A BOUND ON CERTAIN LOCAL COHOMOLOGY MODULES AND APPLICATION TO AMPLE DIVISORS

CLAUDIA ALBERTINI ${ }^{1}$ and MARKUS BRODMANN

Abstract

We consider a positively graded noetherian domain $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ for which R_{0} is essentially of finite type over a perfect field K of positive characteristic and we assume that the generic fibre of the natural morphism $\pi: Y=\operatorname{Proj}(R) \rightarrow Y_{0}=\operatorname{Spec}\left(R_{0}\right)$ is geometrically connected, geometrically normal and of dimension >1. Then we give bounds on the "ranks" of the n-th homogeneous part $H_{R_{+}}^{2}(R)_{n}$ of the second local cohomology module of R with respect to $R_{+}:=\bigoplus_{m>0} R_{m}$ for $n<0$. If Y is in addition normal, we shall see that the R_{0}-modules $H_{R_{+}}^{2}(R)_{n}$ are torsion-free for all $n<0$ and in this case our bounds on the ranks furnish a vanishing result. From these results we get bounds on the first cohomology of ample invertible sheaves in positive characteristic.

§1. Introduction

Let $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ a positively graded noetherian domain such that R_{0} is essentially of finity type over a field K of positive characteristic. Assume that the generic fibre of the natural morphism $Y:=\operatorname{Proj}(R) \xrightarrow{\pi}$ $Y_{0}:=\operatorname{Spec}\left(R_{0}\right)$ is geometrically connected, geometrically normal and of dimension >1. For all $n \in \mathbb{Z}$ let $H_{R_{+}}^{2}(R)_{n}$ denote the n-th homogeneous part of the second local cohomology module $H_{R^{+}}^{2}(R)$ of R with respect to the irrelevant ideal $R_{+}:=\bigoplus_{m>0} R_{m}$ of R.

Our aim is to bound "the size" of the R_{0}-module $H_{R_{+}}^{2}(R)_{n}$ for negative values of n. More precisely, if L_{0} is the quotient field of R_{0}, we give bounds on the numbers.

$$
h_{R_{+}}^{2}(R)_{n}:=\operatorname{dim}_{L_{0}}\left(L_{0} \otimes_{R_{0}} H_{R_{+}}^{2}(R)_{n}\right)
$$

in the range $n<0$ (cf. (3.8)). In addition, we shall see that the R_{0}-modules $H_{R_{+}}^{2}(R)_{n}$ are torsion-free for all $n<0$, whenever Y is normal. So, in this

[^0]case, we have bounded the rank of the R_{0}-modules $H_{R_{+}}^{2}(R)_{n}$ in the range $n<0$.

We apply the previous bounding result in the following geometric context: Let X be an integral projective scheme over an affine integral scheme X_{0} which is essentially of finite type over a perfect field K. Assume that the generic fibre of X over X_{0} is geometrically connected, geometrically normal and of dimension >1. Let \mathcal{L} be an ample invertible sheaf over X. Under these hypotheses we bound the first Serre-cohomology modules $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)$ in the range $n<0$, (s. (4.5)). In particular we consider the case where X is a geometrically connected and geometrically normal projective scheme over a perfect field K of positive characteristic (cf. (4.6), (4.8)). In the special situation in which K is algebraically closed we recover a result of [A], (s. (4.7)).

Finally, we apply our bounds to projective varieties which have only finitely many non-normal points, (s. (5.2)). In the special case of a surface X with only finitely many non-normal points we see that the spaces $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)$ have the same dimension for all $n<0$ if the so called sectional genus $\sigma_{\mathcal{L}}(X)$ of X with respect to \mathcal{L} is smaller than the dimension of the complete linear system $|\mathcal{L}|$, (s. (5.5)). In particular this shows the vanishing of $H^{1}\left(X, \mathcal{O}_{X}(-1)\right)$ if $X \subseteq \mathbb{P}^{r}$ is a nondegenerate normal projective surface with sectional genus $\sigma(X)<r$. In many cases this latter vanishing result allows to avoid the use of the vanishing theorems of Kodaira $[\mathrm{K}]$ or Mumford $[\mathrm{Mu}]$ and thus for example gives rise to a characteristic-free approach to projective surfaces of low degree: An application to sectionally rational surfaces immediately shows that the main results of $[\mathrm{B}-\mathrm{V}]$ remain valid in arbitrary characteristic. Further use of this idea is made in $\left[\mathrm{B}_{2}\right],\left[\mathrm{B}_{3}\right]$.

Let us recall, that in general, for an ample invertible sheaf \mathcal{L} on a normal projective surface $X, H^{1}\left(X, \mathcal{L}^{\otimes-1}\right)$ need not vanish (s. $\left.[\mathrm{Mu}]\right)$, even if X is smooth (s. [Ra]). Observe also that in [L-R] an example of a smooth projective variety $X \subseteq \mathbb{P}^{r}$ of dimension 6 is constructed for which $H^{1}\left(X, \mathcal{O}_{X}(-1)\right) \neq$ 0 . On the other hand it seems that even the powerful vanishing results found in $[\mathrm{D}-\mathrm{I}]$ and $[\mathrm{E}-\mathrm{V}]$ and the new techniques developed in $[\mathrm{S}]$ do not give the vanishing of $H^{1}\left(X, \mathcal{O}_{X}(-1)\right)$ for smooth projective varieties of dimension ≤ 5 in arbitrary characteristic.

As for unexplained terminology we refer to $\left[\mathrm{H}_{2}\right]$ (concerning algebraic geometry) and to $[\mathrm{M}]$ (concerning commutative algebra).

We thank the referee for his valuable suggestions and hints.

§2. The Frobenius sequence

Let $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ be a positively graded noetherian domain such that R_{0} is essentially of finite type over a given perfect ground field K of characteristic $p>0$. Choose some positive integer $e \in \mathbb{N}$ and let $R^{\left(p^{e}\right)}:=$ $\bigoplus_{n \in \mathbb{N}_{0}} R_{n p^{e}} \subseteq R$ be the p^{e}-th Veronesean subring of R. Moreover, consider the e-th Frobenius homomorphism

$$
\begin{equation*}
F_{e}: R \longrightarrow R^{\left(p^{e}\right)} ;\left(x \longmapsto x^{p^{e}}, \forall x \in R\right) . \tag{2.1}
\end{equation*}
$$

Remark 2.2. Observe that $F_{e}: R \rightarrow R^{\left(p^{e}\right)}$ is an injective (graded) homomorphism between positively graded noetherian rings. By our hypotheses R is essentially of finite type over the perfect field K, so that the homomorphism F_{e} is in addition finite.

For a graded R-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$, let $M^{\left(p^{e}\right)}:=\bigoplus_{n \in \mathbb{Z}} M_{n p^{e}}$ denote the p^{e}-th Veronesean transform of M, considered as an $R^{\left(p^{e}\right)}$-module in the obvious way. Moreover, consider the graded R-module

$$
\begin{equation*}
M^{[e]}:=\left.M^{\left(p^{e}\right)}\right|_{F_{e}}, \tag{2.3}
\end{equation*}
$$

where $\cdot \upharpoonright_{F_{e}}$ denotes scalar restriction to R by means of the homomorphism $F_{e}: R \rightarrow R^{\left(p^{e}\right)}$.

Remark 2.4. A) Observe that the assignment $M \mapsto M^{[e]}$ extends naturally to graded homomorphisms and thus gives rise to covariant exact functor . ${ }^{[e]}:{ }^{*} \mathcal{C}(R) \rightarrow{ }^{*} \mathcal{C}(R)$ from the category ${ }^{*} \mathcal{C}(R)$ of graded R-modules to itself. Moreover, by (2.2) this functor preserves the property of being a finitely generated (graded) module.
B) For each $n \in \mathbb{N}$ let $\cdot{ }_{n}:{ }^{*} \mathcal{C}(R) \rightarrow \mathcal{C}\left(R_{0}\right)$ denote the covariant exact functor from the category of graded R-modules to the category $\mathcal{C}\left(R_{0}\right)$ of $R_{0}-$ modules, which is given by taking n-th homogeneous parts. Then, for each graded R-module M and for each $n \in \mathbb{Z}$ we have $\left(M^{[e]}\right)_{n}=\left(M_{n p^{e}}\right) \Gamma_{F_{e, 0}}$, where $\cdot{ }_{F_{e, 0}}$ denotes scalar restriction to R_{0} by means of the restricted Frobenius homorphism in degree 0 , that is $F_{e, 0}:=F_{e} \upharpoonright_{R_{0}}: R_{0} \rightarrow\left(R^{\left(p^{e}\right)}\right)_{0}=$ $R_{0},\left(x \mapsto x^{p^{e}}\right)$.

Definition and Remark 2.5. Keep the previous hypotheses and notation. Observe that $R^{[e]}$ carries a natural ring structure inherited from $R^{\left(p^{e}\right)}$
and that the homomorphism of rings $F_{e}: R \rightarrow R^{[e]}$ is a graded homomorphism between finitely generated and graded R-modules.
A) Let $C_{[e]}$ be the cokernel of the homomorphism $F_{e}: R \rightarrow R^{[e]}$, a finitely generated and graded R-module. The induced graded short exact sequence

$$
\begin{equation*}
0 \longrightarrow R \xrightarrow{F_{e}} R^{[e]} \longrightarrow C_{[e]} \longrightarrow 0 \tag{i}
\end{equation*}
$$

is called the e-th arithmetic Frobenius sequence of R.
B) Keep the above notations and set in addition $Y:=\operatorname{Proj}(R)$. Let $\mathcal{K}_{[e]}:=\left(C_{[e]}\right)^{\sim}$ be the coherent sheaf of \mathcal{O}_{Y}-modules induced by $C_{[e]}$ and let $\mathcal{O}_{Y}^{[e]}$ denote the coherent sheaf of \mathcal{O}_{Y}-modules induced by $R^{[e]}$. Observe that $\mathcal{O}_{Y}^{[e]}$ carries a natural structure of sheaf of \mathcal{O}_{Y}-algebras which results from the fact that $F_{e}: R \rightarrow R^{[e]}$ is a homomorphism of rings. Now, the induced short exact sequence of coherent sheaves of \mathcal{O}_{Y}-modules

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{Y} \xrightarrow{\tilde{F}_{e}} \mathcal{O}_{Y}^{[e]} \longrightarrow \mathcal{K}_{[e]} \longrightarrow 0 \tag{ii}
\end{equation*}
$$

is called the e-th (geometric) Frobenius sequence of R. It incorporates the "iterated Frobenius morphism" $\tilde{F}_{e}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}\left(c f .\left[\mathrm{H}_{1}, \S 6\right.\right.$, pg. 128]) into a short exact sequence, which shall play a crucial rôle in our arguments. For $y \in Y$, the corresponding short exact sequence of finitely generated $\mathcal{O}_{Y, y}$-modules

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{Y, y} \xrightarrow{\left(\tilde{F}_{e}\right)_{y}}\left(\mathcal{O}_{Y}^{[e]}\right)_{y} \longrightarrow\left(\mathcal{K}_{[e]}\right)_{y} \longrightarrow 0 \tag{iii}
\end{equation*}
$$

ist called the e-th (local) Frobenius sequence of R at y.
The splitting of the Frobenius sequence is known to furnish vanishing statements of Kodaira type in positive characteristic, (s. [Me-Ram]). Clearly, in our situation we cannot expect the Frobenius sequence to be split. As a certain substitute for the splitting in question we now shall prove that the cokernel $\mathcal{K}_{[e]}$ of \tilde{F}_{e} is torsion-free, provided that Y is normal.

Lemma 2.6. Let the notations and hypotheses be as in (2.5) and let $y \in Y=\operatorname{Proj}(R)$ be a regular point. Then, the e-th local Frobenius sequence of R at y

$$
0 \longrightarrow \mathcal{O}_{Y, y} \xrightarrow{\left(\tilde{F}_{e}\right)_{y}}\left(\mathcal{O}_{Y}^{[e]}\right)_{y} \longrightarrow\left(\mathcal{K}_{[e]}\right)_{y} \longrightarrow 0
$$

splits. Moreover if $L=\kappa(Y)$ is the field of rational functions of Y, the $\mathcal{O}_{Y, y^{-}}$ module $\left(\mathcal{O}_{Y}^{[e]}\right)_{y}$ is free of rank $r:=\left[L: L^{p}\right]^{e}(<\infty)$ and the $\mathcal{O}_{Y, y}$-module $\left(\mathcal{K}_{[e]}\right)_{y}$ is free of rank $r-1$.

Proof. Keep in mind that $\left(\mathcal{O}_{Y}^{[e]}\right)_{y}$ carries a natural ring structure and that we may naturally identify this ring with $\mathcal{O}_{Y, y}$. Under this identification, $\left(\tilde{F}_{e}\right)_{y}: \mathcal{O}_{Y, y} \rightarrow\left(\mathcal{O}^{[e]}\right)_{y}$ corresponds to the e-th Frobenius map $f_{e}: \mathcal{O}_{Y, y} \rightarrow$ $\mathcal{O}_{Y, y},\left(a \mapsto a^{p^{e}}\right)$.

By our assumptions, $\mathcal{O}_{Y, y}$ is a regular local ring and so the flatnesscriterion of Kunz $[\mathrm{Ku}]$ shows that the finite homomorphism $f_{e}: \mathcal{O}_{Y, y} \rightarrow$ $\mathcal{O}_{Y, y}$ is flat and hence splits. Therefore the e-th local Frobenius sequence of R at y splits and $\left(\mathcal{K}_{[e]}\right)_{y}$ becomes a free $\mathcal{O}_{Y, y}$-module of rank $r-1$ where $r=\left[L: L^{p}\right]^{e}$.

Proposition 2.7. Let the notations and hypotheses be as in (2.5) and let $y \in Y=\operatorname{Proj}(R)$ be a normal point. Then, the stalk $\left(\mathcal{K}_{[e]}\right)_{y}$ is a torsionfree $\mathcal{O}_{Y, y}$-module.

Proof. By our hypothesis, $\mathcal{O}_{Y, y}$ is a noetherian normal local ring. Let $\mathfrak{p} \in \operatorname{Ass}_{\mathcal{O}_{Y, y}}\left(\left(\mathcal{K}_{[e]}\right)_{y}\right)$. We have to show that $\operatorname{height}(\mathfrak{p})=0$. The localized Frobenius sequence $0 \rightarrow\left(\mathcal{O}_{Y, y}\right)_{\mathfrak{p}} \rightarrow\left(\left(\mathcal{O}_{Y}^{[e]}\right)_{y}\right)_{\mathfrak{p}} \rightarrow\left(\left(\mathcal{K}_{[e]}\right)_{y}\right)_{\mathfrak{p}} \rightarrow 0$ shows that $\operatorname{depth}\left(\left(\mathcal{O}_{Y}^{[e]}\right)_{y}\right)_{\mathfrak{p}}=0$ or that $\operatorname{depth}\left(\mathcal{O}_{Y, y}\right)_{\mathfrak{p}} \leq 1$. As $R^{[e]}$ is a torsion free R-module, $\left(\mathcal{O}_{Y}^{[e]}\right)_{y}$ is a torsion free module over $\mathcal{O}_{Y, y}$. As $\mathcal{O}_{Y, y}$ is a normal noetherian ring, it satisfies the second Serre condition S_{2}. Altogether we thus obtain that height $(\mathfrak{p}) \leq 1$. Now, let $z \in Y$ be the point which corresponds to \mathfrak{p}, so that $y \in \overline{\{z\}}$ and $\mathcal{O}_{Y, z}=\left(\mathcal{O}_{Y, y}\right)_{\mathfrak{p}}$. As $\mathcal{O}_{Y, y}$ is normal, $\operatorname{height}(\mathfrak{p}) \leq 1$ implies that $\mathcal{O}_{Y, z}$ is a regular ring and therefore we get by (2.6) that $\left(\mathcal{K}_{[e]}\right)_{z} \cong\left(\left(\mathcal{K}_{[e]}\right)_{y}\right)_{\mathfrak{p}}$ is a free module over $\left(\mathcal{O}_{Y, y}\right)_{\mathfrak{p}}$. As $\mathfrak{p} \in \operatorname{Ass}\left(\left(\mathcal{K}_{[e]}\right)_{y}\right)$ we thus get $\mathfrak{p} \in \operatorname{Ass}\left(\mathcal{O}_{Y, y}\right)$ and hence our claim.

Corollary 2.8. Let the notations and hypotheses be as in (2.5) and assume that $Y=\operatorname{Proj}(R)$ is normal. Then $\mathcal{K}_{[e]}$ is a torsion-free sheaf of \mathcal{O}_{Y}-modules.

§3. Structure of the second local cohomology module

Let $R=\bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ be as in Section 2 and let $R_{+}:=\bigoplus_{n \in \mathbb{N}} R_{n}$ be the irrelevant ideal of R. For an R-module M and for $i \in \mathbb{N}_{0}$ let $D_{R_{+}}(M):=$
$\underset{t}{\lim } \operatorname{Hom}_{R}\left(\left(R_{+}\right)^{t}, M\right)$ denote the R_{+}-transform of M and let $H_{R_{+}}^{i}(M)$ denote the i-th local cohomology module of M with respect to R_{+}. Keep in mind that the R_{+}-transform and local cohomology with respect to R_{+}give rise respectively to a left exact covariant functor $D_{R_{+}}:{ }^{*} \mathcal{C}(R) \rightarrow{ }^{*} \mathcal{C}(R)$ from the category of graded R-modules to itself or a universal δ-functor $\left(H_{R_{+}}^{i}\right)_{i \in \mathbb{N}_{0}}:{ }^{*} \mathcal{C}(R) \rightarrow{ }^{*} \mathcal{C}(R)$.

Remark 3.1. A) Let M be a graded R-module. Remember that there is a natural exact sequence of graded R-modules

$$
0 \longrightarrow H_{R_{+}}^{0}(M) \longrightarrow M \xrightarrow{\eta_{R_{+}}} D_{R_{+}}(M) \longrightarrow H_{R_{+}}^{1}(M) \longrightarrow 0
$$

and that there are natural isomorphisms of graded R-modules $\mathcal{R}^{i} D_{R_{+}}(M) \cong$ $H_{R_{+}}^{i+1}(M)$ for all $i \in \mathbb{N}$, where \mathcal{R}^{i} denotes the i-th right derivation of covariant functors in the category $\mathcal{C}(R)$ or in the category ${ }^{*} \mathcal{C}(R)$ (s. [B-S, Chap. 13]).
B) Let $e \in \mathbb{N}$. Then, in the notations of Section 2 we have $\sqrt{F_{e}\left(R_{+}\right) R^{\left(p^{e}\right)}}=\left(R^{\left(p^{e}\right)}\right)_{+}=\left(R_{+}\right)^{\left(p^{e}\right)}$. Now, let M be a graded R-module and keep in mind that taking the ideal transform or local cohomology of M with respect to graded ideals commutes with graded scalar restriction (s. [B-S, 13.1.3, 13.1.6]) and with Veronesean transforms (s. [B-S, 12.4.6]). We thus get natural isomorphisms of graded R-modules

$$
\begin{aligned}
D_{R_{+}}\left(M^{[e]}\right) & =D_{R_{+}}\left(M^{\left(p^{e}\right)} \upharpoonright_{F_{e}}\right) \cong D_{F_{e}\left(R_{+}\right) R^{\left(p^{e}\right)}}\left(M^{\left(p^{e}\right)}\right) \upharpoonright_{F_{e}} \\
& =D_{\left(R_{+}\right)^{\left(p^{e}\right)}}\left(M^{\left(p^{e}\right)}\right) \upharpoonright_{F_{e}} \cong D_{R_{+}}(M)^{\left(p^{e}\right)} \upharpoonright_{F_{e}}=D_{R_{+}}(M)^{[e]}
\end{aligned}
$$

hence

$$
\begin{equation*}
D_{R_{+}}\left(M^{[e]}\right) \cong D_{R_{+}}(M)^{[e]} \tag{i}
\end{equation*}
$$

and, similarly

$$
\begin{equation*}
H_{R_{+}}^{i}\left(M^{[e]}\right) \cong H_{R_{+}}^{i}(M)^{[e]}, \quad \text { for all } i \in \mathbb{N}_{0} \tag{ii}
\end{equation*}
$$

C) Fix $e \in \mathbb{N}$. If we apply the cohomology sequence derived from the functor $D_{R_{+}}$to the e-th arithmetric Frobenius sequence (2.5) A) (i) and observe the natural isomorphism $\mathcal{R}^{1} D_{R_{+}}(R) \cong H_{R_{+}}^{2}(R)$ of (3.1) A) and the above natural isomorphisms (3.1) B) (i) and (ii), we get the following exact sequence of graded R-modules
(iii)

$$
0 \longrightarrow D_{R_{+}}(R) \longrightarrow D_{R_{+}}(R)^{[e]} \longrightarrow D_{R_{+}}\left(C_{[e]}\right) \xrightarrow{\delta_{e}} H_{R_{+}}^{2}(R) \longrightarrow H_{R_{+}}^{2}(R)^{[e]}
$$

So, for each $n \in \mathbb{Z},(2.4) \mathrm{B})$ gives rise to an exact sequence of R_{0}-modules

$$
\begin{align*}
& 0 \longrightarrow D_{R_{+}}(R)_{n} \longrightarrow\left(D_{R_{+}}(R)_{n p^{e}}\right) \upharpoonright_{F_{e, 0}} \longrightarrow D_{R_{+}}\left(C_{[e]}\right)_{n} \tag{iv}\\
& \stackrel{\delta_{e, n}}{\longrightarrow} H_{R_{+}}^{2}(R)_{n} \longrightarrow\left(H_{R_{+}}^{2}(R)_{n p^{e}}\right) \upharpoonright_{F_{e, 0}}
\end{align*}
$$

Lemma 3.2. Assume that $Y:=\operatorname{Proj}(R)$ is normal and that height $\left(R_{+}\right)$ >2. Let $e \in \mathbb{N}$ and let L denote the field of rational functions $\kappa(Y)$ on Y. Then, the graded R-module $D_{R_{+}}\left(C_{[e]}\right)$ is finitely generated and torsion-free of rank $\left[L: L^{p}\right]^{e}-1$. Moreover, the R-modules $H_{R_{+}}^{i}(R)$ are finitely generated for $i=1,2$.

Proof. As Y is normal, the sheaf $\tilde{R}=\mathcal{O}_{Y}$ satisfies the second Serre condition S_{2}, so that $\operatorname{depth}\left(R_{\mathfrak{q}}\right) \geq \min \{2, \operatorname{height}(\mathfrak{q})\}$ for each prime $\mathfrak{q} \in$ $\operatorname{Proj}(R)$. As R is essentially of finite type over a field, it is catenarian. As moreover R is a domain and as height $\left(R_{+}\right)>2$ it follows easily that $\operatorname{depth}\left(R_{\mathfrak{q}}\right)+\operatorname{height}\left(\left(\mathfrak{q}+R_{+}\right) / \mathfrak{q}\right) \geq 3$ for all $\mathfrak{q} \in \operatorname{Proj}(R)$. So, by (the graded version of) Grothendiecks Finiteness Theorem for local cohomology (s. [B$\mathrm{S}, 13.1 .7]$), the R-modules $H_{R_{+}}^{i}(R)$ are finitely generated for all $i \leq 2$. But obviously, now the four term exact sequence of (3.1) A) applied to $M=R$ tells us that $D_{R_{+}}(R)$ is finitely generated. So, by the observations made in (2.4) A), the R-module $D_{R_{+}}(R)^{[e]}$ is finitely generated. By the exact sequence (3.1) C) (iii) the R-module $D_{R_{+}}\left(C_{[e]}\right)$ is finitely generated.

Observe that in view of the exact sequence (3.1) A), the exactness of the functor $\tilde{\sim}$ and the fact that R_{+}-torsion modules induce the zero sheaf, we may write $D_{R_{+}}\left(C_{[e]}\right)^{\sim} \cong\left(C_{[e]}\right)^{\sim}$.

Now, by (2.8) the sheaf of \mathcal{O}_{Y}-modules $D_{R_{+}}\left(C_{[e]}\right)^{\sim} \cong\left(C_{[e]}\right)^{\sim}=\mathcal{K}_{[e]}$ is torsion free, so that $\operatorname{Ass}_{R}\left(D_{R_{+}}\left(C_{[e]}\right)\right) \subseteq\{0\} \cup \operatorname{Var}\left(R_{+}\right)$. As $D_{R_{+}}\left(C_{[e]}\right)$ has no R_{+}-torsion (s. [B-S, 2.2.8]) we thus see that $D_{R_{+}}\left(C_{[e]}\right)$ is torsionfree. Finally, by (2.6) we get that $\operatorname{rank}_{R_{+}}\left(D_{R_{+}}\left(C^{[e]}\right)\right)=\operatorname{rank}_{\mathcal{O}_{Y, 0}}\left(\left(\mathcal{K}_{[e]}\right)_{0}\right)=$ $\left[L: L^{p}\right]^{e}-1$.

Lemma 3.3. Assume that $Y:=\operatorname{Proj}(R)$ is normal and that height $\left(R_{+}\right)$ >2. Then:
a) There is some $e_{0} \in \mathbb{N}$ such that the homomorphism $\delta_{e, n}: D_{R_{+}}\left(C_{[e]}\right)_{n}$ $\rightarrow H_{R_{+}}^{2}(R)_{n}$ in the sequence (3.1) C) (iv) is an isomorphism for all $e \geq e_{0}$ and all $n<0$.
b) The R_{0}-modules $H_{R_{+}}^{2}(R)_{n}$ are torsion-free for all $n<0$.

Proof. By (3.2) and (3.1) A) we know that $H_{R_{+}}^{2}(R)$ and $D_{R_{+}}(R)$ are finitely generated R-modules. So, there is a $t \in \mathbb{N}$ such that $H_{R_{+}}^{2}(R)_{m}=$ $D_{R_{+}}(R)_{m}=0$ for all $m \leq-t$. Let $e_{0} \in \mathbb{N}$ be such that $p^{e_{0}} \geq t$ and let $e \geq e_{0}$. Then the homomorphism $\delta_{e, n}$ in the exact sequence (3.1) C) (iv) is an isomorphism for each $n<0$. This proves claim a). Claim b) is immediate from claim a) and the fact that $D_{R_{+}}\left(C_{[e]}\right)$ is torsion-free, which was shown in (3.2).

Now, let L_{0} be the quotient field of the domain R_{0}, e.g. the field $\kappa\left(Y_{0}\right)$ of rational functions on the affine scheme $Y_{0}:=\operatorname{Spec}\left(R_{0}\right)$. Let M be a finitely generated and graded R-module. As $H_{R_{+}}^{i}(M)_{n}$ is a finitely generated $R_{0^{-}}$ module for all $n \in \mathbb{Z}$ and all $i \in \mathbb{N}_{0}$, it makes sense to introduce the numbers

$$
\begin{equation*}
h_{R_{+}}^{i}(M)_{n}:=\operatorname{dim}_{L_{0}}\left(L_{0} \otimes_{R_{0}} H_{R_{+}}^{i}(M)_{n}\right) \tag{3.4}
\end{equation*}
$$

for all such n and i.
Remark 3.5. A) Let R_{0}^{\prime} be a flat and noetherian R_{0}-algebra. Then $R_{0}^{\prime} \otimes_{R_{0}} R$ carries a natural structure of positively graded ring, by a grading which is given by $\left(R_{0}^{\prime} \otimes_{R_{0}} R\right)_{n}=R_{0}^{\prime} \otimes_{R_{0}} R_{n}$ for all $n \in \mathbb{Z}$. As R is of finite type over R_{0}, the ring $R_{0}^{\prime} \otimes_{R_{0}} R$ is of finite type over R_{0}^{\prime} and hence is noetherian. Moreover, if $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ is a graded R-module, the $R_{0}^{\prime} \otimes_{R_{0}}$ R-module $\left(R_{0}^{\prime} \otimes_{R_{0}} R\right) \otimes_{R} M=R_{0}^{\prime} \otimes_{R_{0}} M$ carries a natural grading, given by $\left(R_{0}^{\prime} \otimes_{R_{0}} M\right)_{n}=R_{0}^{\prime} \otimes_{R_{0}} M_{n}$ for all $n \in \mathbb{Z}$.
B) Keep the hypotheses and notation of A). Then, the graded version of the flat base change property for local cohomology induces natural isomorphisms of R_{0}^{\prime}-modules $\left(R_{0}^{\prime} \otimes_{R_{0}} H_{R_{+}}^{i}(M)\right)_{n}=R_{0}^{\prime} \otimes_{R_{0}} H_{R_{+}}^{i}(M)_{n} \cong$ $H_{\left(R_{0}^{\prime} \otimes R\right)_{+}}^{i}\left(R_{0}^{\prime} \otimes_{R} M\right)_{n}$ for all $i \in \mathbb{N}_{0}$ and all $n \in \mathbb{Z}$ (s. [B-S, 14.2.6]). If we apply this in the case where $R_{0}^{\prime}=L_{0}^{\prime}$ is an arbitrary extension field of L_{0}, we thus get

$$
\begin{aligned}
h_{R_{+}}^{i}(M)_{n} & =\operatorname{dim}_{L_{0}^{\prime}}\left(L_{0}^{\prime} \otimes_{R_{0}} H_{R_{+}}^{i}(M)_{n}\right) \\
& =\operatorname{dim}_{L_{0}^{\prime}}\left(H_{\left(L_{0}^{\prime} \otimes_{R_{0}} R\right)_{+}}^{i}\left(L_{0}^{\prime} \otimes_{R_{0}} M\right)_{n}\right) \\
& =h_{\left(L_{0}^{\prime} \otimes_{R_{0}} R\right)_{+}}\left(L_{0}^{\prime} \otimes_{R_{0}} M\right)_{n}
\end{aligned}
$$

for each finitely generated and graded R-module M and for all $i \in \mathbb{N}_{0}$ and all $n \in \mathbb{Z}$.

Now, we shall attack the principal goal of this section: to give upper bounds on the numbers $h_{R_{+}}^{2}(R)_{n}$ for $n<0$. We start with the following auxiliary result:

Lemma 3.6. Assume that $Y:=\operatorname{Proj}(R)$ is normal and that height $\left(R_{+}\right)$ >2. Let $t \in \mathbb{N}$ and let $f \in R_{t} \backslash\{0\}$. Then
a) The multiplication homomorphism

$$
f: H_{R_{+}}^{2}(R)_{n} \longrightarrow H_{R_{+}}^{2}(R)_{n+t}
$$

is injective for all $n<-t$.
b) If in addition R_{0} is a perfect field, the multiplication homomorphism

$$
f: H_{R_{+}}^{2}(R)_{-t} \longrightarrow H_{R_{+}}^{2}(R)_{0}
$$

is injective, too.
Proof. Let $n \in \mathbb{Z}$ with $n \leq-t$. For each $e \in \mathbb{N}$ we have the following commutative diagram, in which the vertical maps are the connecting homomorphism in the sequences (3.1) C) (iv).

By (3.2) we know that $D_{R_{+}}\left(C_{[e]}\right)$ is a torsion free R-module, so that the upper horizontal map is injective. By (3.3) a) we may choose $e \in \mathbb{N}$ such that $\delta_{e, m}$ is an isomorphism for all $m<0$. This proves statement a).

Assume now that R_{0} is a perfect field. Then, the Frobenius homomorphism $F_{e, 0}: R_{0} \rightarrow R_{0}$ is an isomorphism so that $D_{R_{+}}(R)_{0}$ and $\left(D_{R_{+}}(R)_{0}\right) \upharpoonright_{F_{e, 0}}$ are R_{0}-vector spaces of the same dimension (which is finite, as $D_{R_{+}}(R)$ is a finitely generated R-module by (3.2) and (3.1) A)). But now, the sequence (3.1) C) (iv), applied with $n=0$, shows that the map $\delta_{e, 0}$ is injective, and this proves statement b).

Lemma 3.7. Let V and W be non-zero vector spaces of finite dimension over an algebraically closed field K. Let $r \in \mathbb{N}$ and let $l_{1}, \ldots, l_{r}: V \rightarrow$ W be K-linear maps.
a) If $\sum_{i=1}^{r} \alpha_{i} l_{i}: V \rightarrow W$ is injective for all $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in K^{r} \backslash\{(\underline{0})\}$, then

$$
\operatorname{dim}_{K}(W) \geq \operatorname{dim}_{K}(V)+r-1
$$

b) If $\sum_{i=1}^{r} \alpha_{i} l_{i}: V \rightarrow W$ is surjective for all $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in K^{r} \backslash\{(0)\}$, then

$$
\operatorname{dim}_{K}(V) \geq \operatorname{dim}_{K}(W)+r-1
$$

Proof. $\quad\left[\mathrm{B}_{1},(3.1),(3.2)\right]$.
Now, we are ready to prove the main result of this section.
Theorem 3.8. Assume that the generic fibre of the natural morphism

$$
\pi: Y=\operatorname{Proj}(R) \longrightarrow Y_{0}=\operatorname{Spec}\left(R_{0}\right)
$$

is geometrically connected, geometrically normal and of dimension >1. For each $t \in \mathbb{N}$, let $r_{t}:=\operatorname{rank}_{R_{0}}\left(R_{t}\right)$. Then:
a) For each $t \in \mathbb{N}$ with $r_{t}>0$ and for each $n \in \mathbb{Z}$ with $n \leq-t$, we have

$$
h_{R_{+}}^{2}(R)_{n} \leq \max \left\{0, h_{R_{+}}^{2}(R)_{n+t}-r_{t}+1\right\}
$$

b) If Y is in addition normal, then $H_{R_{+}}^{2}(R)_{n}$ is a torsion-free R_{0}-module of rank $h_{R_{+}}^{2}(R)_{n}$ for all $n<0$. Moreover, if $r_{1}>1$, then $H_{R_{+}}^{2}(R)_{n}=0$ as soon as $n \leq \min \left\{-1,-\frac{h_{R_{+}}^{2}(R)_{0}}{r_{1}-1}\right\}$.

Proof. a): Fix some $t \in \mathbb{N}$ with $r_{t}>0$ and some $n \in \mathbb{Z}$ with $n \leq-t$. Let L_{0}^{\prime} be an algebraic closure of the quotient field L_{0} of R_{0}. Then, the graded ring $R^{\prime}:=L_{0}^{\prime} \otimes_{R_{0}} R$ is a flat and integral extension of the graded $\operatorname{ring} L_{0} \otimes_{R_{0}} R=: R^{\prime \prime}$. Therefore height $\left(R_{+}^{\prime}\right)=\operatorname{height}\left(R_{+}^{\prime \prime}\right)=\operatorname{dim}(Z)+$ 1 where $Z:=\operatorname{Proj}\left(R^{\prime \prime}\right)$ is the generic fibre of the morphism $\pi: Y \rightarrow$ Y_{0}. So height $\left(R_{+}^{\prime}\right)>2$. As $Z \rightarrow \operatorname{Spec}\left(L_{0}\right)$ is geometrically connected and geometrically normal, we know that $Y^{\prime}:=\operatorname{Proj}\left(R^{\prime}\right) \cong \operatorname{Spec}\left(L_{0}^{\prime}\right) \times_{\operatorname{Spec}\left(L_{0}\right)} Z$ is a connected and normal scheme over $Y_{0}^{\prime}:=\operatorname{Spec}\left(L_{0}^{\prime}\right)$. In particular Y^{\prime} is integral. As R^{\prime} is flat and hence torsion-free over R, this shows that R^{\prime} is an integral domain.

Keep in mind that $R_{t}^{\prime} \cong L_{0}^{\prime} \otimes_{L_{0}}\left(L_{0} \otimes_{R_{0}} R_{t}\right)$ is a vector-space of dimension r_{t} over L_{0}^{\prime}.

Now, choose a basis $f_{1}^{\prime}, \ldots, f_{r_{t}}^{\prime}$ of R_{t}^{\prime} and keep in mind that $R_{0}^{\prime}=L_{0}^{\prime}$ is an algebraically closed and hence perfect field and that Y^{\prime} is normal. So, by (3.6) the multiplication map $\sum_{i=1}^{r_{t}} \alpha_{i} f_{i}^{\prime}: H_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n} \rightarrow H_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n+t}$ is injective whenever $\left(\alpha_{1}, \ldots, \alpha_{r_{t}}\right) \in L_{0}^{\prime} \backslash\{(\underline{0})\}$. So, (3.7) a) gives $h_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n} \leq$ $\max \left\{0, h_{R_{+}^{\prime}}^{2}\left(R^{\prime}\right)_{n+t}-r_{t}+1\right\}$. In view of the equations given in (3.5) B) this proves our claim.
b): Let Y in addition be normal. Then $(3.3) \mathrm{b})$ shows that $H_{R_{+}}^{2}(R)_{n}$ is torsion-free over R_{0} for all $n<0$. This allows to conclude by statement a), applied repeatedly with $t=1$.

Remark 3.9. If in (3.8) b) R_{0} is a perfect field, (3.6) b) allows to replace

$$
\min \left\{-1,-\frac{h_{R_{+}}^{2}(R)_{0}}{r_{1}-1}\right\} \quad \text { by } \quad-\frac{h_{R_{+}}^{2}(R)_{0}}{r_{1}-1} .
$$

§4. Ample invertible sheaves

Let X_{0} be an affine integral scheme which is essentially of finite type over a perfect field K of positive characteristic p. Moreover let X be an integral and projective scheme over X_{0} with surjective structure morphism $\varrho: X \rightarrow X_{0}$. Finally, let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules.

Notation and Remark 4.1. A) We use \mathcal{L}^{*} to denote the tensor algebra $\bigoplus_{n \geq 0} \mathcal{L}^{\otimes n}$ so that \mathcal{L}^{*} is a sheaf of positively graded integral $\mathcal{O}_{X^{-}}$ algebras. Moreover we shall consider the positively graded ring $\Gamma\left(\mathcal{L}^{*}\right):=$ $\Gamma\left(X, \mathcal{L}^{*}\right)=\bigoplus_{n \geq 0} \Gamma\left(X, \mathcal{L}^{\otimes n}\right)$ and the induced projective scheme $Y(\mathcal{L}):=$ $\operatorname{Proj}\left(\Gamma\left(\mathcal{L}^{*}\right)\right)$. As \mathcal{L}^{*} is a sheaf of integral domains, $\Gamma\left(\mathcal{L}^{*}\right)$ is a domain and $Y(\mathcal{L})$ is an integral projective scheme over $\operatorname{Spec}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)=: Y_{0}$. Finally, if \mathcal{F} is a sheaf of \mathcal{O}_{X}-modules, we denote by $\Gamma\left(\mathcal{F}, \mathcal{L}^{*}\right)$ the graded $\Gamma\left(\mathcal{L}^{*}\right)$ module

$$
\bigoplus_{n \geq 0} \Gamma\left(X, \mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes n}\right)
$$

B) By $\left[\mathrm{H}_{2}, \mathrm{II}\right.$, Thm. 7.6$]$ there is some $r \in \mathbb{N}$ such that $\mathcal{L}^{\otimes r}$ is very ample with respect to the to the structure morphism ϱ. But this means that the r th Veronesean subring $\Gamma\left(\mathcal{L}^{*}\right)^{(r)}=\Gamma\left(\left(\mathcal{L}^{\otimes r}\right)^{*}\right)=\bigoplus_{n \geq 0} \Gamma\left(X, \mathcal{L}^{\otimes r n}\right)$ is noetherian and that for each coherent sheaf of \mathcal{O}_{X}-modules \mathcal{F} the r-th Veronesean transform $\Gamma\left(\mathcal{F}, \mathcal{L}^{*}\right)^{(r)}=\Gamma\left(\mathcal{F},\left(\mathcal{L}^{\otimes r}\right)^{*}\right)=\bigoplus_{n \geq 0} \Gamma\left(X, \mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes r n}\right)$ is finitely generated over $\Gamma\left(\mathcal{L}^{*}\right)^{(r)}$ [G, Cor. (2.3.2)]. If we apply this to the
coherent sheaves $\mathcal{L}^{\otimes i} \otimes \mathcal{F}$ we then get that the $\Gamma\left(\mathcal{L}^{*}\right)^{(r)}$-module $\Gamma\left(\mathcal{F}, \mathcal{L}^{*}\right)=$ $\bigoplus_{i=0}^{r-1} \Gamma\left(\mathcal{L}^{\otimes i} \otimes \mathcal{F},\left(\mathcal{L}^{\otimes r}\right)^{*}\right)=\bigoplus_{i=0}^{r-1} \Gamma\left(\mathcal{L}^{\otimes i} \otimes \mathcal{F}, \mathcal{L}^{*}\right)^{(r)}$ is finitely generated. If we apply this with $\mathcal{F}=\mathcal{O}_{X}$, we see that $\Gamma\left(\mathcal{L}^{*}\right)$ is a finite integral extension of $\Gamma\left(\mathcal{L}^{*}\right)^{(r)}$. In particular we now see that $\Gamma\left(\mathcal{L}^{*}\right)$ is noetherian and that $\Gamma\left(\mathcal{F}, \mathcal{L}^{*}\right)$ is a finitely generated $\Gamma\left(\mathcal{L}^{*}\right)$-module for each coherent sheaf of \mathcal{O}_{X}-modules \mathcal{F}.

Remark 4.2. (cf. [G]) Keep the previous hypotheses and notation. Then, there is a natural isomorphism of schemes.

$$
\alpha_{\mathcal{L}}:=\left(\alpha_{\mathcal{L}}, \alpha_{\mathcal{L}}^{\#}\right):\left(X, \mathcal{O}_{X}\right) \longrightarrow\left(Y(\mathcal{L}), \mathcal{O}_{Y(\mathcal{L})}\right)
$$

Now, let $k \in \mathbb{Z}$ and let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_{X}-modules. Then we have a natural isomorphism of sheaves of $\mathcal{O}_{Y(\mathcal{L})}$-modules

$$
\eta_{\mathcal{F}, \mathcal{L}}^{(k)}=\eta^{(k)}:\left(\Gamma\left(\mathcal{F}, \mathcal{L}^{*}\right)(k)\right)^{\sim} \xrightarrow{\cong}\left(\alpha_{\mathcal{L}}\right)_{*}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes k}\right)
$$

in which $\cdot(k)$ is used to denote the k-th shift functor on graded $\Gamma\left(\mathcal{L}^{*}\right)$ modules.

Remark 4.3. Keep the previous notation and hypothesis. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_{X}-modules and let $k \in \mathbb{Z}$ and $i \in \mathbb{N}$. Then, there is a natural isomorphism of $\Gamma\left(X, \mathcal{O}_{X}\right)$-modules

$$
H^{i}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes k}\right) \cong H_{\Gamma\left(\mathcal{L}^{*}\right)_{+}}^{i+1}\left(\Gamma\left(\mathcal{F}, \mathcal{L}^{*}\right)\right)_{k}
$$

induced by the isomorphism $\eta^{(k)}$ of (4.2) and the Serre-Grothendieck correspondence (s. [B-S, 20.4.4]).

For $i \in \mathbb{N}_{0}$ and for an arbitrary coherent sheaf \mathcal{G} of \mathcal{O}_{X}-modules, we use the notation

$$
\begin{equation*}
h^{i}(X, \mathcal{G}):=\operatorname{dim}_{\kappa\left(Y_{0}\right)}\left(\kappa\left(Y_{0}\right) \otimes_{\Gamma\left(X, \mathcal{O}_{X}\right)} H^{i}(X, \mathcal{G})\right) \tag{4.4}
\end{equation*}
$$

where $\kappa\left(Y_{0}\right)$ is the field of rational functions on the scheme $Y_{0}:=$ $\operatorname{Spec}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)$, (s. (4.1) A)).

Now, we are ready to prove the main result of this section. We assume that X, X_{0} and $\varrho: X \rightarrow X_{0}$ are as introduced at the beginning of this section.

Theorem 4.5. Assume that the generic fibre of the structural morphism $\varrho: X \rightarrow X_{0}$ is geometrically connected, geometrically normal and of dimension >1. Let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules. Then:
a) For each $t \in \mathbb{N}$ with $h^{0}\left(X, \mathcal{L}^{\otimes t}\right)>0$ and for each $n \in \mathbb{Z}$ with $n \leq-t$, we have

$$
h^{1}\left(X, \mathcal{L}^{\otimes n}\right) \leq \max \left\{0, h^{1}\left(X, \mathcal{L}^{\otimes(n+t)}\right)-h^{0}\left(X, \mathcal{L}^{\otimes t}\right)+1\right\}
$$

b) If X is in addition normal, then $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)$ is a torsion-free $\Gamma\left(X, \mathcal{O}_{X}\right)$-module of rank $h^{1}\left(X, \mathcal{L}^{\otimes n}\right)$ for all $n<0$. If $h^{0}(X, \mathcal{L})>1$, then $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)$ vanishes as soon as $n \leq \min \left\{-1,-\frac{h^{1}\left(X, \mathcal{O}_{X}\right)}{h^{0}(X, \mathcal{L})-1}\right\}$.

Proof. By our hypothesis, $\Gamma\left(X, \mathcal{O}_{X}\right)$ is a finite integral extension domain of $\Gamma\left(X_{0}, \mathcal{O}_{X_{0}}\right)$. So, in view of (4.2) and using the notation of (4.1) A), we get the following commutative diagram of schemes

in which the morphism ν is finite.
As $\Gamma\left(\mathcal{L}^{*}\right)_{0}=\Gamma\left(X, \mathcal{O}_{X}\right)$ is an integral extension domain of $\Gamma\left(X_{0}, \mathcal{O}_{X_{0}}\right)$, we have

$$
\kappa\left(Y_{0}\right)=\kappa\left(X_{0}\right) \otimes_{\Gamma\left(X_{0}, \mathcal{O}_{X_{0}}\right)} \Gamma\left(\mathcal{L}^{*}\right)_{0}
$$

where $\kappa\left(X_{0}\right)$ denotes the field of rational functions on X_{0}. So the generic fibre

$$
F_{\pi}:=\operatorname{Spec}\left(\kappa\left(Y_{0}\right)\right) \times_{Y_{0}} Y=\operatorname{Proj}\left(\kappa\left(Y_{0}\right) \otimes_{\Gamma\left(\mathcal{L}^{*}\right)_{0}} \Gamma\left(\mathcal{L}^{*}\right)\right)
$$

of π may be written as

$$
\begin{aligned}
\operatorname{Proj}\left(\kappa\left(X_{0}\right) \otimes_{\Gamma\left(X_{0}, \mathcal{O}_{X_{0}}\right)} \Gamma\left(\mathcal{L}^{*}\right)\right) & \cong \operatorname{Spec}\left(\kappa\left(X_{0}\right)\right) \times_{X_{0}} Y(\mathcal{L}) \\
& \cong \operatorname{Spec}\left(\kappa\left(X_{0}\right)\right) \times_{X_{0}} X=: F_{\varrho}
\end{aligned}
$$

and thus is X_{0}-isomorphic to the generic fibre F_{ϱ} of ϱ. This induces, that the generic fibre F_{π} of π is of dimension >1. Now, let L^{\prime} be an arbitrary
algebraic extension field of $\kappa\left(Y_{0}\right)$. Then L^{\prime} is an algebraic extension field of $\kappa\left(X_{0}\right)$ and therefore by our hypothesis on F_{ϱ} we see that

$$
\operatorname{Spec}\left(L^{\prime}\right) \times_{\operatorname{Spec}\left(\kappa\left(X_{0}\right)\right)} F_{\pi} \cong \operatorname{Spec}\left(L^{\prime}\right) \times_{\operatorname{Spec}\left(\kappa\left(X_{0}\right)\right)} F_{\varrho}
$$

is a normal and integral scheme. Moreover, the natural morphism

$$
\operatorname{Spec}\left(L^{\prime}\right) \times_{\operatorname{Spec}\left(\kappa\left(Y_{0}\right)\right)} F_{\pi} \longrightarrow \operatorname{Spec}\left(L^{\prime}\right) \times_{\operatorname{Spec}\left(\kappa\left(X_{0}\right)\right)} F_{\pi}
$$

is a closed immersion between two schemes of the same dimension. Hence it is an isomorphism. So $\operatorname{Spec}\left(L^{\prime}\right) \times_{\operatorname{Spec}\left(\kappa\left(Y_{0}\right)\right)} F_{\pi}$ is a normal and integral scheme. This shows that the generic fibre of π is geometrically connected and geometrically normal.

Next observe that $\Gamma\left(\mathcal{L}^{*}\right)_{t}=H^{0}\left(X, \mathcal{L}^{\otimes t}\right)$ is a torsion-free $\Gamma\left(\mathcal{L}^{*}\right)_{0}$-module of rank $h^{0}\left(X, \mathcal{L}^{\otimes t}\right)$ for all $t \in \mathbb{N}$. Finally (4.3) gives us isomorphisms of $\Gamma\left(\mathcal{L}^{*}\right)_{0}$-modules $H^{1}\left(X, \mathcal{L}^{\otimes n}\right) \cong H_{\Gamma\left(\mathcal{L}^{*}\right)_{+}}^{2}\left(\Gamma\left(\mathcal{L}^{*}\right)\right)_{n}$ and hence $h^{1}\left(X, \mathcal{L}^{\otimes n}\right)=$ $h_{\Gamma\left(\mathcal{L}^{*}\right)_{+}}^{2}\left(\Gamma\left(\mathcal{L}^{*}\right)\right)_{n}$ for all $n \in \mathbb{Z}$.

Therefore we get our statements if we apply (3.8) with $R=\Gamma\left(\mathcal{L}^{*}\right)$.
Corollary 4.6. Let X be a geometrically connected and geometrically normal projective scheme of dimension >1 over a perfect field K of positive characteristic p. Let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules. Then:
a) For each $t \in \mathbb{N}$ with $h^{0}\left(X, \mathcal{L}^{\otimes t}\right)>0$ and for each $n \in \mathbb{N}$ with $n \leq-t$ we have

$$
h^{1}\left(X, \mathcal{L}^{\otimes n}\right) \leq \max \left\{0, h^{1}\left(X, \mathcal{L}^{\otimes(n+t)}\right)-h^{0}\left(X, \mathcal{L}^{\otimes t}\right)+1\right\} .
$$

b) If $h^{0}(X, \mathcal{L})>1$, then $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)=0$ for all integers

$$
n \leq-\frac{h^{1}\left(X, \mathcal{O}_{X}\right)}{h^{0}(X, \mathcal{L})-1}
$$

Proof. Clear from (4.5) and (3.9).
Corollary 4.7. (s. [A, (5.6), (5.8)]) Let X be a normal projective variety of dimension >1 over an algebraically closed field K of positive characteristic p. Let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules. Then:
a) For each $t \in \mathbb{N}$ with $h^{0}\left(X, \mathcal{L}^{\otimes t}\right)>0$ and for each $n \in \mathbb{Z}$ with $n \leq-t$ we have

$$
h^{1}\left(X, \mathcal{L}^{\otimes n}\right) \leq \max \left\{0, h^{1}\left(X, \mathcal{L}^{\otimes(n+t)}\right)-h^{0}\left(X, \mathcal{L}^{\otimes t}\right)+1\right\} .
$$

b) If $h^{0}(X, \mathcal{L})>1$, then $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)=0$ for all integers

$$
n \leq-\frac{h^{1}\left(X, \mathcal{O}_{X}\right)}{h^{0}(X, \mathcal{L})-1}
$$

Proposition 4.8. Let X be as in (4.6) and let D be an effective ample Cartier divisor on X. Then, the restriction homomorphism $\Gamma\left(X, \mathcal{O}_{X}\right) \rightarrow$ $\Gamma\left(X, \mathcal{O}_{D}\right)$ is an isomorphism.

Proof. Let $\mathcal{L}:=\mathcal{L}(D)$ be the invertible sheaf associated to D. Then, \mathcal{L} is ample and as D is effective, we have a short exact sequence of coherent sheaves of \mathcal{O}_{X}-modules $0 \rightarrow \mathcal{L}^{\otimes-1} \xrightarrow{\varphi} \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0$. If we apply cohomology we thus see, that it is sufficient to prove that the induced homomorphism $H^{1}(X, \varphi): H^{1}\left(X, \mathcal{L}^{\otimes-1}\right) \xrightarrow{\bar{\varphi}} H^{1}\left(X, \mathcal{O}_{X}\right)$ is injective.

To do so, consider the induced monomorphism

$$
0 \longrightarrow \Gamma\left(X, \mathcal{O}_{X}\right) \xrightarrow{\Gamma(X, \varphi \otimes \mathcal{L})} \Gamma(X, \mathcal{L}) .
$$

Then, $f:=\Gamma(X, \varphi \otimes \mathcal{L})(1) \in \Gamma(X, \mathcal{L})=\Gamma\left(\mathcal{L}^{*}\right)_{1}, f \neq 0$ and $\bar{\varphi}$ corresponds to the multiplication map $f: H_{\Gamma\left(\mathcal{L}^{*}\right)_{+}}^{2}\left(\Gamma /\left(\mathcal{L}^{*}\right)\right)_{-1} \rightarrow H_{\Gamma\left(\mathcal{L}^{*}\right)_{+}}^{2}\left(\Gamma\left(\mathcal{L}^{*}\right)\right)_{0}$ under the natural isomorphisms of (4.3). Now, we may conclude by (3.6) b), applied with $R=\Gamma\left(\mathcal{L}^{*}\right), Y=Y(\mathcal{L})$ and $t=1$.

Corollary 4.9. (s. [Mu, Prop. 3], [A, (5.17)]) Let X be a normal projective variety of dimension >1 over an algebraically closed field K of positive characteristic p. Let D be an effective ample Cartier divisor on X. Then $\Gamma\left(X, \mathcal{O}_{D}\right)=K$.

§5. Applications to projective varieties

In this section, we apply the previous results to ample invertible sheaves over projective varieties of dimension >1 over an algebraically closed field K of positive characteristic. Our main interest is focused to the case of surfaces.

For a reduced and irreducible variety X of dimension >1 over an algebraically closed field K we introduce the invariant.

$$
\begin{equation*}
e^{1}(X):=\sum_{p \in X, p \text { closed }} \operatorname{length}_{\mathcal{O}_{X, p}}\left(H_{\mathfrak{m}_{X, p}}^{1}\left(\mathcal{O}_{X, p}\right)\right), \tag{5.1}
\end{equation*}
$$

which is finite and which counts in a "weighted way" the number of (closed) points $p \in X$ in which X has depth ≤ 1 (s. [B, (5.7)]).

Throughout this section, let K be an algebraically closed field of positive characteristic p.

Proposition 5.2. Let X be a projective variety of dimension >1 over K. Assume that X has only finitely many non-normal points. Let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules such that $h^{0}(X, \mathcal{L}) \geq 1$. Then
a) $e^{1}(X) \leq h^{1}\left(X, \mathcal{L}^{\otimes n}\right) \leq \max \left\{e^{1}(X), h^{1}\left(X, \mathcal{L}^{\otimes(n+1)}\right)-h^{0}(X, \mathcal{L})+1\right\}$ for all negative integers n.
b) $e^{1}(X) \leq h^{1}\left(X, \mathcal{L}^{\otimes n}\right) \leq \max \left\{e^{1}(X), h^{1}\left(X, \mathcal{O}_{X}\right)+n\left(h^{0}(X, \mathcal{L})-1\right)\right\}$ for all $n \leq 0$.

Proof. Let $\nu: \tilde{X} \rightarrow X$ be the normalization of X and let $Z \subseteq X$ be the finite set of non-normal points of X. Then, we have an exact sequence of coherent sheaves of \mathcal{O}_{X}-modules $0 \rightarrow \mathcal{O}_{X} \xrightarrow{\nu^{\#}} \nu_{*} \mathcal{O}_{\tilde{X}} \rightarrow \mathcal{F} \rightarrow 0$ with $\operatorname{supp}(\mathcal{F})=Z$.

Now, let $p \in X$ be an arbitrary closed point. As \tilde{X} is normal, the direct image $\nu_{*} \mathcal{O}_{\tilde{X}}$ has the second Serre property S_{2}, so that $H_{\mathfrak{m}_{X, p}}^{1}\left(\left(\nu_{*} \mathcal{O}_{\tilde{X}}\right)_{p}\right)=0$. As $\operatorname{dim}(Z)=0$ we moreover have $\mathcal{F}_{p} \cong H_{\mathfrak{m}_{X, p}}^{0}\left(\mathcal{F}_{p}\right)$. So, passing to stalks in the above exact sequence and applying local cohomology at all closed points $p \in X$ we see that length $\mathcal{O}_{X}(\mathcal{F})=e^{1}(X)$. As \mathcal{L} is invertible we thus obtain $\operatorname{length}_{\mathcal{O}_{X}}\left(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes n}\right)=e^{1}(X)$ and hence $h^{0}\left(X, \mathcal{F} \otimes \mathcal{O}_{X} \mathcal{L}^{\otimes n}\right)=e^{1}(X)$ and moreover $H^{1}\left(X, \mathcal{F} \otimes \mathcal{O}_{X} \mathcal{L}^{\otimes n}\right)=0$ for all $n \in \mathbb{Z}$.

Moreover, for each $n \in \mathbb{Z}$ we get an exact sequence
(*)

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(X, \mathcal{L}^{\otimes n}\right) \longrightarrow H^{0}\left(X, \nu_{*} \mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes n}\right) \longrightarrow H^{0}\left(X, \mathcal{F} \otimes_{\mathcal{O}_{x}} \mathcal{L}^{\otimes n}\right) \\
& \longrightarrow H^{1}\left(X, \mathcal{L}^{\otimes n}\right) \longrightarrow H^{1}\left(X, \nu_{*} \mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes n}\right) \longrightarrow 0
\end{aligned}
$$

By use of the projection formula $\left[\mathrm{H}_{2}\right.$, II Ex. 5.1 (d)], we have

$$
\nu_{*} \mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes n} \cong \nu_{*}\left(\mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O}_{\tilde{X}}} \nu^{*}\left(\mathcal{L}^{\otimes n}\right)\right) \cong \nu_{*} \nu^{*}\left(\mathcal{L}^{\otimes n}\right) \cong \nu_{*}\left(\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)
$$

As ν is an affine morphism we thus get isomorphisms $H^{i}\left(X, \nu_{*} \mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O}_{X}}\right.$ $\left.\mathcal{L}^{\otimes n}\right) \cong H^{i}\left(\tilde{X},\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)$ for all $i \in \mathbb{N}_{0}$ and all $n \in \mathbb{Z}$, (s. [H2, III Ex. 4.1]). As ν is finite and surjective, $\nu^{*} \mathcal{L}$ is an ample invertible sheaf of $\mathcal{O}_{\tilde{X}}$-modules (s. [H2, III Ex. 5.7 (d)]).

So, first of all $H^{0}\left(X, \nu_{*} \mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\otimes n}\right)$ vanishes for $n<0$ and equals K for $n=0$. But now, the sequences $(*)$ show that $h^{1}\left(X, \mathcal{L}^{\otimes n}\right)=e^{1}(X)+$ $h^{1}\left(\tilde{X},\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)$ for all $n \leq 0$.

Moreover, if we apply the sequence (*) with $n=1$ we see that $h^{0}\left(\tilde{X}, \nu^{*} \mathcal{L}\right) \geq h^{0}(X, \mathcal{L})$. Therefore we get our claims if we apply (4.7) a) to the normal projective variety \tilde{X} and the ample invertible sheaf $\nu^{*} \mathcal{L}$ with $t=1$.

For a coherent sheaf \mathcal{F} over a projective variety X let $\chi(\mathcal{F})$ denote the characteristic of \mathcal{F} so that $\chi(\mathcal{F})=\sum_{i \geq 0}(-1)^{i} h^{i}(X, \mathcal{F})$.

Definition and Remark 5.3. A) Let X be a projective surface over K and let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules. We define the sectional genus of X with respect to \mathcal{L} by

$$
\sigma_{\mathcal{L}}(X):=\chi\left(\mathcal{L}^{\otimes-1}\right)-\chi\left(\mathcal{O}_{X}\right)+1
$$

As X is a surface, $\sigma_{\mathcal{L}}(X)$ coincides indeed with the sectional genus of the pair (X, \mathcal{L}) as introduced by Fujita in [F, pg. 25].
B) Let $f \in \Gamma(X, \mathcal{L}) \backslash\{0\}$. Then, there is an effective divisor D_{f} on X with $\mathcal{L}=\mathcal{L}\left(D_{f}\right)$ and we have an exact sequence

$$
0 \longrightarrow \mathcal{L}^{\otimes-1} \xrightarrow{f .} \mathcal{O}_{X} \longrightarrow \mathcal{O}_{D_{f}} \longrightarrow 0
$$

which tells us that

$$
\sigma_{\mathcal{L}}(X)=-\chi\left(\mathcal{O}_{D_{f}}\right)+1=h^{1}\left(D_{f}, \mathcal{O}_{D_{f}}\right)-h^{0}\left(D_{f}, \mathcal{O}_{D_{f}}\right)+1
$$

If X is normal, (4.9) gives $h^{0}\left(D_{f^{\prime}} \mathcal{O}_{D_{f}}\right)=h^{0}\left(X, \mathcal{O}_{D_{f}}\right)=1$ and so we get $\sigma_{\mathcal{L}}(X)=h^{1}\left(D_{f}, \mathcal{O}_{D_{f}}\right) \geq 0$ if $h^{0}(X, \mathcal{L})>0$.
C) Assume now that \mathcal{L} is very ample, so that it occurs as the twisting sheaf of some non-degenerate closed immersion $X \stackrel{i}{\hookrightarrow} \mathbb{P}_{K}^{r}$. If we choose $f \in$ $\Gamma(X, \mathcal{L}) \backslash\{0\}$ generically, then D_{f} is a generic hyperplane section of X in \mathbb{P}_{K}^{r} and thus is reduced and irreducible by Bertini. Therefore $h^{0}\left(D_{f}, \mathcal{O}_{D_{f}}\right)=1$ and it follows again that $\sigma_{\mathcal{L}}(X)=h^{1}\left(D_{f}, \mathcal{O}_{D_{f}}\right)$, but this time without the assumption that X is normal. In particular $\sigma_{\mathcal{L}}(X)$ coincides with the arithmetic genus of the generic hyperplane section D_{f} and thus is nothing else than the usual sectional genus of X with respect to the embedding $i: X \hookrightarrow \mathbb{P}_{K}^{r}$.

Proposition 5.4. (s. [A, (5.19)]) Let X be a normal projective surface over K. Let \mathcal{L} be an ample invertible sheaf of \mathcal{O}_{X}-modules such that $0 \leq$ $\sigma_{\mathcal{L}}(X)<h^{0}(X, \mathcal{L})-1$. Then:
a) $H^{1}\left(X, \mathcal{L}^{\otimes n}\right)=0$ for all $n<0$.
b) $H^{2}\left(X, \mathcal{L}^{\otimes n}\right)=0$ for all $n \geq 0$.
c) $h^{1}\left(X, \mathcal{O}_{X}\right)+h^{2}\left(X, \mathcal{L}^{\otimes-1}\right)=\sigma_{\mathcal{L}}(X)$.

Proof. By our hypothesis we have $\Gamma(X, \mathcal{L}) \neq 0$. Choose $f \in$ $\Gamma(X, \mathcal{L}) \backslash\{0\}$ arbitrarily. As - in the notations of (5.3) B) - we have $H^{0}\left(X, \mathcal{L}^{\otimes-1}\right)=$ $H^{2}\left(D_{f}, \mathcal{O}_{D_{f}}\right)=0$, the short exact sequence of (5.3) B) together with (4.9) gives rise to an exact sequence

$$
\begin{aligned}
0 & \longrightarrow H^{1}\left(X, \mathcal{L}^{\otimes-1}\right) \xrightarrow{f .} H^{1}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{1}\left(D_{f}, \mathcal{O}_{D_{f}}\right) \\
& \longrightarrow H^{2}\left(X, \mathcal{L}^{\otimes-1}\right) \xrightarrow{f .} H^{2}\left(X, \mathcal{O}_{X}\right) \longrightarrow 0 .
\end{aligned}
$$

By (5.3) B) we have $h^{1}\left(D_{f}, \mathcal{O}_{D_{f}}\right)=\sigma_{\mathcal{L}}(X)$ so that $h^{1}\left(X, \mathcal{O}_{X}\right)-h^{1}\left(X, \mathcal{L}^{\otimes-1}\right)$ and $h^{2}\left(X, \mathcal{L}^{\otimes-1}\right)-h^{2}\left(X, \mathcal{O}_{X}\right)$ are both $\leq \sigma_{\mathcal{L}}(X)<h^{0}(X, \mathcal{L})-1$. If we make run f through all of $\Gamma(X, \mathcal{L}) \backslash\{0\}$ we now may conclude from (3.7) a) that $H^{1}\left(X, \mathcal{L}^{\otimes-1}\right)=0$ and from (3.7) b) that $H^{2}\left(X, \mathcal{O}_{X}\right)=0$. Now, the above sequence gives statement c). In particular we have $h^{1}\left(X, \mathcal{O}_{X}\right) \leq \sigma_{\mathcal{L}}(X)<$ $h^{0}(X, \mathcal{L})-1$ and so, statement a) follows from (4.7) b). Finally, statement b) is a consequence of the epimorphisms $H^{2}\left(X, \mathcal{L}^{\otimes n}\right) \xrightarrow{f} H^{2}\left(X, \mathcal{L}^{\otimes(n+1)}\right) \rightarrow 0$ for all $n \in \mathbb{Z}$ and all $f \in \Gamma\left(X, \mathcal{O}_{X}\right) \backslash\{0\}$.

Corollary 5.5. Let X be a projective surface over K which has only finitely many non-normal points and let $e^{1}(X)$ be as in (5.1). Assume that $0 \leq \sigma_{\mathcal{L}}(X)<h^{0}(X, \mathcal{L})-1$. Then:
a) $h^{1}\left(X, \mathcal{L}^{\otimes n}\right)=e^{1}(X)$ for all $n<0$.
b) $h^{2}\left(X, \mathcal{L}^{\otimes n}\right)=0$ for all $n \geq 0$.
c) $h^{1}\left(X, \mathcal{O}_{X}\right)+h^{2}\left(X, \mathcal{L}^{\otimes-1}\right)=\sigma_{\mathcal{L}}(X)+e^{1}(X)$.

Proof. Let $\nu: \tilde{X} \rightarrow X$ be the normalization of X and let $Z \subseteq X$ be the finite set of non-normal points of X and consider the short exact sequence $0 \rightarrow \mathcal{O}_{X} \xrightarrow{\nu^{\#}} \mathcal{O}_{\tilde{X}} \rightarrow \mathcal{F} \rightarrow 0$ in which \mathcal{F} is a coherent sheaf with support Z and of length $e^{1}(X)$ as we have seen in the proof of (5.2). We know already from that same proof that $\nu^{*} \mathcal{L}$ is an ample invertible sheaf of $\mathcal{O}_{\tilde{X}}$-modules and that $h^{i}\left(X, \nu_{*} \mathcal{O}_{\tilde{X}} \otimes_{\mathcal{O} X} \mathcal{L}^{\otimes n}\right)=h^{i}\left(\tilde{X},\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)$ for all $i \in \mathbb{N}_{0}$ and all $n \in \mathbb{Z}$. So, we may apply cohomology to the exact sequences

$$
0 \longrightarrow \mathcal{L}^{\otimes n} \longrightarrow \nu_{*} \mathcal{O}_{\tilde{X}} \otimes \mathcal{O}_{X} \mathcal{L}^{\otimes n} \longrightarrow \mathcal{F} \otimes \mathcal{O}_{X} \mathcal{L}^{\otimes n} \longrightarrow 0
$$

in order to get $h^{2}\left(\tilde{X},\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)=h^{2}\left(X, \mathcal{L}^{\otimes n}\right)$ for all $n \in \mathbb{Z}$. Moreover we have $h^{0}\left(X,\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)=h^{0}\left(X, \mathcal{L}^{\otimes n}\right)=0$ for all $n \leq 0$. Finally we know from the proof of (5.2) that $h^{1}\left(X, \mathcal{L}^{\otimes n}\right)=e^{1}(X)+h^{1}\left(\tilde{X},\left(\nu^{*} \mathcal{L}\right)^{\otimes n}\right)$ for all $n \leq 0$.

Thus, we get

$$
\begin{aligned}
\sigma_{\nu^{*}} \mathcal{L}(\tilde{X})= & \chi\left(\left(\nu^{*} \mathcal{L}\right)^{\otimes-1}\right)-\chi\left(\mathcal{O}_{\tilde{X}}\right)+1 \\
= & h^{2}\left(X, \mathcal{L}^{\otimes-1}\right)-\left(h^{1}\left(X, \mathcal{L}^{\otimes-1}\right)-e^{1}(X)\right) \\
& \quad-h^{2}\left(X, \mathcal{O}_{X}\right)+\left(h^{1}\left(X, \mathcal{O}_{X}\right)-e^{1}(X)\right)-1+1 \\
= & \chi\left(\mathcal{L}^{\otimes-1}\right)-\chi\left(\mathcal{O}_{X}\right)+1=\sigma_{\mathcal{L}}(X) .
\end{aligned}
$$

Finally, if we apply the sequence $(*)$ of the proof of (5.2) with $n=1$, we see that $h^{0}\left(\tilde{X}, \nu^{*} \mathcal{L}\right) \geq h^{0}(X, \mathcal{L})$ and hence that $\sigma_{\nu_{*} \mathcal{L}}(\tilde{X}) \leq h^{0}\left(\tilde{X}, \nu_{*} \mathcal{L}\right)-1$.

Now, we get our claims if we apply (5.4) to the normal surface \tilde{X} and the ample invertible sheaf of $\mathcal{O}_{\tilde{X}}$-modules $\nu^{*} \mathcal{L}$.

References

[A] C. Albertini, Schranken für die Kohomologie ampler Divisoren über normalen projektiven Varietäten in positiver Charakteristik, Dissertation, Universität Zürich, 1996.
[$\left.\mathrm{B}_{1}\right]$ M. Brodmann, Bounds on the cohomological Hilbert functions of a projective variety, Journal of Algebra, 109 (1987), 352-380.
$\left[\mathrm{B}_{2}\right] \quad$ M. Brodmann, Cohomology of certain projective surfaces with low sectional genus and degree, Commutative Algebra, Algebraic Geometry and Computational Methods (D. Eisenbud, ed.), Springer, New York (1999), pp. 173-200.
$\left[\mathrm{B}_{3}\right] \quad$ M. Brodmann, Cohomology of surfaces $X \subseteq \mathbb{P}^{r}$ with degree $\leq 2 r-2$, Commutative Algebra and Algebraic Geometry (F. van Oystaeyen, ed.), M. Dekker Lecture Notes 206, M. Dekker (1999), pp. 15-33.
[B-N] M. Brodmann and U. Nagel, Bounding cohomological Hilbert functions by hyperplane sections, Journal of Algebra, 174 (1995), 323-348.
[B-S] M. Brodmann and R. Y. Sharp, Local cohomology - An algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, 1998.
[B-V] M. Brodmann and W. Vogel, Bounds for the cohomology and the Calstelnuovo regularity of certain surfaces, Nagoya Math. Journal, 131 (1993), 109-126.
[D-I] P. Deligne and L. Illusie, Relèvements modulo p^{2} et décomposition du complexe de Rham, Invent. Math., 89 (1987), 247-270.
[E-V] H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar, Birkhäuser, Basel, 1992.
[F] Fujita, Classification theories of polarized varieties, LMS lecture notes 155, Cambridge University Press, 1990.
[G] A. Grothendieck, Eléments de géometrie algébrique III, Publ. Math. IHES 11, 1961.
$\left[\mathrm{H}_{1}\right] \quad$ R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics 156, Springer, Berlin, 1970.
[H_{2}] R. Hartshorne, Algebraic geometry, Graduate Text in Mathematics 52, Springer, New York, 1977.
[K] K. Kodaira, On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. USA, 39 (1953), 1268-1273.
[Ku] E. Kunz, Characterizations of regular local rings of characteristic p, American Journal of Mathematics, 91 (1969), 772-784.
[L-R] N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime characteristic, Proc. Indian Acad. Sci. Math. Sci., 107 (1997), no. 1, 21-25.
[M] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1989.
[Me-Ram] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math., 122 (1985), 27-40.
[Mu] D. Mumford, Pathologies III, American Journal of Mathematics, 89 (1967), 96-104.
[Ra] M. Raynaud, Contre-example au "vanishing theorem" en characteristique $p>0$, C. P. Ramanujam - a tribute, TIFR Studies in Mathematics 8, Springer, Oxford (1978), pp. 273-278.
[S] K. Smith, Fujita' freeness conjecture in terms of local cohomology, Journal of Algebraic Geometry, 6 (1997), 417-429.

Claudia Albertini
Kantonsschule Zuercher Oberland
Fachkreis Mathematik
8620 Wetzikon
Switzerland
Markus Brodmann
Institute of Mathematics
University of Zurich
Winterthurerstrasse 190
8057 Zürich
Switzerland
brodmann@math.unizh.ch

[^0]: Received April 2, 1999.
 Revised June 8, 2000.
 2000 Mathematics Subject Classification: 13D03, 14B15, 14F15, 14F05.
 ${ }^{1}$ Author supported by Swiss National Foundation; Grant Nr. 21-36526.92

