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ON SYMPLECTIC FILLINGS OF LINKS OF

RATIONAL SURFACE SINGULARITIES WITH

REDUCED FUNDAMENTAL CYCLE

MOHAN BHUPAL†

Abstract. We prove that every symplectic filling of the link of a rational
surface singularity with reduced fundamental cycle admits a rational compact-
ification, possibly after a modification of the filling in a collar neighbourhood
of the link.

§1. Introduction

Let O be an isolated singularity of an algebraic variety V . The link L of

O ∈ V carries a natural contact structure ξ given by the maximal complex

subspaces of the tangent spaces of L. In this note we consider the case

where O is a rational surface singularity with reduced fundamental cycle.

We prove the following.

Theorem 1.1. Let (L, ξ) be the link of a rational surface singular-

ity O ∈ V with reduced fundamental cycle. Then any symplectic filling

(W,ω) of (L, ξ) can be symplectically embedded into a rational symplectic

4-manifold (X,ω′), after possibly modifying W in a collar neighbourhood of

∂W = L.

The class of rational surface singularities with reduced fundamental

cycle properly includes the class of cyclic quotient singularities. For the

latter Theorem 1.1 follows from the work of McDuff [6] and Ohta and Ono

[10] in special cases and Lisca [4] in the general case.

We prove Theorem 1.1 by constructing explicitly a concave symplec-

tic filling (Z, σ) of the link (L, ξ) of the given rational surface singularity

O ∈ V . By construction, our concave symplectic filling (Z, σ) contains a ra-

tional symplectically embedded curve with self-intersection +1. The proof
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of Theorem 1.1 is then completed by a gluing argument and then appealing

to a theorem of McDuff [6].

It is interesting to ask whether or not the statement of Theorem 1.1

can be extended to the whole class of rational surface singularities. The

methods used in this note do not extend beyond the class of rational sur-

face singularities with reduced fundamental cycle although it is known that

the statement of Theorem 1.1 does hold for certain examples of rational

surface singularities without reduced fundamental cycle, for instance, the

simple singularities Dn, n ≥ 4, E6, E7 and E8 (see [10]). For the class of

singularities we consider one can see a positive rational curve in the com-

pactification directly; in the other cases one can not directly see such a

positive rational curve.

§2. Preliminaries

Let π : V → V be the minimal resolution of a normal surface singularity

O ∈ V . Then O ∈ V is said to be a rational singularity if R1π∗OV = 0 (see

[2]). In particular, this implies that the exceptional divisor E = π−1(O)

is a union E =
⋃

Ei of rational curves. We may assume that the curves

Ei intersect transversely and are such that no three curves intersect in a

point. Furthermore, we may assume that Ei and Ej intersect in at most

one point for i 6= j. Let Γ denote the dual resolution graph. By definition,

this is the weighted graph that is obtained by taking one vertex vi for each

irreducible component Ei of E and joining vi and vj with an edge whenever

Ei and Ej intersect in a point. Each vertex vi of Γ is weighted with the

integer ni = Ei · Ei, the self-intersection of Ei. A further consequence of

O ∈ V being a rational singularity is that the dual resolution graph Γ is a

tree (see, for example, [8]). The fundamental cycle Z is defined to be the

smallest positive cycle Z =
∑

ciEi with ci ∈ Z such that Z · Ei ≤ 0 for all

i. The fundamental cycle Z is said to be reduced if Z = E, that is, ci = 1

for all i. For each i, let bi be the number of rational curves Ej , j 6= i, such

that Ei · Ej 6= 0. Then Z is reduced if and only if −bi ≥ Ei · Ei for all i.

In particular, any weighted tree with sufficiently negative weights can be

obtained as the dual resolution graph of some rational surface singularity

with reduced fundamental cycle. Explicitly, any weighted linear graph, with

all weights ≤ −2, corresponds to the dual resolution graph of a rational

surface singularity with reduced fundamental cycle. These correspond, of

course, to the well-known cyclic quotient singularities An,q.
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Although the following discussion is valid for the wider class of normal

surface singularities, for convenience, we restrict to the case of rational

surface singularities. Given a rational surface singularity O ∈ V , choose an

analytic embedding of a neighbourhood of O in V into C
n for some n such

that O is mapped to the origin. The link L of O ∈ V is then defined to be

the intersection of V with the sphere S2n−1(ε) of radius ε for ε sufficiently

small. Now if we are given two rational surface singularities O ∈ V and

O′ ∈ V ′ with the same dual resolution graph, then by a theorem of Laufer

[5] the analytic structure in a neighbourhood of the minimal resolution

of O ∈ V may be connected by a series of deformations to the analytic

structure in a neighbourhood of the minimal resolution of O ′ ∈ V ′. In

particular, it follows from Gray’s theorem that the contact structure on the

link of O ∈ V is isotopic to the contact structure on the link of O ′ ∈ V ′.

We may thus speak unambiguously of the contact structure on the link of

a rational surface singularity having a given dual resolution graph.

Suppose that (M, ξ) is a contact 3-manifold with ξ = kerλ for some

1-form λ on M defining the given co-orientation of ξ. A compact symplectic

4-manifold (W,ω) with ∂W = M is said to be a (weak) symplectic filling of

(M, ξ) if the following two conditions hold.

(SF1) The orientation on M given by λ∧ dλ coincides with the orientation

on M given as the boundary of W .

(SF2) ω|ξ is positively proportional to dλ|ξ.

Here W is oriented by ω ∧ ω. If, furthermore, there exists an extension λ̃

of λ to a collar neighbourhood of M = ∂W such that dλ̃ = ω, then (W,ω)

is said to be a strong symplectic filling of (M, ξ). If we replace (SF1) by:

(SF1′) The orientation on M given by λ∧ dλ is opposite to the orientation

on M given as the boundary of W ,

we get the notions of weak and strong concave symplectic fillings.

In our case, that is when (L, ξ) is the link of a rational surface singu-

larity with reduced fundamental cycle with its canonical contact structure,

we have that L is a rational homology sphere. This follows from Mum-

ford’s computation of π1(L) (see [7]). In such a case it can be shown that

every weak symplectic fillings (W,ω) of (L, ξ) can be made into a strong

symplectic filling after possibly modifying the symplectic structure in a col-

lar neighbourhood ∂W = L (see, for example, [3], [9]). For an explicit

description of the contact structure ξ see Page 56 below.
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§3. Proof of Theorem 1.1

Fix a rational surface singularity O ∈ V with reduced fundamental

cycle and denote by Γ its dual resolution graph. Pick a vertex of Γ which is

connected by an edge to exactly one other vertex and label this vertex v1.

Suppose that Γ has m vertices. Now label the other vertices of Γ v2, . . . , vm

by requiring that any path in Γ starting at v1 and ending at a leaf goes

through vertices vi1 , . . . , vik , in this order, where i1 < · · · < ik. Since Γ is a

tree, this is always possible.

Now consider the complex projective plane CP 2 and fix a point P ∈

CP 2. Denote by L∞ ⊂ CP 2 any line which does not pass through P . We

now describe an algorithm for successively blowing up CP 2 at points away

from the proper transform of L∞ so that in some blow-up of CP 2 we obtain

a configuration of rational curves which is described by the graph Γ.

To begin with, blow up CP 2 at P and denote the corresponding (−1)-

curve in the blow-up of CP 2 by D1. Denote the blow-up of CP 2 at P by CP 2
1

and denote the proper transform of L∞ in CP 2
1 by the same symbol. Now

pick a point on D1 and blow up CP 2
1 at that point. Denote the resulting

variety by CP 2
2 and the corresponding (−1)-curve by D2. Continue using

the same notation to denote the proper transforms of D1 and L∞. D1 now

becomes a (−2)-rational curve in CP 2
2 . If necessary, now blow up CP 2

2

at −2 − n1 points along D1 \ D2, where n1 = wt(v1), the weight of v1,

and denote the resulting variety by CP 2
k1

, where k1 = −n1, the number

of times we have successively blown up CP 2. Then in CP 2
k1

, D1 will be a

rational curve with self-intersection n1 and D2 will be a rational curve with

self-intersection −1 intersecting D1 once.

Now suppose that curves D1, . . . , Dl−1 have been obtained in some

variety CP 2
kl−1

, obtained by successively blowing up CP 2, and that Di ·Di =

ni = wt(vi) for i = 1, . . . l− 1 and, for 1 ≤ i < j ≤ l− 1, Di intersects Dj in

one point if and only if vi is connected to vj by an edge. If l−1 = m we are

done, otherwise Dl will be some (−1)-curve in CP 2
kl−1

which was obtained

by some previous blow up. By the induction hypothesis, Dl will intersect

precisely one curve Dl′ for 1 ≤ l′ ≤ l− 1, where l′ is the index of the unique

vertex vl′ such that l′ ≤ l− 1 and vl and vl′ are connected by an edge. Now

let

dl = #{vj | vj is connected by an edge to vl, j > l}.

Assuming that dl 6= 0, now blow up CP 2
kl−1

at dl points along Dl \ Dl′ .

Denote the blown-up variety by CP 2
k , where k = kl−1 + dl, and the corre-
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sponding (−1)-rational curves by Dj1 , . . . , Djdl
. Here j1, . . . jdl

denote the

indices of the vj , j > l, such that vj is connected by an edge to vl. Then

Dl ⊂ CP 2
k will have self-intersection −(dl + 1). By the reduced condition

−(dl + 1) ≥ nl = wt(vl). If necessary, now blow up CP 2
k at −(dl + 1) − nl

points along Dl \ (Dl′ ∪ Dj1 ∪ · · · ∪ Djd2
) and denote the blown-up variety

by CP 2
kl

, where kl = k−1−nl. Then, in CP 2
kl

, Dl will have self-intersection

nl. This completes the inductive step.

Following the above algorithm we obtain a variety CP 2
N containing a

bunch of rational curves D1, . . . , Dm intersecting in the manner described

by Γ and having self-intersections Di ·Di = ni = wt(vi). CP 2
N also contains

a rational curve L∞ which has self-intersection +1 and is disjoint from

each of the curves Di. Now note, by the Segre embedding, that CP 2
N is a

projective variety. Moreover, by Artin’s theorem on contractibility of curves

on algebraic surfaces [1], it follows that after contracting D = D1∪· · ·∪Dm

the surface we obtain is again projective. Denote this surface by V ′ ⊂ CP n

and let Q ∈ V ′ denote the image of D under the contraction. By applying

a projective linear transformation if necessary we may assume that Q = [1 :

0 : · · · : 0]. We now show that the complement of a neighbourhood of Q in

V ′ is a strong concave filling of the link of our rational singularity O with

reduced fundamental cycle.1

Let [Z0 : . . . : Zn] denote homogeneous coordinates on CP n and let

zi = Zi/Z0, i = 1, . . . , n denote complex coordinates on the open set U0 =

(Z0 6= 0) in CP n. Then on U0 = C
n, the restriction of the Fubini–Study

metric is given by

ωFS|Cn =
i

2







∑n
j=1 dzj ∧ dzj

1 +
∑n

j=1 zjzj

−

(

∑n
j=1 zj dzj

)

∧
(

∑n
j=1 zj dzj

)

(

1 +
∑n

j=1 zjzj

)2






.

Now note that ωFS|Cn = dλ0, where λ0 is the 1-form on C
n given by

λ0 =
i

4

(

∑n
j=1 (zj dzj − zj dzj)

1 +
∑n

j=1 zjzj

)

.

It follows that ker(λ0|S2n−1(ε)) consists precisely of those vectors X ∈ TzS
2n−1(ε)

such that J0X is also in TzS
2n−1(ε), where J0 is the standard complex

1This fact was already known to Ono.
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structure on C
n. In other words, ker(λ0|S2n−1(ε)) gives the standard con-

tact structure on TS2n−1(ε). Let L = V ′ ∩ S2n−1(ε) denote the link of

Q ∈ V ′. It follows easily that ker(λ0|L) gives the natural contact structure

ξ on L and hence that the intersection of V ′ with the ball B2n(ε) of radius

ε gives a strong symplectic filling of the link (L, ξ) of Q ∈ V ′. Hence the

complement of V ′ ∩ B2n(ε) in V ′ gives a strong concave filling, (Z, σ), of

(L, ξ) as required.

Now suppose that (W,ω) is a symplectic filling of the link (L, ξ) of

O ∈ V . Then, as noted before, the symplectic structure ω can be modified

into another symplectic structure ω ′ such that (W,ω′) is a strong symplectic

filling of (L, ξ). We can now symplectically embed a collar neighbourhood

of ∂W ⊂ (W,ω) into the symplectization of (L, ξ) such that the outward

pointing normal vector along ∂W points in the positive direction of the

symplectization. Similarly, we can symplectically embed collar neighbour-

hood of ∂Z ⊂ (Z, σ) into the symplectization of (L, ξ) such that the outward

pointing normal vector along ∂Z points in the negative direction of the sym-

plectization. Thus, after possibly rescaling the symplectic structure σ, we

obtain a closed symplectic 4-manifold (X,ω ′′) containing a symplectically

embedded copy of (W,ω′). By construction, (X,ω′′) contains a symplecti-

cally embedded rational curve of self-intersection +1. A theorem of McDuff

[6] now shows that (X,ω′′) is symplectomorphic to CP 2 blown up at a finite

number of points. This completes the proof of Theorem 1.1.
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