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DEFORMATION INVARIANCE OF PLURIGENERA

HAJIME TSUJI

Abstract. We prove the invariance of plurigenera under smooth projective
deformations in full generality.

§1. Introduction

Let X be a smooth projective variety and let KX be the canonical

bundle of X. The canonical ring

R(X,KX ) := ⊕m≥0H
0(X,OX(mKX))

is a basic birational invariant of X. For every positive integer m, the m-th

plurigenus Pm(X) is defined by

Pm(X) := dimH0(X,OX (mKX)).

The plurigenera are fundamental birational invariants of compact complex

manifolds. It has been believed that the plurigenera is invariant under

smooth projective deformations (although the plurigenera are not deforma-

tion invariant under nonprojective deformations ([9])).

In this paper, we shall prove the invariance of plurigenera under smooth

projective deformations in full generality.

Theorem 1.1. Let π : X −→ ∆ be a smooth projective family of

smooth projective varieties over the unit open disk.

Then for every positive integer m, the m-th plurigenus Pm(Xt)(Xt :=
π−1(t)) is independent of t ∈ ∆.

In the course of the proof of Theorem 1.1, we also prove the following

theorem.

Received February 8, 2001.
2000 Mathematics Subject Classification: 32J25.



166-07 : 2002/6/10(22:33)

118 H. TSUJI

Theorem 1.2. Let π : X −→ ∆ be a smooth projective family. Sup-

pose that KX0 is pseudoeffective. Then KXt
is pseudoeffective for every

t ∈ ∆.

Let us recall the former results concerning Theorem 1.1. S. Iitaka

proved the invariance of plurigenera for deformations of compact complex

surfaces ([3]) by using the classification of compact complex surfaces. N.

Nakayama ([10]) pointed out that the invariance of plurigenera for smooth

projective deformations can be derived if the minimal model program were

completed for families (it is worth noting that his results (including the

lowersemicontinuity of plurigenera under semistable degenerations) imme-

diately follow from the L2-extension theorem ([13, p.200, Theorem]) without

using Kollár’s vanishing theorem ([5])).

Recently Y.-T. Siu ([14]) proved that for every m ≥ 1, Pm(X) is invari-

ant under smooth projective deformations, if all the fibers are of general

type. The proof of [14] has been translated into more algebraic way and

the result in [14] has been slightly generalized by [4, 11] (although such

translation is completely unnecessary for such generalizations).

For the proof of Theorem 1.1, the central problem is the existence of

singular hermitian metric h on KX such that the curvature current Θh is

semipositive and h |Xt
is an AZD (cf. Definition 2.3) of KXt

for every t ∈ ∆.

As soon as we construct such a metric h, the L2-extension theorem ([13])

implies the invariance of the plurigenera. Here the key point is that the

L2-extension theorem requires the semipositivity of the curvature of the

singular hermitian metric, but it does not require any strict positivity of

the curvature. In this sense the L2-extension theorem is similar to Kollár’s

vanishing theorem ([5]) in algebraic context.

The construction of the above singular hermitian metric h consists of

the inductive estimates of singular hermitian metrics using Bergman ker-

nels. This is more straightforward than the inductive comparison of multi-

plier ideal sheaves as in [14, p. 670, Proposition 5]. In this sense the proof

is quantitative and not qualitative. The essential idea is the dynamical

construction of an AZD of the canonical line bundle of a smooth projec-

tive variety with pseudoeffective canonical line bundle. This construction

works only for pseudoeffective canonical line bundles. This clarifies why the

canonical line bundle is special. Here the key ingredient of the proof is the

L2-extension theorem of holomorphic sections [13, 8, 12]. And we use the

fact that the operator norm of the interpolation operator is bounded from
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above by a universal constant.

Hence the proof here is analytic in nature. The advantage of the L2-

estimates of ∂̄-operators is that it assures the existence of solutions of ∂̄-

equations with estimates, while the algebraic methods only indicate the ex-

istence of solutions. This is the main reason why the L2-estimates changed

the complex analysis completely.

Another key of the proof of Theorem 1.1 is the theory of AZD. The

theory of AZD can be viewed as a minimal model theory of pseudo-

effective line bundles. The theory of AZD is very simple (cf. Theorem

2.2) and fits to the L2-extension theorem and many other analytic tools.

As in [14, 11, 4], we may replace AZD’s with some infinite sequence of mul-

tiplier ideal sheaves, if the line bundle is big. But this kind of translation

breaks down when the line bundle is not big. This is because in general

a singular hermitian metric with semipositive curvature current cannot be

approximated by a sequence of singular hermitian metrics with algebraic

singularities and semipositive curvature, while singular hermitian metrics

with strictly positive curvature current can be approximated by a sequence

of singular hermitian metric with algebraic singularities and semipositive

curvature current ([1]).

The author would like to express his hearty thanks to Professor T.

Ohsawa for his interest in this work and his encouragement.

§2. Preliminaries

2.1. Multiplier ideal sheaves

In this subsection L will denote a holomorphic line bundle on a complex

manifold M .

Definition 2.1. A singular hermitian metric h on L is given by

h = e−ϕ · h0,

where h0 is a C∞-hermitian metric on L and ϕ ∈ L1
loc(M) is an arbitrary

function on M . We call ϕ a weight function of h.

The curvature current Θh of the singular hermitian line bundle (L, h)

is defined by

Θh := Θh0 +
√
−1∂∂̄ϕ,
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where ∂∂̄ is taken in the sense of a current. The L2-sheaf L2(L, h) of the

singular hermitian line bundle (L, h) is defined by

L2(L, h) := {σ ∈ Γ(U,OM (L)) | h(σ, σ) ∈ L1
loc(U)},

where U runs over the open subsets of M . In this case there exists an ideal

sheaf I(h) such that

L2(L, h) = OM (L) ⊗ I(h)

holds. We call I(h) the multiplier ideal sheaf of (L, h). If we write h as

h = e−ϕ · h0,

where h0 is a C∞ hermitian metric on L and ϕ ∈ L1
loc(M) is the weight

function, we see that

I(h) = L2(OM , e
−ϕ)

holds. For ϕ ∈ L1
loc(M) we define the multiplier ideal sheaf of ϕ by

I(ϕ) := L2(OM , e
−ϕ).

Similarly we define

I∞(h) := L∞(OM , e
−ϕ)

and call it the L∞-multiplier ideal sheaf of (L, h).

Definition 2.2. L is said to be pseudoeffective, if there exists a sin-
gular hermitian metric h on L such that the curvature current Θh is a closed
positive current.

Also a singular hermitian line bundle (L, h) is said to be pseudoeffective,
if the curvature current Θh is a closed positive current.

2.2. Analytic Zariski decompositions

Definition 2.3. Let M be a compact complex manifold and let L be
a holomorphic line bundle on M . A singular hermitian metric h on L is
said to be an analytic Zariski decomposition, if the followings hold.

1. Θh is a closed positive current,

2. for every m ≥ 0, the natural inclusion

H0(M,OM (mL) ⊗ I(hm)) → H0(M,OM (mL))

is an isomorphism.
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Remark 2.1. If an AZD exists on a line bundle L on a smooth projec-
tive variety M , L is pseudoeffective by the condition 1 above.

Theorem 2.1. ([15, 16]) Let L be a big line bundle on a smooth pro-

jective variety M . Then L has an AZD.

As for the existence for general pseudoeffective line bundles, now we have

the following theorem.

Theorem 2.2. ([2, Theorem 1.5]) Let X be a smooth projective variety

and let L be a pseudoeffective line bundle on X. Then L has an AZD.

Proof of Theorem 2.2. Although the proof is in [2], we shall give a proof
here, because we shall use it afterwards.

Let h0 be a fixed C∞-hermitian metric on L. Let E be the set of
singular hermitian metric on L defined by

E = {h;h : lowersemicontinuous singular hermitian metric on L,

Θh is positive,
h

h0
≥ 1}.

Since L is pseudoeffective, E is nonempty. We set

hL = h0 · inf
h∈E

h

h0
,

where the infimum is taken pointwise. The supremum of a family of pluri-
subharmonic functions uniformly bounded from above is known to be again
plurisubharmonic, if we modify the supremum on a set of measure 0(i.e., if
we take the uppersemicontinuous envelope) by the following theorem of P.
Lelong.

Theorem 2.3. ([7, p.26, Theorem 5]) Let {ϕt}t∈T be a family of

plurisubharmonic functions on a domain Ω which is uniformly bounded from

above on every compact subset of Ω. Then ψ = supt∈T ϕt has a minimum

uppersemicontinuous majorant ψ∗ which is plurisubharmonic. We call ψ∗

the uppersemicontinuous envelope of ψ.

Remark 2.2. In the above theorem the equality ψ = ψ∗ holds outside
of a set of measure 0 (cf.[7, p.29]).
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By Theorem 2.3, we see that hL is also a singular hermitian metric
on L with Θh ≥ 0. Suppose that there exists a nontrivial section σ ∈
Γ(X,OX (mL)) for some m (otherwise the second condition in Definition
2.3 is empty). We note that

log | σ | 2
m

gives the weight of a singular hermitian metric on L with curvature
2πm−1(σ), where (σ) is the current of integration along the zero set of
σ. By the construction we see that there exists a positive constant c such
that

h0

| σ | 2
m

≥ c · hL

holds. Hence

σ ∈ H0(X,OX (mL) ⊗ I∞(hmL ))

holds. Hence in particular

σ ∈ H0(X,OX (mL) ⊗ I(hmL ))

holds. This means that hL is an AZD of L.

Remark 2.3. By the above proof we have that for the AZD hL con-
structed as above

H0(X,OX (mL) ⊗ I∞(hmL )) ' H0(X,OX (mL))

holds for every m.

It is easy to see that the multiplier ideal sheaves of hmL (m ≥ 1) con-

structed in the proof of Theorem 2.2 are independent of the choice of the

C∞-hermitian metric h0. We call the AZD constructed as in the proof of

Theorem 2.2 a canonical AZD of L.

2.3. L2-extension theorem

The following theorem is crucial in our proof of Theorem 1.1.

Theorem 2.4. ([13, p.200, Theorem]) Let X be a Stein manifold of

dimension n, ψ a plurisubharmonic function on X and s a holomorphic

function on X such that ds 6= 0 on every branch of s−1(0). We put Y :=
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s−1(0) and Y0 := {x ∈ Y ; ds(x) 6= 0}. Let g be a holomorphic (n− 1)-form
on Y0 with

cn−1

∫

Y0

e−ψg ∧ ḡ <∞,

where ck = (−1)
k(k−1)

2 (
√
−1)k. Then there exists a holomorphic n-form G

on X such that

G(x) = g(x) ∧ ds(x)
on Y0 and

cn

∫

X
e−ψ(1+ | s |2)−2G ∧ Ḡ ≤ 1620πcn−1

∫

Y0

e−ψg ∧ ḡ.

§3. Dynamical construction of an AZD

Let X be a smooth projective variety and let KX be the canonical line

bundle of X. Let n denote the dimension of X.

Let A be a sufficiently ample line bundle on X such that for every

pseudoeffective singular hermitian line bundle (L, hL)

OX(A+ L) ⊗ I(hL)

and

OX(KX +A+ L) ⊗ I(hL)

are globally generated. This is possible by [14, p. 667, Proposition 1]. Let

hA be a C∞ hermitian metric on A with strictly positive curvature.

Hereafter we shall assume that κ(X) ≥ 0, in particular KX is

pseudoeffective. For m ≥ 0, let hm be the singular hermitian metrics

on A + mKX constructed as follows. Let h0 be a C∞-hermitian metric

hA on A with strictly positive curvature. Suppose that hm−1(m ≥ 1) has

been constructed. Let {σ(m)
0 , . . . , σ

(m)
N(m)} be an orthonormal basis of Vm :=

H0(X,OX (A+mKX) ⊗ I(hm−1)) with respect to the inner product :

(σ, σ′) :=

∫

X
σ · σ′ · hm−1

=

∫

X
σ · σ′ · (hm−1 ⊗ (dV )−1) · dV,

where dV is an arbitrary nowhere degenerate C∞ volume form on X. We

set

Km :=

N(m)
∑

i=0

| σ(m)
i |2,
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where | σ(m)
i |2 denotes σ

(m)
i · σ(m)

i . We call Km the Bergman kernel of

A+mKX with respect to hm−1⊗ (dV )−1 and dV . Clearly it is independent

of the choice of the orthonormal basis. We define the integer ν by

ν := limm→∞

log dimH0(X,OX (A+mKX) ⊗ I(hm))

logm
.

And we define the singular hermitian metric hm on A+mKX by

hm := mν ·K−1
m .

It is clear that Km has semipositive curvature in the sense of currents. We

note that for every x ∈ X

Km(x) = sup
{

| σ |2 (x);σ ∈ Vm,

∫

X
hm−1· | σ |2= 1

}

holds by definition (cf. [6, p.46, Proposition 1.4.16]).

Let dV be a C∞-volume form on X with respect to a Kähler form ω on

X. For a singular hermitian line bundle (F,hF ) on X, let A2(M,F, hF , dV )

denote the Hilbert space of L2 holomorphic sections of F with respect to

hF and dV . We may also assume that for any pseudoeffective singular

hermitian line bundle (L, hL) and for any point x ∈ X, there exists an

interpolation operator

Ix : A2(x,KX⊗A⊗L, dV −1hAhL, δx)−→A2(X,KX⊗A⊗L, dV −1hAhL, dV )

such that the operator norm of Ix is bounded from above by a positive

constant independent of x ∈ X and (L, hL), where δx denotes the Dirac

measure at x. This is certainly possible, if we take A to be sufficiently

ample.

In fact let x be a point on X and let (U, z1, . . . , zn) be a local coordinate

neighbourhood of x which is biholomorphic to ∆n and zi(x) = 0(1 ≤ i ≤ n).

Then by the successive use of Theorem 2.4, we find an interpolation operator

IUx : A2(x,KX⊗A⊗L, dV −1hAhL, δx)−→A2(U,KX⊗A⊗L, dV −1hAhL, dV )

such that the operator norm of IUx is bounded from above by a positive con-

stant CU independent of (L, hL). Now we note that the curvature of hAhL
is bounded from below by the Kähler form ΘA. Let ρ be a C∞-function on

X such that Supp ρ ⊂⊂ U , 0 ≤ ρ ≤ 1 and ρ ≡ 1 on a neighbourhood of x.
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Let σx be an element of A2(x,KX ⊗A⊗L, dV −1hAhL, δx). Then replacing

(A,hA) by its sufficiently high positive multiple, we may assume that

ΘA + (n+ 1)
√
−1∂∂̄(ρ · log

n
∑

i=1

| zi |2) ≥ ω

holds on X. We also note that there exists a positive constant C ′
U indepen-

dent of (L, hL) and σx such that

∫

X
exp(−(n+ 1)ρ · log

n
∑

i=1

| zi |2)· | ∂̄(ρ · IUx σx) |2 dV

≤ C ′
U · (dV −1hAhL)(σx, σx)

holds, where | ∂̄(ρ · IUx σx) |2 denotes the norm with respect to hA · hL and

ω. In fact C ′
U only depends on CU and the supremum of the norm of ∂̄ρ

with respect to ω. Then by the usual L2-estimate, we may assume that we

can solve the ∂̄-equation

∂̄u = ∂̄(ρ · IUx σx)

with

u(x) = 0

so that
∫

X
hAhL | u |2≤ C · (dV −1hAhL)(σx, σx)

holds for a positive constant C independent of (L, hL) and σx. Then

ρ · IUx σx − u ∈ H0(X,OX (KX +A+ L) ⊗ I(hL))

is an extension of σx. Since X is compact, moving x and U , by the above

estimates this implies the assertion.

Lemma 3.1. Let h be a canonical AZD of KX constructed as in the

proof of Theorem 2.2. Then the inclusion :

I(hm) ⊆ I(hm)

holds for every m ≥ 0.
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Proof. We prove this lemma by induction on m. If m = 0, then both
sides are OX .

Suppose that the inclusion

I(hm−1) ⊆ I(hm−1)

has been settled for some m ≥ 1. Then we have that by the property of A
as above

OX(KX + (A+ (m− 1)KX )) ⊗ I(hm−1)

is a globally generated subsheaf of

OX(A+mKX) ⊗ I(hm−1)

Hence by the definition of I(hm) we see that

I(hm−1) ⊆ I(hm)

holds. In particular
I(hm) ⊆ I(hm)

holds. By the induction on m, this completes the proof of Lemma 3.1.

By the choice of A and Lemma 3.1, hm is well defined for every m ≥ 0.

Now we shall make the above lemma quantitative.

Lemma 3.2. There exists a positive constant C such that

hm ≤ Cm · hA · hm

holds for every m ≥ 0.

Proof. First if m = 0, both sides are h0. Suppose that for some m ≥ 1,

hm−1 ≤ C(m−1) · hA · hm−1

holds for some positive constant C(m−1). Let dV be a C∞ volume form on
X. Let C(1) be a positive constant such that

h ≥ C(1) · (dV )−1

holds on X. Let us denote the Bergman kernel of Vm with respect to a
singular hermitian metricH on A+mKX and the volume form dV byK(A+
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mKX ,H, dV ). In this notation Km is expressed as K(A + mKX , hm−1 ⊗
(dV )−1, dV ).

Then we have that

K(A+mKX , hm−1 ⊗ (dV )−1, dV )

≥ C−1
(m−1) ·K(A+mKX , hA · hm−1 · (dV )−1, dV )

≥ C−1
(m−1) · C(2) · (hA · hm−1 · (dV )−1)−1 ·mν

≥ C−1
(m−1) · C(1) · C(2) · (hA · hm)−1 ·mν

hold for some positive constant C(2). The first inequality follow from the
formula :

K(A+mKX , hm−1 ⊗ (dV )−1, dV )(x)

= sup{| σ |2 (x);σ ∈ Vm;

∫

X
hm−1 | σ |2= 1} (x ∈ X)

and the similar formula for K(A+mKX , hA · hm−1 · (dV )−1, dV ).
The 2-nd inequality follows from the L2-extension theorem (Theorem

2.4) applied to the extension from a point to X as above. We note that
for every point x ∈ X and every general ν-dimensional subvariety Y 3
x, (Kx, h)|Y is big, hence h|Y is dominated by a metric with strictly positive
curvature. The factor mν comes form the fact that the norm of the local
interpolation IUx as above is O(m−ν) (cf. [17, p.105, (1.11)]). Hence we
may assume that C(2) is independent of m. Now we can take C to be the
constant C(1)−1 · C(2)−1. This completes the proof of Lemma 3.2.

Lemma 3.3. There exists a positive constant C̃ such that for every

m ≥ 1,
hA ·Km ≤ C̃m(dV )m ·mν

holds.

Proof. Let p ∈ X be an arbitrary point. Let (U, z1, . . . , zn) be a local
coordinate around x such that

1. z1(p) = · · · = zn(p) = 0,

2. U is biholomorphic to the open unit polydisk in Cn with center O ∈
Cn by the coordinate,

3. z1, . . . , zn are holomorphic on a neighbourhood of the closure of U ,
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4. there exists a holomorphic frame e of A on the closure of U .

We set

Ω := (−1)
n(n−1)

2 (
√
−1)ndz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

For every m ≥ 0, we set

Cm := sup
x∈U

hA ·Km

Ωm
.

We note that for any x ∈ X

Km(x) = sup
{

| φ |2 (x);φ ∈ Vm,

∫

X
hm−1 | φ |2= 1

}

holds. Let φ0 be the element of Γ(X,OX (A+mKX)) such that

Km(x) =| φ0 |2 (x)

and
∫

X
hm−1 | φ0 |2= 1.

Then there exists a holomorphic function f on U such that

φ0 |U= f · (dz1 ∧ · · · dzn)m · e

holds. Then
∫

U
hA | φ0 |2 Ω−(m−1) =

∫

U
| f |2 hA(e, e)Ω

holds. On the other hand by the definition of Cm−1 we see that

∫

U
hA | φ0 |2 Ω−(m−1) ≤ Cm−1

∫

U
hm−1 | φ0 |2≤ Cm−1

hold. Combining above inequalities we have that

∫

U
| f |2 hA(e, e)Ω ≤ Cm−1

holds. Let 0 < δ << 1 be a sufficiently small number. Let Uδ be the inverse
image of

{(y1, . . . , yn) ∈ Cn || yi |< 1 − δ}
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by the coordinate (z1, . . . , zn).
Then by the subharmonicity of | f |2, there exists a positive constant

Cδ independent of m such that

| f(x) |2≤ Cδ · Cm−1

holds for every x ∈ Uδ. Then we have that

Km(x) ≤ Cδ · Cm−1· | e |2 ⊗Ωm(x)

holds for every x ∈ Uδ. Summing up the estimates for orthonormal basis,
moving p, by the compactness of X we see that there exists a positive
constant C̃ such that

hA ·Km ≤ C̃m · (dV )m ·mν

holds on X. This completes the proof of Lemma 3.3.

By Lemma 3.2 and Lemma 3.3

K∞ := the uppersemicontinuous envelope of lim sup
m→∞

m
√

Km

is a well defined volume form on X which does not vanish outside of a set

of measure 0. We set

h∞ :=
1

K∞

.

Then by Lemma 3.2, we see that

h∞ ≤ C · h

holds. By the definition of h∞, it is clear that the curvature Θh∞ is semi-

positive in the sense of current. Hence by the construction of h (see the

proof of Theorem 2.2), we see that there exists a positive constant C ′ such

that the opposite estimate :

h∞ ≥ C ′ · h

holds.

Hence we have the following theorem.

Theorem 3.1. Let h∞ be the above singular hermitian metric on KX .

Then h∞ is an AZD of KX .
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§4. Proof of Theorem 1.1

Now we shall prove Theorem 1.1. Let π : X −→ ∆ be a smooth

projective family of projective varieties as in Theorem 1.1. We set Xt :=

π−1(t). If for every t ∈ ∆, KXt
is not pseudoeffective, then Pm(Xt) = 0

holds for every t ∈ ∆ and every m ≥ 1. Hence in this case there is nothing

to prove.

Now we shall assume that for some t0 ∈ ∆, say t0 = 0, KX0 is pseu-

doeffective. Shrinking ∆, if necessary, we may assume that there exists

an ample line bundle A on X such that for any pseudoeffective singular

hermitian line bundle (L, hL)

OX(A+ L) ⊗ I(hL)

and

OX(KX +A+ L) ⊗ I(hL)

are globally generated and for every t ∈ ∆ and for any pseudoeffective

singular hermitian line bundle (Lt, hLt
) on Xt,

OXt
(A |Xt

+Lt) ⊗ I(hLt
)

and

OXt
(KXt

+A |Xt
+Lt) ⊗ I(hLt

)

are globally generated. Let hA be a C∞-hermitian metric on A such that

ΘhA
is a Kähler form on X. We set

h0 := hA

and

h0,t := hA |Xt
(t ∈ ∆).

Let us fix an arbitrary t ∈ ∆. As in Section 3, inductively we shall define the

sequences of singular hermitian metrics {hm} on X and {hm,t} on Xt(t ∈
∆). In this case X is noncompact, but using the sections which restricts

to Vm,t above and the normalization constants mν+1 (m ≥ 1) (here we

use the Cauchy estimates on the disk of radius O(1
√
m)), the construction

works as in Section 3. However we should note that we do not know the

pseudoeffectivity of KX or KXt
(t ∈ ∆∗) apriori. Hence at this stage hm

and hm,t(t ∈ ∆∗) are not well defined for m ≥ 2.

But by the L2-extension theorem (Theorem 2.4 or [8]) (as in the proof

of Lemma 4.1), we have the following lemma.



166-07 : 2002/6/10(22:33)

DEFORMATION INVARIANCE OF PLURIGENERA 131

Lemma 4.1. Let t be a point on ∆. Suppose that hm−1, hm−1,t have

been defined and

I(hm−1,t) ⊆ I(hm−1 |Xt
)

holds on Xt. Then every element of

H0(Xt,OXt
(KXt

+A |Xt
+(m− 1)KXt

) ⊗ I(hm−1,t))

extends to an element of

H0(X,OX (KX +A+ (m− 1)KX ) ⊗ I(hm−1)).

Proof. We note that since Theorem 2.4 is stated for Stein manifolds,
we cannot apply it directly. Let U be a Zariski open Stein subset of X such
that Xt ∩ U is nonempty and KX |U is holomorphically trivial. Then for
every element σt of

H0(Xt,OXt
(KXt

+A |Xt
+(m− 1)KXt

) ⊗ I(hm−1,t)),

σt |U∩Xt
extends to an element σ of

H0(U,OX(KX +A+ (m− 1)KX) ⊗ I(hm−1)).

with the L2-condition
∫

U
hm−1 | σ |2<∞.

But this L2-condition implies that σ extends to a section of

H0(X,OX (KX +A+ (m− 1)KX ) ⊗ I(hm−1)).

Since KX0 is pseudoeffective, using Lemma 4.1, we have that hm is

well defined for every m ≥ 0 and the inclusion I(hm,0) ⊂ I(hm |X0) holds

for every m ≥ 0 inductively. Hence for every m ≥ 1 we have a proper

Zariski closed subset Sm in ∆ such that for every t ∈ ∆ − Sm, hm,t is well

defined. In particular KXt
is pseudoeffective for every t ∈ ∆ − ∪m≥1Sm.

This implies, by Grauert’s coherency theorem that KXt
is pseudoeffective

for every t ∈ ∆. Then using Lemma 4.1 and Lemma 3.1, by induction on

m, we have the following lemma.
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Lemma 4.2. hm, hm,t(t ∈ ∆) are well defined for every m ≥ 0 and

t ∈ ∆. And

I(hm,t) ⊆ I(hm |Xt
)

holds for every m ≥ 0 and t ∈ ∆.

We define

h∞ := the lowersemicontinuous envelope of lim inf
m→∞

m
√

hm

and

h∞,t := the lowersemicontinuous envelope of lim inf
m→∞

m

√

hm,t.

Although X is noncompact, the argument in Section 3 is still valid. In fact

since X admits a continuous plurisubharmonic exhaustion function, Lemma

3.2 holds in this case, if we restrict the family to a relatively compact subset

of ∆. Also Lemma 3.3 is valid on every relatively compact subset ofX, since

the proof is local. Hence h∞, h∞,t are well defined AZD’s on KX and KXt

respectively.

Again by the L2-extension theorem (Theorem 2.4), as Lemma 3.2, we

have the following lemma.

Lemma 4.3. For every t, there exists a positive constant C such that

hm |Xt
≤ Cm · hm,t

holds for every m ≥ 0. In particular

h∞ |Xt
≤ C · h∞,t

holds.

Here we have used the fact that for every

σt ∈ A2(Xt,KXt
⊗A⊗K

⊗(m−1)
X , hm−1 |Xt

),

there exists an element of

σ ∈ A2(X,A⊗K⊗m
X , hm−1)

such that σ |Xt
= σt and

‖ σ ‖≤ Ct ‖ σt ‖,
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where Ct is a positive constant depending only on t (if t = 0, we may take

C0 to be 2
√

1620π by Theorem 2.4). Here we note that the L2-spaces above

are determined without specifying volume forms.

Now by Lemma 4.3 and Theorem 3.1, we see that h∞ |Xt
is an AZD of

KXt
. Then by the L2-extension theorem (Theorem 2.4, see also the proof

of Lemma 4.1), we see that for every m ≥ 1, every element of

H0(Xt,OXt
(mKXt

) ⊗ I(hm−1
∞ |Xt

)) ' H0(Xt,OXt
(mKXt

))

extends to an element of

H0(X,OX (KX + (m− 1)KX) ⊗ I(hm−1
∞ )).

Hence we see that Pm(Xt) is lowersemicontinuous. By the upper semicon-

tinuity theorem for cohomologies, we see that Pm(Xt) is independent of

t ∈ ∆. This completes the proof of Theorem 1.1.

Theorem 1.2 has already been proved in the course of the above proof.

§5. Further generalization

The proof of the following generalization of Theorem 1.1 is completely

parallel to that of Theorem 1.1 (see the assumption on Y in Theorem 2.4).

Theorem 5.1. Let π : X −→ ∆ be a flat projective family. Suppose

that π is semistable and X0 =
∑

i∈I Γi is the only singular fiber. Then

∑

i∈I

Pm(Γi) ≤ Pm(Xt)

holds for every m ≥ 1 and t ∈ ∆∗.
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For a generalization of Theorem 1.1, see the author’s preprint: “Subadjunction

theorem for pluricanonical divisors”, math.AG/0111311.
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