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1. Introduction

In the past few years there has been an increasing interest in a certain class

of stochastic differential equations (SDE's) in Hubert spaces for applications in

quantum mechanics (measurements continuous in time [1-5]) and in quantum op-

tics (photon-detection theory and numerical simulations of master equations

[6-10]). Part of the mathematical theory of these equations has been developed in

[11], where also "structural properties" of this class of equations have been stu-

died. In the paper [11] it has been shown that such equations are connected with

certain semigroups of linear operators and the form of the generator of semigroups

related to such SDE's has been established.

Independently of SDE's, semigroups of the same type have been studied in

[12-14] and, under some mathematical restrictions, their generators have been

completely classified through some quantum analogue of the Levy-Khinchin formu-

la. The problem is that the two forms of the generators obtained in the two papers

[11, 14] are not directly comparable. The aim of the present note is to rewrite the

generator obtained in [14] in an equivalent, more explicit form. At that point the

expression for the generator of the semigroups considered in [11] will be compara-

ble with the new form of the generator obtained in [14] and it will be evident that

the semigroups studied in [11] are strictly a subclass of the ones of the article

[14]. This will open the problem, at present under study, of constructing SDE's

connected to semigroups with the same generality as those studied in the article

[14]. This will give rise to new SDE's that haven't been taken into account in the

physical literature up to now and that may have new physical applications.

Section two is dedicated to the statement of the problem and to the presenta-

tion of the results of the article [14]: semi-uniformly continuous semigroups of

probability operator on von Neumann algebras and a quantum analogue of the
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Levy-Khinchin formula, giving their generator. Section three contains a technical

theorem on a suitable representation of certain operator-valued measures and a

second form of the quantum Lέvy-Khinchin formula, which is the main result of

the paper. The comparison with the generators of the semigroups obtained in [11]

is also given in section three.

2. Semigroups of probability operators

This section deals with the introduction of the class of semigroups which we

are interested in and to the presentation of the results of the article [14] on their

generators. We need some preliminary notations and definitions [15,16].

If M1 is a von Neumann algebra of operators on some Hubert space fflι(M1 c:

# 0 ^ ) ) and d e ίE{Mι 2(tfJ), where fl2 is another Hubert space, the map d is

said to be completely positive (CP) if

(2.1) Σ <φi\d{aUi^Φi> ^ 0 ,

Vrc <ΞN, V{φjfj= l , . . . , n ) < = ^ 2 , V{aJfj = 1 , . . . , n) c Mv

If condition (2.1) is required only for n — 1, the map d is said positive. By a we

denote the adjoint operator of a. If d is a positive map, then d is said to be nor-

mal if l.u.b. d[an] = d[l.u.b.an] for any bounded increasing sequence ian) of

elements of Mί;l.u.b. means least upper bound, which always exists for bounded

increasing sequences in von Neumann algebras.

From now on, let X be a separable complex Hubert space and denote by

M '-= &(X) the von Neumann algebra of all bounded linear operators on ffi. We

need also the W -algebra N '*= L°°(R M) of all essentially bounded weakly*

Lebesgue-measurable functions from R into M <M is naturally isomorphic to

M ΘL°°(R ) (W -tensor product) and can be seen as a von Neumann algebra of

operators on the Hubert space X (8) L (R ). Finally, let us denote by CQCR^;

Ji) the Banach space of all norm-continuous functions from the one point compac-

tification of R into M. We use the notation 1 for the identity operator, when it is

considered as an element of M, L°°(R ) or JV, and the notation Id for the identity

map on M or N. By Rz, z €= R , we denote translations in L (R ), i.e.

(2.2) Rt[f\ {x) :=f(x + z) a.e., V/ e L"(R*).

We are now able to introduce the semigroups we want to study.
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DEFINITION 1. A semi-uniformly continuous semigroup of probability operators

(SCSPO) is a family {Tt9 t > 0} of operators Tt e <β(M) such that, Vf, s > 0,

a. Γ, is CP and normal;

b. Tt*(Id ®Rt) = (Id®Rz)*Tt, Vz<ΞRd;

c. Γ,[l] = 1 ;

d. Tt-Ts=Tt+s;

e. Γ0 = Id;

f. lim||Γf[ ® l ] - I d [ ] ® l | | = 0;
t jo

g. 7,1X1 is a continuous function of t, V A e C0(Rf, Λί).

It has been proved [13] that properties a and b imply that Tt leaves the space

CQCROO M) invariant, while properties f and g characterize the semi-uniform con-

tinuity [14].

The infinitesimal generator of SCSPO's involves some operator-valued mea-

sures called quasi-instruments. Let M* be the trace-class on $?, i.e.

(2.3) M* = {p e <e(tf) : || p W, = Ύrjp*p < + oo} ;

M% can be identified with the predual of M by introducing the bilinear form

(2.4) <p, a} := Tr{pa}, p^M^a^M.

Let us recall that for any positive and normal map d ^ Ϊ£(M) there exists a uni-

que positive map d% ̂  £(M%) (the preadjoint map) such that (p, sέ[a]} =

(d*[p], ά>, V a e M, V p E iί^. On the contrary, if % e ί?( i ί # ) is a positive

map, then its adjoint # * e 4?U) (defined by <p, <β*[a]> = <%[p], d>, V β £ i ί ,

Vp e J/JJJ) is a positive and normal map.

DEFINITION 2. A quasi-instrument on Λί with value space (Ω, Σ ) (a measur-

able space) is a map Γ from Σ into £(M) such that

a. Γ(B) is CP and normal, V B e Σ ;

b. <p, Γ( ) M > is σ-additive, V p E M*, V a ^ M (weak* σ-additivity).

If the normalization condition Γ(Ω) [1] = 1 holds, Γ is called an instrument

Note that, if p > 0 and a > 0, <p, -Γ( ) W ) is a positive finite measure. If Ω

is a locally compact Hausdorff space and Σ is its Borel σ-algebra, it is useful to

ask such measures (p, Γ( )[a]) to have the inner and outer regularity property

(as done in References [12-14]); in the case of Ω = R (which is the case of in-

terest in Definition 3), this condition is automatically satisfied by finite measures

(see Theorem 2.18 p.48 in [17]).

Let us consider now the space C2(Roo M) of all twice differentiable functions
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such that the functions themselves and their derivatives up to second order belong

to C O ( R 1 M). With the norm

(2.5) 2 | | H |
i=1 ii σXj ii i J = ί

C2(Roo M) becomes a Banach space; in Equation (2.5) || * || is the usual supremum

)norm in CQCR^; M), inherited from L°°(R M). Finally, let C2(Roo) be the analo-

gous space of complex functions, let us set R* •= R \ {0} and denote by $* its

σ-algebra.

DEFINITION 3. A linear map K from C 2(Rf,;^ί) into L°°(Rd;J/l) is said to

admit a Levy-Khinchin (LK) representation, if K, restricted to product elements, can

be written a s ( V « G l , V/ G C 2 f l O , Vx G Rd, V p e iί^)

(2.6) ^

(2.7) ί? = ^o + ^ + ^2,

(2.8) ^ [ α ] := i Σ 6/y(C*[fl, C,] + [C*,

(2.9) f fi | / |

(2.10) ΛΓJα (8)/] (x) := ^Σ ^ { ^ (C*α + aC<) + |

(2.11) <p, ̂ 2[α(8)/](x)> = Γ [/(x

f(x + y) — fix) 7

7m > F ( ά y ) a + a F { ά φ

, a),

(2.12) ψ(y) =

where [a, b] '-— ab — ba, $ 0 G £(M) is the generator of a norm-continuous

quantum dynamical semigroup [18] on Λί, {δί; } is a positive-definite d * d real

matrix, έ ? G R, Cz G M, f is a quasi-instrument on Λί with value space (R*,
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58*), F is an J ί-va lued weakly σ-additive measure on R * (i.e. F : ® * — * M>

(p, F ( )> σ-additive, V p G M^), γ is a numerical finite positive measure on R *

Γ, F and y are such that the position

(2.13) <p, Γ(B)[al> = [φ(y)<p, Γ(dy)[a]> + f v W < p , F*(άy)a + aF(dy)>

+ <p, ά)γ(B)y V δ e $*, Vp e Λί*, Vα e i ί,

defines a quasi-instrument F.

Let us recall that a map i? is the generator of a norm continuous quantum

dynamical semigroup if and only if [18] V a G M

(2.14) £[0] = i[H, ά\+^Σ αίEfl, L J + [/£, α]LΛ),

where H, Lk ^ M, H = H , Σ ^^^ A is strongly convergent in M. An equivalent
k = l

form of Equation (2.14) is

(2.15) £ [ a ] = i [ H , a] + U { a \ \

where H ^ M, H = H and L is a bounded linear operator from #? into $? ® Λί,

with f̂ an auxiliary separable Hubert space; one goes from (2.15) to (2.14) by in-

serting a discrete resolution of the identity in # .

In Definition 4 of the article [14], the LK-representation is defined by giving

the action of K on the whole C2(Roo M) however, it is sufficient to use the sim-

pler Definition 3, given here, because of the following result.

PROPOSITION 1. A map K on M X C2(Roo), defined by Equations (2.6)-(2.13),

can be extended by linearity and continuity to a unique continuous linear operator from

C2(Rί;M) intoC0(Rί;M).

Proof The extension of K by linearity to M Θ C2(R00) (algebraic tensor pro-

duct) is trivial. Then, we rewrite K2, V A ^ M 0 C2(Roo), as

(2.16) K2[Aϊ Or) = ΛΓIGX] + Σ 4
dAix)

where, Vy e R*, Vp <= iί^, VZ)e ^ 0 C0{Rl\ {0}), V« e M,

(2 17, C,« - ^ [Xte + ^ -A(X) -
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(2.18) <p,drW\>=f <ρ,Γ(dy)W(y)]>,

(2.19) <p, Δ,[a]> = f , Vi iίφWip, f(dy)[a]>
R* I z/Iv 1 + \y\

We observe that GX^MQ C0(RUΛ ft)}), || Gx || < Λ || A ||2 for some λ > 0, £ e

# U ) , 4, e # U ) for i = 1,. . . , rf, || dΓ[D] \\<s\\D\\ for some s > 0. Then, by

easy estimates one obtains || K[A] \\ ^ κ\\A \\2 for some K > 0 and the unique con-

tinuous extension is guaranteed. CD

Given a map K admitting a LK-representation, such a representation is not

unique; this allows to ask the measures F and Γ to satisfy some additional prop-

erties (see [14] p.257).

Remark 1. Without changing K, it is possible to choose the measures enter-

ing Definition 3 in such a way that, for a fixed normalized vector φ ^ # , one has,

Vβe|,, Vg,fe%,

<φ\F(B)φ> = 0,

(2.20) <0 | f(5)[ |0X/lk> = 0 ,

Finally, the fact that K determines Tt uniquely is given by Theorem 1 and

Section 7 of the article [14].

THEOREM 1. If K is a linear operator on C2(Roo IM) that admits a

LK-representation, then there exists a unique SCSPO such that K is the restriction to

C2(Roo M) of its infinitesimal generator. Conversely, the restriction to C2(Roo M) of

the infinitesimal generator of an SCSPO admits a LK-representation.

Let us stress that the paper [14] considers the case of rf-dimensional Lie

groups instead of R . For simplicity, this note is written only in the case of R ,

but the whole content could be translated into the case of finite dimensional Lie

groups.
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3. A second form of the Levy-Khinchin representation

In this section we give a more convenient expression for the Levy-Khinchin

representation of the generator of a SCSPO. To do this we need some notations

and a preliminary theorem on the structure of quasi-instruments.

Let ξ be a (finite or σ-finite) measure on some measurable space (V, ΈΨ).

Let us consider the Hubert spaces L\ '= UiV, ξ) and L\(tf) : = L 2 (^ , ξ it) of

the equivalence classes of the ξ-square-integrable functions with values in C or

it, respectively. The space L^(JC) is naturally isomorphic to $€®Lξ ([15]

§1.1.10).

THEOREM 2. Let Γ be a quasi-instrument on M = !£(ffl) with value space

(Ω, Σ ) let (Ω, Σ ) be a standard Borel space. Then, there exist a finite measure ξ

on V = Ω X N {with the natural σ-algebra) and a bounded linear operator V : $t —*

] , such that, VA, g e %, V a e M, V B e Σ , one has

(3.1) <h\Γ(B)[a]g> = Σ f<(Vh)(ω,n)\a(Vg)(ω,n)>ξH(dω),
n=l JB

or, equivalently,

(3.2) Γ(B)[a] =

where ξn(B) : = fCB x ί »» αnrf (χ(B)u)(ω, n) : = χB(ω)u(ω, Λ), V « e

χ β ( ) is ί/xe characteristic function of the set B. On the contrary, given ξ and V as

above, Equation (3.1) (or (3.2)) defines a quasi-instrument.

Proof Let the quasi-instrument /^ be given. Then, there exist a separable

Hubert space #, a projection-valued measure £ : Σ ~ • # ( # ) , a bounded linear

operator M : f - ^ f ® ^ , such that, V β e Σ, V α G l , O n e has

(3.3) ΠB)[a] = M*(a®E(B))M.

The proof of this statement is the same as the one given by Ozawa [19] in the case

of instruments. Ozawa's proof is contained in Proposition 4.2, in the first half of

the proof of Theorem 5.1 and in Corollary 5.2 of the article [19]. That proof can

be repeated step by step also in the case of quasi-instruments; only at the end, in

the case of instruments, M turns out to be an isometry. In that proof a key role is

played by the hypothesis of complete positivity of Γ\ moreover, the fact that X

can be taken separable follows from the hypothesis that (Ω, Σ ) is a standard

Borel space.
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From the spectral theorem ([20] Theorems VII.3, VIII.4) there exist a finite

measure £ on V = Ω x N and a unitary operator U :$l—* Σ^ = 1 L (Ω, ξn) = Lξ

such that

(3.4) (UE(B)U*φ)(ω, n) = χB(ω)φ(ω, n), V0 e L\.

From Equations (3.3) and (3.4) we have

Γ(B)[a] = M*(a®E(B))M = M*(a® (U*χ{B)U))M

= M*(l ® Ϊ7*) (α ® χ (5)) (1 ® U)M.

By defining V : = (\ ® U)M, then F is a bounded linear operator from $! into

$ΐ ®Lξ — Lξ(X) and Equation (3.2) is obtained. Equation (3.1) is another way of

writing Equation (3.2).

Let now ξ and V be given; we have to prove that Equation (3.2) defines a

quasi-instrument.

a. V f i G Σ , Γ(B) G <e(M) indeed, Vα e iί,

7 I I < II 7 I I 2 II a II.

b. V S G Σ , Γ(B) is CP; indeed, V m e N, V {</>,., = 1,. . ., m} c ^ , V {α; ,

> = l,...,m} c iί,

Σ <0, |Γ(β)[α*α ; ]0;> =

= Σ f ( Σ β , ( W ( α ) , n) Σ βy(70y)(ω, « ) ) ξB(dω) > 0.

c. V β e Σ , Γ(5) is normal. Indeed, let us call G the positive bounded linear

map from M% into the trace-class on ^ί ®L^ defined by

G[p] : = ( I ® χ ( β ) ) 7 p 7 * ( l ® χ ( β ) ) .

Then, its adjoint G* from £{$t®L\) into Λί turns out to be normal ([15]

Lemma Π.2.2). Then, Γ(B) is the restriction of G to M and inherits the nor-

mality property.

d. χ ( ) is a projection-valued measure, which, in particular, is σ-additive in the

strong operator topology and in the weak topology. By this and the fact that,

V|θG M* and Va G M, the quantity VpV (a ® 1) is a trace-class operator

on tt®U% we have that the measure TrL*(3n {VpV*(a ® χ(•))} Ξ

<p, Γ( )[fl]> is σ-additive V p <^ M*, V a <^ M. D
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We are now able to give the main result.

THEOREM 3. A linear map K defined on C2(Roo \ M) admits a LK-representation

if and only if its restriction to product elements can be written as (V a €= M, V/€Ξ

fif(r)
(3.5) ϋΓtα <g>/] (x) = /(*)#[*] + Σ b i ^ L a + tfj* (8)/] (*) + K2[a <g>/] Or),

(3.6) S? = Σ ί?,,
1 = 0

(3.7) Z^άl ••= \ Σ ([L*k, a\Lk + L*[a, Lk]),
4=1

(3.8) <et[άl = L*(a® 1)2, - ^-Z,*Lα - \aL*L,

1

(3.9) /fJa^/Kx)--! Σ J

(3.10)

= Σ Γ f [ / ( x + y) - fix)] <(Lh) (y, n)+h\ a«Lg) (y, n) + g)>

- Σ -^r- 2 <A I ag>]vn(dy),

«ί?0 ^ £(M) is the generator of a norm-continuous quantum dynamical semi-

group on M, b{ ^ R, {bjj} is a positive-definite d X d real matrix {a{j} is a d X r

real matrix such that

r
(3.11) bιJ=Σaιkajk, i,j=l,...,d,

k l

φ is defined by Equation (2.12), Lk ^ M, v = {vn(άy)} is a σ-finite measure on
R* x N such that

(3.12) Σ Γ φ(y)vn(άy) < + oo
»=i JR*

αnc/ L is a bounded linear operator from ίt into ίt ®LV — Lv(ffl).

Proof. Let us start by showing that the map K defined by Equations
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(2.6)-(2.13) can be written in the form (3.5)-(3.10).

Let us consider the maps ί£λ and Kx defined by Equations (2.8) and (2.10).

Let us fix an integer r > rank{&0}; then, there exists a real d x r matrix

iaik} such that Equation (3.11) holds. Let us define

d

JL* fc 2Li £Zj β C/j , rC J. , . , . , Y \

i=l

then, Lk ^ M and Equations (2.8) and (2.10) can be rewritten in the form (3.7)

and (3.9).

Let us consider the quasi-instrument Γ with value space (R* $*)

introduced in Equation (2.13). By Theorem 2 there exist a finite measure ξ on

R* X N and a bounded linear operator V : X-* X ® L\ - L\(X) such that

Equation (3.2) holds. Let us assume that Γ and F are chosen in such a way that

the conditions of Remark 1 hold. Recall that in Equations (2.20) 0 is a fixed vec-

tor in X with || φ || = 1. Under these conditions Equation (2.13) gives (V h, g e

X, Vα€Ξ M)

(3.13) γ(B) = <φ\ΠB)[\φ><φ\]φ>,

(3.14) fyfφζy)<h\F(άy)g> = <φ\ ΠB)[\ φ><h\]g> - <h\g>γ(B),

(3.15) Γ φ(y) <h \ Γ(B) [a]g> = <h \ Γ(B) [a]g> - <φ | Γ(B) [| φ> <h \ a\g>
JB

- <ΛI Γ(B)[aI g><φ |]φ> + <h\ ag>γ(B).

By using Equation (3.2) and setting

v(y,n) := <φ\ (Vφ)(y, n)>,

we obtain f e l s and

(3.16) γ(B) = <v\χ(B)υ>L>

(3.17) [jφljjϊ<h\F(dy)g> = <h® υ\ (\®χ(B)){Vg - g® v)> ϋm,

(3.18) Γφ(z/)α|Γ(5)[αk> = <Vh- h®υ\ (a®χ(B))(Vg -
JB

Let us define a linear operator S : X—* Lξ(X) by

, n) = ^=^ [(Vg) {y, n) - υ(y, n)g]
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S is a bounded operator because, by Equation (3.18), one has

II sg \%x) = <g I Π R * ) [i]g> < II ΓXRi) t i l IIII g II2.

Then, Equations (3.17) and (3.18) give

(3.19) <h I F(B)g) = <k 0 v I (l®χ(B))Sg>L)W),

(3.20) Γ(B)[a] = S*(a®χ(B))S.

By using 5, Equations (2.9) and (2.11) become

(3.21) <h\$2[a]g> = Σ ί \<(Sh)(y, n) \ a(Sg)(y, n)>
n=lJRί l

- \ <(Sh)(y, n) I (Sag)(y, n)> - \ <(Sa*h)(y, n) \ (Sg)(y, n)>}ξn(dy),

(3.22) (h I K2[a ®/] (x)g> = Σ j t {[f(x + y) - f(x)]

Let us now introduce the sets

4 , : = (^ €= R^ : W(», ») = 0}, Ac
n := R i

which are measurable sets because f is a measurable function. Moreover, we de-

fine

(3.23)

(3.24) (L^) (y, n) : =

Equation (3.23) defines a σ-finite measure on B^ x N such that

Σ Γ <p(2/)vB(d2/) = Σ Γ φ(y)ξn(dy) + Σ f \v(y, n) \2ξn(άy)
n=\ Jΐtί w=l JAn n=l JAc

n

<ξ(K χ N ) +\\vfL]< + oo,

while Equation (3.24) defines a bounded linear operator L : $? —• Z,y($?) indeed,

one has
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\\Lg\fCm = Σ Γ || (Sg)(y, n) - gfξni.άv) + Σ Γ II (SgHy, n) fξM(d*/) <
«=1 JAn »=1 •'Λg

^ II g If J : 4 ( Λ ) + II s g fL.t(x) < ( m i x N ) + ii 5 f) ii g f.

Equations (3.23) and (3.24) can be inverted to give

(3.25) ξn(dy) = \χAn(y) + χAc(y) f y \ . 2 ] vn{άy),
1 I v(y, n) I J

(3.26) (Sg)(y, n) - χAn(y)ί(Lg)(y, n) + g] + χ^y) ^ ^ - (Lg)(y, n).

By inserting Equations (3.25) and (3.26) into (3.21) and (3.22) one obtains

(3.27) <h I $2 [ά\g> = Σ f \<(Lh) (y, n) \ a(Lg)(y, »)>

- \ <(Lh)(y, n) I (Lag)(y, n)> - \ <(La*h){y, n) | (Lg)(y, n)>}vn(άy)

+ \ Σ f \<(Lh)(y, n) I ag) + <a*h \ (Lg)(y, n)>
Δ n=l J/in L

- <h\(Lag)(y, n» - <(La*h)(y, n) \ g>)vn{άy),

(3.28) <h I ̂ 2 [α <8>/l (x)g> = Σ Γ f [/(x + ») - /(x)]
«=1 J Rί ι

x <(Lh)(y, n)+h\ a((Lg)(y, n) + g)> - Σ^~~ Vj— <h\ ag))vn{άy)

+ \y\

let us stress that the two last lines of Equation (3.27) can be rewritten as

\ Σ Γ \<(Sh)(y, n) I ag) + <a*h \ (Sg)(y, n)> - <h \ (Sag)(y, n)>

Z n=l JAn t

- <(Sa*h)(y,ή)\g>}ξn(dy).

Let us define an operator R ^ £($!) by

(3.29) <ft|lf£> : = Σ Γ <A| (S^)(z/, n)>ξn(dy) Ξ <A®«I S ^ αr),

where u ^ Lξis defined by u(y, n) = XAn(y) i? is indeed bounded because
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IIRg f = <{Rg)®u\ S g > L ] m < | |Rg | | | |u | | | |SIIIIgII ,

and so

Finally, we define £2 and K2 by Equations (3.8) and (3.10) and set

(3.30) £0[a] = £oίa] + i[± (R - R*), a],

(3.31) bt = bt + Σ f ~ ξn(dy)
«-i J^n 1 + I y \

this completes the proof of the first part.

Let us now assume that K is defined by Equations (3.5)-(3.12). It is always

possible to write Lk = Σ , =i ^^C,- for some Ct & M then Equations (3.7) and

(3.9) can be immediately written in the form (2.8) and (2.10).

Equations (3.8) and (3.9) can be rewritten in the form (2.9) and (2.11) and

Equation (2.13) is satisfied by setting, VA, g G # , Va e M, V ^ e ^ ,

(3.32) <h I Γ(B) [ά]g> = Σ f <(Lh) (y, n) \ a(Lg) (y, n)>vn(dy),

(3.33) <h\Γ(B)ίά\g> = Σ f<(Lh)(y, n) + h\a((Lg)(y, n) +g)>φ(y)vH(.dy),
n = l JB

(3.34) <h I F(B)g> = Σ Γ <A I (L^) (y, w) > JφζyϊvH(dy),
n=lJB

(3.35) r(β) = Σ f φ(y)vn(dy).
n=\ JB

Showing that all these quantities are well defined and satisfy the requirements of

Definition 3 is a standard task and it is similar to the second half of the proof of

Theorem 2. EH

The generator obtained in [11] from the SDE approach has the form described

in Theorem 3 except K2 and the related term ί£2: the expression for K2 obtained in

the paper [11] was

(3.36) <h\K2[a®f\(v)g>

= Σ Γ \[f(x + y)- fix)] <(Uy, n) + 1) A | a(L(y, n) + ΐ)g>
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<-i υ x l + \ y \

where L(y, ή) £ ^ί, it is strongly measurable, the integral

OO / •

Σ /
n=\ JΊR,%

, n)*L(y, n)vn(dy)

is weakly convergent and

(3.37) sup| |L(y, w) || < + °°.

y,n

It is easy to see that the equation

(3.38) L(y9n)h=: (Lh)(y,n)

defines a bounded linear operator L from X into Lv(ffl) and therefore the gener-

ators obtained in the paper [11] are in the class of generators studied in this note.

The viceversa is not true: not always can Equation (3.10) be written in the form

(3.36), even if the technical assumption (3.37) is not taken into account. A coun-

terexample is as follows.

Let us fix a vecter φ0 e ffl and take $t = Lv then, we define L by

(3.39) Lh:=φo®h or (Lh)(y, n) = h(y, n)φ0.

In the general case, for instance when the measures vn are absolutely continuous

with respect to Lebesgue measure, no family L(y, n) of bounded operators exists

such that Equation (3.38) holds. Our conjecture is that just this kind of operators

(3.39) could be involved in models for "direct detection" of photons when the

photons are emitted in electronic transitions from a continuoum of states to a

ground state.

Acknowledgements. The authors are thankful to A. S. Holevo for the example

of Equation (3.39) and for discussions on the subject.
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