LOCAL ZETA FUNCTIONS AND NEWTON POLYHEDRA

W. A. ZUNIGA-GALINDO*

Abstract

To a polynomial f over a non-archimedean local field K and a character χ of the group of units of the valuation ring of K one associates Igusa's local zeta function $Z(s, f, \chi)$. In this paper, we study the local zeta function $Z(s, f, \chi)$ associated to a non-degenerate polynomial f, by using an approach based on the p-adic stationary phase formula and Néron p-desingularization. We give a small set of candidates for the poles of $Z(s, f, \chi)$ in terms of the Newton polyhedron $\Gamma(f)$ of f. We also show that for almost all χ, the local zeta function $Z(s, f, \chi)$ is a polynomial in q^{-s} whose degree is bounded by a constant independent of χ. Our second result is a description of the largest pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ in terms of $\Gamma(f)$ when the distance between $\Gamma(f)$ and the origin is at most one.

§1. Introduction

Let K be a non-archimedean local field of arbitrary characteristic. Let \mathcal{O}_{K} be the ring of integers of K and \mathcal{P}_{K} its maximal ideal. Let π be a fixed uniformizing parameter of K, and let the residue field of K be \mathbb{F}_{q} the field with $q=p^{r}$ elements. For $x \in K, v$ denotes the valuation of K such that $v(\pi)=1,|x|_{K}=q^{-v(x)}$ and $a c(x)=x \pi^{-v(x)}$. Let $f(x) \in \mathcal{O}_{K}[x], x=$ $\left(x_{1}, \ldots, x_{n}\right)$ be a non-constant polynomial, and $\chi: \mathcal{O}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$a character of \mathcal{O}_{K}^{\times}, the group of units of \mathcal{O}_{K}. We formally put $\chi(0)=0$. To these data one associates Igusa's local zeta function,

$$
Z(s, f, \chi)=\int_{\mathcal{O}_{K}^{n}} \chi(\operatorname{acf}(x))|f(x)|_{K}^{s}|d x|, \quad s \in \mathbb{C},
$$

for $\operatorname{Re}(s)>0$, where $|d x|$ denotes the Haar measure on K^{n}, normalized such that \mathcal{O}_{K}^{n} has measure 1 . In the case of K having characteristic zero,

[^0]Igusa [I2] and Denef [D1] proved that $Z(s, f, \chi)$ is a rational function of q^{-s}.

A basic problem is to determine the poles of the meromorphic continuation of $Z(s, f, \chi)$ into $\operatorname{Re}(s)<0$. The general strategy is to take a resolution $h: X \rightarrow K^{n}$ of f and study the resolution data $\left\{\left(N_{i}, n_{i}\right)\right\}$ in which N_{i} is the multiplicity of $f \circ h$ along a exceptional divisor D_{i}, and n_{i} is the multiplicity of $h^{\star}(d x)$ along D_{i}. The set of ratios $\left\{\frac{-n_{i}}{N_{i}}\right\} \cup\{-1\}$ contains the real parts of the poles of $Z(s, f, \chi)$ as observed in [I2]. However, many examples show that most of these ratios do not correspond to poles. The problem of the determination of the actual poles of $Z(s, f, \chi)$ for arbitrary n is still an open problem. The case $n=2$ was solved for irreducible f and $\chi=\chi_{\text {triv }}$ for all primes p by Meuser [Me]. The generalization to reducible f and $\chi \neq \chi_{\text {triv }}$ but for almost all primes p was solved by Veys in [Ve].

In case of non-degenerate polynomials with respect to its Newton polyhedron and $K=\mathbb{R}$, Varchenko [Va] gave a procedure to compute a set of candidates for the poles of the complex power of f, by using toroidal resolution of singularities (see also [D-S-1], [D-S-2]).

The p-adic case is entirely similar to the real case. In this case, Lichtin and Meuser $[\mathrm{L}-\mathrm{M}]$ proved in the case $n=2$ that not all candidates provided by the numerical data of a toric resolution of f are actually poles of $Z(s, f, \chi)$. In [D3] Denef gave a procedure based on monomial changes of variables to determine a small set of candidates for the poles of $Z\left(s, f, \chi_{\text {triv }}\right)$ in terms of the Newton polyhedron of f.

In this paper, we study the local zeta function $Z(s, f, \chi)$ associated to a globally non-degenerate polynomial f (see Definition 1.1), by using an approach based on the p-adic stationary phase formula and Néron p desingularization. We show the stationary phase formula gives a small set of candidates for the poles of $Z(s, f, \chi)$ in terms of the Newton polyhedron $\Gamma(f)$ of f (cf. Theorem A). When $\chi=\chi_{\text {triv }}$ and $\operatorname{char}(K)=0$ this set of poles agree with that obtained in [D3]. We also show that for almost all χ, the zeta function $Z(s, f, \chi)$ is a polynomial in q^{-s} whose degree is bounded by a constant independent of χ. Our second result shows that the stationary phase formula can be used to describe the largest pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ in terms of $\Gamma(f)$, when the distance between $\Gamma(f)$ and the origin is at most one (cf. Theorem B). This result was previously known for $\operatorname{char}(K)=0$. This result allows one to generalize estimates for exponential sums that were obtained in $[\mathrm{D}-\mathrm{Sp}]$ to the case $\operatorname{char}(K) \neq 0$ (cf. Corollary 6.1).

We set $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geqq 0\}$. Let $f(x)=\sum_{l} a_{l} x^{l} \in K[x], x=$
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in n variables satisfying $f(0)=0$. The set $\operatorname{supp}(f)=\left\{l \in \mathbb{N}^{n} \mid a_{l} \neq 0\right\}$ is called the support of f. The Newton polyhedron $\Gamma(f)$ of f is defined as the convex hull in \mathbb{R}_{+}^{n} of the set

$$
\bigcup_{l \in \operatorname{supp}(f)}\left(l+\mathbb{R}_{+}^{n}\right)
$$

We denote by \langle,$\rangle the usual inner product of \mathbb{R}^{n}$, and identify \mathbb{R}^{n} with its dual by means of it. We set

$$
\left\langle a_{\gamma}, x\right\rangle=m\left(a_{\gamma}\right)
$$

for the equation of the supporting hyperplane of a facet γ (i.e. a face of codimension 1 of $\Gamma(f))$ with perpendicular vector $a_{\gamma}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ $\mathbb{N}^{n} \backslash\{0\}$, and $\left|a_{\gamma}\right|:=\sum_{i} a_{i}$.

Definition 1.1. A polynomial $f(x)=\sum_{i} a_{i} x^{i} \in K[x]$ is called globally non-degenerate with respect to its Newton polyhedron $\Gamma(f)$, if it satisfies the following two properties:
(GND1) the origin of K^{n} is a singular point of $f(x)$;
(GND2) for every face $\gamma \subset \Gamma(f)$ (including $\Gamma(f)$ itself), the polynomial

$$
f_{\gamma}(x):=\sum_{i \in \gamma} a_{i} x^{i}
$$

has the property that there is no $x \in(K \backslash\{0\})^{n}$ such that

$$
f_{\gamma}(x)=\frac{\partial f_{\gamma}}{\partial x_{1}}(x)=\cdots=\frac{\partial f_{\gamma}}{\partial x_{n}}(x)=0
$$

Our first result is the following.
Theorem A. Let K be a non-archimedean local field, and let $f(x) \in$ $\mathcal{O}_{K}[x]$ be a polynomial globally non-degenerate with respect to its Newton polyhedron $\Gamma(f)$. Then the Igusa local zeta function $Z(s, f, \chi)$ is a rational function of q^{-s} satisfying:
(i) if s is a pole of $Z(s, f, \chi)$, then

$$
s=-\frac{\left|a_{\gamma}\right|}{m\left(a_{\gamma}\right)}+\frac{2 \pi i}{\log q} \frac{k}{m\left(a_{\gamma}\right)}, \quad k \in \mathbb{Z}
$$

for some facet γ of $\Gamma(f)$ with perpendicular a_{γ}, and $m\left(a_{\gamma}\right) \neq 0$, or

$$
s=-1+\frac{2 \pi i}{\log q} k, \quad k \in \mathbb{Z}
$$

(ii) if $\chi \neq \chi_{\text {triv }}$ and the order of χ does not divide any $m\left(a_{\gamma}\right) \neq 0$, where γ is a facet of $\Gamma(f)$, then $Z(s, f, \chi)$ is a polynomial in q^{-s}, and its degree is bounded by a constant independent of χ.

For a polynomial $f(x) \in K[x]$ globally non-degenerate with respect to its Newton polyhedron $\Gamma(f)$, we set

$$
\beta(f):=\max _{\tau_{j}}\left\{-\frac{\left|a_{j}\right|}{m\left(a_{j}\right)}\right\}
$$

where τ_{j} runs through all facets of $\Gamma(f)$ satisfying $m\left(a_{j}\right) \neq 0$. The point

$$
T_{0}=\left(-\beta(f)^{-1}, \ldots,-\beta(f)^{-1}\right) \in \mathbb{Q}^{n}
$$

is the intersection point of the boundary of the Newton polyhedron $\Gamma(f)$ with the diagonal $\Delta=\{(t, \ldots, t) \mid t \in \mathbb{R}\}$ in \mathbb{R}^{n}. Let τ_{0} be the face of smallest dimension of $\Gamma(f)$ containing T_{0}, and ρ its codimension.

If $g(x) \in \mathcal{O}_{K}[x], x=\left(x_{1}, \ldots, x_{n}\right)$, we denote by $\overline{g(x)}$ its reduction modulo \mathcal{P}_{K}.

The second result of this paper describes the largest pole of $Z\left(s, f, \chi_{\text {triv }}\right)$, when $\beta(f) \geq-1$.

Theorem B. Let K be a non-archimedean local field, and let $f(x) \in$ $\mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f)$. If $\beta(f)>-1$, then $\beta(f)$ is a pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ of multiplicity ρ. If $\beta(f)=-1$, then $\beta(f)$ is a pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ of multiplicity less than or equal to $\rho+1$. Moreover, if every face $\gamma \supseteqq \tau_{0}$ satisfies $\operatorname{Card}\left(\left\{z \in \mathbb{F}_{q}^{\times n} \mid \bar{f}_{\gamma}(z)=0\right\}\right)>0$, then the multiplicity of $\beta(f)$ is exactly $\rho+1$.

The largest pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ when f is non-degenerate with respect to its Newton polyhedron $\Gamma(f)$ and $\beta(f)>-1$ follows from observations made by Varchenko in [Va] and was originally noted in the p-adic case in $[\mathrm{L}-\mathrm{M}]$ (although it is misstated there as $\beta(f) \neq-1$). The case $\beta(f)=-1$ is treated in $[\mathrm{D}-\mathrm{H}]$. The case of $\beta(f)<-1$ is more difficult and is established in $[\mathrm{D}-\mathrm{H}]$ with some additional conditions on τ_{0} by using a difficult result on
exponential sums. Thus our Theorem B gives a different proof of the cases where $\beta(f) \geqq-1$.

The organization of this paper is as follows. In Section 2, we review Igusa's stationary phase formula. The results of this section generalize our previous results in [Z-G]. Section 3 contains some basic results about Newton polyhedra. In Section 4, we prove Theorem A. In Section 5, we prove Theorem B. Section 6 contains some consequences of the main theorems. More precisely, we give estimates for exponential sums involving globally non-degenerate polynomials (cf. Corollary 6.1). In Section 7, we compute explicitly the local zeta functions of some polynomials in two variables and discuss the relation between the largest pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ and $\beta(f)$.

Acknowledgements. I wish to thank to Jan Denef, Kathleen Hoornaert, and the referee for their suggestions which led to an improvement of this work.

§2. Igusa's stationary phase formula

In [I3] Igusa introduced the stationary phase formula for π-adic integrals and suggested that a closer examination of this formula might lead to a new proof of the rationality of $Z(s, f, \chi)$ in any characteristic. Following this suggestion the author proved the rationality of the local zeta function $Z\left(s, f, \chi_{\text {triv }}\right)$ attached to a semiquasihomogeneous polynomial f over an arbitrary non-archimedean local field [Z-G].

Let L be a ring and $f(x) \in L[x]$, we denote by $V_{f}(L)$ the corresponding L-hypersurface and by $\operatorname{Sing}_{f}(L)$ the L-singular locus.

We denote by \bar{x} the image of an element of \mathcal{O}_{K} under the canonical homomorphism $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K} \cong \mathbb{F}_{q}$, i.e. the reduction modulo π. Given $\underline{f(x)} \in \mathcal{O}_{K}[x]$ such that not all its coefficients are in $\pi \mathcal{O}_{K}$, we denote by $\overline{f(x)}$ the polynomial obtained by reducing modulo π the coefficients of $f(x)$.

We fix a lifting R of \mathbb{F}_{q} in \mathcal{O}_{K}. By definition, the set R is mapped bijectively onto \mathbb{F}_{q} by the canonical homomorphism $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K}$.
Let $f(x) \in \mathcal{O}_{K}[x]$ be a polynomial in n variables, $P_{1}=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{O}_{K}^{n}$, and $m_{P_{1}}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$. We call a K^{n}-isomorphism $\Phi_{m_{P_{1}}}(x)$ a dilatation, if it has the form $\Phi_{m_{P_{1}}}(x)=\left(z_{1}, \ldots, z_{n}\right), z_{i}=y_{i}+\pi^{m_{i}} x_{i}$, for each $i=1,2, \ldots, n$. The dilatation of $f(x)$ at P_{1} induced by $\Phi_{m_{P_{1}}}(x)$ is defined as

$$
\begin{equation*}
f_{P_{1}}(x):=\pi^{-e_{P_{1}}} f\left(\Phi_{m_{P_{1}}}(x)\right) \tag{2.1}
\end{equation*}
$$

where $e_{P_{1}}$ is the minimum order of π in the coefficients of $f\left(\Phi_{m_{P_{1}}}(x)\right)$. We call the K-hypersurface $V_{f_{P_{1}}}(K)$ the dilatation of $V_{f}(K)$ at P_{1} induced by $\Phi_{m_{P_{1}}}(x)$; the number $e_{P_{1}}$ the arithmetic multiplicity of $f(x)$ at P_{1} by $\Phi_{m_{P_{1}}}(x)$, and the set $S\left(f_{P_{1}}\right)$, the lifting of $\operatorname{Sing}_{\bar{f}_{P_{1}}}\left(\mathbb{F}_{q}\right)$, the first generation of descendants of P_{1}.

Given a sequence of dilatations $\left(\Phi_{m_{P_{k}}}(x)\right)_{k \in \mathbb{N}}$, we define inductively $e_{P_{1}, \ldots, P_{k}}$ and $f_{P_{1}, \ldots, P_{k}}(x), S\left(f_{P_{1}, \ldots, P_{k}}\right)$ as follows:

$$
f_{P_{1}, \ldots, P_{k}}(x):= \begin{cases}f(x), & \text { if } k=0 \tag{2.2}\\ \pi^{-e_{P_{1}}, \ldots, P_{k}} f_{P_{1}, \ldots, P_{k-1}}\left(\Phi_{m_{P_{k}}}(x)\right), & \text { if } k \geqq 1\end{cases}
$$

where $P_{k} \in S\left(f_{P_{1}, \ldots, P_{k-1}}\right)$, and $e_{P_{1}, \ldots, P_{k}}$ is the minimum order of π in the coefficients of $f_{P_{1}, \ldots, P_{k-1}}\left(\Phi_{m_{P_{k}}}(x)\right)$. For $k \geq 1$, the set $S\left(f_{P_{1}, \ldots, P_{k}}\right):=$ $\bigcup_{P_{k}} S\left(f_{P_{1}, \ldots, P_{k-1}, P_{k}}\right)$ is called the $k^{\text {th }}$-generation of descendants of P_{1}. By definition the $0^{\text {th }}$-generation of descendants of P_{1} is $\left\{P_{1}\right\}$.
Now, we review Igusa's stationary phase formula, from the point of view of the dilatations. For that, we fix the $m_{P_{k}}$'s equal to $(1, \ldots, 1) \in \mathbb{N}^{n}$ in (2.1).

Let \bar{D} be a subset of \mathbb{F}_{q}^{n} and D its preimage under the canonical homomorphism $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K} \cong \mathbb{F}_{q}$. Let $S(f, D)$ denote the subset of R^{n} (the set of representatives of \mathbb{F}_{q}^{n} in \mathcal{O}_{K}^{n}) mapped bijectively to the set $\operatorname{Sing}_{\bar{f}}\left(\mathbb{F}_{q}\right) \cap \bar{D}$. We use the simplified notation $S(f)$ in the case of $D=\mathcal{O}_{K}^{n}$. Also we define:

$$
\nu(\bar{f}, D, \chi):= \begin{cases}q^{-n} \operatorname{Card}\left\{\bar{P} \in \bar{D} \mid \bar{P} \notin V_{\bar{f}}\left(\mathbb{F}_{q}\right)\right\}, & \text { if } \chi=\chi_{\text {triv }} \\ q^{-n c_{\chi}} \sum_{\left\{P \in D \mid \bar{P} \notin V_{\bar{f}}\left(\mathbb{F}_{q}\right)\right\} \bmod \mathcal{P}_{K}^{c_{\chi}} \chi(\operatorname{ac}(f(P))),} \text { if } \chi \neq \chi_{\text {triv }}\end{cases}
$$

where c_{χ} is the conductor of χ, and

$$
\begin{aligned}
& \sigma(\bar{f}, D, \chi):= \\
& \quad \begin{cases}q^{-n} \operatorname{Card}\left\{\bar{P} \in \bar{D} \mid \bar{P} \text { is a smooth point of } V_{\bar{f}}\left(\mathbb{F}_{q}\right)\right\}, & \text { if } \chi=\chi_{\text {triv }} \\
0, & \text { if } \chi \neq \chi_{\text {triv }}\end{cases}
\end{aligned}
$$

If $D=\mathcal{O}_{K}^{n}$, we use the simplified notation $\nu(\bar{f}, \chi), \sigma(\bar{f}, \chi)$. We denote by $Z(D, s, f, \chi)$ the integral $\int_{D} \chi(a c(f(x)))|f(x)|_{K}^{s}|d x|$. With all this, we are able to establish Igusa's stationary phase formula for π-adic integrals ([I3, p. 177]):

Igusa's Stationary Phase Formula.

$$
\begin{align*}
Z(D, s, f, \chi)= & \nu(\bar{f}, D, \chi)+\sigma(\bar{f}, D, \chi) \frac{\left(1-q^{-1}\right) q^{-s}}{\left(1-q^{-1-s}\right)} \tag{2.3}\\
& +\sum_{P \in S(f, D)} q^{-n-e_{P} s} \int_{\mathcal{O}_{K}^{n}} \chi\left(a c\left(f_{P}(x)\right)\right)\left|f_{P}(x)\right|_{K}^{s}|d x|
\end{align*}
$$

where $\operatorname{Re}(s)>0$. The proof given by Igusa in [I3], for the case $\chi=\chi_{\text {triv }}$, generalizes literally to arbitrary characters.

In [Z-G] the author introduced the following index of singularity at a point $P \in \mathcal{O}_{K}^{n}$, satisfying $P \notin \operatorname{Sing}_{f}\left(\mathcal{O}_{K}\right)$.

Definition 2.1. Let $f(x) \in \mathcal{O}_{K}[x]$ be a polynomial and $P=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{O}_{K}^{n}$, such that $P \notin \operatorname{Sing}_{f}\left(\mathcal{O}_{K}\right)$. We define

$$
L(f, P):=\operatorname{Inf}\left(v(f(P)), v\left(\frac{\partial f}{\partial x_{1}}(P)\right), \ldots, v\left(\frac{\partial f}{\partial x_{n}}(P)\right)\right)
$$

It follows from the definition that $L(f, P)=0$ if and only if the polynomial

$$
\overline{f(x)}=\alpha_{0}+\sum_{j} \alpha_{j}\left(x_{j}-\overline{a_{j}}\right)+(\text { degree } \geq 2) \in \mathbb{F}_{q}[x]
$$

satisfies $\alpha_{j} \in \mathbb{F}_{q}^{*}$ for some $j=0,1,2, \ldots, n$.
The index $L(f, P)$ appears naturally associated to Igusa's stationary phase, as it was already noted in [Z-G]. In addition, this index plays an important role in the construction of the Néron π-adic desingularization of the special fiber of smooth schemes over $\operatorname{Spec}\left(\mathcal{O}_{K}\right)(\operatorname{see}[\mathrm{A}],[\mathrm{N}])$.

If $A \subseteq \mathcal{O}_{K}^{n}$, we denote by A^{c} the complement of A with respect to \mathcal{O}_{K}^{n}.
Proposition 2.2. Let $D \subseteq \mathcal{O}_{K}^{n}$ be an open and compact subset, and let $f(x) \in \mathcal{O}_{K}[x]$ be a polynomial such that $\operatorname{Sing}_{f}(K) \cap D=\emptyset$. Then there exists a constant $C(f, D) \in \mathbb{N}$, depending only on f and D, such that

$$
\begin{equation*}
L(f, P) \leqq C(f, D), \quad \text { for all } P \in D \tag{2.4}
\end{equation*}
$$

Proof. By contradiction, we suppose that $L(f, P)$ is not bounded on D. Thus there exists a sequence $\left(Q_{i}\right)_{i \in \mathbb{N}}$ of points of D satisfying $\lim L\left(f, Q_{i}\right) \rightarrow$ ∞, when $i \rightarrow \infty$. This sequence has a limit point $Q_{*} \in D$. Since $\operatorname{Sing}_{f}(K)$ is a closed set, we have that $Q_{*} \in \operatorname{Sing}_{f}(K) \cap D=\emptyset$, contradiction.

From now on, we shall suppose that $C(f, D)$ is minimal for condition (2.4).

We recall that a subset A of K^{n} is open and compact if and only if there is $m \geqq 0$ such that A is the finite union of classes modulo π^{m}. In particular the preimage of any subset of \mathbb{F}_{q}^{n} under the canonical homomorphism $\mathcal{O}_{K} \rightarrow$ $\mathcal{O}_{K} / \pi \mathcal{O}_{K}$ is an open and compact subset.

The following lemma is a generalization of Proposition 2.3 of [Z-G].
Lemma 2.3. Let $D \subseteq \mathcal{O}_{K}^{n}$ be the preimage under the canonical homomorphism $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K}$ of a subset $\bar{D} \subseteq \mathbb{F}_{q}^{n}$, and let $f(x) \in \mathcal{O}_{K}[x]$ be a polynomial such that $\operatorname{Sing}_{f}\left(\mathcal{O}_{K}\right) \cap D=\emptyset$, then
(i) $L\left(f_{P_{1}, \ldots, P_{k}}, 0\right) \leqq L\left(f, P_{1}+\pi P_{2}+\cdots+\pi^{k-1} P_{k}\right)-k$, for every P_{k}, $k \geq 1$, satisfying: (H1) P_{k} is in the $(k-1)^{\text {th }}$-generation of descendants of P_{1}; (H2) P_{k} has at least one descendant in the $k^{\text {th }}$-generation of descendants of P_{1}.
(ii) For any $P=P_{1} \in S(f, D)$, if $k \geq C(f, D)+1$ then $S\left(f_{P_{1}, P_{2}, \ldots, P_{k}}\right)=$ \emptyset.

Proof. First, we observe that

$$
\begin{equation*}
f\left(P_{1}+\pi P_{2}+\cdots+\pi^{k-1} P_{k}+\pi^{k} x\right)=\pi^{E\left(P_{1}, \ldots, P_{k}\right)} f_{P_{1}, \ldots, P_{k}}(x) \tag{2.5}
\end{equation*}
$$

where $E\left(P_{1}, \ldots, P_{k}\right)=e_{P_{1}}+e_{P_{1}, P_{2}}+e_{P_{1}, \ldots, P_{k}}$. The result follows from (2.5), if

$$
e_{P_{1}, \ldots, P_{l}} \geq 2, \quad \text { for } l=1,2, \ldots, k
$$

This last fact follows from the following reasoning.
By applying the Taylor formula to $f_{P_{1}, \ldots, P_{l-1}}\left(P_{l}+\pi x\right)$, we obtain

$$
\begin{align*}
& f_{P_{1}, \ldots, P_{l-1}}\left(P_{l}+\pi x\right)= \tag{2.6}\\
& \quad f_{P_{1}, \ldots, P_{l-1}}\left(P_{l}\right)+\pi \sum_{j} \frac{\partial f_{P_{1}, \ldots, P_{l-1}}}{\partial x_{j}}\left(P_{l}\right) x_{j}+\pi^{2}(\text { degree } \geq 2)
\end{align*}
$$

From hypothesis (H1) follows that $v\left(f_{P_{1}, \ldots, P_{l-1}}\left(P_{l}\right)\right) \geq 1$ and

$$
v\left(\frac{\partial f_{P_{1}, \ldots, P_{l-1}}}{\partial x_{j}}\left(P_{l}\right)\right) \geq 1
$$

and from hypothesis (H1) and (H2) that

$$
v\left(f_{P_{1}, \ldots, P_{l-1}}\left(P_{l}\right)\right) \geq 2
$$

therefore (2.6) implies that $e_{P_{1}, \ldots, P_{l}} \geq 2, l=1,2, \ldots, k$.
(ii) The second part of the lemma follows immediately from (i).

We observe that if $P_{l} \in S\left(f_{P_{1}, \ldots, P_{l-1}}\right)$ does not have descendants in the $l^{t h}$-generation (i.e. $S\left(f_{P_{1}, \ldots, P_{l-1}, P_{l}}\right)=\emptyset$), then the polynomial

$$
\begin{aligned}
& f_{P_{1}, \ldots, P_{l-1}, P_{l}}\left(P_{l+1}+\pi x\right)= \\
& \quad f_{P_{1}, \ldots, P_{l}}\left(P_{l+1}\right)+\pi \sum_{j} \frac{\partial f_{P_{1}, \ldots, P_{l}}}{\partial x_{j}}\left(P_{l+1}\right) x_{j}+\pi^{2}(\text { degree } \geq 2)
\end{aligned}
$$

satisfies $\overline{f_{P_{1}, \ldots, P_{l}}\left(P_{l+1}\right)} \neq 0$, or $\overline{\frac{\partial f_{P_{1}, \ldots, P_{l}}}{\partial x_{j}}\left(P_{l+1}\right)} \neq 0$, for some j_{0}. Thus for any P_{l+1} satisfying $\overline{f_{P_{1}, \ldots, P_{l}}\left(P_{l+1}\right)}=0$, it holds that $\overline{f_{P_{1}, \ldots, P_{l+1}}(x)}$ is a polynomial of degree at most one.

Lemma 2.4. Let $D \subseteq \mathcal{O}_{K}^{n}$ be the preimage under the canonical homomorphism $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K}$ of a subset $\bar{D} \subseteq \mathbb{F}_{q}^{n}$. Let $f(x) \in \mathcal{O}_{K}[x]$ be a polynomial such that $\operatorname{Sing}_{f}(K) \cap D=\emptyset$, then

$$
\int_{D} \chi(a c f(x))|f(x)|_{K}^{s}|d x|= \begin{cases}\frac{T\left(q^{-s}\right)}{1-q^{-1} q^{-s}}, & \chi=\chi_{t r i v} \\ L\left(q^{-s}\right), & \chi \neq \chi_{t r i v}\end{cases}
$$

where T and L are polynomials in q^{-s} with rational coefficients. Furthermore, in the case $\chi \neq \chi_{\text {triv }}$, the degree of the polynomial $L\left(q^{-s}\right)$ is bounded by a constant depending only on f and D.

Proof. We define inductively I_{k} as follows:

$$
\begin{gathered}
I_{1}:=S(f, D) \\
I_{k}:=\left\{\left(P_{1}, P_{2}, \ldots, P_{k}\right) \mid\left(P_{1}, P_{2}, \ldots, P_{k-1}\right) \in I_{k-1}, P_{k} \in S\left(f_{\left.P_{1}, P_{2}, \ldots, P_{k-1}\right)}\right)\right\} \\
k \geq 2
\end{gathered}
$$

We set $E\left(P_{1}, \ldots, P_{k}\right):=e_{P_{1}}+e_{P_{1}, P_{2}}+\cdots+e_{P_{1}, P_{2}, \ldots, P_{k}}$.
If $m=C(f, D)+1$, then $I_{m+1}=\emptyset$, because Lemma 2.3 (ii) implies that $S\left(f_{P_{1}, P_{2}, \ldots, P_{m}}\right)=\emptyset$, for every $\left(P_{1}, P_{2}, \ldots, P_{m}\right) \in I_{m}$. By applying the
stationary phase formula $m+1$-times, we obtain

$$
\begin{align*}
& Z(D, s, f, \chi)=\nu(\bar{f}, D, \chi)+\sigma(\bar{f}, D, \chi) \frac{\left(1-q^{-1}\right) q^{-s}}{\left(1-q^{-1-s}\right)} \tag{2.7}\\
& \quad+\sum_{k=1}^{m} q^{-k n}\left(\sum_{\left(P_{1}, \ldots, P_{k}\right) \in I_{k}} \nu\left(\bar{f}_{P_{1}, \ldots, P_{k}}, \chi\right) q^{-E\left(P_{1}, \ldots, P_{k}\right) s}\right) \\
& \quad+\frac{\left(1-q^{-1}\right) q^{-s}}{\left(1-q^{-1-s}\right)} \sum_{k=1}^{m} q^{-k n}\left(\sum_{\left(P_{1}, \ldots, P_{k}\right) \in I_{k}} \sigma\left(\bar{f}_{P_{1}, \ldots, P_{k}}, \chi\right) q^{-E\left(P_{1}, \ldots, P_{k}\right) s}\right) .
\end{align*}
$$

In the case $\chi \neq \chi_{\text {triv }}$, all $\sigma\left(\bar{f}_{P_{1}, \ldots, P_{k}}, \chi\right)=0$, thus $Z(D, s, f, \chi)$ is a polynomial in q^{-s} and its degree is bounded by the maximum of the $E\left(P_{1}, \ldots, P_{m}\right)$, where P_{m} runs through the descendants of the $C(f, D)+1$-generation of $S(f, D)$.

Corollary 2.5. Let $D \subseteq \mathcal{O}_{K}^{n}$ be the preimage under the canonical homomorphism $\mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / \pi \mathcal{O}_{K}$ of a subset $\bar{D} \subseteq \mathbb{F}_{q}^{n}$. Let $F(x)=f(x)+$ $\pi^{\beta} g(x) \in \mathcal{O}_{K}[x]$ be a polynomial such that $\beta \geqq C(f, D)+1$, and

$$
\operatorname{Sing}_{F}(K) \cap D=\operatorname{Sing}_{f}(K) \cap D=\emptyset
$$

Then

$$
\begin{equation*}
Z(D, s, F, \chi)=Z(D, s, f, \chi) \tag{2.8}
\end{equation*}
$$

Proof. The result follows immediately from expansion (2.7) and the fact that $C(f, D)=C(F, D)$.

§3. Newton polyhedra

In this section we review some well-known results about Newton polyhedra that we shall use in this paper (see e.g. [K-M-S], [D3]).

We set $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geqq 0\}$. Let $f(x)=\sum_{l} a_{l} x^{l} \in K[x], x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in n variables satisfying $f(0)=0$. The set $\operatorname{supp}(f)=\left\{l \in \mathbb{N}^{n} \mid a_{l} \neq 0\right\}$ is called the support of f. The Newton polyhedron $\Gamma(f)$ of f is defined as the convex hull in \mathbb{R}_{+}^{n} of the set

$$
\bigcup_{l \in \operatorname{supp}(f)}\left(l+\mathbb{R}_{+}^{n}\right)
$$

By a proper face γ of $\Gamma(f)$, we mean the non-empty convex set γ obtained by intersecting $\Gamma(f)$ with an affine hyperplane H, such that $\Gamma(f)$ is contained in one of two half-spaces determined by H. The hyperplane H is named the supporting hyperplane of γ. A face of codimension one is named a facet. We set \langle,$\rangle for the usual inner product in \mathbb{R}^{n}$, and identify the dual vector space with \mathbb{R}^{n}. For $a \in \mathbb{R}_{+}^{n}$, we define

$$
m(a):=\inf _{x \in \Gamma(f)}\{\langle a, x\rangle\}
$$

The first meet locus of $a \in \mathbb{R}_{+}^{n} \backslash\{0\}$ is defined by

$$
F(a):=\{x \in \Gamma(f) \mid\langle a, x\rangle=m(a)\} .
$$

The first meet locus $F(a)$ of a is a proper face of $\Gamma(f)$.
We define an equivalence relation on $\mathbb{R}_{+}^{n} \backslash\{0\}$ by

$$
a \simeq a^{\prime} \text { if and only if } F(a)=F\left(a^{\prime}\right)
$$

If γ is a face of $\Gamma(f)$, we define the cone associated to γ as

$$
\Delta_{\gamma}:=\left\{a \in\left(\mathbb{R}_{+}\right)^{n} \backslash\{0\} \mid F(a)=\gamma\right\}
$$

The following two propositions describe the geometry of the equivalences classes of \simeq (see e.g. [D3]).

Proposition 3.1. Let γ be a proper face of $\Gamma(f)$. Let $w_{1}, w_{2}, \ldots, w_{e}$ be the facets of $\Gamma(f)$ which contain γ. Let $a_{1}, a_{2}, \ldots, a_{e}$ be vectors which are perpendicular to respectively $w_{1}, w_{2}, \ldots, w_{e}$. Then

$$
\Delta_{\gamma}=\left\{\sum_{i=1}^{e} \alpha_{i} a_{i} \mid \alpha_{i} \in \mathbb{R}, \alpha_{i}>0\right\}
$$

If $a_{1}, a_{2}, \ldots, a_{e} \in \mathbb{R}^{n}$, we call $\left\{\sum_{i=1}^{e} \alpha_{i} a_{i} \mid \alpha_{i} \in \mathbb{R}, \alpha_{i}>0\right\}$ the cone strictly positive spanned by the vectors $a_{1}, a_{2}, \ldots, a_{e}$. Let Δ be a cone strictly positive spanned by the vectors $a_{1}, a_{2}, \ldots, a_{e}$. If $a_{1}, a_{2}, \ldots, a_{e}$ are linearly independent over \mathbb{R}, the cone Δ is called a simplicial cone. In this last case, if $a_{1}, a_{2}, \ldots, a_{e} \in \mathbb{Z}^{n}$, the cone Δ is called a rational simplicial cone. If $\left\{a_{1}, a_{2}, \ldots, a_{e}\right\}$ can be completed to be a basis of \mathbb{Z}-module \mathbb{Z}^{n}, the cone Δ is named a simple cone.

A vector $a \in \mathbb{R}^{n}$ is called primitive if the components of a are positive integers whose greatest common divisor is one.

For every facet of $\Gamma(f)$ there is a unique primitive vector in \mathbb{R}^{n} which is perpendicular to this facet. Let \mathcal{D} be the set of all these vectors.

Proposition 3.2. Let Δ be the cone strictly positively spanned by vectors $a_{1}, a_{2}, \ldots, a_{e} \in \mathbb{R}_{+}^{n} \backslash\{0\}$. Then there is a partition of Δ into cones Δ_{i}, such that each Δ_{i} is strictly positively spanned by some vectors from $\left\{a_{1}, a_{2}, \ldots, a_{e}\right\}$ which are linearly independent over \mathbb{R}.

The two previous propositions imply the existence of a partition of Δ_{γ} into rational simplicial cones.

Proposition 3.3. ([K-M-S], p. 32-33) Let Δ be a rational simplicial cone. Then there exists a partition of Δ into simple cones.

Summarizing, given a polynomial $f(x) \in K[x], f(0)=0$, with Newton polyhedron $\Gamma(f)$, there exists a finite partition of \mathbb{R}_{+}^{n} of the form:

$$
\mathbb{R}_{+}^{n}=\{(0, \ldots, 0)\} \cup \bigcup_{i} \Delta_{i}
$$

where each Δ_{i} is a simplicial cone contained in an equivalence class of \simeq. Furthermore, by Proposition 3.3, it is possible to refine this partition in such a way that each Δ_{i} is a simple cone contained in an equivalence class of \simeq.

§4. Local zeta functions of globally non-degenerate polynomials

In this section we prove Theorem A. First, we give some preliminary results.

If $A \subseteq \mathbb{Z}_{+}^{n}$, we set

$$
E_{A}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}^{n} \mid\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in A\right\},
$$

and

$$
Z_{A}(s, f, \chi):=\int_{E_{A}} \chi(\operatorname{acf}(x))|f(x)|_{K}^{s}|d x|
$$

Also, if $B \subseteq \mathcal{O}_{K}^{n}$, we set

$$
Z(B, s, f, \chi):=\int_{B} \chi(a c f(x))|f(x)|_{K}^{s}|d x|
$$

Thus $Z_{A}(s, f, \chi)=Z\left(E_{A}, s, f, \chi\right)$.

Proposition 4.1. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f), \gamma \subseteq \Gamma(f)$ a proper face, and Δ_{γ} its associated cone. If Δ_{γ} is a simple cone spanned by $a_{1}, a_{2}, \ldots, a_{e} \in \mathcal{D}$, and $f(x)=f_{\gamma}(x)+\pi^{g_{0}} H(x)$, where $g_{0} \geq C\left(f_{\gamma}, \mathcal{O}_{K}^{\times}\right)+1$ (the constant whose existence was established in Proposition 2.2), and all monomials of $H(x)$ are not in γ, then

$$
\begin{equation*}
Z_{\Delta_{\gamma}}(s, f, \chi)=Z\left(\mathcal{O}_{K}^{\times n}, s, f_{\gamma}, \chi\right) \frac{q^{-\sum_{j=1}^{e}\left(\left|a_{j}\right|+m\left(a_{j}\right) s\right)}}{\prod_{j=1}^{e}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)} \tag{4.1}
\end{equation*}
$$

Proof. The hypothesis Δ_{γ} is a simple cone spanned by $a_{j}=$ $\left(a_{1, j}, a_{2, j}, \ldots, a_{n, j}\right), j=1,2, \ldots, e$, implies that

$$
\begin{equation*}
\Delta_{\gamma} \cap \mathbb{N}^{n}=\bigoplus_{j=1}^{e} a_{j}(\mathbb{N} \backslash\{0\}) \tag{4.2}
\end{equation*}
$$

From (4.2), we obtain the following expansion for $Z_{\Delta}(s, f, \chi)$:

$$
\begin{equation*}
Z_{\Delta_{\gamma}}(s, f, \chi)=\sum_{y_{1}=1}^{\infty} \cdots \sum_{y_{e}=1}^{\infty} \int_{\omega_{\left(y_{1}, \ldots, y_{e}\right)}} \chi(a c f(x))|f(x)|_{K}^{s}|d x| \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \omega_{\left(y_{1}, \ldots, y_{e}\right)}:= \\
& \quad\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}^{n} \mid x_{i}=\pi^{\sum_{j} a_{i, j} y_{j}} \mu_{i}, \mu_{i} \in \mathcal{O}_{K}^{\times}, i=1,2, \ldots, n\right\} .
\end{aligned}
$$

In order to compute the integral in (4.3), we introduce the dilatation

$$
\Phi_{\left(y_{1}, \ldots, y_{e}\right)}(x)=\left(\Phi_{1}(x), \ldots, \Phi_{n}(x)\right): K^{n} \longrightarrow K^{n}
$$

where

$$
\begin{equation*}
\Phi_{i}(x)=\pi^{\sum_{j} a_{i, j} y_{j}} x_{i}, \quad i=1,2, \ldots, n \tag{4.4}
\end{equation*}
$$

By using the dilatation (4.4) as a change of variables in (4.3), it holds that

$$
\begin{align*}
& \text { 5) } \quad \int_{\omega_{\left(y_{1}, \ldots, y_{e}\right)}} \chi(\operatorname{acf}(x))|f(x)|_{K}^{s}|d x|= \tag{4.5}\\
& q^{-\sum_{j=1}^{e} y_{j}\left(\left|a_{j}\right|+m\left(a_{j}\right) s\right)}\left(\int_{\mathcal{O}_{K}^{\times n}} \chi\left(\operatorname{ac}\left(f_{\left(y_{1}, \ldots, y_{e}\right)}(x)\right)\right)\left|f_{\left(y_{1}, \ldots, y_{e}\right)}(x)\right|_{K}^{s}|d x|\right)
\end{align*}
$$

where $f_{\left(y_{1}, \ldots, y_{e}\right)}(x)=f_{\gamma}(x)+\pi^{g\left(y_{1}, \ldots, y_{e}\right)+g_{0}} H_{\left(y_{1}, \ldots, y_{e}\right)}(x)$, and $g\left(y_{1}, \ldots, y_{e}\right) \geq$ 1. The result follows from (4.5) by using Corollary 2.5 and expansion (4.3).

Proposition 4.2. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f), \gamma \subseteq \Gamma(f)$ a proper face, and Δ_{γ} its associated cone. If Δ_{γ} is a simple cone spanned by $a_{1}, a_{2}, \ldots, a_{e} \in \mathcal{D}$, then

$$
\begin{aligned}
& Z_{\Delta_{\gamma}}(s, f, \chi) \\
& =\sum_{y \text { finite }} A_{y}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{y}, \chi\right)+\sum_{I \subseteq\{1,2, \ldots, e\}} \frac{A_{I}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)}{\prod_{j \in I}\left(1-q^{-\mid a_{j} m\left(a_{j}\right) s}\right)}
\end{aligned}
$$

where y runs through a finite number of points in $\mathbb{N}^{n}, A_{y}\left(q^{-s}\right), A_{I}\left(q^{-s}\right) \in$ $\mathbb{Q}\left[q^{-s}\right], f_{y}(x)$ and $f_{I}(x)$ are polynomials in $\mathcal{O}_{K}[x]$ satisfying $\operatorname{Sing}_{f_{y}}(K) \cap$ $(K \backslash\{0\})^{n}=\emptyset$, for every $y \in \mathbb{N}$, $\operatorname{Sing}_{f_{I}}(K) \cap(K \backslash\{0\})^{n}=\emptyset$, for every I, respectively. Furthermore, if $\gamma_{a_{i}}$ denotes the facet with perpendicular a_{i}, and $\gamma_{I}=\bigcap_{i \in I} \gamma_{a_{i}}$, then $f_{I}(x)=f_{\gamma_{I}}(x)$.

Proof. By induction on l, the number of generators of the simple cone Δ_{γ}.

Case $l=1$.
Let $m_{0}=C\left(f_{\gamma}, \mathcal{O}_{K}^{\times}\right)+1$, and

$$
S:=\Delta_{\gamma} \cap \mathbb{N}^{n}=\left\{a_{1} y \mid y \in \mathbb{N}, y \geq 1\right\}
$$

The set S can be partitioned into the subsets S_{0}, S_{1}, defined as follows:

$$
S_{0}:=\left\{a_{1} y \mid y=1,2, \ldots, m_{0}-1\right\}, \quad S_{1}:=\left\{a_{1} y \mid y \in \mathbb{N}, y \geqq m_{0}\right\}
$$

Also we define

$$
\begin{aligned}
& E_{0}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}^{n} \mid\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in S_{0}\right\}, \\
& E_{1}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}^{n} \mid\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in S_{1}\right\} .
\end{aligned}
$$

Thus $Z_{\Delta_{\gamma}}(s, f, \chi)=Z\left(E_{0}, s, f, \chi\right)+Z\left(E_{1}, s, f, \chi\right)$, and by making a change of variables of type (4.4), we obtain

$$
\begin{align*}
Z_{\Delta_{\gamma}}(s, f, \chi)= & \sum_{y=1}^{m_{0}-1} q^{-y\left(\left|a_{1}\right|+m\left(a_{1}\right) s\right)} Z\left(\mathcal{O}_{K}^{\times}, s, f_{y}, \chi\right) \tag{4.6}\\
& \quad+q^{-m_{0}\left(\left|a_{1}\right|+m\left(a_{1}\right) s\right)} Z_{\Delta_{\gamma}}\left(s, f_{a_{1}}(x)+\pi^{m_{0}} H(x), \chi\right)
\end{align*}
$$

where $f_{y}(x)$ are obtained from $f(x)$ by a change of variables of type (4.4) followed by a division by a power of $\pi, f_{a_{1}}(x)$ is the restriction of $f(x)$ to the facet $\gamma_{a_{1}}$ with perpendicular a_{1}, and all monomials of $H(x)$ are not in $\gamma_{a_{1}}$. The result follows from (4.6), by means of the following equality (cf. Proposition 4.1)

$$
\begin{aligned}
& q^{-m_{0}\left(\left|a_{1}\right|+m\left(a_{1}\right) s\right)} Z_{\Delta_{\gamma}}\left(s, f_{a_{1}}(x)+\pi^{m_{0}} H(x), \chi\right) \\
& \quad=\frac{q^{-\left(m_{0}+1\right)\left(\left|a_{1}\right|+m\left(a_{1}\right) s\right)}}{1-q^{-\left(\left|a_{1}\right|+m\left(a_{1}\right) s\right)}} Z\left(\mathcal{O}_{K}^{\times}, s, f_{a_{1}}, \chi\right) .
\end{aligned}
$$

Induction hypothesis. Suppose that the lemma is valid for every polynomial $f(x)$ globally non-degenerate with respect its Newton polyhedron, and for every simple cone spanned by at most $e-1$ vectors of \mathcal{D}.

Case $l>1$.
Let $f(x)$ be globally non-degenerate polynomial and Δ_{γ} a simple cone spanned by $a_{1}, a_{2}, \ldots, a_{e}$, satisfying the conditions of Proposition 4.2.

We set $m_{0}=C\left(f_{\gamma}, \mathcal{O}_{K}^{\times}\right)+1$, and

$$
\begin{equation*}
S:=\Delta_{\gamma} \cap \mathbb{N}^{n}=\bigoplus_{j=1}^{e} a_{j}(\mathbb{N} \backslash\{0\}) \tag{4.7}
\end{equation*}
$$

$a_{j}=\left(a_{1, j}, \ldots, a_{n, j}\right), j=1,2, \ldots, e$. For each subset $I \subseteq\{1,2, \ldots, e\}$, we put $r_{I} \in \mathbb{N}^{e-\operatorname{Card}(I)}, r_{I}=\left(r_{i_{1}}, r_{i_{2}}, \ldots, r_{i_{e-\operatorname{Card}(I)}}\right)$, with $0<r_{i_{l}} \leq m_{0}-1$, $l=1,2, \ldots, e-\operatorname{Card}(I)$. The set S admits the following partition:

$$
\begin{equation*}
S=\bigcup_{I, r_{I}} S_{I, r_{I}} \tag{4.8}
\end{equation*}
$$

with

$$
S_{I, r_{I}}=\left\{\sum_{j \in I} a_{j} y_{j}+\sum_{j \notin I} a_{j} r_{j} \mid y_{j} \geq m_{0}, \text { if } j \in I, \text { and } y_{j}=r_{i_{j}}, \text { if } j \notin I\right\}
$$

where for each $I \subseteq\{1,2, \ldots, e\}$, the corresponding r_{I} 's run through all possible different integer vectors satisfying the above mentioned conditions. We set

$$
E_{I, r_{I}}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{O}_{K}^{n} \mid\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in S_{I, r_{I}}\right\}
$$

It follows from partition (4.8) that

$$
\begin{equation*}
Z_{\Delta_{\gamma}}(s, f, \chi)=\sum_{I, r_{I}} Z\left(E_{I, r_{I}}, s, f, \chi\right) \tag{4.9}
\end{equation*}
$$

By a change of variables of type

$$
\Phi_{i}(x)=\pi^{\left(\sum_{j \in I} a_{i, j} y_{j}+\sum_{j \notin I} a_{i, j} r_{j}\right)} x_{i}, \quad i=1, \ldots, n
$$

the integral $Z\left(E_{I, r_{I}}, s, f, \chi\right)$ equals

$$
\begin{equation*}
q^{-m_{0} \sum_{j \in I}\left(\left|a_{j}\right|+m\left(a_{j}\right) s\right)-\sum_{j \notin I} r_{j}\left(\left|a_{j}\right|+m\left(a_{j}\right) s\right)} Z_{\Delta_{I}}\left(s, f_{I}, \chi\right) \tag{4.10}
\end{equation*}
$$

where Δ_{I} is a simple cone generated by $a_{i}, i \in I$, and $f_{I}(x)$ is obtained from $f\left(\Phi_{i}(x)\right)$ by division by a power of π. From these observations and (4.9), we obtain

$$
\begin{align*}
Z_{\Delta_{\gamma}}(s, f, \chi)= & \sum_{I \subset\{1,2, \ldots, e\}} A_{I}\left(q^{-s}\right) Z_{\Delta_{I}}\left(s, f_{I}, \chi\right) \tag{4.11}\\
& +q^{-m_{0} \sum_{j=1}^{e}\left(\left|a_{j}\right|+m\left(a_{j}\right) s\right)} Z_{\Delta_{\gamma}}\left(s, f_{\gamma}+\pi^{g_{0}} H(x), \chi\right)
\end{align*}
$$

where I runs through all proper subsets of $\{1,2, \ldots, e\}, A_{I}\left(q^{-s}\right)=$ $\sum_{k} q^{-a_{k}(I)-b_{k}(I) s}, a_{k}(I), b_{k}(I) \in \mathbb{N}, g_{0} \geqq m_{0}$, and all monomials of $H(x)$ are not in γ. From (4.11) and Proposition 4.1, we obtain

$$
\begin{align*}
& Z_{\Delta_{\gamma}}(s, f, \chi)=\sum_{I \subset\{1,2, \ldots, e\}} A_{I}\left(q^{-s}\right) Z_{\Delta_{I}}\left(s, f_{I}, \chi\right) \tag{4.12}\\
& +q^{-\left(1+m_{0}\right) \sum_{i=1}^{e}\left(\left|a_{i}\right|+m\left(a_{i}\right) s\right)} Z\left(\mathcal{O}_{K}^{\times n}, s, f_{\gamma}, \chi\right) \frac{1}{\prod_{j=1}^{e}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)} .
\end{align*}
$$

The result follows from the induction hypothesis and (4.12).
We observe that each $A_{I}\left(q^{-s}\right)$ in Proposition 4.1 is a finite sum of monomials of type $q^{-a_{I}-b_{I} s}$, with $a_{I}, b_{I}>0$. We also note that a facet with supporting hyperplane $x_{i_{0}}=0$ contributes to the denominator of $Z_{\Delta_{\gamma}}(s, f, \chi)$ with a constant factor $1 /\left(1-q^{-1}\right)$.

The proof of Proposition 4.2 can be easily adapted to state the following more general result.

Corollary 4.3. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f), \gamma \subseteq \Gamma(f)$ a proper face, and Δ_{γ} its associated cone. Let $\left\{a_{1}, a_{2}, \ldots, a_{f}\right\} \subset \mathcal{D}$ be a set of generators of $\Delta_{\gamma},\left\{a_{1}, a_{2}, \ldots, a_{e}\right\} \subset\left\{a_{1}, a_{2}, \ldots, a_{f}\right\}$ of $e \mathbb{R}$-linearly independent
vectors, and $b \in \Delta_{\gamma} \cap(\mathbb{N} \backslash\{0\})^{n}$. We set $\Delta:=b+\bigoplus_{j=1}^{e} a_{j} \mathbb{N}$. Then

$$
\begin{aligned}
Z_{\Delta}(s, f, \chi)=\sum_{y} & A_{y}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{y}, \chi\right) \\
& +\sum_{I \subseteq\{1,2, \ldots, e\}} \frac{A_{I}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)}{\prod_{j \in I}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)},
\end{aligned}
$$

where y runs through a finite number of points in $\mathbb{N}^{n}, A_{y}\left(q^{-s}\right), A_{I}\left(q^{-s}\right) \in$ $\mathbb{Q}\left[q^{-s}\right]$, with $A_{I}\left(q^{-s}\right)=\sum_{k} q^{-a_{k}(I)-b_{k}(I) s}, a_{k}(I), b_{k}(I) \in \mathbb{N}, f_{y}(x)$ and $f_{I}(x)$ are polynomials in $\mathcal{O}_{K}[x]$ satisfying $\operatorname{Sing}_{f_{y}}(K) \cap(K \backslash\{0\})^{n}=\emptyset$, for every y, $\operatorname{Sing}_{f_{I}}(K) \cap(K \backslash\{0\})^{n}=\emptyset$, for every I, respectively. Furthermore, if $\gamma_{a_{i}}$ denotes the facet with perpendicular a_{i}, and $\gamma_{I}=\bigcap_{i \in I} \gamma_{a_{i}}$, then $f_{I}(x)=$ $f_{\gamma_{I}}(x)$.

Lemma 4.4. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f), \gamma \subseteq \Gamma(f)$ a proper face, and Δ_{γ} its associated cone. Let $\left\{a_{1}, a_{2}, \ldots, a_{e}\right\} \subset \mathcal{D}$ be a set of generators of Δ_{γ}. Then

$$
\begin{align*}
Z_{\Delta_{\gamma}}(s, f, \chi)=\sum_{y} & A_{y}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{y}, \chi\right) \tag{4.13}\\
& +\sum_{I \subseteq\{1,2, \ldots, e\}} \frac{A_{I}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)}{\prod_{j \in I}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)}
\end{align*}
$$

where y runs through a finite number of points in $\mathbb{N}^{n}, A_{y}\left(q^{-s}\right), A_{I}\left(q^{-s}\right) \in$ $\mathbb{Q}\left[q^{-s}\right]$, with $A_{I}\left(q^{-s}\right)=\sum_{k} q^{-a_{k}(I)-b_{k}(I) s}, a_{k}(I), b_{k}(I) \in \mathbb{N}, f_{y}(x)$ and $f_{I}(x)$ are polynomials in $\mathcal{O}_{K}[x]$ satisfying $\operatorname{Sing}_{f_{y}}(K) \cap(K \backslash\{0\})^{n}=\emptyset$, for every y, and $\operatorname{Sing}_{f_{I}}(K) \cap(K \backslash\{0\})^{n}=\emptyset$, for every I, respectively. Furthermore, if $\gamma_{a_{i}}$ denotes the facet with perpendicular a_{i}, and $\gamma_{I}=\bigcap_{i \in I} \gamma_{a_{i}}$, then $\Gamma\left(f_{I}\right)=$ γ_{I}.

Proof. By Proposition 3.2 there exists a finite partition of Δ_{γ} into cones Δ_{j}, such that each Δ_{j} is strictly positively spanned by some vectors from $\left\{a_{1}, a_{2}, \ldots, a_{e}\right\}$ which are linearly independent over \mathbb{R}. Now, each cone Δ_{j} can be partitioned into a finite number of cones satisfying the conditions of Corollary 4.3. In order to verify this last assertion, we observe that the set $\Delta_{j} \cap \mathbb{N}^{n}$ admits the following partition:

$$
\begin{equation*}
\Delta_{j} \cap \mathbb{N}^{n}=\left(\bigoplus_{i=1}^{e} a_{i}(\mathbb{N} \backslash\{0\})\right) \cup \bigcup_{b}\left(b+\bigoplus_{i=1}^{e} a_{j} \mathbb{N}\right) \tag{4.14}
\end{equation*}
$$

where b runs through a finite number of vectors in

$$
\mathbb{N}^{n} \cap\left\{\sum_{i=1}^{e} a_{i} \lambda_{i} \mid \lambda_{i} \in \mathbb{R}, 0 \leq \lambda_{i}<1, i=1, \ldots, e\right\}
$$

Now the result follows from Corollary 4.3.
In the proof of the above result, we did not use a partition of the cone Δ into simple cones, because this approach produces a bigger list of candidates for the poles of $Z_{\Delta_{\gamma}}(s, f, \chi)$.

Proof of Theorem A. (i) Given a polynomial $f(x) \in \mathcal{O}_{K}[x], f(0)=0$, there exists a partition of \mathbb{R}_{+}^{n} of the form:

$$
\begin{equation*}
\mathbb{R}_{+}^{n}=\{(0, \ldots, 0)\} \cup \bigcup_{\gamma} \Delta_{\gamma} \tag{4.15}
\end{equation*}
$$

where γ runs through all proper faces of $\Gamma(f)$, and Δ_{γ} is a cone strictly positive spanned by some vectors $a_{1}, \ldots, a_{e} \in \mathcal{D}$. In addition, Δ_{γ} is contained in an equivalence class of \simeq. From the above partition we obtain the following expression for $Z(s, f, \chi)$:

$$
\begin{equation*}
Z(s, f, \chi)=\int_{\mathcal{O}_{K}^{\times n}} \chi(a c f(x))|f(x)|_{K}^{s}|d x|+\sum_{\gamma} Z_{\Delta_{\gamma}}(s, f, \chi) \tag{4.16}
\end{equation*}
$$

In (4.16) there are two different types of integrals: $Z\left(\mathcal{O}_{K}^{\times n}, s, f, \chi\right)$, and $Z_{\Delta_{\gamma}}(s, f, \chi)$. The integrals of the first type are rational functions of q^{-s} with poles satisfying $\operatorname{Re}(s)=-1$ (cf. Lemma 2.4). The second type of integrals are rational functions of q^{-s} with poles satisfying condition (i) in the statement of Theorem A (cf. Lemma 4.4).
(ii) If $\chi \neq \chi_{\text {triv }}$, from (4.16) and Lemma 2.4 follow that $Z(s, f, \chi)$ is equal to a polynomial, with degree bounded by a constant independent of χ, plus a finite sum of functions of the form

$$
\begin{equation*}
\frac{A_{I}\left(q^{-s} Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)\right)}{\prod_{j \in I}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)} \tag{4.17}
\end{equation*}
$$

where $f_{I}(x)$ denotes the restriction of $f(x)$ to the face $\gamma_{I}=\bigcap_{i \in I} \gamma_{a_{i}}$, and $\gamma_{a_{i}}$ denotes the facet with perpendicular a_{i}. The second part of the theorem follows from (4.17) by the following fact: if the order of χ does not divide some $m\left(a_{j}\right) \neq 0, j \in I$, then

$$
\begin{equation*}
Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)=0 \tag{4.18}
\end{equation*}
$$

If the order of χ does not divide $m\left(a_{j}\right)$, with $a_{j}=\left(a_{1, j}, a_{2, j}, \ldots, a_{n, j}\right)$, then there exists an $u \in \mathcal{O}_{K}^{\times}$such that

$$
\begin{equation*}
\chi^{m\left(a_{j}\right)}(u) \neq 1 \tag{4.19}
\end{equation*}
$$

We set

$$
\begin{array}{rlc}
\phi_{u}: \mathcal{O}_{K}^{\times n} & \longrightarrow & \mathcal{O}_{K}^{\times n} \\
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow\left(x_{1} u^{a_{1, j}}, x_{2} u^{a_{2, j}}, \ldots, x_{n} u^{a_{n, j}}\right) . \tag{4.20}
\end{array}
$$

The map ϕ_{u} establishes a bijection of $\mathcal{O}_{K}^{\times n}$ to itself that preserves the Haar measure. By using (4.20) as change of variables in the integral $Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)$, it verifies that

$$
\left(1-\chi^{m\left(a_{j}\right)}(u)\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)=0
$$

Therefore, (4.19) implies $Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi\right)=0$.

$\S 5$. The largest pole of $Z\left(s, f, \chi_{\text {triv }}\right)$

In this section we prove Theorem B. Its proof will be accomplished by means of three preliminary results.

For a polynomial $f(x) \in \mathcal{O}_{K}[x]$ globally non-degenerate with respect to its Newton polyhedron $\Gamma(f)$, we set

$$
\beta(f):=\max _{\tau_{j}}\left\{-\frac{\left|a_{j}\right|}{m\left(a_{j}\right)}\right\},
$$

where τ_{j} runs through all facets of $\Gamma(f)$ satisfying $m\left(a_{j}\right) \neq 0$. The point

$$
T_{0}=\left(-\beta(f)^{-1}, \ldots,-\beta(f)^{-1}\right) \in \mathbb{Q}^{n}
$$

is the intersection point of the boundary of the Newton polyhedron $\Gamma(f)$ with the diagonal $\Delta=\{(t, \ldots, t) \mid t \in \mathbb{R}\}$ in \mathbb{R}^{n}. Let τ_{0} be the face of smallest dimension of $\Gamma(f)$ containing T_{0}, and ρ its codimension, i.e. $\rho=\operatorname{dim} \Delta_{\tau_{0}}$.

Proposition 5.1. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f)$. If $\beta(f)>-1$, then $\beta(f)$ is a pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ and its multiplicity is equal to ρ.

Proof. First, we note that the multiplicity of the possible pole $\beta(f)$ is less then or equal to $\operatorname{dim} \Delta_{\tau_{0}}=\rho$ (cf. formulas (4.16), (4.13), (2.7)). In order to prove that $\beta(f)$ is a pole of $Z\left(s, f, \chi_{\text {triv }}\right)$, it is sufficient to show that

$$
\begin{equation*}
\lim _{s \rightarrow \beta(f)}\left(1-q^{\beta(f)-s}\right)^{\rho} Z\left(s, f, \chi_{t r i v}\right)>0 \tag{5.1}
\end{equation*}
$$

This last assertion is a consequence of the following result (cf. (4.16), (4.13)):
Claim A. (i)

$$
\begin{equation*}
\lim _{s \rightarrow \beta(f)}\left(1-q^{\beta(f)-s}\right)^{\rho}\left(\frac{A_{I}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi_{\text {triv }}\right)}{\prod_{j \in I}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)}\right) \geq 0 \tag{5.2}
\end{equation*}
$$

for every cone $\Delta_{\gamma}=\left\{\sum_{i=1}^{e} a_{i} y_{i} \mid y_{i} \geq 0\right.$, for all $\left.i\right\}$, and every $I \subseteq$ $\{1,2, \ldots, e\}$.
(ii) There is a cone Δ_{0} and a subset I_{0} of generators of this cone such that inequality (5.2) is strict.

The first part of the previous claim follows from the following two facts. The first fact is

$$
\begin{equation*}
\lim _{s \rightarrow \beta(f)}\left(A_{I}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi_{\text {triv }}\right)\right)>0 . \tag{5.3}
\end{equation*}
$$

Since $A_{I}\left(q^{-s}\right)=\sum_{k} q^{a_{k}(I)-b_{k}(I) s}$, with $a_{k}(I), b_{k}(I) \in \mathbb{N}$, inequality (5.3) follows from noticing that

$$
\lim _{s \rightarrow \beta(f)}\left(\frac{\left(1-q^{-1}\right) q^{-s}}{1-q^{-1-s}}\right)>0, \text { when } \beta(f)>-1
$$

The second fact is

$$
\begin{equation*}
\lim _{s \rightarrow \beta(f)}\left(1-q^{\beta(f)-s}\right)^{\rho}\left(\frac{1}{\prod_{j \in I}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)}\right) \geq 0 \tag{5.4}
\end{equation*}
$$

The second part of the claim follows from the following reasoning. Let $a_{1}, a_{2}, \ldots, a_{e}$ be the unique primitive vectors perpendicular to the facets which contain τ_{0}. There exists a cone Δ_{0} in the partition into simplicial cones of $\Delta_{\tau_{0}}$ given by Proposition3.2 and $I_{0} \subseteq\{1,2, \ldots, e\}$ such that $\left\{a_{i} \mid\right.$ $\left.i \in I_{0}\right\}$ is a set of ρ linearly independent generators of Δ_{0}, because the dimension of $\Delta_{\tau_{0}}$ is ρ. Then inequality (5.2) is strict for the cone Δ_{0} and I_{0}. Thus, $\beta(f)$ is a pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ of multiplicity ρ.

Proposition 5.2. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f)$, and $\gamma \subseteq \Gamma(f)$ a proper face. If $\sigma\left(\bar{f}_{\gamma}, \mathcal{O}_{K}^{\times n}\right)=\sigma\left(\bar{f}_{\gamma}, \mathcal{O}_{K}^{\times n}, \chi_{\text {triv }}\right)>0$ then

$$
\begin{equation*}
\lim _{s \rightarrow-1}\left(1-q^{-1-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{\gamma}, \chi_{t r i v}\right) \neq 0 \tag{5.5}
\end{equation*}
$$

Proof. By using expansion (2.7), with $D=\mathcal{O}_{K}^{\times n}$, and $m=$ $C\left(f_{\gamma}, \mathcal{O}_{K}^{\times n}\right)+1$, we have that

$$
\begin{align*}
& \lim _{s \rightarrow-1}\left(1-q^{-1-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{\gamma}, \chi_{\text {triv }}\right)=(q-1) \sigma\left(\bar{f}_{\gamma}, \mathcal{O}_{K}^{\times n}, \chi_{\text {triv }}\right) \tag{5.6}\\
& \quad+(q-1) \sum_{k=1}^{m} q^{-k n}\left(\sum_{\left(P_{1}, \ldots, P_{k}\right) \in I_{k}} \sigma\left(\bar{f}_{\gamma_{P_{1}, \ldots, P_{k}}}, \chi_{\text {triv }}\right) q^{E\left(P_{1}, \ldots, P_{k}\right)}\right)
\end{align*}
$$

Since the right side of (5.6) is a sum of positive numbers, the result follows from the hypothesis $\sigma\left(\bar{f}_{\gamma}, \mathcal{O}_{K}^{\times n}, \chi_{\text {triv }}\right)>0$.

Proposition 5.3. Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f)$. Let $a_{1}, a_{2}, \ldots, a_{e}$ be the unique primitive vectors perpendicular to the facets which contain τ_{0}. If $\beta(f)=-1$, then $\beta(f)$ is a pole of $Z\left(s, f, \chi_{\text {triv }}\right)$ with multiplicity less than or equal to $\rho+1$. Furthermore, if every face $\gamma \supseteqq \tau_{0}$ satisfies $\sigma\left(\bar{f}_{\gamma}, \mathcal{O}_{K}^{\times n}\right)>0$, then the multiplicity of the pole $\beta(f)$ is $\rho+1$.

Proof. In the case $\beta(f)=-1$ the multiplicity of the possible pole $\beta(f)$ is less than or equal to $\rho+1$ because $Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi_{\text {triv }}\right)$ may have a pole at $s=-1$ (cf. formulas (4.16), (4.13), (2.7)). As in the case $\beta(f)>-1$, the result follows from inequality (5.1) by Claim A . In the case $\beta(f)=-1$, we may suppose that

$$
\begin{equation*}
Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I}, \chi_{\text {triv }}\right)=\frac{c_{I}\left(q^{-s}\right)}{\left(1-q^{-1-s}\right)}, \tag{5.7}
\end{equation*}
$$

where $c_{I}\left(q^{-s}\right)$ is a polynomial with positive coefficients (cf. expansion (2.7)). The proof of Claim A, for $\beta(f)=1$, involves the same ideas as in the case $\beta(f)>-1$.

The second part of the proposition is proved as follows. There exists a simplicial cone $\Delta_{0} \subseteq \Delta_{\tau_{0}}$ with $\operatorname{dim} \Delta_{0}=\rho$ (cf. final part of the proof of Proposition 5.1). Let I_{0} be a set of ρ linearly independent generators of Δ_{0}.

By duality this cone corresponds to a face $\gamma \supseteqq \tau_{0}$, and $Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I_{0}}, \chi_{t r i v}\right)$ has a pole of multiplicity 1 at $s=-1$ (cf. Proposition 5.2), thus

$$
\begin{equation*}
\lim _{s \rightarrow-1}\left(1-q^{-1-s}\right)^{\rho+1}\left(\frac{A_{I_{0}}\left(q^{-s}\right) Z\left(\mathcal{O}_{K}^{\times n}, s, f_{I_{0}}, \chi_{\text {triv }}\right)}{\prod_{j \in I_{0}}\left(1-q^{-\left|a_{j}\right|-m\left(a_{j}\right) s}\right)}\right)>0 \tag{5.8}
\end{equation*}
$$

Proof of Theorem B. The theorem follows from Proposition 5.1 and Proposition 5.3.

§6. Exponential sums

Let Ψ be an additive character trivial on \mathcal{O}_{K} but not on \mathcal{P}_{K}^{-1}. A such character is named standard. We put $z=u \pi^{-m}, m \in \mathbb{N} \backslash\{0\}, u \in \mathcal{O}_{K}^{\times}$. To these data one associates the following exponential sum:

$$
E(z, K, f)=q^{-n m} \sum_{x \bmod \mathcal{P}_{K}^{m}} \Psi\left(u f(x) / \pi^{m}\right)
$$

The following corollary follows Theorem A, Theorem B above, and Proposition 1.4.5 of [D2], by writing $Z(s, f, \chi)$ in partial fractions.

Corollary 6.1. (i) Let $f(x) \in \mathcal{O}_{K}[x]$ be a globally non-degenerate polynomial with respect to its Newton polyhedron $\Gamma(f)$, then for $|z|$ big enough $E(z, K, f)$ is a finite \mathbb{C}-linear combination of functions of the form

$$
\chi(a c(z))|z|_{K}^{\lambda}\left(\log _{q}\left(|z|_{K}\right)\right)^{\beta}
$$

with coefficients independent of z, and with $\lambda \in \mathbb{C}$ a pole of $\left(1-q^{-1-s}\right)$ $Z\left(s, f, \chi_{\text {triv }}\right)$ or of $Z(s, f, \chi)$, $\chi \neq \chi_{\text {triv }}$, and $\beta \in \mathbb{N}, \beta \leqq$ (multiplicity of pole λ) -1 . Moreover all poles λ appear effectively in this linear combination.
(ii) Let L be a global field, and let $f(x) \in L[x]$ be a globally nondegenerate polynomial with respect to its Newton polyhedron $\Gamma(f)$, and suppose that $\beta(f)>-1$. For almost all non-archimedean completions L_{v} of L, there exists a constant $C\left(L_{v}\right) \in \mathbb{R}$ satisfying

$$
\left|E\left(z, L_{v}, f\right)\right| \leqq C\left(L_{v}\right)|z|_{L_{v}}^{\beta(f)} \log _{q}\left(|z|_{L_{v}}\right)^{\rho-1}, \quad \text { for all } z \in L_{v} .
$$

Igusa has conjectured that $C\left(L_{v}\right)=1$ for almost all v [I2]. This conjecture was proved by Denef and Sperber when K has characteristic zero, f is a non-degenerate polynomial, and the face of the Newton polyhedron which cuts the diagonal does not have vertex in $\{0,1\}^{n}[\mathrm{D}-\mathrm{Sp}]$. Corollary 6.1 permits us to extent the result of Denef and Sperber to positive characteristic using the methods in [D-Sp].

§7. Examples

Example 7.1. In this example, we compute $Z\left(s, f, \chi_{\text {triv }}\right)=Z(s, f)$, for $f(x, y)=x^{2}+x y+y^{2}$, when the characteristic of K is different from 2, 3 , and analyze the behavior of the pole $s=-1$. In this case $\operatorname{Sing}_{f}(K)=$ $\{(0,0)\}$, and the Newton polygon has only a compact segment with supporting hyperplane $x+y=2$. The polynomial f is globally non-degenerate with respect to its Newton polygon.

One easily verifies that $\mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ can be partitioned into equivalence classes modulo \simeq, as follows.

If

$$
\begin{aligned}
\Delta_{1} & :=\{(0, a) \mid a>0\}, \\
\Delta_{2} & :=\{(b, a+b) \mid a, b>0\}, \\
\Delta_{3} & :=\{(a, a) \mid a>0\}, \\
\Delta_{4} & :=\{(a+b, a) \mid a, b>0\}, \\
\Delta_{5} & :=\{(a, 0) \mid a>0\},
\end{aligned}
$$

then

$$
\mathbb{R}_{+}^{2}=\{(0,0)\} \cup \bigcup_{i=1}^{5} \Delta_{i}
$$

and

$$
Z(s, f)=Z\left(\mathcal{O}_{K}^{\times 2}, s, f\right)+\sum_{i=1}^{5} Z_{\Delta_{i}}(s, f)
$$

Calculation of $Z\left(\mathcal{O}_{K}^{\times 2}, s, f\right)$, and $Z_{\Delta_{1}}(s, f)$.
By using the stationary phase formula, we obtain

$$
\begin{equation*}
Z\left(\mathcal{O}_{K}^{\times 2}, s, f\right)=\nu\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right)+\sigma\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right) \frac{\left(1-q^{-1}\right) q^{-1}}{\left(1-q^{-1-s}\right)} \tag{7.1}
\end{equation*}
$$

On the other hand, it is simple to verify that $Z_{\Delta_{1}}(s, f)=q^{-1}\left(1-q^{-1}\right)$.
Calculation of $Z_{\Delta_{2}}(s, f)$ and $Z_{\Delta_{3}}(s, f)$.

$$
\begin{align*}
Z_{\Delta_{2}}(s, f) & =\sum_{a, b=1}^{\infty} q^{-a-2 b} \int_{\mathcal{O}_{K}^{\times 2}}\left|\pi^{2 b} x^{2}+\pi^{a+2 b} x y+\pi^{2 a+2 b} y^{2}\right|_{K}^{s}|d x d y| \tag{7.2}\\
& =\frac{q^{-3-2 s}\left(1-q^{-1}\right)}{\left(1-q^{-1-s}\right)\left(1+q^{-1-s}\right)}
\end{align*}
$$

(7.3)

$$
\begin{aligned}
& Z_{\Delta_{3}}(s, f)=\sum_{a \geq 1}^{\infty} q^{-2 a} \int_{\mathcal{O}_{K}^{\times 2}}\left|\pi^{2 a} x^{2}+\pi^{2 a} x y+\pi^{2 a} y^{2}\right|_{K}^{s}|d x d y| \\
& \quad=\frac{q^{-2-2 s}}{\left(1-q^{-1-s}\right)\left(1+q^{-1-s}\right)}\left(\nu\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right)+\sigma\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right) \frac{\left(1-q^{-1}\right) q^{-s}}{\left(1-q^{-1-s}\right)}\right)
\end{aligned}
$$

Calculation of $Z_{\Delta_{4}}(s, f)$ and $Z_{\Delta_{5}}(s, f)$.

$$
\begin{align*}
Z_{\Delta_{4}}(s, f)= & \sum_{a, b \geq 1}^{\infty} q^{-2 a-b} \int_{\mathcal{O}_{K}^{\times 2}}\left|\pi^{2 a+2 b} x^{2}+\pi^{2 a+b} x y+\pi^{2 a} y^{2}\right|_{K}^{s}|d x d y| \tag{7.4}\\
= & \frac{q^{-3-2 s}\left(1-q^{-1}\right)}{\left(1-q^{-1-s}\right)\left(1+q^{-1-s}\right)} \\
& \quad Z_{\Delta_{5}}(s, f)=q^{-1}\left(1-q^{-1}\right) \tag{7.5}
\end{align*}
$$

From the above calculations, we obtain

$$
\begin{equation*}
\lim _{s \rightarrow-1}\left(1-q^{-1-s}\right)^{2} Z(s, f)=\frac{\sigma\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right)(q-1)}{2} \tag{7.6}
\end{equation*}
$$

Now suppose that $K=\mathbb{Q}_{p}$, with $p \neq 2,3$. Since

$$
\begin{aligned}
\sigma\left(f, \mathcal{O}_{K}^{\times 2}\right) & =p^{2} \operatorname{Card}\left(\left\{(u, v) \in \mathbb{F}_{p}^{\times 2} \mid \bar{f}(u, v)=0\right\}\right) \\
& = \begin{cases}0, & \text { if } p \equiv 5,11 \bmod 12 \\
2 p^{-2}(p-1), & \text { if } p \equiv 1,7 \bmod 12\end{cases}
\end{aligned}
$$

it follows from (7.6) that
(7.7) $\quad \lim _{s \rightarrow-1}\left(1-p^{-1-s}\right)^{2} Z(s, f)= \begin{cases}0, & \text { if } p \equiv 5,11 \bmod 12, \\ p^{-2}(p-1)^{2}, & \text { if } p \equiv 1,7 \bmod 12 .\end{cases}$

Thus $Z(s, f)$ has a pole at $s=-1$ of multiplicity $\rho+1=2$, when

$$
\begin{aligned}
& \operatorname{Card}\left(\left\{(u, v) \in \mathbb{F}_{p}^{\times 2} \mid \bar{f}_{\tau_{0}}(u, v)=0\right\}\right) \\
& \quad=\operatorname{Card}\left(\left\{(u, v) \in \mathbb{F}_{p}^{\times 2} \mid \bar{f}(u, v)=0\right\}\right)>0
\end{aligned}
$$

Otherwise the multiplicity is $\rho=1$.

Example 7.2. In this example, by using the method of Lemma 4.4, we compute the local zeta function attached to the polynomial $f(x, y)=$ $x^{2} y^{2}+x^{5}+y^{5} \in K[x, y]$, when the characteristic of K is different from 2 , 5. This polynomial is globally non-degenerate with respect to its Newton polyhedron.

One easily verifies that $\mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ can be partitioned into equivalence classes modulo \simeq, as follows.

If

$$
\begin{aligned}
& \Delta_{1}:=\{(0, a) \mid a>0\} \\
& \Delta_{2}:=\{(2 b, a+3 b) \mid a, b>0\}, \\
& \Delta_{3}:=\{(2 a, 3 a) \mid a>0\}, \\
& \Delta_{4}:=\{(2 a+3 b, 3 a+2 b) \mid a, b>0\}, \\
& \Delta_{5}:=\{(3 a, 2 a) \mid a>0\}, \\
& \Delta_{6}:=\{(3 a+b, 2 a) \mid a, b>0\}, \\
& \Delta_{7}:=\{(a, 0) \mid a>0\},
\end{aligned}
$$

then

$$
\mathbb{R}_{+}^{2}=\{(0,0)\} \cup \bigcup_{i=1}^{7} \Delta_{i}
$$

where each Δ_{i} is exactly an equivalence class modulo \simeq.
Calculation of $Z\left(\mathcal{O}_{K}^{\times 2}, s, f\right)$, and $Z_{\Delta_{1}}(s, f)$.
By using the stationary phase formula, we obtain

$$
\begin{equation*}
Z\left(\mathcal{O}_{K}^{\times 2}, s, f\right)=\nu\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right)+\sigma\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right) \frac{\left(1-q^{-1-s}\right)}{1-q^{-1-s}} \tag{7.8}
\end{equation*}
$$

On the other hand, it is simple to verify that $Z_{\Delta_{1}}(s, f)=q^{-1}\left(1-q^{-1}\right)$.
Calculation of $Z_{\Delta_{2}}(s, f)$ and $Z_{\Delta_{3}}(s, f)$.
The cone Δ_{2} is not a simple. In this case, one verifies that there is only one element in $\Delta_{2} \cap \mathbb{N}^{2}$ satisfying $0 \leq a<1,0 \leq b<1$. This element is $(1,2)=(0,1) \frac{1}{2}+(2,3) \frac{1}{2}$. Thus

$$
\begin{gather*}
\Delta_{2} \cap \mathbb{N}^{2}=\{(0,1)(\mathbb{N} \backslash\{0\})+(2,3)(\mathbb{N} \backslash\{0\})\} \tag{7.9}\\
\cup\{(1,2)+(0,1) \mathbb{N}+(2,3) \mathbb{N}\}
\end{gather*}
$$

From the partition (7.9), we obtain that

$$
\begin{align*}
& Z_{\Delta_{2}}(s, f)=\sum_{a, b=1}^{\infty} q^{-a-5 b} \int_{\mathcal{O}_{K}^{\times 2}}\left|\pi^{2 a+10 b} x^{2} y^{2}+\pi^{10 b} x^{5}+\pi^{5 a+15 b} y^{5}\right|_{K}^{s}|d x d y| \tag{7.10}\\
& \quad+\sum_{a, b=0}^{\infty} q^{-a-5 b-3} \int_{\mathcal{O}_{K}^{\times 2}}\left|\pi^{2 a+10 b+6} x^{2} y^{2}+\pi^{10 b+5} x^{5}+\pi^{5 a+15 b+10} y^{5}\right|_{K}^{s}|d x d y| \\
& \quad=\frac{q^{-5-10 s}}{1-q^{-5-10 s}} q^{-1}\left(1-q^{-1}\right)+\frac{q^{-3-5 s}}{1-q^{-5-10 s}}\left(1-q^{-1}\right) \\
& =\frac{\left(1-q^{-1}\right)\left(q^{-3-5 s}+q^{-6-10 s}\right)}{1-q^{-5-10 s}} .
\end{align*}
$$

By applying Proposition 4.1, and then the stationary phase formula to $Z_{\Delta_{3}}(s, f)$, one obtains

$$
\begin{align*}
Z_{\Delta_{3}}(s, f) & =\sum_{a=1}^{\infty} q^{-5 a-10 a s} \int_{\mathcal{O}_{K}^{\times 2}}\left|y^{2}+x^{3}\right|_{K}^{s}|d x d y| \tag{7.11}\\
& =\frac{q^{-5-10 s}}{1-q^{-5-10 s}}\left(\nu\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right)+\sigma\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right) \frac{\left(1-q^{-1}\right) q^{-s}}{\left(1-q^{-1-s}\right)}\right)
\end{align*}
$$

Calculation of $Z_{\Delta_{4}}(s, f)$ and $Z_{\Delta_{5}}(s, f)$.
The cone Δ_{4} is not a simple, thus we proceed as in the computation of $Z_{\Delta_{2}}(s, f)$, i.e. we find $0 \leq a<1,0 \leq b<1$, such that

$$
(2,3) a+(3,2) b \in \mathbb{N}^{2} \cap \Delta_{4}
$$

If $a=b$, one finds immediately that $(2,3) \frac{i}{5}+(3,2) \frac{i}{5} \in \mathbb{N}^{2} \cap \Delta_{4}$, $i=1,2,3,4$. The case $a \neq b$ cannot occur. Suppose that $(m, n) \in \mathbb{N}^{2} \cap \Delta_{4}$, with $b>a, a \neq 0, b \neq 0,(a=0$ or $b=0$ cannot occur $)$, i.e.

$$
\begin{equation*}
m=2 a+3 b, \quad n=3 a+2 b, \quad m, n \in \mathbb{N} \backslash\{0\}, \quad 0<a<b<1 \tag{7.12}
\end{equation*}
$$

From (7.12), we get $b-a=m-n$, but this is impossible because $0<b-a<$ 1 , and $m-n \geq 1$. If $a>b$ then $a-b=n-m$ and the same argument applies.

Therefore, we have the following partition for $\mathbb{N}^{2} \cap \Delta_{4}$:

$$
\begin{array}{r}
\mathbb{N}^{2} \cap \Delta_{4}=\{(2,3)(\mathbb{N} \backslash\{0\})+(3,2)(\mathbb{N} \backslash\{0\})\} \tag{7.13}\\
\cup \bigcup_{i=1}^{4}\{(i, i)+(2,3) \mathbb{N}+(3,2) \mathbb{N}\}
\end{array}
$$

From the partition (7.13), we obtain that

$$
\begin{equation*}
Z_{\Delta_{4}}(s, f)=\left(\frac{\left(1-q^{-1}\right)\left(q^{-5-10 s}\right)}{1-q^{-5-10 s}}\right)^{2}+\left(\sum_{i=1}^{4} q^{-2 i-4 i s}\right)\left(\frac{1-q^{-1}}{1-q^{-5-10 s}}\right)^{2} \tag{7.14}
\end{equation*}
$$

For $Z_{\Delta_{5}}(s, f)$, we get

$$
\begin{equation*}
Z_{\Delta_{5}}(s, f)=\frac{q^{-5-10 s}}{1-q^{-5-10 s}}\left(\nu\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right)+\sigma\left(\bar{f}, \mathcal{O}_{K}^{\times 2}\right) \frac{\left(1-q^{-1}\right) q^{-s}}{1-q^{-1-s}}\right) . \tag{7.15}
\end{equation*}
$$

Calculation of $Z_{\Delta_{6}}(s, f)$.
In the computation of the integral $Z_{\Delta_{6}}(s, f)$, we use the following partition:

$$
\begin{gather*}
\Delta_{6} \cap \mathbb{N}^{2}=\{(3,2)(\mathbb{N} \backslash\{0\})+(1,0)(\mathbb{N} \backslash\{0\})\} \tag{7.16}\\
\cup\{(2,1)+(3,2) \mathbb{N}+(1,0) \mathbb{N}\}
\end{gather*}
$$

From the above partition, we get

$$
\begin{equation*}
Z_{\Delta_{6}}(s, f)=\left(1-q^{-1}\right) \frac{q^{-3-5 s}+q^{-6-10 s}}{1-q^{-5-10 s}} \tag{7.17}
\end{equation*}
$$

Calculation of $Z_{\Delta_{7}}(s, f)$.

$$
\begin{equation*}
Z_{\Delta_{7}}(s, f)=q^{-1}\left(1-q^{-1}\right) . \tag{7.18}
\end{equation*}
$$

Now, with $\beta(f)=-1 / 2$, and $\rho=2$, it holds that

$$
\begin{aligned}
\lim _{s \rightarrow \beta(f)}\left(1-q^{\beta(f)-s}\right)^{\rho} Z(s, f) & =\lim _{s \rightarrow \beta(f)}\left(1-q^{\beta(f)-s}\right)^{\rho} Z_{\Delta_{4}}(s, f) \\
& =\frac{\left(1-q^{-1}\right)^{2}}{50}
\end{aligned}
$$

References

[A] M. Artin, Algebraic approximations of structures over complete local rings, Pub. I.H.E.S., 36, 23-58.
[D1] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math., 77 (1984), 1-23.
[D2] J. Denef, Report on Igusa's local zeta functions, Seminaire Bourbaki 741, Astérisque, 201/202/203 (1990-1991).
[D3] J. Denef, Poles of p-adic complex powers and Newton Polyhedra, Nieuw Archief voor Wiskunde, 13 (1995), 289-295.
[D-H] J. Denef and K. Hoornaert, Newton polyhedra and Igusa's local zeta functions, Journal of Number Theory, 89 (2001), 31-64.
[D-S-1] J. Denef and P. Sargos, Polyédre de Newton et distribution f_{+}^{s}, J. Analyse Math., 53 (1989), 201-218.
[D-S-2] J. Denef and P. Sargos, Polyédre de Newton et distribution for . II, Math. Ann., 293 (1992), 193-211.
[D-Sp] J. Denef and S. Sperber, On exponential sums mod p^{m} and Newton polyhedra, Bull. Belg. Math. Soc. Simon Stevin (2001), 55-63.
[I1] J.-I. Igusa, On the first terms of certain asymptotic expansions, Complex and Algebraic Geometry, Iwanami Shoten and Cambridge university press (1977), pp. 357-368.
[I2] J.-I. Igusa, Complex powers and asymptotic expansions I, J. Reine Angew Math., 268/269 (1974), 110-130.
[I3] J.-I. Igusa, A stationary phase formula for p-adic integrals and its applications, Algebraic geometry and its applications, Springer-Verlag (1994), pp. 175-194.
[I4] J.-I. Igusa, On the arithmetic of a singular invariant, Amer. J. Math. (1988), 197-233.
[K-M-S] G. Kempf, F. Knudsend, D. Mumford and B. Saint-Donat, Toroidal embedings, Lectures notes in Mathematics, 339 (1973).
[L-M] B. Lichtin and D. Meuser, Poles of a local zeta function and Newton polygons, Compositio Math., 55 (1985), 313-332.
[Me] D. Meuser, On the poles of a local zeta function for curves, Invent. Math., 73 (1983), 445-465.
[N] A. Néron, Modéles minimaux des variétes abéliennes sur corps locaux et globaux, Pub. Math. I.H.E.S., 21 (1964).
[Va] A. Varchenko, Newton polyhedra and estimation of oscillatory integrals, Functional Anal. Appl., 10 (1977), 175-196.
[Ve] W. Veys, On the poles of Igusa's local zeta functions for curves, J. London Math. Soc., 41 (1990), 27-32.
[Z-G] W. A. Zuniga-Galindo, Igusa's local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc., 353 (2001), 3193-3207.

Department of Mathematics and Computer Science
Barry University
11300 N.E. Second Avenue
Miami Shores, Florida 33161
USA
wzuniga@mail.barry.edu

[^0]: Received April 13, 2000.
 Revised August 27, 2001, April 24, 2002.
 1991 Mathematics Subject Classification: Primary 11S40, 11D79, 11L05.
 *This work was supported by COLCIENCIAS, project 1241-05-111-97.

