2), (1, β, 1)}. We define

Γ = b e 7| xiJk = 0 for (i, , fc) £ /'},

The subsets V, V" are subspaces of F, and L21β can be considered as a subset of

F Θ V;: For l E ^ θ Fr/, let p'(x), p"(x) be the projections to the first factor

and the second factor respectively.
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By Lemma (1.2.5) [8], there exist 0 < W e *8(Vχ), 0 < Γ e ^(1^) such

that

<9L (y , ^ ) < Σ W(p'(λtx))Ψ"{p"(λtx)).

2Λ0 xeL2Λ0

We define

θ'(Ψ,λt)= Σ F'Ute),

Θ"{Ψ\λp = Σ F'Ufe).

Then

θ l 2 i / f , Λf) « Θ'(Ψ', λt)Θ"(Ψ", λt).

By Lemma (1.2.6) [8],

β"{Ψ\ λt) < hΓ{λf t) < hj{λ, t).

We estimate hj(λf t). We define

Ix= {(2,;, 1) for; - 2 , 3 , 4 } ,

= ί (i, 5, 1), (i, 6, 1), (ί, 3, 2), (i, 4, 2), (t, 5, 2), 1
2 l ( i , 6, 2) , (i, 4 , 3 ) , (i, 5 , 3 ) , (ί, 5, 4) for ί = 1,2 J '

73 = / \ (I, U 72) = {(i, 6, -ft) for i = 1,2, ft = 3,4,5}.

Then / = Iγ II I2 II /3 If (i, /, ft) e /x, all the entries except for the last of dUk

are positive. If (t, , ft) e I2, diJk is of the form ((cv * , * , * , — cx), * ) or

( ( * , c2, * , - c 2 , * ) , * ) .

By Lemma (3.7),

1 ί-i j\ JT (Λ )-3\ ,M»(((0,0,0,0,0),I-))

A7lU, 0 < sup(l, λ )t 2 ,
/ / •) i\ ^ / i -)-6\ ,w(((2,4,4,4,4),-|))

ft/sU, 0 < sup(l , λ )t 2 .

We have to be a little more careful about λ/2Cϊ, /). By Lemma (3.6),

A7 W, 0 < sup(l , ^~18) sup Π fruk.
l'2cl2 UJ,k)ef2

By the proof of Lemma (3.7), for each Γ2 c /2, there exist α, δ ̂  R such that

π r r w * < ί«'(((f

So t h e r e e x i s t a f inite n u m b e r of r e a l n u m b e r s a x , , « ; , &!,••*, ft/ s u c h t h a t
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~ls)hj u , 0 < s u p ( l , λ ) Σ t 3 3 3 3 2 Λ A Λ A .
2 Λ=l

. < - < Λ - 8 ' • - 4

3

Let

Moreover, — -5- < α 4 < 4, — 77 < 6A < -5- for all ft.

(3.17) pk = {[ah - \, 0, - 3, 0, - ah + | ) , ^ - ) ,

j/ / 7 1. 4 o t

 8
 A.

 l \

QH = {{ah ~ g , δΛ - 3-, - 3, - bh - 3-, - ah + ̂ j,

Then we get the following lemma by the above considerations.

LEMMA (3.18).

* 7 U , t)f2p « supd, λ~2Ί) Σ tw{9h) « sup(l, r 2 7 ) Σ twiPh).

Therefore,

ΘL (Ψ, λt)t~2β « s u p d , λ~2Ί) Σ .©'(F', ^ 0 Γ ( ' Λ ) .

This implies that we only have to estimate functions of the form Θf(Ψf', λΐ)fPh.

For L2t2β9 L2)3β, L2M, exactly the same argument works replacing / ' by / ' =

{(1,4,2), (1,J8,1)>, U l , 3 , 2 ) , (2,]S,1)}, {(1,4,2), (2,]S,1)} respectively.

By Lemma (1.2.6) [8], for any Λί2, N2 > 1,

θ'(Ψ', λt)twiPh) « ^ - ^ - ^ « » < * » ^ » * \
For L2M etc., we get the same estimate replacing d132 or dlM by dlΛ2 or d2M.

However, since t~Tl'32 < ΓTlA2 and t~riΛ\ fΎ2M < Γ"2'61 for all β, we only have to

consider functions of the form

The point here is that we can choose Nlf N2 for each h separately. If we had

used Lemma (1.2.6) [8] directly to ΘL2iβ(Ψ, λf), we get an estimate by the function

and the choice of Nlt N2 must be the same for all h. This is the reason why we
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had to separate the two non-zero coordinates to start with.

It is easy to see that

2̂ 1.42 + 2̂.61 = ((0,1,0,1,0), \).

We choose Nv N2 of the form Nλ = 2N3 + N4, N2 = N3 + Λf5, where iV3 ^ 1,

Nt, N5 > 0. Then

Ph ~ #A«2 -

)= ( ( α * ~ 3"' ~ N*' ~3> ~ Ns> ~ a» + 3 " ) ' 2

If ah > 0, we choose iV4 = 4 + 3ah, iV5 = 0. Then

^ 3 ' V '

Since ah > 0,

3 ' 3 ' 2 ~ °

Therefore,

MPh-NxdlΛ2-N2d2M) „ .wU(-l,-N3,-3,-N3,-l),^γ!*-))

If αA < 0, we choose Λ 4̂ = 4, N5 = γ . Then

Ph - NAΛ2 ~

l j 3 + 2 ' ^ 3 > 3 ~ 2

4
Since — ΊT < ah for all h,

3 2 ' 3 2 ' z " r 4 ~ υ

Therefore,

13-JV
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\ 10 4 , λ~6).

By the above considerations,

Θ'(Ψ, λt)tMH> « SUP(1,

This bound does not depend on a, β, h. So for any iV3 > 1,

2l> « SUP(1, ^ - 3 3 ) ^ - ^ . - 4 / - « - 1 . - ^ . - 3 . -

Therefore, λ°ΘL2(Ψ, λpf2" is integrable on R + X Γε° for σ > 0 and on [1, °o)

X Tε° for all σ.

(3) Consider L4.

Let 7 = / 0 \ { ( l , 2 , l ) , , (1,5,1), (1,3,2), (1,4,2), (1,4,3)}. Then by Lem-

ma (1.2.6) [8], for any N ^ 1,

ΘLi(ψ, λpf2p« r 3 V " < r i 4 3 + 2 W / ? , α t)f2p.

By Lemma (3.7),

hM, t)f2p

It is easy to see that

</u3 + 2rf l i51=(d,0,0,0,1), f ) .

Since the first, the fifth, and the last entries are positive, all the entries of

\\3"' ~ ~3' ~~ ̂ ' ~ ~3* ~3/' ~2~/ ~ ^^1-43 + 2d l f 5 1)

are negative.

Therefore, λσΘLJLΨy λt)t~2β is integrable on R + x Tε° for σ > 0 and on [1, oo)

x Γε° for all σ.

(4) Consider L5.

Let L5,aβ = { i e i j χα ̂  ^ 0 for a = 1,2, /3 = 2, , 6}. Then L 5 =

We define

/ = / 0 \ { ( l , 2 , l ) , (1,3,1), (1,4,1), (1,5,1), (1,3,2), (1,4,2), (1,5,2)}.

Then hj(λ, f) has the same bound as in Lemma (3.18) with ah> bhy qh ^ R for
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Λ = l, ,/

We fix a, β. Let / ' = {(1,4,3), (1,5,2), (a, β, 1)}. For ¥' e *S(Vχ). we

define

θ'(¥',λp = Σ Ψ'iλtx).

xl,A3'Xl,52>Xa,β,l

By a similar consideration as before, there exists 0 < W ̂  Λ5(V^) such that

L (Ψ, λtjt < s u p ( l , / ) 2-. Θ ( Ψ , λ t ) t
5,aβ / = 1 —

We consider each term. By Lemma (1.2.6) [8], for any Nv N2y N3 > 1,

Since / 7aM C / r2>61 for all α, 8̂ as above, we only consider the case to, /3) =

(2,6).

It is easy to see that

θl = ((0,0,0,0,0), -g).

So we put N, = N4 + Ns, N2 = N4 + N6, N3 = N4 + N7, where N4 > 1, N 5, iV6,

iV7 > 0.

Let W= {(α,ύ,0, - 6, - α) | α, b e R} c R5. The following lemma and its

corollary are easy to verify and the proofs are left to the reader.

LEMMA (3.19). The convex hull of

IV 3 ' 3 > U > 3 ' 3 / ' V 3 ^ 3 ^ u > 3 ' 3 / ' V 3 ' 3 ' u ' 3 ' 3 / 1

contains a neighborhood of the origin of W.

COROLLARY (3.20). For any a, b e R, there exist cv c2, c3 > 0 such that

C l V 3 ' 3 ' ' 3 ' 3 / C Λ 3 ' 3 ' ' 3 ^ 3 / + C 3 V 3 ' 3 ' ' 3 ' 3 /

= (a, by 0, — b, - a).

By the above Corollary, we choose iV5, iV6, N7 ̂  0 so that

3 » 3 ' u ' 3 ' 3 / ^ i V β V 3 ' 3 ' ' 3 ' 3 / 7 \ 3 ' 3 ' ' 3 ' 3 /
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- — - / > - + — ̂1
o o /

Then

Since there are finitely many possibilities for h, there exist cv c2 > 0 such that

The right hand side does not depend on α, /3, /z.

Therefore, λ'θ^Ψ, λf)t~2p is integrable on R + x Γε° for σ > 0 and on [1, oo)

x Tε° for all σ.

(5) Consider L6.

For α = 2, , 5, β = 1,2, α > /3, we define L6>αig = { χ E L 6 | x2>aβ Φ 0}.

Then by Proposition (3.14)(3), L6 = U a,βL6>aβ. Since Γ r ^ < Γ"2'52 for all α, j8 as

above, we only consider the case (α, 8̂) = (5,2). If x ^ L6)52» ^ I ^ * #1,61 > 2̂,52 ^ 0.

So by the same argument as in (4), λσθL%(Ψ', λt)t~2p is integrable on R + X Tε° for

σ > 0 and on [1, 00) x Γε° for all a.

(6) Consider L7.

For a = 2, , 5, we define L7a = {x ^ L7\ x2al Φ 0}. Then by Proposition

(3.14)(4), L7 = UαL7 > α. Since for all t~T2m < Γ"2'51 for all a as above, we only con-

sider the case a == 5.

Let

/ = J 0 \ { ( l , i , k) f o r ; ' = 2, , 6, Λ = 1,2,; > A, (1,4,3)}.

Then by Lemma (3.7),

h,(λ, t) « SUP(1, r 2 0 )

By Lemma (1.2.6) [8], for any Nu N2, N3 > 1,

ΘLJ¥, λt) « supd, Γ20)λ~Nl~N2~N3

χ t«>U(0,-^-3,-ί\),ψ)-N

It is easy to see that

3d1A3 + 2dh62 + 4d2,51 = ((1,0,0,0,1), I ) .
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So if we choose Nx = 3iV4, N2 = 2iV4, N3 = 4iV4 and N 4 > 0, all the entries of

\\ ' ~~ "3"' ~ ^' 3~' 3 7 ' ~2~/ ~ ^ i^ i .« "" N2d1>62 — N3d2ι51

= ((-κr 2 4 1 \ 13-NΛ

\\ iV4> 3 ' ό' 3f 3 4A 2 /

are negative.

Therefore, λσΘL?(Ψ, λt)t~2p is integrable on R + X Γε° for σ> 0 and on [1, oo)

x Tε° for all σ.

(7) Consider L8.

By Lemma (1.2.6) [8], for any iV> 1,

ΘLs(Ψ, λt)Γ2p<;

It is easy to see that

o α l ,43 Γ ώα2,21

Since all the entries of the above element are positive, λσθL(Ψ', /i/)/ P is in-

tegrable on R + x Tε for σ > 0 and on [1, °°) x Γε° for all σ.

(8) Consider L9.

Let

/ = / 0 \ { ( l , ; , A) for 1 < / c < ; < 4 , (1,5,1)},

Then by Lemma (3.7),

A.U, ί ) Γ 2 p « sup(l, r ^ ) r < « A - i - 3 , - i | ,f,,_

For 1 < Ŝ < a < 4, we define L9a$ = {x e L91 x 2 α ί =# 0}. Then by Proposi-

tion (3.14)(5), L9 = U Λ i ί Z, 9 i α ί . Since r r2-af l < f2M for all α, β as above, by Lem-

ma (1.2.6) [8], for any N ̂  1,

Θ i 9 w(3r, ^_0Γ2p « sup(l, / l -" ) y ι-« ' ί «» - | -3.-i » Ϋ

It is easy to see that

d2A3=((l,0,0,0,1), I ) .
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So all the entries of

'4 2 Λ 1 5\ 13
o , o> ^t Q» Q / » 9 / ^ γ v * u l , 5 1 ~̂ ~ ^2,43)

4 „ 2 Λ 1 4 \ 1 3 - J V

are negative if N ^ 0.

Therefore, λσΘL9(Ψ, λt)f2p is integrable on R + ^ Γε° for σ>0 and on

[1, 00) x 7;0 for all σ.

(9) Consider Ll0.

For 1 < β < a < 4, we define Ll0f(Xβ = ix G L1 01 x2fβi8 =£ 0}. Then by Prop-

osition (3.14)(5), L10 = U ttfβL1Otaβ. Since Γ r 2 α ' < Γ r 2 43 for all α, j8 as above, we

only consider the case (α, /3) = (4,3).

Let / ' = {(1,5,2), (1,6,2), (2,4,3)}, and

Γ = ( i G V\ xtJk = 0 for (i, >, A) ^ /'}.

For ?ΓΛ €= j^(F^) f we define

Θr(Ψr λt) = Σ

rl,52'Xl,61'J

Then as before, there exists 0 < W G A3(V^) such that

ΘLχoJΨ, λt)t~2p < sup(l , λ~27)Θ'(W, λt) Σ Γ ( 9 Λ ) .

By Lemma (1.2.6) [8], for any Λ^, iV2, Λ̂ 3 > 1,

It is easy to see that

^i,6i + d1>52 + d2A3 - ((0,0,0,0,0), j).

Therefore, by the same argument as in (4), λσθLiQ(Ψ, λt)t~2p is integrable on

R + x Tε

α for σ > 0 and on [1, oo) x T" for all σ.

(10) Consider Ln.

For α = 2,3,4, we define LUa = {x G L n | j:2,αi ^ 0}. Then by Proposition

(3.14X6), Ln = U α L l l f α . Since Γ r 2 'α l < Γ7"2'43 for α = 2,3,4, we only consider the
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case a — 4.

It is easy to see that

So by Lemma (1.2.6) [8], for any N > 1,

Therefore, λσΘLu(Ψ, λt)t 2p is integrable on R + x Γε° for σ > 0 and on

[1, oo) x Γε°for all σ.

(11) Consider Ll2.

For a = 2,3,4, j8 = 1,2, α > /3, we define L12aβ = {x G L121 χ 2 α i 8 ^ 0}.

Then by Proposition (3.14)(7), L1 2 = U a,βL12taβ. Since Γ r 2 α 5 < fΪ2Λ2 for all α, β

as above, we only consider the case (α, 8̂) = (4.2).

It is easy to see that

i,βi + 2rf1>53 + 4d2>42 = ((0,1,0,1,0), I ) ,

4d,,βi + 2d1>S3 + 4d2A2 = ( ( | , | , 0, § , - I ) , l ) .

<*1,61 "" ^1,53 •" ^2,42 ~~ ^ ~Q9 "β"* » "3" ' " 3 " / ' / '

Also

_ _L nnni^

We define

m1 = ((0,1,0,1,0), I),

m2= ((3", 0,0,0, - 3"). 0),

m3= ((-•§-, 0,0,0,1), 0).
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Then by the same argument as in (2), we only have to consider functions of the

form

χ-lON^ANa-QNs Q ^-27^ tw{ph-Nιmι-N2m2-N3mi)

where Nx > 1, N2, N3 > 0.

It is easy to see that we can choose Nv N2, N3 so that all the entries of ph —

Nιm1 — N2m2 — N3m3 are negative.

Therefore, λσΘLJΨ, λt)Γ2p is integrable on R + x 7ε° for σ > 0 and on

[0, oo) x Γε° for all σ.

(12) Consider L13.

For (α, j8) = (2,1), (3,1), (3,2), we define Lί3>aβ = ix e L13 \ x2f(Xβ Φ 0}.

Then by Proposition (3.14)(8) Ll3 = UatβL13tΛβ. Since Γ7*" < Γ7"2'32 for all α, j8 as

above, we only consider the case (α, β) = (3,2).

It is easy to see that

3d1>61 + 2dlM + Ad2>32 = ((0,1,2,1,0), ̂ -),

î,6i + 4 3 2 = ((3-, 3-, 1, 3", - 3"), 0),

1̂,61 "^ 1̂,54 + 2̂ 2,32 = \\ ~£> 3"* 1» "̂ » 3"j» θ j .

Also

,-«/(((-|vj,l,J ,̂ -),0)) ^ .-»(((-•i,0,0,0,^-),0))

Therefore, by the argument of (2) and (11), λσΘL13(Ψ, λt)t~2p is integrable on

R + x Γε° for σ > 0 and on [1, oo) x 7;0 for all σ.

(13) Consider Ll5.

For α = 2,3,4, we define L 1 5 α = {x e L1 51 2r2>αl =£ 0}. Then by Proposition

(3.14)(9), L15 = UαL1 5 > α. Since fΪ2m < Γ"2'41 for α = 2,3,4, we only consider the

case a = 4.

It is easy to see that

2dh62 + 2dlt53 + 3d2A1 = ^(TJ, 3-, 0, 3-, -3 j , -^-j.
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Then by Lemma (1.2.6) [8], for any N > 1,

< ;Γ 7 J V sup( l , ^-^^(((f0 - 3 ' 0 i > τr )-Λ r ( (H° H ) i > > .

Therefore, by the argument of (11), λ θLi5(W, λt)t is integrable on R + x

Γε° for σ > 0 and on [1, oo) x Γε° for all σ.

(14) Consider L1 6.

For a = 2,3, we define L 1 6 α = {x e L161 χ2al Φ 0}. Then by Proposition

(3.14X10), Lί6 = U α L 1 6 α . Since fΎ2m < Γ"2'31 for a = 2,3, we only consider the

case α = 3.

It is easy to see that

'2 1 . 2 1\ 1>
2"i,62 ~̂~ 2 α 1 5 4 + 3α2,3i = \\"3*» 3f' ' ~3Γ* "3"/' ~2/'

Since all the entries of the above element are positive, λσθL^{Ψ, λt)t~2p is in-

tegrable on R + x Γε° for σ > 0 and on [1, oo) x Γε° for all σ.

(15) Consider L17.

It is easy to see that

' ' 21'

Since all the entries of the above element are positive, λσθL (Ψ', >ίθ^ P is in-

tegrable on R + x Γε° for σ > 0 and on [1, oo) x T°ε for all σ.

(16) Consider L18.

It is easy to see that

2dx 6 3 + 2dλ 5 4 + 3d2 2 1 - ( ( - , - , 1, - , - ) , - )

Since all the entries of the above element are positive, λσθL (Ψ, λt)t p is in

tegrable on R + x T°ε for σ > 0 and on [1, oo) x 7;0 for all σ.

This completes the proof of Theorem (3.1) for the case (4). Q.E.D.
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