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A BOUND ON CERTAIN LOCAL COHOMOLOGY

MODULES AND APPLICATION TO AMPLE DIVISORS

CLAUDIA ALBERTINI1 and MARKUS BRODMANN

Abstract. We consider a positively graded noetherian domain R =
�

n∈N0
Rn

for which R0 is essentially of finite type over a perfect field K of positive
characteristic and we assume that the generic fibre of the natural morphism
π : Y = Proj(R) → Y0 = Spec(R0) is geometrically connected, geometrically
normal and of dimension > 1. Then we give bounds on the “ranks” of the n-th
homogeneous part H2

R+
(R)n of the second local cohomology module of R with

respect to R+ :=
�

m>0 Rm for n < 0. If Y is in addition normal, we shall
see that the R0-modules H2

R+
(R)n are torsion-free for all n < 0 and in this

case our bounds on the ranks furnish a vanishing result. From these results
we get bounds on the first cohomology of ample invertible sheaves in positive
characteristic.

§1. Introduction

Let R =
⊕

n∈N0
Rn a positively graded noetherian domain such that

R0 is essentially of finity type over a field K of positive characteristic.

Assume that the generic fibre of the natural morphism Y := Proj(R)
π

−→

Y0 := Spec(R0) is geometrically connected, geometrically normal and of

dimension > 1. For all n ∈ Z let H2
R+

(R)n denote the n-th homogeneous

part of the second local cohomology module H2
R+(R) of R with respect to

the irrelevant ideal R+ :=
⊕

m>0 Rm of R.

Our aim is to bound “the size” of the R0-module H2
R+

(R)n for negative

values of n. More precisely, if L0 is the quotient field of R0, we give bounds

on the numbers.

h2
R+

(R)n := dimL0

(

L0 ⊗R0 H2
R+

(R)n
)

in the range n < 0 (cf. (3.8)). In addition, we shall see that the R0-modules

H2
R+

(R)n are torsion-free for all n < 0, whenever Y is normal. So, in this
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case, we have bounded the rank of the R0-modules H2
R+

(R)n in the range

n < 0.

We apply the previous bounding result in the following geometric con-

text: Let X be an integral projective scheme over an affine integral scheme

X0 which is essentially of finite type over a perfect field K. Assume that the

generic fibre of X over X0 is geometrically connected, geometrically normal

and of dimension > 1. Let L be an ample invertible sheaf over X. Under

these hypotheses we bound the first Serre-cohomology modules H1(X,L⊗n)

in the range n < 0, (s. (4.5)). In particular we consider the case where X

is a geometrically connected and geometrically normal projective scheme

over a perfect field K of positive characteristic (cf. (4.6), (4.8)). In the spe-

cial situation in which K is algebraically closed we recover a result of [A],

(s. (4.7)).

Finally, we apply our bounds to projective varieties which have only

finitely many non-normal points, (s. (5.2)). In the special case of a sur-

face X with only finitely many non-normal points we see that the spaces

H1(X,L⊗n) have the same dimension for all n < 0 if the so called sectional

genus σL(X) of X with respect to L is smaller than the dimension of the

complete linear system |L|, (s. (5.5)). In particular this shows the vanishing

of H1
(

X,OX (−1)
)

if X ⊆ P
r is a nondegenerate normal projective surface

with sectional genus σ(X) < r. In many cases this latter vanishing result

allows to avoid the use of the vanishing theorems of Kodaira [K] or Mum-

ford [Mu] and thus for example gives rise to a characteristic-free approach

to projective surfaces of low degree: An application to sectionally rational

surfaces immediately shows that the main results of [B-V] remain valid in

arbitrary characteristic. Further use of this idea is made in [B2], [B3].

Let us recall, that in general, for an ample invertible sheaf L on a normal

projective surface X, H1(X,L⊗−1) need not vanish (s. [Mu]), even if X is

smooth (s. [Ra]). Observe also that in [L-R] an example of a smooth projec-

tive variety X ⊆ P
r of dimension 6 is constructed for which H1

(

X,OX(−1)
)

6=

0. On the other hand it seems that even the powerful vanishing results found

in [D-I] and [E-V] and the new techniques developed in [S] do not give the

vanishing of H1
(

X,OX(−1)
)

for smooth projective varieties of dimension

≤ 5 in arbitrary characteristic.

As for unexplained terminology we refer to [H2] (concerning algebraic

geometry) and to [M] (concerning commutative algebra).

We thank the referee for his valuable suggestions and hints.
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§2. The Frobenius sequence

Let R =
⊕

n∈N0
Rn be a positively graded noetherian domain such

that R0 is essentially of finite type over a given perfect ground field K of

characteristic p > 0. Choose some positive integer e ∈ N and let R(pe) :=
⊕

n∈N0
Rnpe ⊆ R be the pe-th Veronesean subring of R. Moreover, consider

the e-th Frobenius homomorphism

Fe : R −→ R(pe); (x 7−→ xpe

, ∀x ∈ R).(2.1)

Remark 2.2. Observe that Fe : R → R(pe) is an injective (graded) ho-

momorphism between positively graded noetherian rings. By our hypotheses

R is essentially of finite type over the perfect field K, so that the homo-

morphism Fe is in addition finite.

For a graded R-module M =
⊕

n∈Z
Mn, let M (pe) :=

⊕

n∈Z
Mnpe de-

note the pe-th Veronesean transform of M , considered as an R(pe)-module

in the obvious way. Moreover, consider the graded R-module

M [e] := M (pe)�Fe
,(2.3)

where · �Fe
denotes scalar restriction to R by means of the homomorphism

Fe : R → R(pe).

Remark 2.4. A) Observe that the assignment M 7→ M [e] extends nat-

urally to graded homomorphisms and thus gives rise to covariant exact

functor · [e] : ∗C(R) → ∗C(R) from the category ∗C(R) of graded R-modules

to itself. Moreover, by (2.2) this functor preserves the property of being a

finitely generated (graded) module.

B) For each n ∈ N let · n : ∗C(R) → C(R0) denote the covariant exact

functor from the category of graded R-modules to the category C(R0) of R0-

modules, which is given by taking n-th homogeneous parts. Then, for each

graded R-module M and for each n ∈ Z we have (M [e])n = (Mnpe)�Fe,0
,

where · �Fe,0
denotes scalar restriction to R0 by means of the restricted

Frobenius homorphism in degree 0, that is Fe,0 := Fe�R0
: R0 → (R(pe))0 =

R0, (x 7→ xpe
).

Definition and Remark 2.5. Keep the previous hypotheses and no-

tation. Observe that R[e] carries a natural ring structure inherited from R(pe)
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and that the homomorphism of rings Fe : R → R[e] is a graded homomor-

phism between finitely generated and graded R-modules.

A) Let C[e] be the cokernel of the homomorphism Fe : R → R[e], a

finitely generated and graded R-module. The induced graded short exact

sequence

(i) 0 −→ R
Fe−→ R[e] −→ C[e] −→ 0

is called the e-th arithmetic Frobenius sequence of R.

B) Keep the above notations and set in addition Y := Proj(R). Let

K[e] := (C[e])
∼ be the coherent sheaf of OY -modules induced by C[e] and

let O
[e]
Y denote the coherent sheaf of OY -modules induced by R[e]. Observe

that O
[e]
Y carries a natural structure of sheaf of OY -algebras which results

from the fact that Fe : R → R[e] is a homomorphism of rings. Now, the

induced short exact sequence of coherent sheaves of OY -modules

(ii) 0 −→ OY
F̃e−→ O

[e]
Y −→ K[e] −→ 0

is called the e-th (geometric) Frobenius sequence of R. It incorporates the

“iterated Frobenius morphism” F̃e : OY → OY (cf. [H1, §6, pg. 128]) into

a short exact sequence, which shall play a crucial rôle in our arguments.

For y ∈ Y , the corresponding short exact sequence of finitely generated

OY,y-modules

(iii) 0 −→ OY,y
(F̃e)y
−→ (O

[e]
Y )y −→ (K[e])y −→ 0

ist called the e-th (local) Frobenius sequence of R at y.

The splitting of the Frobenius sequence is known to furnish vanish-

ing statements of Kodaira type in positive characteristic, (s. [Me-Ram]).

Clearly, in our situation we cannot expect the Frobenius sequence to be

split. As a certain substitute for the splitting in question we now shall

prove that the cokernel K[e] of F̃e is torsion-free, provided that Y is normal.

Lemma 2.6. Let the notations and hypotheses be as in (2.5) and let

y ∈ Y = Proj(R) be a regular point. Then, the e-th local Frobenius sequence

of R at y

0 −→ OY,y
(F̃e)y
−→ (O

[e]
Y )y −→ (K[e])y −→ 0
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splits. Moreover if L = κ(Y ) is the field of rational functions of Y , the OY,y-

module (O
[e]
Y )y is free of rank r := [L : Lp]e (< ∞) and the OY,y-module

(K[e])y is free of rank r − 1.

Proof. Keep in mind that (O
[e]
Y )y carries a natural ring structure and

that we may naturally identify this ring with OY,y. Under this identification,

(F̃e)y : OY,y → (O[e])y corresponds to the e-th Frobenius map fe : OY,y →

OY,y , (a 7→ ape

).

By our assumptions, OY,y is a regular local ring and so the flatness-

criterion of Kunz [Ku] shows that the finite homomorphism fe : OY,y →

OY,y is flat and hence splits. Therefore the e-th local Frobenius sequence of

R at y splits and (K[e])y becomes a free OY,y-module of rank r − 1 where

r = [L : Lp]e.

Proposition 2.7. Let the notations and hypotheses be as in (2.5) and

let y ∈ Y = Proj(R) be a normal point. Then, the stalk (K[e])y is a torsion-

free OY,y-module.

Proof. By our hypothesis, OY,y is a noetherian normal local ring. Let

p ∈ AssOY,y
((K[e])y). We have to show that height(p) = 0. The localized

Frobenius sequence 0 → (OY,y)p → ((O
[e]
Y )y)p → ((K[e])y)p → 0 shows

that depth((O
[e]
Y )y)p = 0 or that depth(OY,y)p ≤ 1. As R[e] is a torsion

free R-module, (O
[e]
Y )y is a torsion free module over OY,y. As OY,y is a

normal noetherian ring, it satisfies the second Serre condition S2. Altogether

we thus obtain that height(p) ≤ 1. Now, let z ∈ Y be the point which

corresponds to p, so that y ∈ {z} and OY,z = (OY,y)p. As OY,y is normal,

height(p) ≤ 1 implies that OY,z is a regular ring and therefore we get by (2.6)

that (K[e])z ∼= ((K[e])y)p is a free module over (OY,y)p. As p ∈ Ass((K[e])y)

we thus get p ∈ Ass(OY,y) and hence our claim.

Corollary 2.8. Let the notations and hypotheses be as in (2.5) and

assume that Y = Proj(R) is normal. Then K[e] is a torsion-free sheaf of

OY -modules.

§3. Structure of the second local cohomology module

Let R =
⊕

n∈N0
Rn be as in Section 2 and let R+ :=

⊕

n∈N
Rn be the

irrelevant ideal of R. For an R-module M and for i ∈ N0 let DR+(M) :=
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lim
−→

t

HomR((R+)t,M) denote the R+-transform of M and let H i
R+

(M) de-

note the i-th local cohomology module of M with respect to R+. Keep in

mind that the R+-transform and local cohomology with respect to R+ give

rise respectively to a left exact covariant functor DR+ : ∗C(R) → ∗C(R)

from the category of graded R-modules to itself or a universal δ-functor

(Hi
R+

)i∈N0 : ∗C(R) → ∗C(R).

Remark 3.1. A) Let M be a graded R-module. Remember that there

is a natural exact sequence of graded R-modules

0 −→ H0
R+

(M) −→ M
ηR+
−→ DR+(M) −→ H1

R+
(M) −→ 0

and that there are natural isomorphisms of graded R-modules RiDR+(M) ∼=
H i+1

R+
(M) for all i ∈ N, where Ri denotes the i-th right derivation of co-

variant functors in the category C(R) or in the category ∗C(R) (s. [B-S,

Chap. 13]).

B) Let e ∈ N. Then, in the notations of Section 2 we have
√

Fe(R+)R(pe) = (R(pe))+ = (R+)(p
e). Now, let M be a graded R-module

and keep in mind that taking the ideal transform or local cohomology of

M with respect to graded ideals commutes with graded scalar restriction

(s. [B-S, 13.1.3, 13.1.6]) and with Veronesean transforms (s. [B-S, 12.4.6]).

We thus get natural isomorphisms of graded R-modules

DR+(M [e]) = DR+

(

M (pe)�Fe

)

∼= DFe(R+)R(pe)

(

M (pe)
)

�Fe

= D
(R+)(p

e)

(

M (pe)
)

�Fe
∼= DR+(M)(p

e)�Fe
= DR+(M)[e] ,

hence

(i) DR+

(

M [e]
)

∼= DR+(M)[e]

and, similarly

(ii) H i
R+

(

M [e]
)

∼= H i
R+

(M)[e] , for all i ∈ N0.

C) Fix e ∈ N. If we apply the cohomology sequence derived from the

functor DR+ to the e-th arithmetric Frobenius sequence (2.5) A) (i) and

observe the natural isomorphism R1DR+(R) ∼= H2
R+

(R) of (3.1) A) and the

above natural isomorphisms (3.1) B) (i) and (ii), we get the following exact

sequence of graded R-modules

(iii)

0 −→ DR+(R) −→ DR+(R)[e] −→ DR+(C[e])
δe−→ H2

R+
(R) −→ H2

R+
(R)[e].
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So, for each n ∈ Z, (2.4) B) gives rise to an exact sequence of R0-modules

0 −→ DR+(R)n −→
(

DR+(R)npe

)

�Fe,0
−→ DR+(C[e])n(iv)

δe,n
−→ H2

R+
(R)n −→

(

H2
R+

(R)npe

)

�Fe,0
.

Lemma 3.2. Assume that Y := Proj(R) is normal and that height(R+)

> 2. Let e ∈ N and let L denote the field of rational functions κ(Y ) on Y .

Then, the graded R-module DR+(C[e]) is finitely generated and torsion-free

of rank [L : Lp]e−1. Moreover, the R-modules H i
R+

(R) are finitely generated

for i = 1, 2.

Proof. As Y is normal, the sheaf R̃ = OY satisfies the second Serre

condition S2, so that depth(Rq) ≥ min{2,height(q)} for each prime q ∈

Proj(R). As R is essentially of finite type over a field, it is catenarian.

As moreover R is a domain and as height(R+) > 2 it follows easily that

depth(Rq)+height
(

(q+R+)/q
)

≥ 3 for all q ∈ Proj(R). So, by (the graded

version of) Grothendiecks Finiteness Theorem for local cohomology (s. [B-

S, 13.1.7]), the R-modules H i
R+

(R) are finitely generated for all i ≤ 2. But

obviously, now the four term exact sequence of (3.1) A) applied to M = R

tells us that DR+(R) is finitely generated. So, by the observations made

in (2.4) A), the R-module DR+(R)[e] is finitely generated. By the exact

sequence (3.1) C) (iii) the R-module DR+(C[e]) is finitely generated.

Observe that in view of the exact sequence (3.1) A), the exactness of

the functor ·̃ and the fact that R+-torsion modules induce the zero sheaf,

we may write DR+(C[e])
∼ ∼= (C[e])

∼.

Now, by (2.8) the sheaf of OY -modules DR+(C[e])
∼ ∼= (C[e])

∼ = K[e]

is torsion free, so that AssR

(

DR+(C[e])
)

⊆ {0} ∪ Var(R+). As DR+(C[e])

has no R+-torsion (s. [B-S, 2.2.8]) we thus see that DR+(C[e]) is torsion-

free. Finally, by (2.6) we get that rankR+

(

DR+(C [e])
)

= rankOY,0

(

(K[e])0
)

=

[L : Lp]e − 1.

Lemma 3.3. Assume that Y := Proj(R) is normal and that height(R+)

> 2. Then:

a) There is some e0 ∈ N such that the homomorphism δe,n : DR+(C[e])n
→ H2

R+
(R)n in the sequence (3.1) C) (iv) is an isomorphism for all

e ≥ e0 and all n < 0.
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b) The R0-modules H2
R+

(R)n are torsion-free for all n < 0.

Proof. By (3.2) and (3.1) A) we know that H2
R+

(R) and DR+(R) are

finitely generated R-modules. So, there is a t ∈ N such that H2
R+

(R)m =

DR+(R)m = 0 for all m ≤ −t. Let e0 ∈ N be such that pe0 ≥ t and let

e ≥ e0. Then the homomorphism δe,n in the exact sequence (3.1) C) (iv) is

an isomorphism for each n < 0. This proves claim a). Claim b) is immediate

from claim a) and the fact that DR+(C[e]) is torsion-free, which was shown

in (3.2).

Now, let L0 be the quotient field of the domain R0, e.g. the field κ(Y0) of

rational functions on the affine scheme Y0 := Spec(R0). Let M be a finitely

generated and graded R-module. As H i
R+

(M)n is a finitely generated R0-

module for all n ∈ Z and all i ∈ N0, it makes sense to introduce the numbers

hi
R+

(M)n := dimL0(L0 ⊗R0 H i
R+

(M)n)(3.4)

for all such n and i.

Remark 3.5. A) Let R′
0 be a flat and noetherian R0-algebra. Then

R′
0 ⊗R0 R carries a natural structure of positively graded ring, by a grading

which is given by (R′
0 ⊗R0 R)n = R′

0 ⊗R0 Rn for all n ∈ Z. As R is of

finite type over R0, the ring R′
0 ⊗R0 R is of finite type over R′

0 and hence is

noetherian. Moreover, if M =
⊕

n∈Z
Mn is a graded R-module, the R′

0 ⊗R0

R-module (R′
0 ⊗R0 R) ⊗R M = R′

0 ⊗R0 M carries a natural grading, given

by (R′
0 ⊗R0 M)n = R′

0 ⊗R0 Mn for all n ∈ Z.

B) Keep the hypotheses and notation of A). Then, the graded ver-

sion of the flat base change property for local cohomology induces natural

isomorphisms of R′
0-modules (R′

0 ⊗R0 H i
R+

(M))n = R′
0 ⊗R0 H i

R+
(M)n ∼=

H i
(R′

0⊗R)+
(R′

0 ⊗R M)n for all i ∈ N0 and all n ∈ Z (s. [B-S, 14.2.6]). If we

apply this in the case where R′
0 = L′

0 is an arbitrary extension field of L0,

we thus get

hi
R+

(M)n = dimL′

0

(

L′
0 ⊗R0 H i

R+
(M)n

)

= dimL′

0

(

H i
(L′

0⊗R0
R)+

(L′
0 ⊗R0 M)n

)

= hi
(L′

0⊗R0
R)+

(L′
0 ⊗R0 M)n

for each finitely generated and graded R-module M and for all i ∈ N0 and

all n ∈ Z.
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Now, we shall attack the principal goal of this section: to give upper

bounds on the numbers h2
R+

(R)n for n < 0. We start with the following

auxiliary result:

Lemma 3.6. Assume that Y := Proj(R) is normal and that height(R+)

> 2. Let t ∈ N and let f ∈ Rt\{0}. Then

a) The multiplication homomorphism

f : H2
R+

(R)n −→ H2
R+

(R)n+t

is injective for all n < −t.

b) If in addition R0 is a perfect field, the multiplication homomorphism

f : H2
R+

(R)−t −→ H2
R+

(R)0

is injective, too.

Proof. Let n ∈ Z with n ≤ −t. For each e ∈ N we have the follow-

ing commutative diagram, in which the vertical maps are the connecting

homomorphism in the sequences (3.1) C) (iv).

DR+(C[e])n
f

−−−−−−−−→ DR+(C[e])n+t








y

δe,n









y

δe,n+t

H2
R+

(R)n
f

−−−−−−−−→ H2
R+

(R)n+t

By (3.2) we know that DR+(C[e]) is a torsion free R-module, so that the

upper horizontal map is injective. By (3.3) a) we may choose e ∈ N such

that δe,m is an isomorphism for all m < 0. This proves statement a).

Assume now that R0 is a perfect field. Then, the Frobenius homo-

morphism Fe,0 : R0 → R0 is an isomorphism so that DR+(R)0 and
(

DR+(R)0
)

�Fe,0
are R0-vector spaces of the same dimension (which is fi-

nite, as DR+(R) is a finitely generated R-module by (3.2) and (3.1) A)).

But now, the sequence (3.1) C) (iv), applied with n = 0, shows that the

map δe,0 is injective, and this proves statement b).

Lemma 3.7. Let V and W be non-zero vector spaces of finite dimen-

sion over an algebraically closed field K. Let r ∈ N and let l1, . . . , lr : V →

W be K-linear maps.
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a) If
∑r

i=1 αili : V → W is injective for all (α1, . . . , αr) ∈ Kr\{(0)},

then

dimK(W ) ≥ dimK(V ) + r − 1 .

b) If
∑r

i=1 αili : V → W is surjective for all (α1, . . . , αr) ∈ Kr\{(0)},

then

dimK(V ) ≥ dimK(W ) + r − 1.

Proof. [B1, (3.1), (3.2)].

Now, we are ready to prove the main result of this section.

Theorem 3.8. Assume that the generic fibre of the natural morphism

π : Y = Proj(R) −→ Y0 = Spec(R0)

is geometrically connected, geometrically normal and of dimension > 1. For

each t ∈ N, let rt := rankR0(Rt). Then:

a) For each t ∈ N with rt > 0 and for each n ∈ Z with n ≤ −t, we have

h2
R+

(R)n ≤ max
{

0, h2
R+

(R)n+t − rt + 1
}

.

b) If Y is in addition normal, then H2
R+

(R)n is a torsion-free R0-module

of rank h2
R+

(R)n for all n < 0. Moreover, if r1 > 1, then H2
R+

(R)n = 0

as soon as n ≤ min

{

−1,−
h2

R+
(R)0

r1 − 1

}

.

Proof. a): Fix some t ∈ N with rt > 0 and some n ∈ Z with n ≤ −t.

Let L′
0 be an algebraic closure of the quotient field L0 of R0. Then, the

graded ring R′ := L′
0 ⊗R0 R is a flat and integral extension of the graded

ring L0 ⊗R0 R =: R′′. Therefore height(R′
+) = height(R′′

+) = dim(Z) +

1 where Z := Proj(R′′) is the generic fibre of the morphism π : Y →

Y0. So height(R′
+) > 2. As Z → Spec(L0) is geometrically connected and

geometrically normal, we know that Y ′ := Proj(R′) ∼= Spec(L′
0)×Spec(L0) Z

is a connected and normal scheme over Y ′
0 := Spec(L′

0). In particular Y ′ is

integral. As R′ is flat and hence torsion-free over R, this shows that R′ is

an integral domain.

Keep in mind that R′
t
∼= L′

0 ⊗L0 (L0 ⊗R0 Rt) is a vector-space of dimen-

sion rt over L′
0.
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Now, choose a basis f ′
1, . . . , f

′
rt

of R′
t and keep in mind that R′

0 = L′
0

is an algebraically closed and hence perfect field and that Y ′ is normal. So,

by (3.6) the multiplication map
∑rt

i=1 αif
′
i : H2

R′

+
(R′)n → H2

R′

+
(R′)n+t is

injective whenever (α1, . . . , αrt) ∈ L′
0\{(0)}. So, (3.7) a) gives h2

R′

+
(R′)n ≤

max
{

0, h2
R′

+
(R′)n+t − rt +1

}

. In view of the equations given in (3.5) B) this

proves our claim.

b): Let Y in addition be normal. Then (3.3) b) shows that H2
R+

(R)n is

torsion-free over R0 for all n < 0. This allows to conclude by statement a),

applied repeatedly with t = 1.

Remark 3.9. If in (3.8) b) R0 is a perfect field, (3.6) b) allows to replace

min
{

−1,−
h2

R+
(R)0

r1 − 1

}

by −
h2

R+
(R)0

r1 − 1
.

§4. Ample invertible sheaves

Let X0 be an affine integral scheme which is essentially of finite type

over a perfect field K of positive characteristic p. Moreover let X be an

integral and projective scheme over X0 with surjective structure morphism

% : X → X0. Finally, let L be an ample invertible sheaf of OX -modules.

Notation and Remark 4.1. A) We use L∗ to denote the tensor al-

gebra
⊕

n≥0 L
⊗n so that L∗ is a sheaf of positively graded integral OX -

algebras. Moreover we shall consider the positively graded ring Γ(L∗) :=

Γ(X,L∗) =
⊕

n≥0 Γ(X,L⊗n) and the induced projective scheme Y (L) :=

Proj(Γ(L∗)). As L∗ is a sheaf of integral domains, Γ(L∗) is a domain and

Y (L) is an integral projective scheme over Spec(Γ(X,OX )) =: Y0. Finally,

if F is a sheaf of OX -modules, we denote by Γ(F ,L∗) the graded Γ(L∗)-

module
⊕

n≥0

Γ(X,F ⊗OX
L⊗n) .

B) By [H2, II, Thm. 7.6] there is some r ∈ N such that L⊗r is very ample

with respect to the to the structure morphism %. But this means that the r-

th Veronesean subring Γ(L∗)(r) = Γ
(

(L⊗r)∗
)

=
⊕

n≥0 Γ(X,L⊗rn) is noethe-

rian and that for each coherent sheaf of OX -modules F the r-th Verone-

sean transform Γ(F ,L∗)(r) = Γ
(

F , (L⊗r)∗
)

=
⊕

n≥0 Γ(X,F ⊗OX
L⊗rn) is

finitely generated over Γ(L∗)(r) [G, Cor. (2.3.2)]. If we apply this to the
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coherent sheaves L⊗i ⊗F we then get that the Γ(L∗)(r)-module Γ(F ,L∗) =
⊕r−1

i=0 Γ
(

L⊗i ⊗ F , (L⊗r)∗
)

=
⊕r−1

i=0 Γ(L⊗i ⊗ F ,L∗)(r) is finitely generated.

If we apply this with F = OX , we see that Γ(L∗) is a finite integral ex-

tension of Γ(L∗)(r). In particular we now see that Γ(L∗) is noetherian and

that Γ(F ,L∗) is a finitely generated Γ(L∗)-module for each coherent sheaf

of OX -modules F .

Remark 4.2. (cf. [G]) Keep the previous hypotheses and notation.

Then, there is a natural isomorphism of schemes.

αL :=
(

αL, α#
L

)

: (X,OX ) −→
(

Y (L),OY (L)

)

.

Now, let k ∈ Z and let F be a quasi-coherent sheaf of OX-modules. Then

we have a natural isomorphism of sheaves of OY (L)-modules

η
(k)
F ,L = η(k) :

(

Γ(F ,L∗)(k)
)∼ ∼=

−→ (αL)∗
(

F ⊗OX
L⊗k

)

.

in which · (k) is used to denote the k-th shift functor on graded Γ(L∗)-

modules.

Remark 4.3. Keep the previous notation and hypothesis. Let F be a

quasi-coherent sheaf of OX -modules and let k ∈ Z and i ∈ N. Then, there

is a natural isomorphism of Γ(X,OX )-modules

H i(X,F ⊗ L⊗k) ∼= H i+1
Γ(L∗)+

(

Γ(F ,L∗)
)

k
,

induced by the isomorphism η(k) of (4.2) and the Serre-Grothendieck cor-

respondence (s. [B-S, 20.4.4]).

For i ∈ N0 and for an arbitrary coherent sheaf G of OX -modules, we

use the notation

hi(X,G) := dimκ(Y0)

(

κ(Y0) ⊗Γ(X,OX) H i(X,G)
)

,(4.4)

where κ(Y0) is the field of rational functions on the scheme Y0 :=

Spec(Γ(X,OX )), (s. (4.1) A)).

Now, we are ready to prove the main result of this section. We assume

that X, X0 and % : X → X0 are as introduced at the beginning of this

section.
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Theorem 4.5. Assume that the generic fibre of the structural mor-

phism % : X → X0 is geometrically connected, geometrically normal and of

dimension > 1. Let L be an ample invertible sheaf of OX -modules. Then:

a) For each t ∈ N with h0(X,L⊗t) > 0 and for each n ∈ Z with n ≤ −t,

we have

h1(X,L⊗n) ≤ max
{

0, h1
(

X,L⊗(n+t)
)

− h0
(

X,L⊗t
)

+ 1
}

.

b) If X is in addition normal, then H1(X,L⊗n) is a torsion-free

Γ(X,OX )-module of rank h1(X,L⊗n) for all n < 0. If h0(X,L) > 1,

then H1(X,L⊗n) vanishes as soon as n ≤ min
{

−1,−
h1(X,OX )

h0(X,L) − 1

}

.

Proof. By our hypothesis, Γ(X,OX ) is a finite integral extension do-

main of Γ(X0,OX0). So, in view of (4.2) and using the notation of (4.1) A),

we get the following commutative diagram of schemes

X
%

−−−−−−−−−−→ X0

αL









y

∼=

x









ν

Y (L) = Proj(Γ(L∗))
π

−−−−−−→ Spec(Γ(L∗)0) = Y0

in which the morphism ν is finite.

As Γ(L∗)0 = Γ(X,OX ) is an integral extension domain of Γ(X0,OX0),

we have

κ(Y0) = κ(X0) ⊗Γ(X0,OX0
) Γ(L∗)0 ,

where κ(X0) denotes the field of rational functions on X0. So the generic

fibre

Fπ := Spec
(

κ(Y0)
)

×Y0 Y = Proj
(

κ(Y0) ⊗Γ(L∗)0 Γ(L∗))

of π may be written as

Proj
(

κ(X0) ⊗Γ(X0,OX0
) Γ(L∗)) ∼= Spec

(

κ(X0)) ×X0 Y (L)

∼= Spec
(

κ(X0)
)

×X0 X =: F%

and thus is X0-isomorphic to the generic fibre F% of %. This induces, that

the generic fibre Fπ of π is of dimension > 1. Now, let L′ be an arbitrary
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algebraic extension field of κ(Y0). Then L′ is an algebraic extension field of

κ(X0) and therefore by our hypothesis on F% we see that

Spec(L′) ×Spec(κ(X0)) Fπ
∼= Spec(L′) ×Spec(κ(X0)) F%

is a normal and integral scheme. Moreover, the natural morphism

Spec(L′) ×Spec(κ(Y0)) Fπ −→ Spec(L′) ×Spec(κ(X0)) Fπ

is a closed immersion between two schemes of the same dimension. Hence

it is an isomorphism. So Spec(L′) ×Spec(κ(Y0)) Fπ is a normal and integral

scheme. This shows that the generic fibre of π is geometrically connected

and geometrically normal.

Next observe that Γ(L∗)t = H0(X,L⊗t) is a torsion-free Γ(L∗)0-module

of rank h0(X,L⊗t) for all t ∈ N. Finally (4.3) gives us isomorphisms of

Γ(L∗)0-modules H1(X,L⊗n) ∼= H2
Γ(L∗)+

(

Γ(L∗)
)

n
and hence h1(X,L⊗n) =

h2
Γ(L∗)+

(Γ(L∗))n for all n ∈ Z.

Therefore we get our statements if we apply (3.8) with R = Γ(L∗).

Corollary 4.6. Let X be a geometrically connected and geometrically

normal projective scheme of dimension > 1 over a perfect field K of positive

characteristic p. Let L be an ample invertible sheaf of OX-modules. Then:

a) For each t ∈ N with h0(X,L⊗t) > 0 and for each n ∈ N with n ≤ −t

we have

h1(X,L⊗n) ≤ max
{

0, h1(X,L⊗(n+t)) − h0(X,L⊗t) + 1
}

.

b) If h0(X,L) > 1, then H1(X,L⊗n) = 0 for all integers

n ≤ −
h1(X,OX )

h0(X,L) − 1
.

Proof. Clear from (4.5) and (3.9).

Corollary 4.7. (s. [A, (5.6), (5.8)]) Let X be a normal projective va-

riety of dimension > 1 over an algebraically closed field K of positive char-

acteristic p. Let L be an ample invertible sheaf of OX -modules. Then:

a) For each t ∈ N with h0(X,L⊗t) > 0 and for each n ∈ Z with n ≤ −t

we have

h1(X,L⊗n) ≤ max
{

0, h1(X,L⊗(n+t)) − h0(X,L⊗t) + 1
}

.
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b) If h0(X,L) > 1, then H1(X,L⊗n) = 0 for all integers

n ≤ −
h1(X,OX )

h0(X,L) − 1
.

Proposition 4.8. Let X be as in (4.6) and let D be an effective ample

Cartier divisor on X. Then, the restriction homomorphism Γ(X,OX) →

Γ(X,OD) is an isomorphism.

Proof. Let L := L(D) be the invertible sheaf associated to D. Then,

L is ample and as D is effective, we have a short exact sequence of coher-

ent sheaves of OX -modules 0 → L⊗−1 ϕ
−→ OX → OD → 0. If we apply

cohomology we thus see, that it is sufficient to prove that the induced ho-

momorphism H1(X,ϕ) : H1(X,L⊗−1)
ϕ

−→ H1(X,OX ) is injective.

To do so, consider the induced monomorphism

0 −→ Γ(X,OX )
Γ(X,ϕ⊗L)
−−−−−−→Γ(X,L).

Then, f := Γ(X,ϕ ⊗ L)(1) ∈ Γ(X,L) = Γ(L∗)1, f 6= 0 and ϕ corresponds

to the multiplication map f : H2
Γ(L∗)+

(Γ/(L∗))−1 → H2
Γ(L∗)+

(Γ(L∗))0 un-

der the natural isomorphisms of (4.3). Now, we may conclude by (3.6) b),

applied with R = Γ(L∗), Y = Y (L) and t = 1.

Corollary 4.9. (s. [Mu, Prop. 3], [A, (5.17)]) Let X be a normal

projective variety of dimension > 1 over an algebraically closed field K

of positive characteristic p. Let D be an effective ample Cartier divisor on

X. Then Γ(X,OD) = K.

§5. Applications to projective varieties

In this section, we apply the previous results to ample invertible sheaves

over projective varieties of dimension > 1 over an algebraically closed field

K of positive characteristic. Our main interest is focused to the case of

surfaces.

For a reduced and irreducible variety X of dimension > 1 over an

algebraically closed field K we introduce the invariant.

e1(X) :=
∑

p∈X, p closed

lengthOX,p

(

H1
mX,p

(OX,p)
)

,(5.1)

which is finite and which counts in a “weighted way” the number of (closed)

points p ∈ X in which X has depth ≤ 1 (s. [B, (5.7)]).
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Throughout this section, let K be an algebraically closed field of posi-

tive characteristic p.

Proposition 5.2. Let X be a projective variety of dimension > 1 over

K. Assume that X has only finitely many non-normal points. Let L be an

ample invertible sheaf of OX -modules such that h0(X,L) ≥ 1. Then

a) e1(X) ≤ h1(X,L⊗n) ≤ max
{

e1(X), h1(X,L⊗(n+1)) − h0(X,L) + 1
}

for all negative integers n.

b) e1(X) ≤ h1(X,L⊗n) ≤ max
{

e1(X), h1(X,OX ) + n(h0(X,L)− 1)
}

for

all n ≤ 0.

Proof. Let ν : X̃ → X be the normalization of X and let Z ⊆ X be

the finite set of non-normal points of X. Then, we have an exact sequence

of coherent sheaves of OX-modules 0 → OX
ν#

−→ ν∗OX̃ → F → 0 with

supp(F) = Z.

Now, let p ∈ X be an arbitrary closed point. As X̃ is normal, the direct

image ν∗OX̃ has the second Serre property S2, so that H1
mX,p

(

(ν∗OX̃)p
)

= 0.

As dim(Z) = 0 we moreover have Fp
∼= H0

mX,p
(Fp). So, passing to stalks in

the above exact sequence and applying local cohomology at all closed points

p ∈ X we see that lengthOX
(F) = e1(X). As L is invertible we thus obtain

lengthOX

(

F ⊗OX
L⊗n

)

= e1(X) and hence h0(X,F ⊗OX
L⊗n) = e1(X) and

moreover H1(X,F ⊗OX
L⊗n) = 0 for all n ∈ Z.

Moreover, for each n ∈ Z we get an exact sequence

(∗)

0 −→ H0(X,L⊗n) −→ H0(X, ν∗OX̃ ⊗OX
L⊗n) −→ H0(X,F ⊗Ox L⊗n)

−→ H1(X,L⊗n) −→ H1(X, ν∗OX̃ ⊗OX
L⊗n) −→ 0 .

By use of the projection formula [H2, II Ex. 5.1 (d)], we have

ν∗OX̃ ⊗OX
L⊗n ∼= ν∗(OX̃ ⊗O

X̃
ν∗(L⊗n)) ∼= ν∗ν

∗(L⊗n) ∼= ν∗((ν
∗L)⊗n) .

As ν is an affine morphism we thus get isomorphisms H i(X, ν∗OX̃ ⊗OX

L⊗n) ∼= H i(X̃, (ν∗L)⊗n) for all i ∈ N0 and all n ∈ Z, (s. [H2, III Ex. 4.1]).

As ν is finite and surjective, ν∗L is an ample invertible sheaf of OX̃ -modules

(s. [H2, III Ex. 5.7 (d)]).

So, first of all H0(X, ν∗OX̃ ⊗OX
L⊗n) vanishes for n < 0 and equals

K for n = 0. But now, the sequences (∗) show that h1(X,L⊗n) = e1(X) +

h1(X̃, (ν∗L)⊗n) for all n ≤ 0.
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Moreover, if we apply the sequence (∗) with n = 1 we see that

h0(X̃, ν∗L) ≥ h0(X,L). Therefore we get our claims if we apply (4.7) a)

to the normal projective variety X̃ and the ample invertible sheaf ν∗L with

t = 1.

For a coherent sheaf F over a projective variety X let χ(F) denote the

characteristic of F so that χ(F) =
∑

i≥0(−1)ihi(X,F).

Definition and Remark 5.3. A) Let X be a projective surface over

K and let L be an ample invertible sheaf of OX -modules. We define the

sectional genus of X with respect to L by

σL(X) := χ(L⊗−1) − χ(OX) + 1 .

As X is a surface, σL(X) coincides indeed with the sectional genus of the

pair (X,L) as introduced by Fujita in [F, pg. 25].

B) Let f ∈ Γ(X,L)\{0}. Then, there is an effective divisor Df on X

with L = L(Df ) and we have an exact sequence

0 −→ L⊗−1 f ·
−→ OX −→ ODf

−→ 0

which tells us that

σL(X) = −χ(ODf
) + 1 = h1(Df ,ODf

) − h0(Df ,ODf
) + 1 .

If X is normal, (4.9) gives h0(Df ′ODf
) = h0(X,ODf

) = 1 and so we get

σL(X) = h1(Df ,ODf
) ≥ 0 if h0(X,L) > 0.

C) Assume now that L is very ample, so that it occurs as the twisting

sheaf of some non-degenerate closed immersion X
i

↪→ P
r
K . If we choose f ∈

Γ(X,L)\{0} generically, then Df is a generic hyperplane section of X in P
r
K

and thus is reduced and irreducible by Bertini. Therefore h0(Df ,ODf
) = 1

and it follows again that σL(X) = h1(Df ,ODf
), but this time without

the assumption that X is normal. In particular σL(X) coincides with the

arithmetic genus of the generic hyperplane section Df and thus is nothing

else than the usual sectional genus of X with respect to the embedding

i : X ↪→ P
r
K .

Proposition 5.4. (s. [A, (5.19)]) Let X be a normal projective surface

over K. Let L be an ample invertible sheaf of OX -modules such that 0 ≤

σL(X) < h0(X,L) − 1. Then:
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a) H1(X,L⊗n) = 0 for all n < 0.

b) H2(X,L⊗n) = 0 for all n ≥ 0.

c) h1(X,OX ) + h2(X,L⊗−1) = σL(X).

Proof. By our hypothesis we have Γ(X,L) 6= 0. Choose f ∈

Γ(X,L)\{0} arbitrarily. As – in the notations of (5.3) B) – we have H0(X,L⊗−1) =

H2(Df ,ODf
) = 0, the short exact sequence of (5.3) B) together with (4.9)

gives rise to an exact sequence

0 −→ H1(X,L⊗−1)
f ·
−→ H1(X,OX ) −→ H1(Df ,ODf

)

−→ H2(X,L⊗−1)
f ·
−→ H2(X,OX ) −→ 0 .

By (5.3) B) we have h1(Df ,ODf
) = σL(X) so that h1(X,OX )−h1(X,L⊗−1)

and h2(X,L⊗−1)−h2(X,OX) are both ≤ σL(X) < h0(X,L)−1. If we make

run f through all of Γ(X,L)\{0} we now may conclude from (3.7) a) that

H1(X,L⊗−1) = 0 and from (3.7) b) that H2(X,OX ) = 0. Now, the above

sequence gives statement c). In particular we have h1(X,OX ) ≤ σL(X) <

h0(X,L)−1 and so, statement a) follows from (4.7) b). Finally, statement b)

is a consequence of the epimorphisms H2(X,L⊗n)
f

−→ H2(X,L⊗(n+1)) → 0

for all n ∈ Z and all f ∈ Γ(X,OX)\{0}.

Corollary 5.5. Let X be a projective surface over K which has only

finitely many non-normal points and let e1(X) be as in (5.1). Assume that

0 ≤ σL(X) < h0(X,L) − 1. Then:

a) h1(X,L⊗n) = e1(X) for all n < 0.

b) h2(X,L⊗n) = 0 for all n ≥ 0.

c) h1(X,OX ) + h2(X,L⊗−1) = σL(X) + e1(X).

Proof. Let ν : X̃ → X be the normalization of X and let Z ⊆ X be the

finite set of non-normal points of X and consider the short exact sequence

0 → OX
ν#

−→ OX̃ → F → 0 in which F is a coherent sheaf with support Z

and of length e1(X) as we have seen in the proof of (5.2). We know already

from that same proof that ν∗L is an ample invertible sheaf of OX̃ -modules

and that hi(X, ν∗OX̃ ⊗OX L⊗n) = hi(X̃, (ν∗L)⊗n) for all i ∈ N0 and all

n ∈ Z. So, we may apply cohomology to the exact sequences

0 −→ L⊗n −→ ν∗OX̃ ⊗OX
L⊗n −→ F ⊗OX

L⊗n −→ 0
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in order to get h2(X̃, (ν∗L)⊗n) = h2(X,L⊗n) for all n ∈ Z. Moreover we

have h0(X, (ν∗L)⊗n) = h0(X,L⊗n) = 0 for all n ≤ 0. Finally we know from

the proof of (5.2) that h1(X,L⊗n) = e1(X) + h1(X̃, (ν∗L)⊗n) for all n ≤ 0.

Thus, we get

σν∗L(X̃) = χ((ν∗L)⊗−1) − χ(OX̃) + 1

= h2(X,L⊗−1) −
(

h1(X,L⊗−1) − e1(X)
)

− h2(X,OX ) +
(

h1(X,OX ) − e1(X)
)

− 1 + 1

= χ(L⊗−1) − χ(OX) + 1 = σL(X) .

Finally, if we apply the sequence (∗) of the proof of (5.2) with n = 1, we

see that h0(X̃, ν∗L) ≥ h0(X,L) and hence that σν∗L(X̃) ≤ h0(X̃, ν∗L) − 1.

Now, we get our claims if we apply (5.4) to the normal surface X̃ and

the ample invertible sheaf of OX̃ -modules ν∗L.
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Zürich, 1996.

[B1] M. Brodmann, Bounds on the cohomological Hilbert functions of a projective

variety, Journal of Algebra, 109 (1987), 352–380.

[B2] M. Brodmann, Cohomology of certain projective surfaces with low sectional

genus and degree, Commutative Algebra, Algebraic Geometry and Computa-

tional Methods (D. Eisenbud, ed.), Springer, New York (1999), pp. 173–200.

[B3] M. Brodmann, Cohomology of surfaces X ⊆ � r with degree ≤ 2r−2, Commu-

tative Algebra and Algebraic Geometry (F. van Oystaeyen, ed.), M. Dekker

Lecture Notes 206, M. Dekker (1999), pp. 15–33.

[B-N] M. Brodmann and U. Nagel, Bounding cohomological Hilbert functions by hy-

perplane sections, Journal of Algebra, 174 (1995), 323–348.

[B-S] M. Brodmann and R. Y. Sharp, Local cohomology – An algebraic introduction

with geometric applications, Cambridge Studies in Advanced Mathematics 60,

Cambridge University Press, 1998.

[B-V] M. Brodmann and W. Vogel, Bounds for the cohomology and the Calstelnuovo

regularity of certain surfaces, Nagoya Math. Journal, 131 (1993), 109–126.
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