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FORMATION AND CONSTRUCTION OF A SHOCK

WAVE FOR 3-D COMPRESSIBLE EULER EQUATIONS

WITH THE SPHERICAL INITIAL DATA

HUICHENG YIN∗

Abstract. In this paper, the problem on formation and construction of a
shock wave for three dimensional compressible Euler equations with the small
perturbed spherical initial data is studied. If the given smooth initial data
satisfy certain nondegeneracy conditions, then from the results in [22], we know
that there exists a unique blowup point at the blowup time such that the first
order derivatives of a smooth solution blow up, while the solution itself is still
continuous at the blowup point. From the blowup point, we construct a weak
entropy solution which is not uniformly Lipschitz continuous on two sides of
a shock curve. Moreover the strength of the constructed shock is zero at the
blowup point and then gradually increases. Additionally, some detailed and
precise estimates on the solution are obtained in a neighbourhood of the blowup
point.

§1. Introduction

In this paper, we are concerned with the development of singularities of

solutions to the following three dimensional compressible Euler equations

with smooth spherical initial data

(1.1)



























∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u + pI) = 0,

∂t

(

ρe +
1

2
ρu2

)

+ div
(

(

ρe +
1

2
ρu2 + p

)

u
)

= 0,

ρ|t=0 = ρ̄ + ερ0(x), u|t=0 = εu0(x), S|t=0 = S̄,

where u = (u1, u2, u3) is the velocity, ρ the density, p the pressure, e the

internal energy, I the 3 × 3 unit matrix, and S the specific entropy. More-

over, the pressure function p = p(ρ, S) and the internal energy function
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e = e(ρ, S) are smooth in their arguments, in particular, ∂ρp(ρ, S) > 0 and

∂Se(ρ, S) > 0 for ρ > 0. With respect to the initial data in (1.1), ρ̄ > 0 and

S̄ are constants, ε > 0 is a small parameter, ρ0(x) and u0(x) are in C∞(R3)

with supports in the ball B(0,M) of radius M > 0 centered at the origin.

In what follows, we assume that u0(x) = w0(x)x, with a smooth function

w0(x), and that w0(x) and ρ0(x) are functions of r = |x| =
√

x2
1 + x2

2 + x2
3.

Under the above assumptions, we know by [23] and [24] that the lifespan

Tε of a smooth solution to (1.1) satisfies:

(1.2) lim
ε→0

ε ln Tε = τ0

≡ − 2c̄

(ρ̄c′(ρ̄, S̄) + c̄) min
|q|≤M

[

q2∂qw0(q) + 3qw0(q) + c̄
ρ̄(q∂qρ0(q) + ρ0(q))

] ,

where c(ρ, S) =
√

∂ρp(ρ, S), c̄ = c(ρ̄, S̄); and τ0 > 0 as long as ρ0(x) 6≡ 0

or u0(x) 6≡ 0. Therefore, (1.2) implies that the nontrivial smooth solution

of (1.1) must blow up in finite time. To better understand the physical

process of development of singularities from smooth flow and the evolution

of singularities starting from the blowup point, we are motivated to deduce

more precise estimates of a solution and its derivatives in a neighbourhood

of the blowup point.

Now we briefly mention some remarkable works on the hyperbolic con-

servation laws in one space dimension, since this will be helpful to under-

stand our motivation better in this paper. For 1-D hyperbolic systems of

conservation laws, there is an extensive literature treating the global ex-

istence and uniqueness of weak solutions with (small) initial data in BV

spaces (see [3], [9], [10], [16], [19] and the references therein). For instance,

the results of [3] and [19] yield uniqueness, continuous dependence and

global stability of entropy-admissible weak solutions for general n × n sys-

tems with small initial data. In the case of the system (1.1) with spherical

structure, we get a 3× 3 system of conservation laws with source terms, by

use of polar coordinates. However, these source terms involve singularities

at r = 0, and this fact causes many difficulties when one wants to study

the global existence and uniqueness of weak solutions. Even the global exis-

tence of spherical weak entropy solutions of (1.1) seems to be open. Here we

should point out that when (1.1) does not contain the third equation (i.e.,

the equation for the entropy), the authors in [7] consider the case where

p(ρ) = Aργ , 1 ≤ γ ≤ 5/3, and prove the global existence of a weak entropy



FORMATION AND CONSTRUCTION OF A SHOCK WAVE FOR 3-D EULER EQUATIONS 127

solution outside a core centered at the origin. Anyway, whether global so-

lutions exist or not, all above results do not give detailed properties of a

classical solution near blowup points. From the viewpoint of understanding

the physical process of the appearance of singularities, it is an interesting

problem to give a clear picture on the generation of singularities at a blowup

point, in particular, that of the singularity of the type of shock.

As in [5], the above problem is called formation and construction of a

shock. For scalar equations, this problem has been completely solved early

(see [6], [8], [20] and so on). It is well known that in this case the formation

of a shock is caused by the squeeze of characteristics. For 2 × 2 p-systems

of gas dynamics the same fact is also true (see [4] and [17]) under certain

conditions of nondegeneracy on the initial data or the blowup point. One of

the basic ideas in [4] and [17] is to introduce the Riemann invariants so that

the p-system can be diagonalized and subsequently to analyze the structure

of singularities at a blowup point as in the case of 1-D scalar equations.

For n×n (n ≥ 3) systems in one space dimension, it is well known (see

[1], [11], [12], [18]) that if the system is strictly hyperbolic and genuinely

nonlinear with respect to a characteristic family and if the initial data are

smooth and satisfy some condition of nondegeneracy, then the correspond-

ing smooth solution blows up only at one spatial point at the blowup time.

We constructed in [5] a weak entropy solution near the blowup point. In

contradiction to the case of 2 × 2 p-systems as treated in [4] and [17], one

cannot effectively use of the Riemann invariants. One of the new ideas in

[5] is to find a new transformation of an n × n system by which the cor-

responding solution of the resulting system becomes more singular in one

specific direction than the others. Using this new form of the system as

well as Alinhac’s result (see [1]) on the blowup system analysis, we carried

out in [5] delicate analysis and constructed a shock starting from a blowup

point.

A problem arises naturally: Consider 1-D systems of conservation laws

with source terms. Suppose the first-order derivatives of a smooth solu-

tion blow up, while the solution itself remains bounded. Will the shock

be formed from the blowup point and propagate as shown in [4], [5] and

[17]? For 1-D compressible isentropic Euler equations, we have shown in

[5] that a new shock is formed and propagates from the blowup point. Do

similar phenomena occur for the multidimensional system (1.1) with spher-

ical structure? To this last question, we will give an affirmative answer in

this paper. In proving our assertion, one of the main difficulties is that



128 H. YIN

the derivatives of a solution blow up like (Tε − t)−1, with Tε the blowup

time, are not locally integrable in space-time variables. In this sense, our

problem is different from the usual Riemann problem. In fact, for the Rie-

mann problem, the initial data are discontinuous and piecewise smooth; and

the derivatives are locally bounded (except the appearance of a measure)

around singularities. In addition to the methods developed in [5], we need

some new ingredients to overcome the above-mentioned difficulty. Firstly,

we need a result on extending a solution across the blowup time so that we

can not only analyze the blowup mechanism at the blowup point, but also

describe in detail the behavior of the derivatives of the solution. Secondly,

in the case where a shock arises, we have to carry out more detailed com-

putation than in the case treated in [5], which is needed by the appearance

of singular source terms after transforming (1.1), in order to prove the con-

vergence of approximate solutions around the blowup time. Here we should

note that the approximate solutions are not uniformly Lipschitzian in their

domains of definition.

Our paper is organized as follows. In Section 2, we first prove that a

solution of (1.1) blows up with respect to the third eigenvalue and that there

exists a unique blowup point under certain assumption of nondegeneracy

on the initial data. Secondly, we transform (1.1) to a new form and give a

precise description on formation (and construction) of a shock. In Section 3,

we construct approximate solutions near the blowup point with the aid of a

specific iteration scheme and prove the existence of a solution with a shock

starting from the blowup point.

§2. Analysis on the blowup mechanism and main theorem

Now we study the blowup mechanism of smooth solution to (1.1) and

extend the solution of (1.1) across the blowup time. We will also distinguish

a direction along which the first order derivatives of ρ and u will blow up.

Firstly, it is easy to see that as far as smooth solutions are concerned,

(1.1) is equivalent to the following system:

(2.1)



























∂tρ + div(ρu) = 0,

∂tu + u∇u +
∇p

ρ
= 0,

∂tS + u∇S = 0,

ρ|t=0 = ρ̄ + ερ0(r), u|t=0 = εw0(r)x, S|t=0 = S̄,
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where ∇ denotes (∂x1
, ∂x2

, ∂x3
).

Here we emphasize that the systems (1.1) and (2.1) are not equivalent

for the weak solution. When the smooth solution of (1.1) blows up and the

shock wave is formed, then across the shock the entropy S will become a

function of (t, x) plus a constant.

When the initial velocity in (2.1) is radial, the smooth solution to (2.1)

has such a form in t < Tε: ρ(t, x) = ρ(t, r), u(t, x) = ∇ω(t, r) and S(t, x) =

S̄, where ω(t, r) is a potential function of velocity.

From the second equation in (2.1), we get

(2.2) ∂t∇ω + ∇
(1

2
|∇ω|2

)

= −∇h(ρ),

where h′(ρ) = c2(ρ, S̄)/ρ, h(ρ̄) = 0. Hence ∂tω + 1
2 |∇ω|2 = −h(ρ).

Notice that h′(ρ) > 0 for ρ > 0. By the implicit function theorem we

see that

(2.3) ρ = h−1
(

−
(

∂tω +
1

2
|∇ω|2

)

)

, ρ̄ = h−1(0).

Substituting (2.3) into the first equation in (2.1), we have

(2.4)























































∂2
t ω − c2

(

h−1
(

−
(

∂tω +
1

2
|∇ω|2

)

)

, S̄
)

4ω

+ 2

3
∑

k=1

∂kω∂t∂kω +

3
∑

i,k=1

∂iω∂kω∂2
ikω = 0,

ω(0, r) = ε

∫ r

M
sw0(s)ds,

∂tω(0, r) = −ε
c̄2

ρ̄
ρ0(r) + ε2g(r, ε),

where

g(r, ε) = −
∫ r

M

[

∫ 1

0

d

dρ

(c2(ρ, S̄)

ρ

)∣

∣

∣

ρ=ρ̄+θερ0(s)
dθ

]

ρ0(s)ρ
′
0(s)ds− 1

2
r2(w0(r))

2.

For notational convenience, without loss of generality we assume c̄ = 1

in this paper.

By the results in [22] and [23], we know that the solution of (2.4) only

blows up for t ≤ Tε in the domain D = {(t, r) : eτ0/2ε ≤ t ≤ Tε, −4M ≤
r − t ≤ M}, which is close to the surface of forward light cone (in fact, the
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blowup point lies in t = Tε). In light of the standard process of disposing the

problem on the nonlinear wave equations with small initial data, as in [11],

[13] or [14], we introduce the normal transformation σ = r− t and the slow

time variable τ = ε ln t to rewrite the equation (2.4). Let ω(t, r) = ε
rG(τ, σ).

Then a direct computation yields an equation on G in the domain D

(2.5) ∂2
στ G + p(G,∇G)∂2

σG + εe−τ/εq(G,∇G)∂2
τ G + e−τ/εr(G,∇G) = 0,

where

p(G,∇G) =
t(c2(ρ, S̄) − (1 − ∂rω)2)

2ε(1 − ∂rω)

= (1 + ρ̄c′(ρ̄, S̄))∂σG + e−τ/εO(σ, e−τ/ε, G,∇σ,τ G),

q(G,∇G) = − 1

2(1 − ∂rω)

= −1

2
+ e−τ/εO(σ, e−τ/ε, G,∇σ,τG),

r(G,∇G) =
1

2
(∂τG − 2(∂σG)2) + e−τ/εO(σ, e−τ/ε, G,∇σ,τG).

Here the notation “O(σ, e−τ/ε, G,∇σ,τG)” denotes generic smooth functions

in its arguments.

To study the blowup mechanism of solutions to (2.5), as in [2] and [22],

we introduce a transformation:

(2.6) τ = τ, σ = ϕ(τ, y),

which is singular only at the blowup point. ϕ(τ, y) is unknown and will

be determined together with the solution G of (2.5). Let G(τ, ϕ(τ, y)) =

m(τ, y), (∂σG)(τ, ϕ(τ, y)) = v(τ, y). Then (2.5) is reformulated as follows

(2.7)
∂yv

∂yϕ
I1 + I2 = 0,

where

I1 =
t(c2(ρ, S̄) − ( ε

t ∂τϕ − ∂rω + 1)2)

2ε(1 − ∂rω)

= 2∂τϕ − 2(1 + ρ̄c′(ρ̄, S̄))v + e−τ/εq1(e
−τ/ε, ϕ,m, v, ∂τ ϕ, ∂τ m),

I2 = −2∂τv + e−τ/εq2(e
−τ/ε, ϕ,m, v, ∂τ ϕ, ∂τm,∂τv, ∂2

τ ϕ, ∂2
τ m),
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and the functions qi (i = 1, 2) are smooth.

Inspired by the notion of blowup system for a quasilinear wave equation

in [2], we here define the blowup system corresponding to (2.5) as

(2.8)







I1 = 0, I2 = 0, I3 = ∂ym − v∂yϕ = 0,

ϕ
(τ0

2
, y

)

= y, m
(τ0

2
, y

)

= G
(τ0

2
, y

)

, v
(τ0

2
, y

)

= (∂σG)
(τ0

2
, y

)

.

Obviously, if (2.8) is solved in the class of smooth functions, then (2.5) is

also solved in the domain where the transformation (2.6) is invertible. In

particular, when the function ϕ(τ, y) satisfies the following nondegeneracy

conditions at some point (τε = ε ln Tε, yε):

∂yϕ(τε, yε) = 0, ∂2
yϕ(τε, yε) = 0, ∂3

yϕ(τε, yε) > 0, ∂2
yτ ϕ(τε, yε) < 0,

and the function v has the property ∂yv(τε, yε) 6= 0, one can get a complete

description on the blowup mechanism of smooth solution to (2.4) at the

blowup point (Tε, rε = Tε+ϕ(τε, yε)). Indeed, a simple computation implies

that the solution ω(t, r) and its first order derivatives are continuous at the

blowup point, while the second order derivatives of ω(t, r) blow up like

1/(Tε − t). Furthermore, we can give an extension property of solution to

(2.8).

Lemma 2.1. Let

D̄ =
{

(τ, y) :
τ0

2
≤ τ ≤ 2τ0, −4M ≤ y ≤ M

}

.

Then the blowup system (2.8) has a smooth solution (ϕ,m, v) in D̄ for

small ε > 0, satisfying the estimates

|ϕ|Ck(D̄) + |m|Ck(D̄) + |v|Ck(D̄) ≤ Ck, k = 1, 2, 3, . . . ,

with constants Ck > 0 independent of ε. In particular, suppose that the

function

F (q) = q2∂qw0(q) + 3qw0(q) +
c̄

ρ̄
(q∂qρ0(q) + ρ0(q))

satisfies a nondegeneracy condition at a unique minimum point, i.e., that

there exists a unique point q0 such that F (q0) = minF (q), F ′(q0) = 0 and

F ′′(q0) > 0. Then we have

∂yϕ(τ, y) ≥ 0
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in D̄1 = {(τ, y) : τ0/2 ≤ τ ≤ τε, −4M ≤ y ≤ M} of D̄.

Moreover there exists a unique point (τε, yε) such that

∂yϕ(τ, y) = 0 ⇐⇒
{

(τ, y) = (τε, yε), ∂2
yϕ(τε, yε) = 0,

∂3
yϕ(τε, yε) > 0, ∂2

yτϕ(τε, yε) < 0

and ∂yv(τε, yε) 6= 0.

Remark 2.1. By (1.2), we know that τε actually satisfies

lim
ε→0

τε = − 2

(ρ̄c′(ρ̄, S̄) + 1)minq F (q)
.

Hence the effect of F (q) is very silimar to that of initial data for Burger’s
equation.

Proof. The proof is given in Theorem 2 of [22], so we omit it.

Based on Lemma 2.1, we can determine the blowup direction of (ρ, u, S)

and construct a 3-shock starting from the blowup point (Tε, rε = Tε +

ϕ(τε, yε)). Motivated by the physical background we set u(t, x) = ũ(t, r) x
r .

From the system (1.1), we get a conservation law system on (ρ(t, r), ũ(t, r),

S(t, r)) with the source terms

(2.9)






































∂tρ + ∂r(ρũ) = −2ρũ

r
,

∂t(ρũ) + ∂r(ρũ2 + p) = −2ρũ2

r
,

∂t

(

ρe +
1

2
ρũ2

)

+ ∂r

(

(

ρe +
1

2
ρũ2 + p

)

ũ
)

= −2

r

(

ρe +
1

2
ρũ2 + p

)

ũ,

ρ(0, r) = ρ̄ + ερ0(r), ũ(0, r) = εw0(r), S(0, r) = S̄.

Here we should notice that the blowup point of (1.1) is far away from r = 0

and the new shock will be constructed near the blowup point. Hence the

factor 1/r is not a singularity in our study.

A simple computation yields that (2.9) has three distinct eigenvalues

λ1(t, r) = ũ − c(ρ, S), λ2(t, r) = ũ and λ3(t, r) = ũ + c(ρ, S). The cor-

responding left eigenvectors are l1 = (1,−ρ/c(ρ, S), 0), l2 = (0, 0, 1) and

l3 = (1, ρ/c(ρ, S), 0), respectively. Now we give a detailed information on

the blowup direction of (ρ, ũ, S) at the blowup point.
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Lemma 2.2. Under the nondegeneracy condition on F (q) in Lem-

ma 2.1, l3∂r

( ρ
ũ
S

)

blows up at the blowup point (Tε, rε), while l1∂r

( ρ
ũ
S

)

and

l2∂r

( ρ
ũ
S

)

are still continuous and bounded.

Proof. By (2.3) and u = ∇ω, S = S̄ for t ≤ Tε, we can get

l3∂r





ρ
ũ
S



 =
ρ

c(ρ, S̄)

(

∂2
rω − 1

c(ρ, S̄)
(∂2

trω + ∂rω∂2
rω)

)

.

Noting ω = ε
rG(ε ln t, r − t), then one has

l3∂r





ρ
ũ
S



 =
ερ

rc(ρ, S̄)

{

[

1 +
1

c(ρ, S̄)
− ε

rc(ρ, S̄)

(

∂σG − G

r

)]

∂2
σG

− ε

tc(ρ, S̄)
∂2

στG

}

+ h1(ε, r, t, G, ∂σG, ∂τG),

where h1 is a smooth function on its arguments.
Additionally,

(2.10)

(∂τG)(τ, ϕ(τ, y)) = ∂τm − v∂τϕ, (∂2
σG)(τ, ϕ(τ, y)) =

∂yv

∂yϕ
,

(∂2
στG)(τ, ϕ(τ, y)) = ∂τv − ∂yv

∂yϕ
∂τϕ

and

l3∂r





ρ
ũ
S



 =
ερ

rc(ρ, S̄)

[

1 +
1

c(ρ, S̄)
− ε

rc(ρ, S̄)

(

v − m

r

)

+
ε

tc(ρ, S̄)
∂τϕ

] ∂yv

∂yϕ

+ h̃1(ε, r, t,m, v, ∂τ ϕ, ∂τm,∂τv),

where h̃1 is smooth.
Since I1 = 0 yields

∂τϕ =
(c(ρ, S̄) − 1)t

ε
+

t

r

(

v − m

r

)

,

we have

l3∂r





ρ
ũ
S



 =
2ερ

rc(ρ, S̄)

∂yv

∂yϕ
+ h̃1.
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Then by Lemma 2.1, we know that l3∂r

( ρ
ũ
S

)

blows up at the point (Tε, rε).

Similarly, by a direct computation we have

l1∂r





ρ
ũ
S



 =
ερ

rc(ρ, S̄)

[

−1 +
1

c(ρ, S̄)
− ε

rc(ρ, S̄)

(

v − m

r

)

+
ε

tc(ρ, S̄)
∂τϕ

] ∂yv

∂yϕ

+ h2(ε, r, t,m, v, ∂τ ϕ, ∂τ m,∂τv)

= h̃2(r, t,m, v, ∂τ ϕ, ∂τm,∂τv),

l2∂r





ρ
ũ
S



 = 0,

where h2 and h̃2 are smooth.
Therefore Lemma 2.2 is proved.

Now we give a reduction on (2.9) so that each equation in the new

system contains only the differentiation along the same direction. This

reduction will bring us much convenience in order to obtain the convergence

of our iterative scheme in the process of shock construction.

Lemma 2.3. By an invertible transformation, the system (2.9) is re-

duced to

(2.11)







∂tw + A(w)∂rw =
B(w)

r
,

w(0, r) = εw̄0(r, ε),

in a neighborhood of (ρ̄, 0, S̄). Here A(w) =

(

λ1(w) a(w) 0
0 λ2(w) 0
0 −a(w) λ3(w)

)

, a(0) = 0,

and B(w) =

(

b1(w)
0

b3(w)

)

is a smooth vector function. Moreover (2.11) is

rewritten as

(2.12)























∂tw1 + λ1(w)∂rw1 + ā(w)(∂tw2 + λ1(w)∂rw2) =
b̄1(w)

r
,

∂tw2 + λ2(w)∂rw2 = 0,

∂tw3 + λ3(w)∂rw3 − ā(w)(∂tw2 + λ3(w)∂rw2) =
b̄3(w)

r
,

where ā(w) and b̄i(w), i = 1, 2, are smooth and ā(0) = b̄i(0) = 0.
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Proof. As in the case of 2 × 2 systems, we introduce the Riemann
invariants as follows

(2.13)











α1 = ũ − F (ρ, S),

α2 = S − S̄,

α3 = ũ + F (ρ, S),

where ∂ρF (ρ, S) = c(ρ, S)/ρ and F (ρ̄, S̄) = 0.
Obviously, (2.13) is invertible as long as ρ > 0 (in our discussion, ρ is

a small perturbation of ρ̄, hence ρ > 0 is fulfilled).
By a direct computation using (2.13), we get from (2.9)























∂tα1 + λ1∂rα1 + q(ρ, S)∂rα2 = −2ũ2

r
+

2ũc(ρ, S)

r
,

∂tα2 + λ2∂rα2 = 0,

∂tα3 + λ1∂rα3 + q(ρ, S)∂rα2 = −2ũ2

r
− 2ũc(ρ, S)

r
,

where q(ρ, S) = ∂Sp(ρ, S)/ρ − c(ρ, S)∂SF (ρ, S).
By a linear transformation

(2.14)











w1 = α1 − q(ρ̄, S̄)α2,

w2 = α2,

w3 = α3 + q(ρ̄, S̄)α2,

one gets














































∂tw1 + λ1(w)∂rw1 + a(w)∂rw2 = −2ũ2

r
+

2ũc(ρ, S)

r
,

∂tw2 + λ2(w)∂rw2 = 0,

∂tw3 + λ3(w)∂rw3 − a(w)∂rw3 = −2ũ2

r
− 2ũc(ρ, S)

r
,

w1(0, r) = εw0(r) − F (ρ̄ + ερ0(r), S̄), w2(0, r) = 0,

w3(0, r) = εw0(r) + F (ρ̄ + ερ0(r), S̄),

where a(w) = −q(ρ̄, S̄)c(ρ, S) + q(ρ, S).
Obviously, (2.13) and (2.14) transform the point (ρ, ũ, S) = (ρ̄, 0, S̄) to

the point (w1, w2, w3) = (0, 0, 0). Moreover a(0) = 0.
In addition, we see by a simple algebraic computation that (2.12) is

obtained directly from (2.11). Hence Lemma 2.3 is proved.
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By Lemma 2.2, it is easy to see that ∂rw3 blows up at the blowup point

(Tε, rε), while ∂rw1 and ∂rw2 are continuous at (Tε, rε). Hence we expect

that a 3-shock will be formed from the blowup point. Our result can be

stated as follows.

theorem 2.1. Consider the system (2.9) and suppose that F (q) sat-

isfies the nondegeneracy condition as stated in Lemma 2.1 at only one

point. Then for small ε > 0, (2.11) admits a weak entropy solution with

a continuously differentiable shock curve Γ : r = φ(t) which starts from

the blowup point (Tε, rε). The solution w is continuously differentiable in

([Tε, Tε+1]×R)\Γ and satisfies the Rankine-Hugoniot condition and entropy

condition on Γ. Moreover, the estimates

φ(t) = rε + λ3(Tε, rε)(t − Tε) + O((t − Tε)
2),

w1(t, r) = w1(Tε, rε) + O
(

(t − Tε)
3 + (r − rε − λ3(Tε, rε)(t − Tε))

2
)1/3

,

w2(t, r) = O
(

(t − Tε)
3 + (r − rε − λ3(Tε, rε)(t − Tε))

2
)1/2

,

w3(t, r) = w3(Tε, rε) + O
(

(t − Tε)
3 + (r − rε − λ3(Tε, rε)(t − Tε))

2
)1/6

,

hold in

Ω = {(t, r) : Tε < t ≤ Tε + 1, rε − 2(Tε + 1 − t) ≤ r ≤ rε + 2(Tε + 1 − t)}.
Thus, returning to (2.9) we have

ρ(t, r) = ρ(Tε, rε) + O
(

(t − Tε)
3 + (r − rε − λ3(Tε, rε))(t − Tε)

2
)1/6

,

ũ(t, r) = ũ(Tε, rε) + O
(

(t − Tε)
3 + (r − rε − λ3(Tε, rε))(t − Tε)

2
)1/6

,

S(t, r) = S̄ + O
(

(t − Tε)
3 + (r − rε − λ3(Tε, rε))(t − Tε)

2
)1/2

near (Tε, rε). Here, “O” stands for uniformly bounded quantities indepen-

dent of ε.

Remark 2.2. Some weaker singularities of the solution of (2.9) may
propagate into the domain [Tε, Tε + 1] × R along 1-characteristics and 2-
characteristics through (Tε, rε) although the solution itself is continuous
there.

Remark 2.3. Under the assumption of Theorem 2.1, we know by [22]
and [23] that the solution of (1.1) or (2.9) does not blow up away from a
small neighbourhood of rε, provided that t is in [Tε, Tε +1]. Hence, in order
to complete our construction of a shock wave for t ∈ [Tε, Tε + 1], we need
only study our problem in the set Ω as defined above.
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Remark 2.4. The same method applies to (1.1) in two space dimensions
with axisymmetric and nondegenerate initial data, and we obtain results
similar to those stated in Theorem 2.1.

Remark 2.5. In view of the proof of Theorem 2.1 given in the next
section, the results in Theorem 2.1 hold in the time interval [Tε, Tε + A/ε],
with an appropriate A > 0 depending only on the initial data of (1.1).

§3. Proof of Theorem 2.1

As remarked in the last section we need only to do analysis in the

neighbourhood Ω of (Tε, rε). The solution w of (2.11) will be constructed

in t ≥ Tε by an iterative procedure. To this end, we will construct a se-

quence of approximate solutions {w(n)(t, r)} and a corresponding sequence

{φ(n)(t)} standing for the location of the approximate shocks, and show the

convergence of these sequences. Here we choose the solution of blowup sys-

tem (2.8) as the first approximation w(0)(t, r), while φ(0)(t) is determined

by an ordinary differential equation, which is derived from the Rankine-

Hugoniot conditions. The advantage of this choice is that we can get a

piecewise continuous solution of (2.11) which satisfies the entropy condition

on φ(0)(t) and a “good” estimate near the point (Tε, rε). Subsequently, the

whole sequence {w(n)(t, r)} can be successively determined by the method

of characteristics, and {φ(n)(t)} can be determined by the R-H conditions

correspondingly.

This section is arranged as follows: In Step 1, we give the first approxi-

mation of system (2.11) and some precise descriptions of the approximation

as a preparation for further discussion. In Step 2, we will give an iterative

scheme to construct the sequence {w(n)(t, r)} of approximate solutions, and

establish estimates on {w(n)}, {∂tw
(n)} and {∂rw

(n)}. Step 3 is devoted to

the proof of the convergence of all these sequences.

Step 1. First approximation

Denoting by H(t, y) = t + ϕ(ε ln t, y), by Lemma 2.1, we know that

H(t, y) satisfies

(3.1) ∂yH(t, y) = 0 ⇐⇒
{

(t, y) = (Tε, yε), ∂2
yH(Tε, yε) = 0,

∂3
yH(Tε, yε) > 0, ∂2

ytH(Tε, yε) < 0.

More precisely, by a similar treatment in [5] and [17], we can show the

following two lemmas which describe some subtle properties of H(t, y).
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Lemma 3.1. 1) For t ∈ (Tε, Tε + 1] and in a small neighbourhood of

yε, ∂yH(t, y) = 0 has two distinct real function roots ηε
−(t) and ηε

+(t) such

that ηε
+(t) < yε < ηε

−(t) and ηε
±(t) ∈ C∞(Tε, Tε + 1].

2) Set rε
−(t) = H(t, ηε

−(t)) and rε
+(t) = H(t, ηε

+(t)). Then

r = H(t, y) has three distinct real roots yε
−(t, r) < yε

c(t, r) < yε
+(t, r)

if r ∈ (rε
+(t), rε

−(t)).

r = H(t, y) has a unique real root yε
+(t, r) if r ≥ rε

−(t).

r = H(t, y) has a unique real root yε
−(t, r) if r ≤ rε

+(t).

3) Denote

Ω+ = {(t, r) ∈ Ω : Tε < t ≤ Tε + 1, r > rε
+(t)},

Ω− = {(t, r) ∈ Ω : Tε < t ≤ Tε + 1, r < rε
−(t)}.

Then yε
±(t, r) ∈ C∞(Ω±) ∩ C(Ω̄±).

Lemma 3.2. Denoting dε = (t − Tε)
3 + (r − rε − λ3(Tε, rε)(t − Tε))

2,

we have
|yε

±(t, r) − yε| < Cd1/6
ε , |∂ry

ε
±(t, r)| ≤ Cd−1/3

ε ,

|∂`y
ε
±(t, r)| ≤ Cd−1/6

ε , |∂2
xyε

±(t, r)| ≤ Cd−5/6
ε ,

where ` is the third characteristics passing through (Tε, rε), and the generic

constant C is independent of ε.

Based on Lemma 3.1 and Lemma 2.1, we can get two extensions of a

solution of (2.11) across the blowup time Tε.

In fact, let ρ∗(t, y) = ρ(t,H(t, y)) and u∗(t, y) = ũ(t,H(t, y)). Then by

the definitions of G(τ, σ), m(τ, y) and v(τ, y) we have

(3.2)







ρ∗(t, y) = h−1(g(t, y)),

u∗(t, y) =
ε

H(t, y)

(

v(ε ln t, y) − m(ε ln t, y)

H(t, y)

)

,

where

g(t, y) =
ε

H(t, y)

{

v(ε ln t, y) − ε

t

[

∂τm(ε ln t, y) − v(ε ln t, y)∂τϕ(ε ln t, y)

− ε

2H(t, y)

(

v(ε ln t, y) − m(ε ln t, y)

H(t, y)

)2]
}

.
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From (2.13), (2.14) and (3.2), we can define two vector valued functions

w0
±(t, r) = (w0

1,±(t, r), w0
2,±(t, r), w0

3,±(t, r)) by

(3.3)











w0
1,±(t, r) = u∗(t, yε

±(t, r)) − F (ρ∗(t, yε
±(t, r)), S̄),

w0
2,±(t, r) = 0,

w0
3,±(t, r) = u∗(t, yε

±(t, r)) + F (ρ∗(t, yε
±(t, r)), S̄).

Note that w0
±(t, r) are the smooth solutions of (2.11) in Ω± respectively.

Therefore, they are both extensions of solutions of (2.11).

Now we define the first approximate shock curve φ0(t) starting from the

point (Tε, rε). Since we have chosen the entropy S ≡ S̄, we hope that φ0(t)

can be determined by the corresponding Rankine-Hugoniot conditions for

the first two equations in (2.9), that is,

(3.4)

{

[ρ](φ0(t))′ = [ρũ],

[ρũ](φ0(t))′ = [ρũ2 + p(ρ, S̄)].

Hence φ0(t) should satisfy the following ordinary differential equation

(3.5)







dφ0(t)

dt
= λ̃3(t, φ

0(t)),

φ0(Tε) = rε,

where

λ̃3(t, r) =

{
∫ 1

0
c2

(

θG
(w0

3,+ − w0
1,+

2
, S̄

)

+ (1 − θ)G
(w0

3,− − w0
1,−

2
, S̄

)

)

dθ

−
(w0

1,+ + w0
3,+ − w0

1,− − w0
3,−)2

48

}1/2

+
w0

1,+ + w0
3,+ + w0

1,− + w0
3,−

4
,

and G
(

w3−w1

2 , S̄
)

is the inverse function of ρ in (2.13) and (2.14) with S = S̄.

As in [5, Lemma 3.2], we have

Lemma 3.3. The equation (3.5) has a solution φ0(t) ∈ C∞[Tε, Tε +1].
Moreover, φ0(t) satisfies rε

+(t) < φ0(t) < rε
−(t), and

φ0(t) = rε + λ3(Tε, rε)(t − Tε) + O((t − Tε)
2); t ∈ [Tε, Tε + 1]

Here O represents generic quantities independent of ε.
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Define the function w0(t, r) = (w0
1(t, r), w

0
2(t, r), w

0
3(t, r)) by

w0
i (t, r) =

{

w0
i,+(t, r), r > φ0(t)

w0
i,−(t, r), r < φ0(t)

i = 1, 3,

w0
2(t, r) ≡ 0

in Ω. Obviously, w0(t, x) is a solution of (2.11) in Ω± respectively. But it

is not a weak solution of (2.11) because it does not satisfy the Rankine-

Hugoniot condition along the curve γ : r = φ0(t). We will use an iterative

scheme to construct a shock starting from the point (Tε, rε) for the system

(2.11) by modifying the location of curve γ as well as the solution on both

sides of γ. In the process of the forthcoming iteration, (w0(t, r), φ0(t)) will

be chosen as the first approximation of the iterative scheme.

Lemma 3.4. In the domain Ω\γ, we have the following.

1) w0
3(t, r) satisfies the estimates:

(3.6)























|w0
3(t, r) − w0

3(Tε, rε)| ≤ Cεd1/6
ε ,

|∂`w
0
3(t, r)| ≤ Cεd−1/6

ε ,

|∂rw
0
3(t, r)| ≤ Cεd−1/3

ε ,

|∂2
rw0

3(t, r)| ≤ Cεd−5/6
ε .

2) w0
1(t, r) satisfies the estimates:

(3.7)























|w0
1(t, r) − w0

1(Tε, rε)| ≤ Cεd1/3
ε ,

|∂tw
0
1(t, r)| ≤ Cε,

|∂rw
0
1(t, r)| ≤ Cε,

|∂2
rw0

1(t, r)| ≤ Cεd−1/2
ε .

Proof. It is enough to prove the lemma in the domain Ω+.

For the simplicity to write, from (2.13) and (2.14) we denote by
w∗

1(t, y) = u∗(t, y) − F (ρ∗(t, y), S̄) and w∗
3(t, y) = u∗(t, y) + F (ρ∗(t, y), S̄).

Then w0
i,±(t, r) = w∗

i (t, y
ε
±(t, r)) for i = 1, 3.
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1) Thanks to the existence and regularity in Lemma 2.1, one has

w0
3(t, r) − w0

3(Tε, rε) = w∗
3(t, y

ε
+(t, r)) − w∗

3(Tε, yε)

= ∂tw
∗
3(Tε, yε)(t − Tε) + ∂yw

∗
3(Tε, yε)(y

ε
+(t, r) − yε)

+ O
(

ε(t − Tε)
2 + ε(yε

+(t, r) − yε)
2
)

,

∂`w
0
3(t, r) = ∂tw

∗
3(t, y

ε
+(t, r)) + ∂yw

∗
3(t, y

ε
+(t, r))∂`y

ε
+(t, r),

∂rw
0
3(t, r) = ∂yw

∗
3(t, y

ε
+(t, r))∂ry

ε
+(t, r),

∂2
rw0

3(t, r) = ∂2
yw∗

3(t, y
ε
+(t, r))(∂ry

ε
+(t, r))2 + ∂yw

∗
3(t, y

ε
+(t, r))∂2

r yε
+(t, r).

Hence (3.6) follows from Lemma 2.1 and Lemma 3.2.

2) Firstly, we claim that

(3.8) ∂yw
∗
1(Tε, yε) = 0.

In fact, by a direct computation from (3.2) one has

∂yu
∗(t, y) = ∂yH

(

−u∗

H
+

εm

H3

)

+
ε

H

(

∂yv − ∂ym

H

)

,

∂yρ
∗(t, y) =

ρ∗

c2(ρ∗, S̄)
∂yg,

and

∂yg(t, y) = ∂yH

{

− g

H
+

ε2

2H3

(

v − m

H

)2
− ε2m

H4

(

v − m

H

)

}

+
ε

H

{

∂yv − ε

t
(∂2

yτ m − ∂yv∂τϕ − v∂2
yτ ϕ) − ε

H

(

v − m

H

)(

∂yv − ∂ym

H

)

}

.

Since ∂yH(Tε, yε) = 0, ∂yϕ(τε, yε) = 0 and ∂ym(τε, yε) = 0, we get

∂yw
∗
1(Tε, yε) =

ε

H(Tε, yε)
(I + II ),

where

I =
ε

Tεc(ρ∗(Tε, yε), S̄)
(∂2

yτ m(τε, yε) − v(τε, yε)∂
2
yτ ϕ(τε, yε)),

II =
∂yv(τε, yε)

c(ρ∗(Tε, yε), S̄)

(

c(ρ∗(Tε, yε), S̄) − 1

+
ε

H(Tε, yε)

(

v(τε, yε) −
m(τε, yε)

H(Tε, yε)

)

− ε

Tε
∂τϕ(τε, yε)

)

.
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Taking the first order derivative in τ on two sides of I3 = 0 in (2.8), and
using ∂yϕ(τε, yε) = 0, one has

∂2
yτm(τε, yε) − v(τε, yε)∂

2
yτ ϕ(τε, yε) = 0,

that is, I = 0.

Additionally, I1 = 0 in (2.8) implies

ε

Tε
∂τϕ(τε, yε) = c(ρ∗(Tε, yε), S̄) − 1 +

ε

H(Tε, yε)

(

v(τε, yε) −
m(τε, yε)

H(Tε, yε)

)

.

This leads us to II = 0. Hence (3.8) is proved.

Secondly, we claim that

(3.9) ∂2
yw∗

1(Tε, yε) = 0.

Indeed, by ∂yH(Tε, yε) = ∂2
yH(Tε, yε) = 0 and ∂yϕ(τε, yε) = ∂yw(τε, yε) =

∂2
ym(τε, yε) = 0, we have

∂2
yu∗(Tε, yε) =

ε

H(Tε, yε)
∂2

yv(τε, yε).

Using I1 = 0 and I3 = 0 again in (2.8), one has

∂yg(Tε, yε) =
ε2c2(ρ∗(Tε, yε), S̄)

H2(Tε, yε)
(∂yv(τε, yε))

2,

∂2
yg(Tε, yε) =

εc(ρ∗(Tε, yε), S̄)

H(Tε, yε)
∂2

yv(τε, yε)

+
ε2∂ρc(ρ

∗(Tε, yε), S̄)ρ∗(Tε, yε)

H2(Tε, yε)c(ρ∗(Tε, yε), S̄)
(∂yv(τε, yε))

2.

Hence

∂2
yw∗

1(Tε, yε) = ∂2
yu∗(Tε, yε) +

∂ρc(ρ
∗(Tε, yε), S̄)ρ∗(Tε, yε)

c4(ρ∗(Tε, yε), S̄)
(∂yg(τε, yε))

2

−
∂2

yg(Tε, yε)

c(ρ∗(Tε, yε), S̄)

= 0.

Now we prove (3.7).
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By (3.8), (3.9) and Taylor’s formula, we get

∂yw
∗
1(t, y

ε
+(t, r)) = ∂2

tyw
∗
1(Tε, yε)(t − Tε)

+ O
(

ε(t − Tε)
2 + ε(yε

+(t, r) − yε)
2
)

,

∂2
yw∗

1(t, y
ε
+(t, r)) = ∂t∂

2
yw∗

1(Tε, yε)(t − Tε) + ∂3
yw∗

1(Tε, yε)(y
ε
+(t, r) − yε)

+ O
(

ε(t − Tε)
2 + ε(yε

+(t, r) − yε)
2
)

.

By Lemma 2.1 and Lemma 3.2 one has

(3.10) |∂yw
∗
1(t, y

ε
+(t, r))| ≤ Cεd1/3

ε , |∂2
yw∗

1(t, y
ε
+(t, r))| ≤ Cεd1/3

ε .

Additionally,

w0
1(t, r) − w0

1(Tε, rε) = ∂tw
∗
1(Tε, yε)(t − Tε) + ∂yw

∗
1(Tε, yε)(y

ε
+(t, r) − yε)

+ O
(

ε(t − Tε)
2 + ε(t − Tε)(y

ε
+(t, r) − yε)

2 + ε(yε
+(t, r) − yε)

3
)

,

∂tw
0
1(t, r) = ∂tw

∗
1(t, y

ε
+(t, r)) + ∂yw

∗
1(t, y

ε
+(t, r))∂ty

ε
+(t, r),

∂rw
∗
1(t, r) = ∂yw

∗
1(t, y

ε
+(t, r))∂ry

ε
+(t, r),

∂2
rw0

1(t, r) = ∂2
yw∗

1(t, y
ε
+(t, r))(∂ry

ε
+(t, r))2 + ∂yw

∗
1(t, y

ε
+(t, y))∂2

r yε
+(t, r).

Combining these with (3.10) and Lemma 3.2, we see that (3.7) holds.

Denoting the jump of w0
i (t, x) on γ by [w0

i ], which equals w0
i (t, φ

0(t) +

0) − w0
i (t, φ

0(t) − 0), we have

Lemma 3.5. The jump of w0
i (i = 1, 3) satisfies

|[w0
1 ]| ≤ C0ε(t − Tε)

1/2, |[w0
3 ]| ≤ C0ε(t − Tε)

3/2.

Proof. Using the estimates of φ0(t) on γ, we have dε = (t − Tε)
3 +

(φ0(t) − rε − λ3(Tε, rε))(t − Tε)
2 ∼ (t − Tε)

3. Therefore Lemma 3.4 1)
implies

|[w0
3]| ≤ |w0

3(t, φ
0(t) + 0) − w0

3(Tε, rε)| + |w0
3(t, φ

0(t) − 0) − w0
3(Tε, rε)|

≤ C0ε(t − Tε)
1/2.

Now we show that Lemma 3.5 holds for [w0
1].

Since

w0
1(t, r) − w0

1(Tε, rε) = ∂tw
∗
1(Tε, yε)(t − Tε)

+ O
(

ε(t − Tε)
2 + ε(t − Tε)(y

ε
+ − yε)

2 + ε(yε
+ − yε)

3
)
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in Ω+, and since

w0
1(t, r) − w0

1(Tε, rε) = ∂tw
∗
1(Tε, yε)(t − Tε)

+ O
(

ε(t − Tε)
2 + ε(t − Tε)(y

ε
− − yε)

2 + ε(yε
− − yε)

3
)

in Ω−, we have

|[w0
1]| = |w0

1(t, φ(t) + 0) − w0
1(Tε, rε) − {w0

1(t, φ(t) − 0) − w0
1(Tε, rε)}|

= |O(εd1/2
ε )| ≤ C0ε(t − Tε)

3/2.

Step 2. The iterative scheme

Next we improve the approximation sequence successively. Denote the

unknown shock curve by r = φ(t). Then the slope of shock σ(t) = φ′(t)

must satisfy the Rankine-Hugoniot conditions:

(3.11)















σ[ρ] = [ρũ],

σ[ρũ] = [ρũ2 + P (ρ, S)],

σ
[

ρe(ρ, S) +
1

2
ρũ2

]

=
[

(ρe(ρ, S) +
1

2
ρũ2 + P (ρ, S))ũ

]

,

and the entropy condition for 3-shock.

If we denote the inverse of the transformations given in (2.13) and (2.14)

by

(ρ, ũ, S) =
(

q(w),
w1 + w3

2
, S̄ + w2

)

,

then (3.11) is equivalent to

(3.12)











σ[ρ1(w)] − [F1(w)] = 0,

σ[ρ2(w)] − [F2(w)] = 0,

σ[ρ3(w)] − [F3(w)] = 0,

where

ρ1(w) = q(w), ρ2(w) =
w1 + w3

2
ρ1(w),

ρ3(w) = ρ1(w)
(

e(ρ1(w), S̄ + w2) +
1

2

(w1 + w3

2

)2)

,

and

F1(w) = ρ2(w), F2(w) =
(w1 + w3

2

)2
ρ1(w) + P (ρ1(w), S̄ + w2),

F3(w) = ρ2(w)
[

e(ρ1(w), S̄ + w2) +
ρ2
2(w)

2ρ2
1(w)

+
P (ρ1(w), S̄ + w2)

ρ1(w)

]

.



FORMATION AND CONSTRUCTION OF A SHOCK WAVE FOR 3-D EULER EQUATIONS 145

The entropy condition for 3-shock is written as

(3.13) λ3(w−(t)) < σ(t) < λ3(w+(t)), λ2(w−(t)) < σ(t),

where

w±(t) = (w1,±(t), w2,±(t), w3(t,±))

= (w1(t, φ(t) ± 0), w2(t, φ(t) ± 0), w3(t, φ(t) ± 0)).

Now we claim that for small ε, (w1,−(t), w2,−(t)) is uniquely determined

from (w1,+(t), w2,+(t), w3,±(t), σ(t)) by two of three equalities in (3.12).

This assertion is important because by the entropy condition (3.13) we

need the boundary value (w1,−(t), w2,−(t)) in order to solve w1,−(t, r) and

w2,−(t, r) in the domain Ω−.

Lemma 3.6. (w1,−(t), w2,−(t)) is determined by the equations

σ[ρ1(w)] − [F1(w)] = 0, σ[ρ2(w)] − [F2(w)] = 0.

Proof. By Lemma 2.3 and the assumption on c̄ = 1, we know that

(

∂(ρ1, ρ2, ρ3)

∂(w1, w2, w3)
(0)

)−1( ∂(F1, F2, F3)

∂(w1, w2, w3)
(0)

)

= diag{−1, 0, 1},

that is,

(

∂(F1, F2, F3)

∂(ρ1, ρ2, ρ3)
(0) − I

)









∂ρ1

∂w1
(0) ∂ρ1

∂w2
(0)

∂ρ2

∂w1
(0) ∂ρ2

∂w2
(0)

∂ρ3

∂w1
(0) ∂ρ3

∂w2
(0)









=









−2 ∂ρ1

∂w1
(0) − ∂ρ1

∂w2
(0)

−2 ∂ρ2

∂w1
(0) − ∂ρ2

∂w2
(0)

−2 ∂ρ3

∂w1
(0) − ∂ρ3

∂w2
(0)









.

Additionally, a direct computation shows that

∂(ρ1, ρ2)

∂(w1, w2, w3)
(0) =







−ρ̄/2 −∂Sp(ρ̄, S̄)

−ρ̄/2 0

− ρ̄
2 (e(ρ̄, S̄) + ρ̄∂ρe(ρ̄, S̄)) ρ̄∂Se(ρ̄, S̄) − ∂Sp(ρ̄, S̄)(e(ρ̄, S̄) + ρ̄∂ρe(ρ̄, S̄))







has rank 2. Hence by the implicit function theorem we see that (w1,−(t),
w2,−(t)) is determined by the two equations σ[ρ1(w)] − [F1(w)] = 0 and
σ[ρ2(w)] − [F2(w)] = 0.



146 H. YIN

Consequently, from Lemma 3.6, (3.12) is equivalent to:

(3.14)



















σ[ρ1(w)] − [F1(w)] = 0,

σ[ρ2(w)] − [F2(w)] = 0,

σ = λ̃3

(

∫ 1

0
(∂ρi

Fj)(θρ(w+(t)) + (1 − θ)ρ(w−(t)))dθ
)

,

where λ̃3 is the third eigenvalue of matrix
(∫ 1

0 (∂ρi
Fj)(θρ(w+(t)) + (1 −

θ)ρ(w−(t)))dθ
)3

i,j=1
, with ρ(w±(t)) = (ρ1(w±(t)), ρ2(w±(t)), ρ3(w±(t))).

Based on the above preparations we now construct the weak entropy

solution of (2.11) by using an approximation procedure. To avoid difficul-

ties caused by unknown shock curve, which may change its location in the

process of iteration, we introduce a coordinate transformation

(3.15)

{

z = r − φ(t),

t = t,

which transforms the (unknown) shock to z = 0, t = t.

Under these new coordinates, the blowup point is (Tε, 0) and the system

(2.12) is written as the following form:

(3.16)






































∂tw1 + (λ1 − σ(t))∂zw1 + ā(w)(∂tw2 + (λ1 − σ(t))∂zw2) =
b̄1(w)

z + φ(t)
,

∂tw2 + (λ2 − σ(t))∂zw2 = 0,

∂tw3 + (λ3 − σ(t))∂zw3 − ā(w)(∂tw2 + (λ3 − σ(t))∂zw2) =
b̄3(w)

z + φ(t)
,

wi(t, z)|t=Tε = w0
i (Tε, z + rε), i = 1, 2, 3.

Let

Ω̃− = {(t, z) : Tε ≤ t ≤ Tε + 1, −2(Tε + 1 − t) ≤ z < 0},
Ω̃+ = {(t, z) : Tε ≤ t ≤ Tε + 1, 0 < z ≤ 2(Tε + 1 − t)}.

When ε > 0 is small, Ω̃− ∪ Ω̃+ is obviously located in the determinate

region of {(Tε, z) : −K ≤ z ≤ K}. In order to construct the weak entropy

solution of (2.11) in the domain Ω̃− ∪ Ω̃+ and prove Theorem 2.1, we take



FORMATION AND CONSTRUCTION OF A SHOCK WAVE FOR 3-D EULER EQUATIONS 147

the following iterative scheme:

(3.17)











































































∂tw
n+1
1,+ + (λ1(w

n
+) − σn(t))∂zw

n+1
1,+

+ ā(wn
+)(∂tw

n
2,+ + (λ1(w

n
+) − σn(t))∂zw

n
2,+) =

b̄1(w
n
+)

z + φn(t)
,

∂tw
n+1
2,+ + (λ2(w

n
+) − σn(t))∂zw

n+1
2,+ = 0,

∂tw
n+1
3,± + (λ3(w

n
±) − σn(t))∂zw

n+1
3,±

− ā(wn
±)(∂tw

n
2,± + (λ3(w

n
±) − σn(t))∂zw

n
2,±) =

b̄3(w
n
±)

z + φn(t)
,

wn+1
1,+ (t, z)|t=Tε = w0

1,+(Tε, z + rε), wn+1
2,+ (t, z)|t=Tε = 0,

wn+1
3,± (t, z)|t=Tε = w0

3,±(Tε, z + rε),

and

(3.18)


















































































∂tw
n+1
1,− + (λ1(w

n
−) − σn(t))∂zw

n+1
1,−

+ ā(wn
−)(∂tw

n
2,− + (λ1(w

n
−) − σn(t))∂zw

n
2,−) =

b̄1(w
n
−)

z + φn(t)
,

∂tw
n+1
2,− + (λ2(w

n
−) − σn(t))∂zw

n+1
2,− = 0,

σn(t) = λ̃3

(

∫ 1

0
(∂ρi

Fj)(θρ(wn
+(t, 0+)) + (1 − θ)ρ(wn

−(t, 0−)))dθ
)

,

wn+1
1,− (t, z)|t=Tε = w0

1,−(Tε, z + rε),

wn+1
2,− (t, z)|t=Tε = w0

2,−(Tε, z + rε),

wn+1
1,− (t, z)|z=0 = wn+1

1,− (t, 0−),

wn+1
2,− (t, z)|z=0 = wn+1

2,− (t, 0−),

where wn+1
1,− (t, 0−) and wn+1

2,− (t, 0−) are determined by the equations:

(3.19)

{

σn[ρ1(w
n+1)] = [F1(w

n+1)],

σn[ρ3(w
n+1)] = [F3(w

n+1)].

Here, φn(t) = Tε +
∫ t
Tε

σn(t)dt.

By the entropy condition (3.13), (3.17) and (3.18) are solved by the
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characteristics method. Since wn+1
2,+ ≡ S̄, (3.17) becomes

(3.20)







































































∂tw
n+1
1,+ + (λ1(w

n
+) − σn(t))∂zw

n+1
1,+ =

b̄1(w
n
+)

z + φn(t)
,

∂tw
n+1
3,+ + (λ3(w

n
+) − σn(t))∂zw

n+1
3,+ =

b̄3(w
n
±)

z + φn(t)
,

∂tw
n+1
3,− + (λ3(w

n
−) − σn(t))∂zw

n+1
3,−

− ā(wn
−)(∂tw

n
2,− + (λ3(w

n
−) − σn(t))∂zw

n
2,−) =

b̄3(w
n
−)

z + φn(t)
,

wn+1
1,+ (t, z)|t=Tε = w0

1,+(Tε, z + rε),

wn+1
3,± (t, z)|t=Tε = w0

3,±(Tε, z + rε).

In order to estimate {wn
±} and {σn(t)}, we need the following lemma.

Lemma 3.7. There exist two smooth functions

Gi(w1,+(t, 0+), w3,+(t, 0+), w3,−(t, 0−)), i = 1, 2

such that

(3.21) [wi] = Gi(w1,+(t, 0+), w3,+(t, 0+), w3,−(t, 0−))[w3]
3, i = 1, 2.

Proof. The equality for [w2] is well known, since the change of entropy
across a shock is a small quantity of third order of the strength of the shock
(for example, see [15] and [21]).

To prove the first equality (3.21), we rewrite (3.12) as

(

∂(F1, F2, F3)

∂(ρ1, ρ2, ρ3)
(w−(t, 0−)) − σI

)(

∂(ρ1, ρ2, ρ3)

∂(w1, w2, w3)

)

(w−(t, 0−))





[w1]
[w2]
[w3]





(3.22)

= B̃





[w1]
2 [w1][w2] [w1][w3]

[w1][w2] [w2]
2 [w2][w3]

[w1][w3] [w2][w3] [w3]
2



 .

Here B̃ = (b̃ij(w−(t, 0−), w+(t, 0+)))3i,j=1 is a 3×3 smooth function matrix.
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Since

σ(t) = λ3(w−(t, 0−)) +
3

∑

i=1

gi(w−(t, 0−))[wi]

+
3

∑

i,j=1

gij(w−(t, 0−), w+(t, 0+))[wi][wj ],

and since Lemma 2.3 implies
(

∂(ρ1, ρ2, ρ3)

∂(w1, w2, w3)

)−1∣
∣

∣

∣

w=w−(t,0−)

(

∂(F1, F2, F3)

∂(ρ1, ρ2, ρ3)
(w−(t, 0−)) − σI

)

× ∂(ρ1, ρ2, ρ3)

∂(w1, w2, w3)

∣

∣

∣

∣

w=w−(t,0−)

=





λ1(w−(t, 0−)) − σ a(w−(t, 0−)) 0
0 λ2(w−(t, 0−)) − σ 0
0 −a(w−(t, 0−)) λ3(w−(t, 0−)) − σ



 ,

multiplying (3.22) by
(

∂(ρ1,ρ2,ρ3)
∂(w1,w2,w3)

)−1∣
∣

∣

w=w−(t,0−)
gives

[w1] =
3

∑

i,j=1

Qij(w−(t, 0−))[wi][wj ](3.23)

+

3
∑

i,j,k=1

Qijk(w−(t, 0−), w+(t, 0+))[wi][wj ][wk],

where Qij and Qijk are smooth.
Interchanging w−(t, 0−) and w+(t, 0+) in (3.23) gives

[w1] = −
3

∑

i,j=1

Qij(w+(t, 0+))[wi][wj ](3.24)

+

3
∑

i,j,k=1

Qijk(w+(t, 0+), w−(t, 0−))[wi][wj ][wk].

Summing up (3.23) and (3.24), we have

[w1] =

3
∑

i,j,k=1

Q̃ijk(w−(t, 0−), w+(t, 0+))[wi][wj ][wk],
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where Q̃ijk are smooth.
Set [w1] = µ[w2]

3, and note that

w1,−(t, 0−) = w1,+(t, 0+) − [w1],

[w2] = G2(w1,+(t, 0+), w3,+(t, 0+), w3,−(t, 0−))[w3]
3.

Applying the implicit function theorem we see that if [w3] is small, then

µ = G1(w1,+(t, 0+), w3,+(t, 0+), w3,−(t, 0−))

for a smooth function G1. This proves Lemma 3.7.

Step 3. Estimates of {wn+1
± (t, z)} and {σn(t)}

In this section, we estimate {wn+1
± (t, z)} and {σn(t)}. In what follows,

“N” represents a constant independent of n and ε, which may vary from

line to line.

Lemma 3.8. Let C0 > 0 be the constant given in Lemma 3.5. There

exists a number N > 0 independent of ε such that, for all n

wn
± ∈ C1(Ω̃± \ (Tε, 0)),(3.25)

|wn
3,± − w0

3,±| ≤ Nε(t − Tε),(3.26)

|∂z(w
n
3,± − w0

3,±)| ≤ Nε((t − Tε)
3 + z2)−1/6,(3.27)

|∂t(w
n
3,± − w0

3,±)| ≤ Nε((t − Tε)
3 + z2)−1/6,(3.28)

|wn
i,± − w0

i,±| ≤ Nε(t − Tε)
3/2, i = 1, 2,(3.29)

|∂z(w
n
i,± − w0

i,±)| ≤ Nε(t − Tε)
1/2, i = 1, 2,(3.30)

|∂t(w
n
i,± − w0

i,±)| ≤ Nε(t − Tε)
1/2, i = 1, 2,(3.31)

in Ω̃− or in Ω̃+.

Proof. Obviously, (3.25)–(3.31) hold for n = 0. Now we prove the
conclusion by induction. Assuming that these estimates hold for n, we
prove that they hold also for n+1. The proof will be divided into six steps.

Part 1. Estimate of σn(t)

Suppose (3.25)–(3.31) are true for n. By the expression for σn(t) given
in (3.18) and the mean value theorem, we have

|σn(t) − σ0(t)| ≤ CNε(t − Tε)

in [Tε, Tε + 1]. Here CN > 0 depends only on N .
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Part 2. Estimates of wn+1
3,± , wn+1

1,+ and wn+1
2,+

We estimate only wn+1
3,− ; estimates of the others are completely parallel,

or even simpler.
The function v(t, z) = wn+1

3,− − w0
3,− satisfies

(3.32)



















































∂tv + (λ3(w
n
−) − σn)∂zv = (λ3(w

0
−) − λ3(w

n
−) + σn − σ0)∂zw

0
3,−

+ ā(wn
−)

{

∂t(w
n
2,− − w0

2,−) + (λ3(w
n
−) − σn)∂z(w

n
2,− − w0

2,−)

− (λ3(w
0
−) − λ3(w

n
−) + σn − σ0)∂zw

0
2,−

}

+ (ā(wn
−) − ā(w0

−))(∂tw
0
2,− + (λ3(w

0
−) − σ0)∂zw

0
2,−)

+
b̄3(w

n
−)

z + φn(t)
− b̄3(w

0
−)

z + φ0(t)
,

v(Tε, z) = 0.

Noting

ā(wn
−)

{

∂t(w
n
2,− − w0

2,−) + (λ3(w
n
−) − σn)∂z(w

n
2,− − w0

2,−)
}

= (∂t + (λ3(w
n
−) − σn)∂z)(ā(wn

−)(wn
2,− − w0

2,−))

−
{ 3

∑

j=1

(∂wj
ā)(wn

−)(∂tw
n
j,− + (λ3(w

n
−) − σn)∂zw

n
j,−

)

}

(wn
2,− − w0

2,−)

and

b̄3(w
n
−)

z + φn(t)
− b̄3(w

0
−)

z + φ0(t)

=
b̄3(w

n
−) − b̄3(w

0
−)

z + φn(t)
+

b̄3(w
0
−)

(z + φn(t))(z + φ0(t))

∫ t

Tε

(σn(t) − σ0(t))dt

in view of the induction hypothesis, ā(0) = 0 and Lemma 3.4, we can apply
the method of characteristics to derive

|v(t, y)| ≤ |ā(wn
−)(wn

2,− − w0
2,−)| + CNε2

∫ t

Tε

(1 +
√

s − Tε)ds

≤ CNε2(t − Tε)

with CN > 0 depending only on N . Hence (3.26) holds for n + 1, whenever
ε is small.

Similarly, we can show

|wn+1
1,+ − w0

1,+| ≤ CNε2(t − Tε)
3/2.
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Part 3. Estimates of wn+1
1,− and wn+1

2,−

It is enough to estimate wn+1
1,− . The function v(t, z) = wn+1

1,− − w0
1,−

satisfies

(3.33)























































∂tv + (λ1(w
n
−) − σn)∂zv = (λ1(w

0
−) − λ1(w

n
−) + σn − σ0)∂zw

0
1,−

− ā(wn
−)

{

∂t(w
n
2,− − w0

2,−) + (λ1(w
n
−) − σn)∂z(w

n
2,− − w0

2,−)

− (λ1(w
0
−) − λ1(w

n
−) + σn − σ0)∂zw

0
2,−

}

− (ā(wn
−) − ā(w0

−))(∂tw
0
2,− + (λ1(w

0
−) − σ0)∂zw

0
2,−)

+
b̄1(w

n
−)

z + φn(t)
− b̄1(w

0
−)

z + φ0(t)
,

v(Tε, z) = 0, v(t, z)|z=0 = wn+1
1,− (t, 0−) − w0

1,−(t, 0−).

Let ξ = ξ(t, z, s) be the backward characteristics of (3.33) through the
point (t, z) in the domain Ω̃−. If the characteristics ξ = ξ(t, z, s) intersects
the z-axis, then as in Part 2, we have |v(t, z)| ≤ CMε2(t − Tε)

3/2. If the
characteristics ξ = ξ(t, z, s) intersects the t-axis at (s, 0) with s > Tε, then
we have to estimate wn+1

1,− (t, 0−). Firstly, by using the induction hypothesis
and the method of characteristics we have

(3.34) |v(t, z)| ≤ |wn+1
1,− (s, 0−) − w0

1,−(s, 0−)| + CNε2(t − Tε)
3/2.

Secondly, by Lemma 3.7 we know

(3.35) [wn+1
1 ] = G1(w

n+1
1,+ (s, 0+), wn+1

3,+ (s, 0+), wn+1
3,− (s, 0−))[wn+1

3 ]3.

Since

|wn+1
1,− (s, 0−)−w0

1,−(s, 0−)| ≤ |[wn+1
1 ]|+ |wn+1

1,+ (s, 0+)−w0
1,+(s, 0+)|+ |[w0

1 ]|

and

|[wn+1
3 ]| ≤ |wn+1

3,+ (s, 0+)−w0
3,+(s, 0+)|+ |wn+1

3,− (s, 0−)−w0
3,−(s, 0−)|+ |[w0

3 ]|,

it follows from (3.34), (3.35) and Part 2 that

(3.36) |v(t, z)| ≤ C0ε(t − Tε)
3/2 + CNε2(t − Tε)

3/2 ≤ Nε(t − Tε)
3/2

for small ε.
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Part 4. Estimates of |∇(wn+1
3,± − w0

3,±)|
The function v(t, z) = ∂z(w

n+1
3,− − w0

3,−) satisfies
(3.37)










































































































































































∂tv + (λ3(w
n
−) − σn(t))∂zv + ∂z(λ3(w

n
−))v = ā(wn

−)
{

∂2
tz(w

n
2,− − w0

2,−)

+ (λ3(w
n
−) − σn)∂2

z (wn
2,− − w0

2,−)
}

+ (λ3(w
n
−) − λ3(w

0
−) − σn + σ0)∂2

zw0
2,−

}

+ (λ3(w
0
−) − λ3(w

n
−) + σn − σ0)∂2

zw0
3,−

−
3

∑

j=1

{

(∂wj
λ3)(w

n
−)∂zw

n
j,− − (∂wj

λ3)(w
0
−)∂zw

0
j,−

}

∂zw
0
3,−

+
3

∑

j=1

{

(∂wj
ā)(wn

−)∂zw
n
j,−{∂t(w

n
2,− − w0

2,−)

+ (λ3(w
n
−) − σn)∂z(w

n
2,− − w0

2,−)

− (λ3(w
0
−) − λ3(w

n
−) + σn − σ0)∂zw

0
2,−

}

− ((∂wj
ā)(wn

−)∂zw
n
j,− − (∂wj

ā)(w0
−)∂zw

0
j,−)

× (∂tw
0
2,− + (λ3(w

0
−) − σ0)∂zw

0
2,−)

}

+

3
∑

j=1

ā(wn
−)

{

∂wj
λ3(w

n
−)∂zw

n
j,−∂zw

n
2,− − ∂wj

λ3(w
0
−)∂zw

0
j,−∂zw

0
2,−

}

+ ∂z

( b̄3(w
n
−)

z + φn(t)

)

− ∂z

( b̄3(w
0
−)

z + φ0(t)

)

,

v(Tε, z) = 0.

Let ξn+1 = ξn+1(t, z, s) be the backward characteristics of (3.37) through
the point (t, z), that is, the solution of the equation







dξn+1

ds
= λ3(w

n
−(s, ξn+1)) − σn(s), Tε ≤ s ≤ t

ξn+1|s=t = z.

As in the proofs of Lemmas 8.1 and 8.3 in [17], we can show that there
exists a constant C independent of n and ε such that

(3.38) (s − Tε)
3 + (ξn+1)2 ≥ C((t − Tε)

3 + z2)

and

(3.39)
∣

∣

∣

∫ t

Tε

(∂z(λ3(w
n
−)))(s, ξn+1)ds

∣

∣

∣ ≤ ln
3

2
+ Cε

√

t − Tε <
1

2
.
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The reasons for which we can use the methods in [17] are the following:
Firstly, we have ∂w3

λ3(0) 6= 0. Secondly, λ3 and σ satisfy a relation which
is similar to that given in Lemma 3.1 of [17] (see (3.50) below). These two
conditions are the only keys for proving Lemmas 8.1 and 8.3 in [17] for
p-system of 2 × 2 equations.

Combining (3.38) and (3.39) with Lemma 3.4, b̄1(0) = 0 and the induc-
tion hypothesis and then integrating (3.37), we obtain

|v(t, z)| ≤ |ā(wn
−)∂z(w

n
2,− − w0

2,−)(t, z)|

+

∫ t

Tε

|(∂z(λ3(w
n
−)))(s, ξn+1)||v(s, y)|ds + CMε2

∫ t

Tε

{

s − Tε

((t − Tε)3 + z2)5/6

+

√
s − Tε

((t − Tε)3 + z2)1/3
+

1

((t − Tε)3 + z2)1/2

}

ds

≤ CMε2((t − Tε)
3 + z2)−1/6 +

∫ t

Tε

|(∂z(λ3(w
n
−)))(s, ξn+1)||v(s, y)|ds.

By (3.39) and Gronwall’s inequality, we see that (3.37) holds for small ε;
and (3.28) follows from (3.33).

Part 5. Estimates on |∇(wn+1
1,+ − w0

1,+)|
The function v(t, z) = ∂z(w

n+1
1,+ − w0

1,+) satisfies

(3.40)











































∂tv + (λ1(w
n
+) − σn(t))∂zv + ∂z(λ1(w

n
+))v

+
3

∑

j=1

{∂wj
λ1(w

n
+)∂zw

n
j,+ − ∂wj

λ1(w
0
+)∂zw

0
j,+)∂zw

0
1,+}

= ∂z

( b̄1(w
n
+)

z + φn(t)

)

− ∂z

( b̄1(w
0
+)

z + φ0(t)

)

,

v(Tε, z) = 0.

For the backward characteristics ξn+1
1 = ξn+1

1 (t, z, s) of (3.40) through
the point (t, z), we have

(3.41) ξn+1
1 ≥ z +

t − s

2

if ε is small.
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By the characteristics method and b̄1(0) = 0 we get

|v(t, z)| ≤ CNε

∫ t

Tε

|v(s, ξn+1
1 )|

((s − Tε)3 + (ξn+1
1 )2)1/3

ds

+ CNε2

∫ t

Tε

{ √
s − Tε

((s − Tε)3 + (ξn+1
1 )2)1/3

+
s − Tε

((s − Tε)3 + (ξn+1
1 )2)1/2

}

ds.

Substituting (3.41) into the above inequality, we have

|v(t, z)| ≤ CNε2
√

t − Tε + CNε

∫ t

Tε

|v(s, ξn+1
1 )|

(t − s)2/3
ds.

Hence Gronwall’s inequality implies

|v(t, y)| ≤ CNε2
√

t − Tε.

Part 6. Estimates on |∇(wn+1
1,− − w0

1,−)| and |∇(wn+1
2,− − w0

2,−)|
We estimate only |∂t(w

n+1
1,− −w0

1,−)| and |∂z(w
n+1
1,− −w0

1,−)|. Firstly, the

function v(t, z) = ∂t(w
n+1
1,− − w0

1,−) satisfies
(3.42)















































































































∂tv + (λ1(w
n
−) − σn(t))∂zv + ∂t(λ1(w

n
−) − σn(t))v

+ ā(wn
−)

{

∂2
t (wn

2,− − w0
2,−) + (λ1(w

n
−) − σn)∂2

tz(w
n
2,− − w0

2,−)
}

+ (λ1(w
n
−) − λ1(w

0
−) − σn + σ0)∂2

tzw
0
2,−

}

+ (ā(wn
−) − ā(w0

−))
{

∂2
t w0

2,− + (λ1(w
0
−) − σ0)∂2

tzw
0
2,−

− (λ1(w
0
−) − λ1(w

n
−) + σn − σ0)∂2

tzw
0
1,−

+
3

∑

j=1

{

(∂wj
ā)(wn

−)∂tw
n
j,−(∂tw

n
2,− + (λ1)(w

n
−) − σn)∂zw

n
2,−)

− (∂wj
ā)(w0

−)∂tw
0
j,−(∂tw

0
2,− + (λ1(w

0
−)) − σ0)∂zw

0
2,−

}

+ ā(wn
−)∂t(λ1(w

n
−) − σn)∂zw

n
2,− − ā(w0

−)∂t(λ1(w
0
−) − σ0)∂zw

0
2,−

= ∂t

( b̄1(w
n
−)

z + φn(t)

)

− ∂t

( b̄1(w
0
−)

z + φ0(t)

)

,

v(Tε, z) = 0.

We derive from Lemma 3.4, b̄1(0) = 0, and the induction hypothesis that

|wn
i,−(t, z) − wn

i,+(t, 0+)| ≤ CNε((t − Tε)
3 + z2)1/6,
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and
|wn

i,−(t, z) − w0
i,−(t, 0−)| ≤ CNε((t − Tε)

3 + z2)1/6

for i = 1, 2, 3. Hence, by the expressions of λ3 and σn(t),

(3.43) |λ3(w
n
−) − σn(t)| ≤ CNε((t − Tε)

3 + z2)1/6.

Furthermore, by Lemma 3.4, the induction hypothesis and (3.43), we
get

(3.44) |∂tw
n
3,−(t, z)| ≤ CNε√

t − Tε
.

Let ξ = ξ(t, z, s) be the backward characteristics of (3.42) through (t, z)
in Ω̃−. Suppose first that this characteristics intersects the z-axis before
meeting the t-axis. Then, integrating (3.42) along the characteristics and
using the result in Part 1 as well as the induction hypothesis and ā(0) =
b̄1(0) = 0, we get

|v(t, z)| ≤ CNε2(t − Tε)
1/2

+

∫ t

Tε

|(∂t(λ1(w
n
−)))(s, ξ(t, z, s)) − (∂tσ

n)(s)||v(s, ξ(t, z, s))|ds.

In view of (3.44), the induction hypothesis and the expression of σn(t), we
obtain

∫ t

Tε

|(∂t(λ1(w
n
−)))(s, ξ(t, z, s)) − (∂tσ

n)(s)|ds ≤ CNε
√

t − Tε.

So, by Gronwall’s inequality, we conclude that

|v(t, z)| ≤ Nε(t − Tε)
1/2

for small ε. When ξ = ξ(t, z, s) intersects the t-axis at (s, 0) for some s > Tε,
integrating along the characteristics gives

(3.45) |v(t, z)| ≤ CNε2(t − Tε)
1/2 + |(∂s(w

n+1
1,− − w0

1,−))(s, 0−)|

+

∫ t

Tε

|(∂t(λ1(w
n
−)))(s, ξ(t, z, s)) − (∂tσ

n)(s)||v(s, ξ(t, z, s))|ds.

We here estimate the term |(∂s(w
n+1
1,− − w0

1,−))(s, 0−)| on the right side of
(3.45).
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Since

|[wn+1
3 ]| ≤ |wn+1

3,+ (s, 0+) − w0
3,+(s, 0+)|

+ |wn+1
3,− (s, 0−) − w0

3,−(s, 0+)| + |[w0
3 ]| ≤ CNε(s − Tε)

1/2,

|[∂sw
n+1
3 ] − [∂sw

0
3]| ≤

CNε√
s − Tε

,

|[∂sw
n+1
3 ]| ≤ CNε

s − Tε
,

it follows from (3.35) and Lemma 3.4 that

|∂s(w
n+1
1,− (s, 0−) − w0

1,−(s, 0−))| ≤ CNε2(s − Tε)
1/2

for small ε. We substitute this into (3.45) and apply Gronwall’s inequality
to get

|v(t, z)| ≤ CNε2(t − Tε)
1/2

for small ε. Finally, since |λ1(w
n
−) − σn| ≥ 1/4 if ε is small, we see from

(3.33) that
|∂z(w

n+1
1,− − w0

1,−)(t, z)| ≤ CNε2(t − Tε)
1/2.

Combining all of the above estimates we complete the proof of the
lemma.

Step 4. Convergence

The following result shows the contractivity of {σn} on [Tε, Tε +1] and

of {wn
i,±} on Ω̃±, respectively.

Lemma 3.9. There exists a constant CN independent of ε and n such

that

‖σn − σn−1‖L∞([Tε,Tε+1]) ≤ CN

3
∑

i=1

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±),(3.46)

‖wn+1
3,± − wn

3,±‖L∞(Ω̃±) + CN

∑

i=1,2

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±)(3.47)

≤ (1 − ε)

{

‖wn
3,± − wn−1

3,± ‖L∞(Ω̃±) + CN

∑

i=1,2

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±)

}

,

if ε is small. Here,

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±) = ‖wn
i,+ − wn−1

i,+ ‖L∞(Ω̃+) + ‖wn
i,− − wn−1

i,− ‖L∞(Ω̃−).
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Proof. Firstly, (3.46) is obvious from Lemma 3.8 and the expression of
σn(t). Secondly, the function v(t, z) = wn+1

3,− − wn
3,− satisfies

(3.48)






















































∂tv + (λ3(w
n
−) − σn)∂zv = (λ3(w

n−1
− ) − λ3(w

n
−) + σn − σn−1)∂zw

n−1
3,−

+ ā(wn
−)

{

∂t(w
n
2,− − wn−1

2,− ) + (λ3(w
n
−) − σn)∂z(w

n
2,− − wn−1

2,− )

− (λ3(w
n−1
− ) − λ3(w

n
−) + σn − σn−1)∂zw

n
2,−

}

+ (ā(wn
−) − ā(wn−1

− ))(∂tw
n−1
2,− + (λ3(w

n−1
− ) − σn−1)∂zw

n−1
2,− )

+
b̄3(w

n
−)

z + φn(t)
− b̄3(w

n−1
− )

z + φn−1(t)
,

v(Tε, z) = 0.

The first term on the right side of (3.48) is most difficult to estimate, since
it contains the nonintegrable function ∂zw

n−1
3,− . To avoid this difficulty, we

use

(∂wk
λ3)(w

n
−)∂zw

n
3,−

=
(∂wk

λ3)(w
n
−)

(∂w3
λ3)(w

n
−)

{

∂z(λ3(w
n
−)) −

∑

j=1,2

(∂wj
λ3)(w

n
−)∂zw

n
j,−

}

for k = 1, 2, which is legitimate since ∂w3
λ3(0) 6= 0. Note that ∂zw

n
j,−,

j = 1, 2, and ∂z(λ3(w
n
−)) can be estimated by (3.9) and Lemma 3.8. Now

we set

(λ3(w
n
−) − λ3(w

n−1
− ))∂zw

n−1
3,− =

7
∑

i=1

Ji,

where

J1 =

3
∑

j,k=1

{∫ 1

0

∫ 1

0
(∂2

wjwk
λ3)(θ1(θwn

− + (1 − θ)wn−1
− ) + (1 − θ1)w

n−1
− )θdθdθ1

× (wn
k,− − wn−1

k,− )(wn
j,− − wn−1

j,− )

}

∂zw
n−1
3,− ,

J2 =
3

∑

j=1

{(∂wj
λ3)(w

n−1
− ) − (∂wj

λ3)(w
n
−)}∂zw

n−1
3,− (wn

j,− − wn−1
j,− ),

J3 =
3

∑

j=1

(∂wj
λ3)(w

n
−)(∂zw

n−1
3,− − ∂zw

n
3,−)(wn

j,− − wn−1
j,− ),



FORMATION AND CONSTRUCTION OF A SHOCK WAVE FOR 3-D EULER EQUATIONS 159

J4 = ∂z(λ3(w
n
−))(wn

3,− − wn−1
3,− ),

J5 = −
∑

k=1,2

(∂wk
λ3)(w

n
−)∂zw

n
k,−(wn

3,− − wn−1
3,− ),

J6 =
∑

k=1,2

(∂wk
λ3)(w

n
−)

(∂w3
λ3)(w

n
−)

∂z(λ3(w
n
−))(wn

k,− − wn−1
k,− ),

J7 = −
∑

k,j=1,3

(∂wk
λ3)(w

n
−)

(∂w3
λ3)(wn

−)
{(∂wj

λ3)(w
n
−)∂zw

n
j,−}(wn

k,− − wn−1
k,− ).

Estimating each term gives

(3.49) |(λ3(w
n
−) − λ3(w

n−1
− ))∂zw

n−1
3,− |

≤
(

|∂z(λ3(w
n
−))| + CNε√

t − Tε

)

|wn
3,− − wn−1

3,− | + CN

∑

i=1,2

|wn
i,± − wn−1

i,± |.

We next estimate (σn − σn−1)∂zw
n−1
3,− . Note that

(3.50) σn = λ3(w−(t, 0−)) +
1

2

3
∑

k=1

(∂wk
λ3)(w−(t, 0−))[wn

k ] + O([wn]2),

which is derived as in [15] or [21]. Then, similarly to the proof of (3.49),
we can get

(3.51) |(σn − σn−1)∂zw
n−1
3,− |

≤
(1

2
|∂z(λ3(w

n
−))| + CNε√

t − Tε

)

|wn
3,− − wn−1

3,− | + CN

∑

i=1,2

|wn
i,+ − wn−1

i,+ |.

Using (3.49) and (3.51), we can proceed as in the proof of Lemma 3.8 (in
particular, Part 4), to establish

‖wn+1
3,− − wn

3,−‖L∞(Ω̃−) ≤
(

ln
3

2
+ CNε

√

t − Tε

)

‖wn
3,− − wn−1

3,− ‖L∞(Ω̃−)

+
(1

2
ln

3

2
+ CNε

√

t − Tε

)

‖wn
3,± − wn−1

3,± ‖L∞(Ω̃±)

+ CN

∑

i=1,2

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±).



160 H. YIN

Similarly, we obtain

‖wn+1
3,+ − wn

3,+‖L∞(Ω̃+) ≤
(

ln
3

2
+ CNε

√

t − Tε

)

‖wn
3,+ − wn−1

3,+ ‖L∞(Ω̃+)

+
(1

2
ln

3

2
+ CNε

√

t − Tε

)

‖wn
3,± − wn−1

3,± ‖L∞(Ω̃±)

+ CN

∑

i=1,2

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±).

Adding these two estimates gives

‖wn+1
3,± − wn

3,±‖L∞(Ω̃±) ≤
(

2 ln
3

2
+ CNε

√

t − Tε

)

‖wn
3,± − wn−1

3,± ‖L∞(Ω̃±)

(3.52)

+ CN

∑

i=1,2

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±),

where the constant CN of the last term of the right side can be made less
than 1 provided ε is small enough. As in Part 3 of the proof of Lemma 3.8,
we can also establish

(3.53) ‖wn+1
1,+ − wn

1,+‖L∞(Ω̃+) ≤ CNε(t − Tε)

3
∑

i=1

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±).

Finally, consider the function v(t, z) = wn+1
1,− − wn

1,−, which satisfies























































∂tv + (λ1(w
n
−) − σn)∂zv = (λ1(w

n−1
− ) − λ1(w

n
−) + σn − σn−1)∂zw

n
1,−

− ā(wn
−)

{

∂t(w
n
2,− − wn−1

2,− ) + (λ1(w
n
−) − σn)∂z(w

n
2,− − wn−1

2,− )

+ (λ1(w
n−1
− ) − λ1(w

n
−) + σn − σn−1)∂zw

n
2,−

}

− (ā(wn
−) − ā(wn−1

− ))(∂tw
n
2,− + (λ1(w

n
−) − σn)∂zw

n
2,−)

+
b̄1(w

n
−)

z + φn(t)
− b̄1(w

n−1
− )

z + φn−1(t)
,

v(Tε, z) = 0, v(t, z)|z=0 = wn+1
1,− (t, 0−) − wn

1,−(t, 0−).

If the backward characteristics ξ = ξ(t, z, s) through (t, z) intersects the
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z-axis before meeting the t-axis, we have

|v(t, z)| ≤ |ā(wn
−)(wn

2,− − wn−1
2,− )|(3.54)

+ CNε
3

∑

i=1

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±)

∫ t

Tε

(

1 +
1√

s − Tε

)

ds

≤ CNε

3
∑

i=1

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±).

If ξ = ξ(t, z, s) intersects the t-axis at (s, 0) for some s ≥ Tε, then
(3.55)

|v(t, z)| ≤ |wn+1
1,− (s, 0−) − wn

1,−(s, 0−)| + CNε

3
∑

i=1

‖wn+1
i,± − wn

i,±‖L∞(Ω̃±).

By (3.35), Lemma 3.7 and the above estimates, we get

|wn+1
1,− (s, 0−) − wn

1,−(s, 0−)| ≤ |wn+1
1,+ (s, 0+) − wn

1,+(s, 0+)|
+ CNε

(

|wn+1
1,− (s, 0−) − wn

1,−(s, 0−)| + |wn+1
2,− (s, 0−) − wn

2,−(s, 0−)|

+ |wn+1
3,± (s, 0±) − wn

3,±(s, 0±)|
)

≤ CNε

3
∑

i=1

‖wn
i,± − wn−1

i,± ‖L∞(Ω±).

Hence

|v(t, z)| ≤ CNε

3
∑

i=1

‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±).

The term |wn+1
2,− (t, z)−wn

2,−(t, z)| is estimated similarly (and even more
simply), so the details are omitted.

Collecting terms now gives

‖wn+1
3,± − wn

3,±‖L∞(Ω̃±) +
∑

i=1,2

(CN + 1)‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±)

≤
(

2 ln
3

2
+ CNε

√

t − Tε + CN (CN + 1)ε
)

‖wn
3,± − wn−1

3,± ‖L∞(Ω̃±)

+
CN + CN (CN + 1)ε

CN + 1

∑

i=1,2

(CN + 1)‖wn
i,± − wn−1

i,± ‖L∞(Ω̃±).

Since 2 ln(3/2) < 1 and CN/CN + 1 < 1, replacing CN + 1 by CN we
conclude that Lemma 3.9 is valid if ε is small.
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Proof of Theorem 2.1. By Lemma 3.9 we see that there exist functions
σ(t) ∈ C[Tε, Tε + 1] and wi,±(t, z) ∈ C(Ω̃±) such that σn(t) → σ uniformly
on [Tε, Tε + 1] and wn

i,±(t, z) → wi,±(t, z) uniformly on Ω̃±, respectively, as
n → ∞. We can also prove that ∇t,zw

n
i,±(t, z) → ∇t,zwi,±(t, z) uniformly on

any closed subsets of Ω̃±, respectively. Moreover, by Lemma 3.6, (3.17) and
(3.18), we see that z 7→ wn

i,±(t, z) are equicontinuous in z ∈ Ω̃±, respectively,
for each fixed t ∈ (Tε, Tε + 1). Hence, the boundary values wi,±(t, 0±)
exist. Moreover, due to the equivalence of (3.12) and (3.14), we conclude
that these boundary values satisfy the Rankine-Hugoniot conditions on the
shock curve

r = φ(t) = Tε +

∫ t

Tε

σ(t)dt.

The entropy condition is also satisfied by Lemma 3.1 and the estimates
given in Lemma 3.8. So the functions

wi(t, z) =

{

wi,−(t, z), z < φ(t),

wi,+(t, z), z > φ(t),

define our desired weak entropy solution of (2.11). Estimates in Theo-
rem 2.1 follow directly from Lemma 3.6, Lemma 3.8 and the convergence
of approximate solutions.
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