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SIEGEL MODULAR FORMS AND THETA SERIES
ATTACHED TO QUATERNION ALGEBRAS II

S. BOCHERER AND R. SCHULZE-PILLOT

Abstract. We continue our study of Yoshida's lifting, which associates to a
pair of automorphic forms on the adelic multiplicative group of a quaternion
algebra a Siegel modular form of degree 2. We consider here the case that the
automorphic forms on the quaternion algebra correspond to modular forms of
arbitrary even weights and square free levels; in particular we obtain a construc-
tion of Siegel modular forms of weight 3 attached to a pair of elliptic modular
forms of weights 2 and 4.

Introduction

We resume in this article our study of Yoshida's lifting from [5]. This

lifting associates a Siegel modular form Y^(ψι^ ψ2) of degree 2 to a pair

Ψι-> Ψ2 of automorphic forms on the adelic multiplicative group of a definite

quaternion algebra D over Q. This pair corresponds under Eichler's corre-

spondence to a pair /, g of elliptic modular forms of weights k\ = 2, £?2 and

the same square free level TV; it is a theta lifting from the orthogonal group

of D equipped with the norm form to the group Sp2 In the case that also

&2 = 2 holds we proved that this lifting is nonzero if both /, g are cusp

forms with the same eigenvalues under the Atkin-Lehner involutions; if ψ2

is constant (and hence g is an Eisenstein series) the vanishing of Y^2\ψι) 1)

depends on the central critical value of the L-function of /. We extended

the construction to arbitrary pairs of weights k\, &2 m [6] > where we also

gave the analogous construction of a lifting ^ ^ ( ^ 1 , ^ 2 ) to Siegel modular

forms of higher degree. These higher degree liftings are in general vector

valued Siegel modular forms; Y^n\φι,ψ2) is mapped to Y(n~1\φι,φ2) by

Siegel's ^-operator.
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The goal of this article is to extend our nonvanishing results from [5]

to this more general situation. The method of proof is essentially the same:

To prove the nonvanishing of γ(2\φι, ψ2) we show that Y^\φι, φ<ι) is not

cuspidal. This is done by studying the analytic behaviour of its standard

L-function in s — 1 in two ways: Once by giving an integral represen-

tation (assuming Y^(ψι} ψ2) to be cuspidal) and once by computing the

L-function in terms of the Satake parameters of /, g using the construction

of y(3) ((/?i, ψ2) as a theta lifting. The integral representation which we use is

the same as in [5] using the doubling (or pullback) method and an Eisenstein

series of weight 2, modified by some differential operator. In the generality

needed for our purpose these differential operators have been introduced and

studied by Ibukiyama [17]. On the theta lifting side we arrive after a careful

computation of the factors occurring at the bad places at the study of the

value at s = 1 of the normalized GI2 x G/2-L-function (with functional equa-

tion under s 1—> 1—s) associated to /, g. A result of Ogg [23] and Shahidi [24]

gives the nonvanishing of this value if /, g are cuspidal and nonproportional,

which contradicts the results obtained from the integral representation (and

hence our assumption that Y^'(φι, ψ2) is cuspidal). The case where ψ2 is

constant is more delicate and leads to the L-function condition mentioned.

To summarize our results, let /, g be primitive cusp forms of square free

levels N}, Ng (with N = lcm(Nf,Ng), gcd(Nf,Ng) φ 1), weights kλ > k2

and Haupttyp for ΓQ(NJ) resp. Γo(Λ^) (eigenforms of all Hecke operators)

and assume that for all p dividing gcd(iVj, Ng) the eigenvalues of /, g un-

der the Atkin-Lehner-involution wp are the same. Then we can associate

to /, g a nonzero vector valued Siegel cusp form of degree 2, whose Satake

parameters are computed from those of /, g. If &2 = 2 this Siegel modular

form is scalar valued of weight 1 + fcχ/2; in particular for k\ — 4, &2 = 2 we

obtain cusp forms of weight 3. These are of interest in geometry since they

correspond to holomorphic differential forms of top degree on the quotient

of the Siegel upper half space of degree 2 by the group Γo(iV). It should be

noted that we obtain in fact different constructions for each subset of odd

cardinality of the set of prime divisors of gcd(iVj, Ng) and that the resulting

Siegel modular forms are pairwise orthogonal.

Most of this article was written while both authors were guests of the

MSRI in Berkeley during its special year on automorphic forms. We wish
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visit of one month at MSRI and was a guest of the Max-Planck-Institut fiir
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§1. Yoshida's lifting

Yoshida's lifting [30, 31] associates a Siegel modular form of degree 2

to a pair /, g of elliptic modular forms of even weight, where one of /, g

has weight 2. Its generalization to arbitrary even weights considered in [6]

yields vector valued Siegel modular forms. As explained in the introduction

we want to generalize our results on the nonvanishing of Yoshida's lifting

to this more general situation. For this, we need to recall a few notations

and results from [5, 6].

Let D be Ά definite quaternion algebra over Q and R an Eichler order

of square free level N in D, i.e., the completion Rp is a maximal order in

Dp for the primes p ramified in D and is of index p in a maximal order

(i.e., Rφ is conjugate to the set of matrices ί 1 in M2(Zp) with p \ c)
\ c a J

for the remaining primes p dividing N. We will usually decompose N as

N = N1N2 where N\ is the product of the primes that are ramified in D.

On D we have the involution x 1—> x, the (reduced) trace tr(x) = x + x and

the (reduced) norm n(x) = xx.

For is G N let Ul be the space of homogeneous harmonic polynomials

of degree v on R 3 and view P G UJ) as a polynomial on DoJ = {x G D^

tr(x) = 0} by putting P(Y^f=1Xiei) — P(x\JX2^X3) for an orthonormal

basis {e^} of Doo with respect to the norm form n.

The representations τv of Dζc/Έlx of highest weight (is) on Uv given

by (τv(y))(P)(x) — P(y~ιxy) for is G N give all the isomorphism classes

of irreducible rational representations of D£o/Έlx. By ((, )) we denote the

suitably normalized invariant scalar product in the representation space

Γ/(o)
Uy .

The group of proper similitudes of the quadratic form q(x) = n(x) (with

associated symmetric bilinear form B(x, y) = tτ(xy)) on D is isomorphic to

(Dx x DX)/Z(DX) (as algebraic group) via
w i t h - 1
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with the special orthogonal group being the image of

2) e Dx x Dx \ n(xι) = n(x2)}.

We denote by H the orthogonal group of (D, n), by if+ the special orthog-

onal group and by K (resp. i f + ) the group of units (resp. proper units) of

the lattice R in D.

Let v\ > V2 be given and let τ\ = τVl, τ 2 = τV2 for i = 1,2. It is then well

known that the ίf+(R)-space U^ ®Uv2 is isomorphic to the ίί+(R)-space

UVl,v2 of C[Xχ,X2]-valued harmonic forms on D^ transforming according

to the representation of GI2CR) of highest weight {v\ + 1^2, v\ ~ Vci)\ a n inter-

twining map Φ has been given in [6, Section 3] (for the theory of harmonic

forms see [10, 19]). It is also well known [19] that the representation λUl,u2

of i f + ( R ) on Uv\,wz i s irreducible of highest weight (y\ + ^2^1 ~ V2)- If

v\ φ V2 it can be extended in a unique way to an irreducible representation

of H{K) on the space VVl^s := (U^ ® uίf) 0 (U^ <g> ujp), denoted by

(τi (8)12)5, whereas for v\ — v2 there are two possible extensions to repre-

sentations {j\®τ<2)±_ on ΌVχ^2\ we denote this space with the representation

( n ® r 2 )± on it by C/̂ 2̂,d=

For an irreducible rational representation (V̂ -, r ) (with r = τv as above)

of JD^D/RX we denote by ^4(JD^, i?^, r) the space of functions φ : J9^ —> Vτ

satisfying φ(jxu) = τ(u^)φ(x) for 7 in D Q and u = UOQUJ £ i?^, where

R^ = D^ x Π p ^p is t n e adelic group of units of R.

It has been discovered by Eichler that these functions are in correspon-

dence with the elliptic modular forms of weight 2 + 2z/ and level N. This

correspondence can be described as follows:

Let D^ = Ul=1D
xyiR^ be a double coset decomposition with yijOO = 1

and n(yi) = 1, put Iij = yiRyJ1, Ri = In and let ê  be the number of units

of the order R4.

Recall from §5 of [5] that for each p \ N we have an element πp £ Dx

of norm p normalizing Rp and that these πp (together with R^ ,) generate

the normalizer of ^ X J Q A / Q A in ^ A / Q A / Q A
 a n d s a t i s f y πp € QP

Rp
Right translation by πp gives an involution uίp of A(D^R^,τ), which

space then splits into common eigenspaces of all these (pairwise commuting)

involutions.
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On the space Λ(D^R^,τ) we have for p \ N Hecke operators T(p)

defined by T(p)φ(x) = J φ(xy~1)χp(y)dy where χp is the characteristic

function of {y E Rp \ n(y) E pZ*}. They commute with the involutions wp

~ r

and are given explicitly by T(p)φ(yτ) = ^ Bij(p)φ(y3), where the Brandt

matrix entry Bij(p) is given as

Bφ) = B(ζ\p) = ̂  Σ p»τ(x)

n(x) = p

hence is itself an endomorphism of the representation space Ul of r. On

the space Λ(D^ i?^, r) we have the natural inner product (, ) defined by

integration, it is explicitly given by

2 = 1

By abuse of language we call (in the case v = 0) forms cuspidal, if they

are orthogonal to the constant functions with respect to this inner product.

From [8, 14, 25, 18] we know then that the essential part Aess(D^, i?^,

r) consisting of functions φ that are orthogonal to all ψ E Λ(D^ ( ί ? ^ ) x , r)

for orders R' strictly containing R is invariant under the T(p) for p \ N and

the wp for p \ N and hence has a basis of common eigenfunctions of all the

T{p) for p \ N and all the involutions wp for p | N. Moreover in Λess(D^Ll

R^τ~) strong multiplicity one holds, i.e., each system of eigenvalues of the

T{p) for p \ N occurs at most once, and the eigenfunctions are in one to

one correspondence with the newforms in the space S2Jr2v(N) of elliptic

cusp forms of weight 2 + 2^ for the group Γ0(ΛΓ) that are eigenfunctions

of all Hecke operators (if r is the trivial representation and R is a maxi-

mal order one has to restrict here to functions orthogonal to the constant

function 1 on the quaternion side in order to obtain cusp forms on the mod-

ular forms side). This correspondence (Eichler's correspondence) preserves

Hecke eigenvalues for p\ N, and if φ corresponds to / E S2Jr2u(N) then the

eigenvalue of / under the Atkin-Lehner involution wp is equal to that of φ

under wp if D splits at p and equal to minus that of φ under wp if Dp is a
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skew field. An extension of this correspondence to forms φ as above that

are not essential but eigenfunctions of all the involutions Wp has been given

in [13, 7].

Lemma 3.1 of [6] now gives the following setup for the Yoshida lifting:

Let A(HJ^,KJ^,τι ® T2) be defined in the same way as Λ(D^R^Ti). If

ψi G Λ(D^R^Ti) for 2 = 1,2 (with T{ — τv% and v\ > v<ι) are eigenfunc-

tions of all the involutions wp for p \ N and of all the Hecke operators Tp for

p \ iV, we denote by ψ\ ® ψ2 the function on the adelic special orthogonal

group Hj^ of (D, n) given by

κf

where k in the finite part Kt of the adelic group of proper units of the

lattice R in D is represented as k — &kιM' Then ψ\ ® ψ2 φ 0 if and only

if ψι and ψ2 have the same eigenvalues under all the involutions wp for the

p I TV, and one has ^ β ^ G *4(iί^, AΓ£, ri (8) T2). Let now (/?i and (̂ 2 be

Hecke eigenforms having the same eigenvalues under all the involutions wp

for the p \ N. If (τ\ ® T2)* for * denoting +, — or s denotes the possible

extensions of T\ ® T2 to an irreducible representation of HJI let (ψι ® ̂ 2)*

be the unique function in *4(UA.> ^A) ( r i ® T2)*) whose value at h G i ϊ ^ is

- ( ^ 1
Δ

where 1 G iίft is the involution in Z).

Then for v\ φ V2 one has (ψι ® ̂ 2)5 ^ 0 if and only if ψι® ψ2 φ 0. For

v\ — V2 one has (^i®^2)+ 7̂  0. Moreover in this case one has (< î®<^2)- — 0

if and only if ψ\ = 0 or ^2 = α</?i for some a G C.

The functions (</?i ® ̂ 2)* o n the adelic orthogonal group Hj± thus con-

structed can be lifted to Siegel modular forms of degree n, we call this

lifting Yoshida's lifting, denoted by γ(n\ψι, ψ2, *). To describe it explic-

itly we recall from [19, 29] that for any irreducible representation (λ, Uχ) of

i/(R) the space 7ίn(λ) of pluriharmonic polynomials P : M m ? n ( C ) —> C/̂

such that P(h~1x) = X(ht)P(x) for all /i G O m is zero or (under the right

action of Gln(C) on the variable) isomorphic to an irreducible represen-

tation {pn{λ),Wpn(χ)) of Gln(C). In the latter case the space Ήq(pn(\))
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consisting of all g-pluriharmonic polynomials P : M m ? n ( C ) —> Wpn^ such

that P{xg) = (pn(λ)(gt))P(x) for all g G Gln(C) is isomorphic to (Uχ,X)

as a representation space of HR.

We denote by Vn^ the (essentially unique) isomorphism from UUΎ^2^ to

Then, again for * denoting + , — or 5, we have the n-th Yoshida-lifting

(whenever the representation pn((τi ® T2)*) is denned):

x exp(2τrztr(g(x)Z))<i/ι

It is explicitly given as

1

= Σ — Σ n̂
x exp(2πztr(g(x)Z)).

In particular, if z/χ = 2̂ = ^ then γ(1\φι,ψ2i+) is defined and is

an elliptic modular form of weight 2 + 2u. If ψ\,ψ2 are eigenforms of

the Tp for p { N with different eigenvalues then as in [31] one sees that

γ(ι\φι,φ2,-\-) = 0. If ψ\ — ψ2 = φ φ 0 is an eigenform of all the Tp

for p { N and of all the Wp for the p | Λ̂  then Y^'{(p, φ, +) is nonzero, and

linear continuation of the map sending an eigenform φ to Y^\φ, φ) realizes

Eichler's correspondence described above. For details in the case that φ is

not essential see [7].

To investigate the nonvanishing of the lifting in general we need the

following generalization of a result of Kitaoka:

LEMMA 1.1. Let V be a vector space over Q of dimension m with a pos-

itive definite quadratic form q on it, let L\,... , Lr be pairwise non-isometric

Zι-lattices of rank m on V having the same discriminant. Let (Wp, p) be a

finite dimensional irreducible rational representation of G7m_i(C) and let

0 Φ P{ G Ήq(p) for i = 1,... ,r be q-harmonic forms on Vπι~i with respect
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to p such that Pi is invariant under the action of the group of units O(Li)

of Li.

Then the theta series

^'^(Li.q.P^Z) := ]Γ P(x) exp(2πztr(ρ(x)Z))

(with Z in the Siegel upper half plane of degree m — 1) are linearly indepen-

dent.

Proof With his kind permission we give here a proof due to Y. Kitaoka

which is simpler and more elegant than our own original proof.

We show first that given L on V and 0 / P G Ήq(p) a s above there is a

global characteristic sublattice M of rank m— 1 of L in the sense of Theorem

6.4.1 of [20] such that P ( x i , . . . , x m _i) Φ 0 for a basis (and hence for any

basis) x i , . . . , x m - i °f M:

Write P = Σl=ι &iQi where the o^ are linearly independent over Q and the

nonzero polynomial functions Qi : Vπι~1 —» Wp have rational coefficients

(with respect to some fixed bases of V and of Wp) but are not required to

be harmonic forms. We can find an (m — l)-tuple z\,..., z m - i of linearly

independent vectors in L such that Qι(z\,..., z m - i ) Φ 0 and put M; =

ΊiZ\ + . . . + Zz m _i . Let S be a finite set of primes containing 2 and the

primes dividing the discriminant of L and let ί be some odd prime not

dividing the discriminant of M. Then by Theorem 6.2.1 of [20] one can,

in the same way as in the proof of Proposition 6.4.1 of [20] find linearly

independent vectors x i , . . . , x m - i in L such that

• The Xi are as close as we want to the z\ in the completion V^

• For the p G S the lattice Zpx\ + . . . + Z p x m _i is a p-adic characteristic

sublattice of Lp in the sense of [20, p. 153]

• There is some prime q ^ S U {£} such that the discriminant of M : —

ΊAX\ + ... + Zx m _i is a unit at the primes not in SU {£, q} and exactly

divisible by q.

The lattice M is then (again as in the proof of Proposition 6.4.1 of [20]) a

global characteristic sublattice of L, and if we chose the X{ close enough to
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the Zi at the prime I, we see that Q\{x\,... , x m _i) φ 0 holds, hence also

P ( # i , . jXm-i) Φ 0, and we have established the existence of the global

characteristic sublattice claimed above.

As in the proof of Corollary 6.4.1 of [20] we can now apply the above ar-

gument to the Li to find an index j , a characteristic sublattice M of Lj

with basis x\,... , # m _ i such that Pj(x\,..., xm-i) Φ 0 and such that M

is not represented by any of the Li with i φ j . By Theorem 6.4.1 of [20]

every embedding of M into L3 can be uniquely extended to an isometry

in O(Lj). Since P3 was assumed to be O(Lj)-invariant, the coefficient at

q((xι,..., Xm-i)) °f $ ~ (Lj,Pj,q,Z) is nonzero, whereas that of the

other $(rn-1\Ll,Pl,q,Z) is zero. ^ m " 1 ) ( L : / , P,,g, Z) can therefore not ap-

pear in any linear relation between the $(rn~1\Li,Pi,q1 Z), and iterating

this argument we get the assertion.

THEOREM 1.2. Let v\ > V2 > 0 be integers and let τ\ = τVl, T2 =

rU2 be the irreducible representations o / D ^ / R x of highest weights v\} v^

respectively. Let ψi G Λ{D^ R^Ti) for i — 1,2 be eigenfunctions of the

Hecke operators Tp and of all the involutions wp; assume that ψ\ and ψ2

have the same eigenvalues for all the wp.

Then if v\ φ V2 and * stands for s the n-th Yoshida-lifting Y^^ψi, ψ2,

*) is defined for n > 2; if v\ — V2 and * stands for + as above, it is

defined for n > 1. The lifting γ(2\φι,φ2)*) is in these cases a vector val-

ued Siegel modular form with respect to the representation of highest weight

{yι + z/2, v\ — v<ι) of Gl2(C) and is cuspidal unless v\ — V2 and ψ\ and ψ2

are proportional.

Moreover, under the same conditions Y^\φ\, ψ2-) *) is a nonzero vector

valued Siegel modular form for the group ΓQ (N) with respect to the repre-

sentation of highest weight (yι + V2 + 2, v\ — V2 + 2, 2) of Gls(C).

If v\ = V2 — v Φ 0 and Ψi: Ψ2 are not proportional, then Y^n\φι, ψ2-ί —)

is defined for n > 3 and Y^\φ\,φ2,—) is a nonzero vector valued Siegel

cusp form for the group ΓQ (N) with respect to the representation of highest

weight (2^,3,3) of G13(C).

If v\ —V2 — ̂ ^ then if φ\,ψ2 are not proportional, Y(3\φι,ψ2,—) is

not defined and Y^\φι, ψ2, —) is a nonzero Siegel cusp form for the group
{ \ of weights.
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Proof. The claims about the existence of the Yoshida-lifting follow

from the description of the theta correspondence at the infinite place in [19].

Lemma 3.1 of [6] gives then the nonvanishing of the function (φι <g> ψ2)* on

the adelic orthogonal group Hj±. By Lemma 1.2 of [6] the Yoshida-lifting

of [ifi ® ̂ 2)* i s a linear combination of theta series of the lattices J^ with

harmonic ploynomials that are invariant under the isometries of the lattices

Iij equipped with the norm form. The nonvanishing of the Yoshida-lift

follows then from Lemma 1.2 above in the first two cases and is obvious in

the last case (notice that the nonvanishing of {φ\®ψ2)^ implies in particular

that at least one of the I^ has no isometries of determinant — 1 in this last

case).

For the cuspidality properties asserted we notice that from Lemma

1.3 of [6] one sees that SiegePs Φ-operator sends F := Y(n\φι,ψ2,*) to

y(n~ 1)((^ 1, ( 2̂, *) whenever the latter is denned. From [29] one sees that the

Φ-operator sends F to zero if the last two entries in the vector ( λ i , . . . , λ n)

describing the highest weight of the representation of Gln(C) according

to which F transforms are not equal. This covers all cases except that

uι — V2 — v and * = —. If here v = 0 then Y^\ψ\^ φ<ι) is scalar valued of

weight 3 for ΓQ (iV), hence annihilated by Φ. For v Φ 0 and n = 3 the form
(2)

F I Φ transforms under ΓQ (AT) according to the representation of highest

weight (2v + 2, 3), hence is again zero.

The same arguments as in section 8 of [5] apply in the present vector

valued situation to show that γ(n\φι, ψ2, *) is cuspidal if and only if its

image under the Φ-operator is zero.

Theorem 1.2 settles the question of the nonvanishing of the Yoshida-lift

in the cases where * = —. In the remaining cases the argument in the end of

the proof reduces the question of the nonvanishing of γ(2\φ\, ψ2, *) to the

question of the cuspidality of the nonzero Siegel modular form Y^\φι, ψ2,

*) in the same way as in [5] for the case v\ = V2 = 0. We notice this fact as

a corollary:

COROLLARY 1.3. Let the notations be as in Theorem 1.2 and let *

denote + if v\ = V2 and s otherwise. Then Y^(φι,ψ2^) = 0 if and only

ι, ψ2, *) is cuspidal.
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§2. Vector valued Siegel modular forms

In this section we collect some facts about vector-valued Siegel modular

forms; unfortunately there is no adequate reference for the things we need

(the notes of Godement [12] are still the best reference for basic facts).

In most cases we give only sketches of proof, in particular we omit those

calculations which are completely analogous to the scalar-valued case.

2.1. Differential operators

PROPOSITION 2.1. Let po : Gl(n, C) —> Vp be an irreducible polynomial

representation with highest weight (λj.,. . . , λ n ) . Then there is a nonzero

Vp ® Vp-valued polynomial with rational coefficients Q(s,X) = QS(X) in

the variables s and X ; where X is a symmetric 2n x 2n-matrix of variables

X = (xij), homogeneous of degree ^ Xτ as a polynomial in X with the

following property: The associated differential operator As, given by

(AsF)(z1w):=(Qs((dlJ))F)(
z 0
0 w

with Zj w G H n maps holomorphic scalar-valued functions F on

Vp ® Vp-valued holomorphic functions on H n x H n and satisfies

to

w
άets(2.1)

for all Mi, M2 G Sp(n, R), where

dings

Sp(n,R) x Sp(n,R)

A B
C D

and Mj denote the standard embed-

Sp(2n,R)

(A 0 B 0
0 a 0 b
C 0 D 0
0 c 0 d/

Proof. It is sufficient to check (2.1) for generators of Sp(n, R) and for

"test functions" of type

with T G Sym 2 n(C) and Z =
W

H 2 n . We fix the "weight's and

consider Qs as a polynomial in the d{3 with unknown coefficients (depending
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( 1 7? \
, flG Symn(R) the equation (2.1)

is satisfied, so we only have to investigate l\ 1^ for 7 = ί n j . We
V In On /

have to compare
(2.2) Δ β ( / r | s / τ )

and

(2.3) det(z)-* (poW ® i d v ^ Γ 1 (Δ S / T )(/T(Z))

(and a similar expression with 7^ instead of 7^). After multiplication by

Po(z) ® idyp and a suitable power of det(^) both (2.2) and (2.3) are of the

form
e^i-Trz-^T^w) χ ( p o i y n o m i a l i n z a n d >χ).

Here of course T\,..., T4 denote the blocks of size n in the matrix T. From

this we see that (2.1) for all fj- and (Mi, M2) = (7, id) or (id, 7) is equivalent

to a system Cs of linear equations for the coefficients of Qs. The coefficients

of this system depend polynomially on s. Ibukiyama [17] proved that the

space of solutions of Cs is one-dimensional for s = k E N, k > n. Therefore

the corank of Cs is generically in s equal to 1. The generic solution of Cs

(properly normalized, such that the coefficients of d{j are polynomials in s

with no factor in common) gives us the existence of Δ s ; Δ s becomes unique,

if we choose some monomial in the dij with non-zero coefficient and require

this coefficient to be a monic polynomial in s.

Remark: The polynomial Qs automatically satisfies the symmetry relation

(2.4) Qs{dl3) = Qs

thanks to the result of Ibukiyama.

On Vpo we have a non-degeneate bilinear form (, ) such that

(2.5) (vup(g)v2) =

We denote by * : Vp ® Vp 1—> Vp 0 V* = End(Vp) the isomorphism given by

(2.6) (v\ (g) V2)*(v) = (v, vi)v2.
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Then we have for all g\, #2 £ Gl(n, C)

(2.7) {po{gi)vi 0 Po{g2)v2)* = Po(gi){vi ® υ2)Vo(#2)

Denoting by h s the function

ί TT f~Λ

nn > ̂
t \-s

we claim the following important relation

(2.8) Δ^h, - φ ) po(^i + ̂ )~ι det(^i + ^ Γ *

with a certain scalar c(s) = cPo(s).

The proof of this claim is quite similar to the proof of Theoreme 5 in [12,

Exp.6]: The function hs is rich of symmetries, which thanks to (2.1) gives

rise to enough symmetry properties of Δ* to prove (2.8). By considering

Δ*h s as a function fs(^χ + £4, Z\ — 2:4) of the variables z\ + £4 and z\ — Z4

we see (by applying suitable translations, using (2.1))

for all T G Symn(R), hence

with a suitable function g on H n . For g G G/(n,R)

0 9

0
- 1

y
0 9

hence

Al(hs)(zuzA) = άet{gγspQ(g)(χhs)(gtzιg,gtzig)

in particular

gs(ΐy) = det(y)~ s po(y~^) g 5 (i ln) ^
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It remains to show that g s ( i l ) is of the form scalar x idypo. We start from

a symmetry relation for h s , namely

(2.9) hs \s M
τ = hs \s M

l

Γl 0 1
for all M e Sp(n,R), where M = M~λ n n . This relation (2.9) is

again proved by considering generators of Sp(n, R), the case of translations

being trivial. For M = I we prove

(2.10) hs\s(I^o(-lγ) = hs.

To prove (2.10) we use the (elementary) relation

hs = Gs \s 7
T = Gs \s I

1

with

We obtain

= Qs \s ((-l2n)T o (-I)
T o (-I)1

s

= hs.

Therefore we have for any M = I ) G Sp(n, R)
\c dj

Δ s (h s | s M
τ o M u ) = Δ s (h s )

which implies

(det(c^χ + d) det(—cz4 + d))~spo ((czi + d)~l)

Pθ ( ("~c^4 + ^
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We apply (2.11) to M = [ ~ ] £ Sp(n, R) with u + iv e U{n, C) and

zγ = Z4 = i - ln:

(2.12) po{u + ίv)-i

Ks(2i)

This means that gs(2i) must be a scalar matrix, because it commutes with

all po(g), g G U(n, C); this follows from (2.12) because of

(u — ivY = (u + iv) ι.

The proof of (2.8) is finished.

2.2. Pullbacks of Eisenstein Series

Using the differential operator Δ s we extend the machinery of "pull-

backs of Eisenstein series" to vector valued modular forms. The scalar

valued case was previously discussed in [11, 1, 5] and the case of symmetric

tensor representations in [3] (and recently in [28]). Our approach is some-

what different from Takayanagi's [28], who considers a differential operator

independent of s; we avoid some of the combinatorial problems coming up

in [28]. We denote by { , } a hermitian scalar product on Vp such that

{p(gt)vi,V2} — {vi, ρ(g)v2}] after a suitable normalization we may assume

(2.13) {vlΊv2} = (vuv°)

where σ denotes the natural complex conjugation on Vp.

For F e [ΓQ (iV), ρ]0 with p = p0 ® det^ we consider

(2.14)
Γ0(iV)\Hn . . . .

det(v)sdet(y)sdωn

where

r<k ( cr n\ \ Λ

(2.15)

M=
C D
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To compute this integral, one follows the same line of computation as in [5,

section 1], using the double coset decomposition for

as described in [5, Thm.1.1], as well as the description of the corresponding

left coset decomposition [5, Thm.1.2]. The standard unfolding procedure

yields (using (2.1))

(2.16) M v n v

det(ώ - z)-'s} det(υ)s det{y)sdω ) | TN(M) det(MΓ f c~ s

where the summation is over all integral diagonal matrices

M =

\

with M = 0 modulo Λ̂  and 0 < τn\ \ rri2 .. \ τnn, and where TN(M)

denotes the Hecke operator associated to the double coset

/ det(—z + w)

H " (p(υ)F{w))det(v)sdet{y)sdωw

= c(s + k) / po(-z + w)-]-det(-z + w)-k-°

^2'11' H n 3-" z + w)-sp{υ)F{w)det{v)sdet{y)sdωw

= c(s k) j pί-z + tDΓ1

det(-2 + w))^-5 det(-2 + w)~ap{v)F(w) det(υ)s det(y)sdωω.



SIEGEL MODULAR FORMS AND THETA SERIES 8 7

In view of (2.13) and (2.8) it remains to investigate From [12, Exp.6,Thm.5],

applied to the holomorphic(l) function

w i—> det(-z + w)~sF(w)

with Re(5) >> 0 it is clear that (2.17) is a scalar multiple of F(z)\ we denote

this scalar by Ήpo{s + k).

It is actually possible to compute this scalar explicitly by transferring the

integral to the generalized unit disc

by a Cayley-transform (see e.g. [21]); as a result we get

The latter integral (which is easily seen to be of type scalar x idyp) is a

generalized version of the integrals computed in [16]; using the methods of

[16] one can explicitly compute this integral, but we do not do this here.

What we shall later on need is a relation between cpo(s) TίPo(s) and the

Ί n 1
polynomial Qs

For s G C with Re(s) » 0 w e start from the well-known identity

i ~ i Λ i ~ i T\~~s~r Z2 ~r Z2 ~r Z^ -\- L/)

Γn(s)

where Λ+ denotes the set of all half-integral symmetric positive matrices of

size n, Z = I t ) is an element of Ή.2n and
V z2 Z4 J

A — A(s) = e-^πins2n(s~^n~1^πsn.
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We apply Δ* to both sides of (2.18):

A X^ dt(T)s-ψQ((T T

\\T T
TGA+ W

(2.19) G Λ

= cPo(s) Σ Po(zχ + z4 + LYl det(^i + zA + L)
LGSymn(C)

According to [12, Exp.lO,Thm.7,Corollaire] this is equal to

c s ) r ι b ) 2

with

(2.20)

Therefore we get for all T G Λ+ and Re(s) ^> 0 the relation

(2.21)

It is obvious that ϋ"po(g)ciets(Γ) has a meromorphic continuation to all of C

since it can be obtained from the function

= Tn(s - ^ 1 ) det(2πT)-s+Ψ

by applying a suitable differential operator (w.r.t.Γ). In particular, equa-

tion (2.21) provides the meromorphic continuation of cpo(s) HPo(s) to all

of C (if we do not prefer to compute T~ίpo explicitly).

Later on we need some information about poles of Hpo<g)dets (£), which we

provide here (S = Sl > 0): Let i>o £ Vpo be a vector of highest weight, then

γ>o

i=l
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with Y — Tι T\ T upper triangular. This kind of integrals is studied in

[22, p.76], one obtains

(2.22) _

where (πS)~1 = R R* with R upper triangular.

2.3. Hecke Eigenforms

We assume now that F E [ΓQ(ΛΓ),PO ® det ]Q is an eigenform of all

Hecke operators T/γ(M), the corresponding eigenvalue will be denoted by

XF(M). If the eigenvalue \p(N ln) is different from zero, we get the

following Euler product (see [5, Thm.2.1])

M

= ΪV^ ζW{s) Π L i C(iV)(25 - 2i) ' AN^S ~n^'Dr ( 5 ~

where

1

denotes the (restricted) standard L-function attached to ί1, the α ^ being

the Satake parameters attached to ί1 in the usual way; moreover

1

with /3jg being the Satake parameters describing the following one-dimen-

sional representation of the Hecke-algebra attached to the Hecke pair

Gl{n, Z)M0Gl{n, Z) ^-> ) λF(iV M o
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for Mo G Z( n ' n ), det(Mo) = power of q. For details we refer to [5, section

2]. Summarizing our computation, we obtain for such a Hecke eigenform

det(v) s det(y)sdωυ

(2.23)

AN(2s + k-n) D{*\2s + k - n)

'ζ(N)(2s + k) Π Li C(7V)(4s + 2fc - 2z)

2.4. The scalar-valued case revisited

The scalar-valued case (po = det^) can be made more explicit; the

differential operators Δ s = Δ^^ in this case were constructed in a different

way in [2]. We normalize them by fixing the coefficient of det(c?2) with

Cn(s - n + - + i / - l ) . . . Cn{s -n+-)

with

With this normalization,

Moreover

(2.25) I
cyn2 +n—Ans—nk—nι> t

S -
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We need a slightly modified version of (2.23) later on (still in the scalar-

valued case): In [4] it is described, how one gets (essentially from a variant

of Shimura's theory of nearly holomorphic functions) an operator identity

(with Pfc(s), cffc(s) being polynomials in s)

(2.26) Pk(s) • det( y i )
s det(y 4 ) s Δ ^ ( d e t ( F ) - s x ? ) = dk(s) Δ£ + ft.

Here the question mark indicates the function to which the operator is

applied, ΊZ is a finite sum of differential operators of type

(2.27) (ΌZ1 ®ΌZ4)oV

where Ί) is some holomorphic differential operator of the type considered in

section 2.1, and ΌZl (ΌZ4 respectively) is a Maaβ type differential operator

with respect to z\ G H n (2:4 G H n respectively); in (2.27) at least one of

the Maaβ type operators is non-trivial. From [4] we quote the formula

Pk(s) JLi %

Moreover we use that holomorphic Siegel modular forms are orthogonal

(with respect to the Petersson scalar product) to automorphic forms in the

image of the Maaβ operators. For details on these facts we refer to [4]. For

an eigenform F G [Γo(iV), detfc+ι/]o we obtain now

/ /
Γ0(iV)\HnΓ0(iV)\Hn

(2.29)
dk{s) λF(N ln)/ — . 7 \ /-%/ / .

r> I Q _ L lζ> i . f—f I Q _L_

ΛJV(2S + k - n) • ΌKp]{2s + k - n)

' ζ(N) (2s + Jfc) Π?=i C ( i V ) (4s + 2fe - 2ΐ)

Here of course

det(Yγ |fc M
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§3. The key proposition

The key to non-vanishing properties of Yoshida-liftings is

P R O P O S I T I O N 3.1. Let O / F G [Γg(iV),po ® d e t 2 ] 0 be an eigenform

of all TN(M), M = 0 mod N and assume that po is of highest weight

(λi,λ2,0). Then AN(S) Dp (s) is regular in s = 1.

Proof. As in [5, section 9] we start from the fact that Gg has a simple

pole in s = 1. In view of (2.23) it is sufficient to show that cpo(s)-HPo(s) has
( (T

a pole (of any order) in s — 3; using (2.21) we investigate Q*s \
Hpo®άets(4T) instead (for any T G Λ+):

From (2.22) we see that Hpo^^ets [4T) must have a pole in s = 3 (i.e. in
some matrix realization of Hpo^ets(AT) there is at least one coefficient
in this matrix having a pole in s = 3). We are done, if we can show

« T T\\
11 has determinant different from zero in s = 3, when

considered as an element of End(V^,0). It is notationally easier to work with

the (real) vector space

for the moment. The statement in question about det(Q ) is true more

generally:

PROPOSITION 3.2. Let I, n be natural numbers with I > 2n, po a poly-

nomial representation of Gl(n,C) and consider the polynomial function

ί R χ R ^ y ® 7
l' \ (X,Y) -̂> QtiX1 X,X* Ύ,Yι y).

Then there is a Xo e R(/'n) such that det(P/(X0, XoT) Φ 0.

It is clear (by continuity) that XQ may be chosen to be of maximal

rank; by the action of G7(n, R) from the left and the right on Q\ this
((T T\\

implies that QA I I 1 has non-zero determinant for all positive definite

Γ G Symn(R).
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Proof. As a polynomial in X and Y, P/ is an element of Harm(/, n)

Harm(/, n) and also of Harm+(/, n)0j^Harm+(/, n); by its construction (see

[17] and Prop. 2.1), P/ is different from zero and

(3-1)

defines an endomorphism of Harm+0(Z,n) commuting with the action of

O(n,R); here ((, )) denotes the natural scalar product on Harm^0(/, n)

"adapted" to O(Z,R). The endomorphism (3.1) is selfadjoint (because P/

is symmetric), hence, by Schur's lemma, it is scalar, i.e. there is a constant

c ^ O such that

(3.2)

where fτ runs through some orthonormal basis of the r-dimensional space

Harm^o(/,n). Now we recall from [10] that Harm^0(/,n) is generated by

functions of type

(3.3) X H-> p o (X' A)υ

with v € Vpo, A €

such that

(3.4)

") with At-A = 0. Therefore there exists Xo e

{f(X0)\f€Haxmpo(l,n)} = VP

(take XQ in (3.3) such that XQ A has maximal rank).

We can reformulate (3.4) by saying that there is XQ such that the matrix

has maximal rank, where Vj runs through a basis of VPo (or

it follows immediately that there exists a l o ^ R^'n) with

(3.5) / € Harm+(Z,π)} = V+.

). From this

Now let XQ be as in (3.5); then for υ G Vpo the equation P/(XQ 5 ^ O ) * ( ^ ) — 0

implies Σi{fι(Xo),v)fi{Xo) = 0 and hence Στ | {fi(X0),v) \2= 0, so υ must

be zero.
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§4. Hecke action on Yoshida liftings

Throughout this section we let v\ > V2 > 0 as in Section 1 and let

ψi G Λ(D^ fl£, TVJ for i = 1, 2 be given. By Aess,p(D^, i?^, τv%) we denote

the p-essential part of A(D^ i?^, r^) , i.e., the set of φ G A(D^R^r^)

which are orthogonal to all functions invariant under an order R contain-

ing R with Rp strictly containing Rp. We assume that for each p \ TV at

least one of the ψi belongs to the p-essential part of A(D^R^rVi). We

assume moreover that ψ\,ψ2 are nonproportional eigenfunctions of all the

Hecke operators T(p) for the primes p \ TV with eigenvalues Xp and eigen-

functions of the involutions wp for the p | TV with the same eigenvalues.

(If instead of these assumptions we start out with two essential eigenforms

φ' G A(D^(R'A)
x,τUl) and φ" G A(Ό\, (R'^)x,rU2) with Eichler orders

i?r, R" of square free levels TV', N" in D then we can assume without loss of

generality that Rf Π R" is an Eichler order of level TV = lcm(TV/, TV") and go

over from φ1, ψ" to forms ψi, ψ2 that satisfy the assumptions stated above

and have the same Hecke eigenvalues as φ\ φπ respectively for the p \ TV.)

Since the question of nonvanishing of the Yoshida-lift γ(n\φι,ψ2, —)

in the case v\ = V2 α a s been settled in Section 1, we let Y^(ψij ψ2) denote

Y<^>\φι^ψ2)

Jr) or Y^?>\φι) ψ2, s), depending on whether v\ — V2 holds or

not.

According to the results of the previous section we have to show now

that the Yoshida-lift γ(3\φι, ψ2) is an eigenfunction of all Hecke-operators

for the p \ TV as well as for the operators T/v(M) for the bad places and

to calculate the Euler factors for p \ TV of the standard L-function of the

Yoshida-lift as well as the factor Aj^(s) for the bad places. The results and

proofs are here completely analogous to those of [5] for the case v\ — V2 — 0

(as is clear from an adelic point of view), and we sketch them only very

briefly.

THEOREM 4.1. Let ψi for i — 1,2 be as above with different Hecke

eigenvalues and put kι = 2 + 2v%. For primes p \ TV denote by βp, β~λ

respectively βp, β~ι the Satake parameters of ψ\ respectively ψ2 with respect

to the Hecke-algebra of G12(QP) = D* (so that \{p] = p^~^l2{βp + β'1),

λ^2) = pfa-Wφp + βp1)). Then for * denoting +, - or s and n > 2

the Yoshida-liβ F^ — Y^ {ψ\,ψ2) is (if nonzero) an eigenfunction of
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the p-component of the Hecke-algebra of GSpn whose standard L-function

is given for n > 2 by:

D{N) (s)

= Π ( i - p-sr\± - βpβpp-THi - βpβ^p-'THi - βp'βpp-Ύ1

p\N

• (l - β^β-'p-")-1 Π (i - p~s+jΓHi - p-3'3)-1

Here if ψ\, ψ2 we cuspidal and ψ{ corresponds to the elliptic cusp form

under Eichler's correspondence we have

where ZΛ I (s) is the "good" part

C W (2s + h + k2 - 2)

of the tensor product L-function of / 1 ; /2

Proof. This is proved in the same way as Theorem 6.1 and Corollary

6.1 of [5].

THEOREM 4.2. With the notations of Theorem 4.1 assume ψi to be

essential for i — 1,2. Then the function Λjy(s) of Section 2 is given by

AN(s) = A%-(s) =
p\Nj = l

If for some p dividing N only one of the ψι is p-essential (say ψ\), then

there are precisely two local maximal orders Rp and Rp strictly containing
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Rp. We let ψ be the projection of' ψ2 on the space of functions that are right

invariant under the order R with completion Rp at p and Rι at the primes

I φ p ; assume without loss of generality ψ φ 0, and denote by ap, OL~^ the

p-Satake-parameters of ψ and by ep the eigenvalue of φ^ under wp. Then

the p-factor in the formula for Aj^(s) above has to be replaced by

(1 + epapp^s-^r\l + βpo^y-2-1)/2)-1 Π (1 ~

Proof. The proof is completely analogous to that of Corollary 7.1 of

[5] (see also the note added after this corollary for the case that one of the

ψi is not essential). There are two places where the modifications needed

to cover the present case are not obvious. Firstly we have to generalize

Evdokimov's [9] calculation of the action of the Hecke-operator

F(
ln

0 pin

This was used to prove the formula

i=0

for the action of the operator Kp ί n \KP (notation of [5])

\p\n U /

on the theta series τ9^n\S) (where we denote by Sij representatives of the

classes of integral positive definite quadratic forms of rank m and discrim-

inant exactly divisible by p2% which are split over Q p , whose level is not

divisible by p 2 , and that are equivalent over all Z^ with ί φ p to a fixed

form S (of square discriminant exactly divisible by p m ~ r ) .

In the present situation we want to replace the theta series i ? ^ ( 5 ) by

a theta series

τ? ( n )(L,g,P,Z) = V P(x)exp(2τrztr(g(x)Z))

with a Wp-valued harmonic polynomial P as in Section 1, where the lattice

L has the Gram matrix S from above with respect to the quadratic form
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q. A close examination of Evdokimov's proof shows then that the formula

above remains true if one replaces the second sum by

where Li runs over the lattices contained in L whose Gram matrix with

respect to q is equivalent to one of the S^ from above and where the poly-

nomial P is (as in Section 1) considered as a function on the n-fold sum of

the vector space that carries all the lattices involved.

We also need a generalization of Lemma 7.5 of [5] describing the com-

mutation relation between SiegeΓs Φ-operator and our Hecke operators for

the bad places. We notice first that the formula given there should read:

- 1 ) (i < n).

(In [5] the k was replaced by 2). It is easy to see that this remains true

if F is a vector valued Siegel modular form transforming according to the

representation of highest weight ( μ i , . . . , μn_i, k). In the case under consid-

eration we have k = 2 (which is also true in the applications of this Lemma

in [5]), and the argument proceeds as in loc.cit..

The rest of the proof goes through as in [5], replacing the ordinary

theta series used there by the theta series with spherical harmonics used

here in the same way as above (i.e., in formulas for the action of some

Hecke operator on a theta series i?(n)(L, q, F, Z) there appear theta series

$'n '(Z/, g, P, Z) of lattices V on the same vector space V and with the same

polynomial P on Vn).

§5. Nonvanishing

In Section 1 we have reduced the question of the nonvanishing of

Yoshida's lifting Y^n\ψιΊ ψ2, *) to the case where * stands for + or s and

where n — 2 and (pi, ψ2 are non-proportional Hecke eigenforms. We can

now put together the results of the previous section and formulate the an-

swer to the nonvanishing problem in the following theorem:

THEOREM 5.1. Let ψi e Λ(D^R^Ti) for i = 1,2 be given and as-

sume that for eachp \ N at least one ofφi, ψ2 is p-essential. Assume the φ%
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to be eig en junctions of the involutions uΎv for p | N having the same eigen-

values and of the Hecke operators T(p) for the p\ N. Assume moreover that

the φ% are nonproportional and that they correspond to the normalized new-

forms f, g of weight k{ = 2 + 2v{ and levels Nf, Ng with lcm(iV/, Ng) = N

(and gcd(NfjNg) divisible by the ramified primes of D) under Eichler's

correspondence described in Section 1 (see also [7, Section 5]) if they are

cuspidal. Then for * denoting + or s the Yoshida-lifling Y^(φι, ψ2} *)

is zero if and only if V2 — 0, one of ψ\, ψ2 is constant (without loss of

generality Ψ2), and L(f, fci/2) = 0.

Proof. As shown in Section 1 the lifting Y^ '(φ\, ψ2, *) is zero if and

only if F = Y^\φι,ψ2, *) is cuspidal. By Proposition 3.1 the cuspidality of

F implies that Aj\f(s)Dp (s) is regular at s = 1. Theorems 4.1 and 4.2 give

that this is equivalent to Lf^((kιJ\-k2)/2) = 0 if both of φ\, ψ2 are cuspidal.

But by a result of Shahidi [24] this can not happen; an alternative proof

for this in the setting of holomorphic modular forms could be obtained by

generalizing Ogg's result [23] for the value at s = 2 of the tensor product

L-function of two cusp forms of weight 2 to arbitrary weights. This proves

the nonvanishing statement if c î, ψ2 are cuspidal. If φ\ is cuspidal and

ψ2 = 1 then L^ψ2(s) = L^N\fus + vγ + l)L^N\fus + ^i), and this is

zero if and only if the central critical value L(/i,fci/2) is zero. It remains

to show that in this case one has indeed that F — Y^2\ψι) 1, *) is zero. For

this we can again proceed in the same way as in [5], assuming F / 0 . In

order to see how to modify the argument let us sketch the argument given

there: We used the following version of Siegel's theorem: The Eisenstein

series E%(Z,s) has a pole of order 1 in s = 1/2, and the residue S%(Z) is

a linear combination (with all coefficients cti nonzero) of the genus theta

series ^^(Qi) of degree 4 for the genera Qi of positive definite integral

quadratic forms of rank 4, square discriminant and level dividing N. We

then restricted Z to a block diagonal and formed the double
V 0 Z2J

Petersson product ((F,S%)znF)z2- By Lemma 9.1 of [5] only the theta

series of the genus of the order R gave a contribution to this double product,

which then became

<Σ
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with c ^ O . From this and Theorem 4.1 of [5] (or 2.29 of the present article)

we then concluded that Apj(s)DF (S) has a pole in s = 1 unless F is

orthogonal to all the $(2)(/^ ), which is excluded since F by construction is

a linear combination of these theta series. In our present situation we have

to apply the differential operator Δ2 to all the ϋ^\lij) and obtain as in [1]

after evaluating the double Petersson product

eiβj

where P^ runs over a basis of the space of homogenous harmonic forms

on D^ transforming under the action of GI2CR) according to det 2 + z y i (we

notice that as in Lemma 9.1 of [5] F is orthogonal to all the theta series

with harmonic polynomials except those belonging to lattices in the genus

of R). We conclude again that A^(s)DF ^ (s) has a pole in s = 1 unless F is

orthogonal to all the i?(2)(/^-, P κ ), which is excluded since F by construction

is a linear combination of these theta series with harmonic polynomials. By

our formula for DF (5) in this situation from above we see that this implies

L(fι1 k\/2) — 0, which proves the rest of our assertion.

Remark. A different phrasing of Theorem 5.1 would say: Take any

pair of cusp forms f,goΐ weights 2 + 2v{ (y\ > v<ι) with trivial character

for groups To(Nf^g) with square free JVj, Ng, gcd(7Vj, Ng) φ 1. Assume

/, g to be newforms (in particular Hecke eigenforms) and that /, g have

the same eigenvalues under the Atkin-Lehner involutions wp for all p

gcd(Nf^Ng). Then we can construct a nonzero Siegel modular form of

degree 2 transforming according to the representation of highest weight

(1/1 + v2 + 2, i/χ - v2 + 2) of G72(C) under vψ{N) with N = lcm(ΛΓ/, Ng),

whose Satake parameters are related to those of /, g as described in Section

4; this may be viewed as giving an explicit construction of an endoscopic

lifting.

In order to construct this Siegel modular form we first replace /, g by forms

of level N having the same Hecke eigenvalues as /, g for p \ N and being

eigenfunctions of all the Atkin-Lehner involutions wp for p \ N with the

same eigenvalues. We then fix a definite quaternion algebra over Q whose

ramified primes divide gcd(Nf1 Ng) and use the generalized correspondence
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of Eichler for an Eichler order of level N in D from Section 1 and [7, Section

5] to find φι, ψ2 corresponding to /, g as required in Theorem 5.1 and apply

this theorem to the pair ψ\, ψ2. It should be noted that when gcd(iVj, Ng)

is not prime this allows several possible constructions whose results are

pairwise orthogonal by the generalization of Lemma 9.1 of [5] noted in the

proof of theorem 5.1. Such a possibility has been discussed under the name

of twin forms in [15].

In particular for v\ — 1, V2 — 0 we obtain scalar valued Siegel modular forms

of weight 3 and degree 2, which in view of their connection to differential

forms on the quotient of H2 by the group ΓQ (lcm(7Vj, Ng)) are of interest

in geometry.

§6. An example

To illustrate our results we want to discuss an example. The calcula-

tions for this example were done using the algorithms from [26] and the

PARI number theory package. We put N = 17. The quaternion algebra

over Q that is ramified at 00 and at N only has type number and class

number t = h = 2. A basis is given by the fifor i = 0,. . . , 3 with ft — 1
j / x ( 0 ) \ 2 Λn / i ( 0 ) \ 2 o i (O) A®) i (O) r ( 0 ) A0) Φ I rj Λ . . .

and (f\ J ) z = - 1 7 , (ft ) = - 3 , /{ ; f t } = —ft } j{ J = ft '. The Z-lattice

generated by these vectors has index 12 in a maximal order. It is trans-

formed into a maximal order RQ containing it by the basis transformation

with matrix
/ 1 h 0 0 \

0

0

V 0

and into another maximal order R\ by the basis transformation with matrix

/ 1

0

0

V 0

1
2

0

1
2

0

Si by

1
2

1
4

- 1
3

1
12

0

1
2

0

1
2

the

1
2

1
8
3
4

- 1
8

0

0

1
3

- 1
3

ba

0

1
4

- 1
2

- 1
4

The resulting lattice has Gram matrix (with respect to tr(xy) and to the
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new basis {fi})

f 2
1

1

1

4

- 1

1

1

- 1

6

2

0

1

2

1( /

Σ Σ* ΣThe product in Rγ of Σi=oaίfί and Σ*=oβifi is Σi=oΊifi w i t n

7o = ((-2αχ ( α 2

( ( - 3 α 2 - 3a3)β2 + (/33α2 - 5α3/?3))))

+ ((#271 =

72 =

73 = α3/?o + (/?3«o + (O2

The other type of maximal order is i?2, which is obtained from i?i by the

basis transformation with matrix

it has Gram matrix

- 1
2

(2

1

0

\0

1

0

0

0

1

2

-1

1

J.
2

- 1

- 1

- 1
2

0

-1

12

5

0 \

1

0

-1 /

0 \

1

5

12/
An ideal 112 with left order i?2 and right order R\ is obtained from R\ by

the basis transformation with matrix

/ 0 1 - 1 i \

i

2

0

1

-1

0

0

- ΐ _ - |
2

0 - 1

/

it has Gram matrix
/ 4 -2 1 0 \

- 2 4 0 1
1 0 6 3
0 1 3 6 /V
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with respect to the basis {//} obtained. The order R2 has 6 units, the

order i?i has no nontrivial units. We obtain therefore as the unique (up

to scalar multiples) nontrivial function in Λ(D^R^ 1) orthogonal to the

constants the function φ2 with φ2(y\) = ~~15 ̂ 2(2/2) = 3 (corresponding to

the unique normalized cusp form of weight 2 and level 17). The space of

cusp forms of weight 4 and level 17 has dimension 4. It is easily checked

by looking at the linear forms on D 0 R and using Eichler's correspon-

dence described in Section 1 that only one of these has luiγ-eigenvalue —1.

The corresponding function ψι G Λ{D^R^τ{) is given by ψι(y2) = 0

and ^i(2/i)(Σf=o aifi) ~ a3- Using this we find that the Siegel cusp form

Y(2\ψι, φ2) of weight 3 is given as the sum of the theta series of degree 2

of R\ with polynomial

3 3

ίί
i=0 i=0

= 2aφ0 + (-2/33αo + ((2α2 + 2a3)βi + {~2β2 - 2/33)αi))

and the theta series of degree 2 of Iu with polynomial

3 3

) = ~ 2 a 2 β o

The computation gives the following beginning terms of the Fourier

expansion of Y^2\φι, φ2) (where the variable in H2 is

and where we put X\ — exp(2τriτ), X2 = exp(2τrzz), X3 — exp(2πίrf) so

that the coefficient at XfX2X^ is the Fourier coefficient at ί ,
\θ/Δ C

+ (-32XfX2

3 - 96Xlxl + (32X| - 64Λ"f)X

+ ((-32X| + 32Xl + 32X3

4)X| - 32X|X 2 )^

+(-32Xf - 32X|

(We computed the coefficients of XfX^Xξ for all reduced binary forms

[a,b, c] = ax2 + bxy + cy2 with c < 25.) To be sure that this is indeed a
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Hecke eigenform we computed the action of T(2), T(3) and T(5) following

the formulas given in [27]; it turns out that the Hecke eigenvalues are —5, —8

and —4 respectively. Notice that in the formula at the bottom of p. 386 of

[27] the term a([m/p,r,np]) should be replaced by α([ra/_p, —r,np\) (which

matters since we are dealing with odd weight).
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Appendix: Errata to Siegel modular forms and
theta series attached to quaternion algebras

Nagoya Math. J. 121 (1991), 35-96

S. BOCHERER AND R. SCHULZE-PlLLOT

p. 36, 1. 2: orthogonal

p. 41, 1. 11: 0n-j_m in matrix g~

p. 53, 1. 5 | : (Σ l / A ^ ) ) " 1

p. 57, 1. 1 | : <S(ra,7V)).

p. 60, 1. 14 T: (n(j/<) - 1)

p. 60, 1. 1 | : Q(x)

p. 60, 1. 2 | : x = (x i , . . . ,x n )

p. 61, 1. 6 | : z G Dn

p. 62, 1. 4: Y"(n)((/9, ?/>), (/9, ̂  E «4(jDj^,iϊ^)

p. 62, 1. 7 | : [Vi 1]

p. 64, 1. 15: THEOREM 6.1

p. 68, 1. 4: RpXkRp

p. 68, 1. 9: . . . we have for M e Mn(Z)* with p | M

p. 69, 1. 7: below).
r/2

p. 69, 1. 3 | : the first summation should be ^
i=0

p. 70, 1. 13: p2n~k

p. 70, 1. 14: p2n-kF\Φ\T^;1] + . . .

p. 73, 1. 10 | : left or

p. 74, 1. 7: by r 3 that of . . .

p. 77, 1. 8 | : a) should read:

4
where 7p(c?) depends only on d(Qp)2 and the dimension

m and where 5p(Q) is the Hasse invariant ([OM], §63)

p. 77, 1. 5: Ίp{dp) should be 7p(c?)

P 79,1. 3: <%y\(d)l>...
p. 80, 1.3 T: i; e(wp)sp(D)nY^ (φ, φ)
p. 81, 1. 4: the eigenvalue should be sp(D)n~fpPn{n+1)/2

p. 81, 1. 5: -SpiD^p71^-1^2

p. 83, 1. 12: solving
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let {φt} with φt G Λ%w

C should be U

The entry TV = 4483 with dimension entry 2 is missing

The table is printed on p. 87

products of

P

P

P

P

P

84,
84,

87,

88,

88,

1.
1.

9 | :

IT:
table:

1.

1.

11:

16:




