T. Kubota and M. Yoshida Nagoya Math. J. Vol. 163 (2001), 1–11

A NOTE ON THE CONGRUENT DISTRIBUTION OF THE NUMBER OF PRIME FACTORS OF NATURAL NUMBERS

TOMIO KUBOTA AND MARIKO YOSHIDA

Abstract. Let $n = p_1 p_2 \cdots p_r$ be a product of r prime numbers which are not necessarily different. We define then an arithmetic function $\mu_m(n)$ by

$$\mu_m(n) = \rho^r \quad (\rho = e^{2\pi i/m}),$$

where m is a natural number. We further define the function $L(s,\mu_m)$ by the Dirichlet series

$$L(s,\mu_m) = \sum_{n=1}^{\infty} \frac{\mu_m(n)}{n^s} = \prod_p \left(1 - \frac{\rho}{p^s}\right)^{-1} \quad (\text{Re}\,s > 1),$$

and will show that $L(s, \mu_m)$, $(m \ge 3)$, has an infinitely many valued analytic continuation into the half plane $\operatorname{Re} s > 1/2$.

§1. Introduction

Let $n = p_1 p_2 \cdots p_r$ be a product of r prime numbers which are not necessarily different. We define then an arithmetic function $\mu_m(n)$ by

$$\mu_m(n) = \rho^r \quad (\rho = e^{2\pi i/m}),$$

where m is a natural number. In the case of m = 2, $\mu_2(n)$ is related to the Möbius function $\mu(n)$ as

$$\mu(n) = \begin{cases} \mu_2(n) & \text{if } p_1, p_2, \dots, p_r \text{ are different,} \\ 0 & \text{otherwise.} \end{cases}$$

We define the function $L(s, \mu_m)$ by the Dirichlet series

(1)
$$L(s,\mu_m) = \sum_{n=1}^{\infty} \frac{\mu_m(n)}{n^s} \quad (\text{Re}\,s > 1).$$

Received January 26, 2000.

2000 Mathematics Subject Classification: Primary: 11N37, Secondary: 11M41.

On the other hand, we denote by $N_j(x)$ $(0 \le j < m)$, the number of natural numbers n satisfying $\mu_m(n) = \rho^j$ and $n \le x$ for a given positive real number x. Namely, N_j is the number of those natural numbers n not exceeding x which are products of r prime factors such that $r \equiv j \pmod{m}$.

The Dirichlet series $L(s, \mu_m)$ has the Euler product

(2)
$$L(s,\mu_m) = \prod_p \left(1 - \frac{\rho}{p^s}\right)^{-1}$$

If m = 2, we have the equality

(3)
$$L(s,\mu_2) = \prod_p \left(1 + \frac{1}{p^s}\right)^{-1} = \prod_p \left(1 - \frac{1}{p^{2s}}\right)^{-1} \prod_p \left(1 - \frac{1}{p^s}\right)$$
$$= \zeta(2s)\zeta(s)^{-1}$$

with the Riemann zeta function $\zeta(s)$. Accordingly, $L(s, \mu_2)$ is closely related to $\zeta(s)^{-1}$. If, however, $m \geq 3$, then $L(s, \mu_m)$ is of considerably different nature, although a product formula

$$\prod_{k=1}^{m-1} L(s, \mu_m^k) = \prod_{k=1}^{m-1} \prod_p \left(1 - \frac{\rho^k}{p^s}\right)^{-1} = \prod_p \left(1 - \frac{1}{p^{ms}}\right)^{-1} \prod_p \left(1 - \frac{1}{p^s}\right)^{-1} = \zeta(ms)\zeta(s)^{-1}$$

similar to (3) holds, where

$$L(s,\mu_m^k) = \sum_{n=1}^{\infty} \frac{\mu_m(n)^k}{n^s}$$

The aim of the present paper is to investigate $L(s, \mu_m)$ to some extent, and, as a result, to obtain some informations on $N_0, N_1, \ldots, N_{m-1}$.

§2. Analytic continuation of $L(s, \mu_m)$

In this article, we will show that $L(s, \mu_m)$, $(m \ge 3)$, has an infinitely many valued analytic continuation into the half plane $\operatorname{Re} s > 1/2$.

THEOREM 1. Assume $\operatorname{Re} s_0 > 1$ and let C be a smooth path starting from s_0 , remaining in the half plane $\operatorname{Re} s > 1/2$, and not passing 1 or any zero of $\zeta(s)$. Then, $L(s, \mu_m)$ in (1) can be continued analytically along C. The analytic continuation thus obtained can be expressed as

$$L(s,\mu_m) = \zeta(s)^{\rho} G(s)$$

in the half plane $\operatorname{Re} s > 1/2$, where G(s) is a holomorphic function in the same region.

Proof. For a moment, suppose $\operatorname{Re} s > 1$. Then,

$$\frac{d}{ds}\log\zeta(s) = -\sum_{p}\frac{d}{ds}\log\left(1 - \frac{1}{p^{s}}\right) = -\sum_{p}\frac{\frac{1}{p^{s}}}{1 - \frac{1}{p^{s}}}\log p = -\sum_{p}\sum_{k=1}^{\infty}\frac{\log p}{p^{ks}},$$

and by (2)

$$\frac{d}{ds}\log L(s,\mu_m) = -\sum_p \frac{d}{ds}\log\left(1-\frac{\rho}{p^s}\right) = -\sum_p \frac{\frac{\rho}{p^s}}{1-\frac{\rho}{p^s}}\log p$$
$$= -\sum_p \sum_{k=1}^\infty \frac{\rho^k \log p}{p^{ks}}.$$

Therefore, if we put

$$F(s) = \frac{d}{ds} \log L(s, \mu_m) - \rho \frac{d}{ds} \log \zeta(s),$$

then

$$F(s) = \sum_{p} \sum_{k=2}^{\infty} \frac{(\rho - \rho^k) \log p}{p^{ks}}.$$

This series is absolutely convergent in the half plane $\operatorname{Re} s > 1/2$, because $|\rho - \rho^k| \leq 2$ and

$$\sum_{p} \sum_{k=2}^{\infty} \frac{\log p}{p^{k\sigma}} = \sum_{p} \frac{\frac{1}{p^{2\sigma}}}{1 - \frac{1}{p^{\sigma}}} \log p < \frac{\sqrt{2} - 1}{\sqrt{2}} \sum_{p} \frac{\log p}{p^{2\sigma}} < \sum_{n=1}^{\infty} \frac{\log n}{n^{2\sigma}} < \infty$$

with $\sigma = \text{Re } s > 1/2$. Thus, F(s) is holomorphic and one-valued in the half plane Re s > 1/2, and the analytic continuation of $L(s, \mu_m)$ is obtained by

$$L(s,\mu_m) = L(s_0,\mu_m) \exp\left(\int_{s_0}^s \left[\rho \frac{d}{ds} \log \zeta(s) + F(s)\right] ds\right)$$
$$= \exp\left(\int_{s_0}^s \rho \frac{d}{ds} \log \zeta(s) ds\right) \cdot L(s_0,\mu_m) \cdot \exp\left(\int_{s_0}^s F(s) ds\right).$$

Furthermore, since

$$\exp\left(\int_{s_0}^s \rho \, \frac{d}{ds} \log \zeta(s) \, ds\right) = \frac{\zeta(s)^{\rho}}{\zeta(s_0)^{\rho}}$$

holds as an equality between many valued functions, we can correspondingly put

$$G(s) = \zeta(s_0)^{-\rho} L(s_0, \mu_m) \cdot \exp\Big(\int_{s_0}^s F(s) \, ds\Big),$$

where $\zeta(s_0)^{\rho}$ is uniquely determined by the Euler product of $\zeta(s)$ as

$$\zeta(s_0)^{\rho} = \exp\left(-\rho \sum_p \log\left(1 - \frac{1}{p^{s_0}}\right)\right).$$

In these formulas, s is an arbitrary complex number with Re s > 1/2, the integral is taken along the path C, and s is the end of C. Hence, we obtain the assertion of the theorem.

COROLLARY. If $m \geq 3$, then $L(s, \mu_m)$ is many valued, and has a logarithmic singularity like $(s-1)^{-\rho}$ at 1, and has logarithmic singularities also at zeros of $\zeta(s)$ in the half plane $\operatorname{Re} s > 1/2$.

Remark 1. The only pole of $\frac{d}{ds} \log \zeta(s)$ is 1, and the residue is -1. At a zero of $\zeta(s)$ of order g, $\frac{d}{ds} \log \zeta(s)$ has a pole of order 1, and the residue is g. Accordingly, $\rho \frac{d}{ds} \log \zeta(s)$ has a pole of order 1 at 1 and at zeros of $\zeta(s)$, and the residues are $-\rho$ and $g\rho$, respectively. If C in the Theorem turns around 1 once in the positive direction, then the analytic continuation is multiplied by $e^{-2\pi i\rho}$. If C turns around a zero of $\zeta(s)$ of order g once in the positive direction, then the analytic continuation is multiplied by $e^{2\pi i g\rho}$.

If m = 2, then $-\rho$ and $g\rho$ in the Theorem are rational integers so that $L(s, \mu_2)$ is one-valued.

THEOREM 2. Assume $m \geq 3$, then an asymptotic formula of the form

(4)
$$\sum_{n \le x} \mu_m(n) = o(x^{\alpha})$$

can not hold, whenever $\alpha < 1$.

Proof. Put

$$S_m(\alpha) = \sum_{n \le x} \mu_m(n)$$

and suppose that (4) is true for an $\alpha < 1$. Then,

(5)
$$\sum_{n=1}^{\infty} \frac{\mu_m(n)}{n^s} = \sum_{n=1}^{\infty} \frac{S_m(n) - S_m(n-1)}{n^s} = \sum_{n=1}^{\infty} S_m(n) \left(\frac{1}{n^s} - \frac{1}{(n+1)^s}\right)$$

and there exists a positive constant c_1 such that

$$\left|S_m(n)\right| < c_1 n^{\alpha}$$

for all $n \geq 1$. Therefore, we have

$$S_m(n)\left(\frac{1}{n^s} - \frac{1}{(n+1)^s}\right) = S_m(n)\frac{1}{s}\int_n^{n+1} x^{-s-1} dx$$

and

$$\left|S_m(n)\left(\frac{1}{n^s} - \frac{1}{(n+1)^s}\right)\right| \le c_1 n^{\alpha} \cdot \frac{1}{s} n^{-s-1}$$

so that the series in (1) converges at $s = \alpha + \varepsilon$ for every $\varepsilon > 0$. It follows from this and from the general theory of Dirichlet series that $L(s, \mu_m)$ is holomorphis and one-valued in the half plane $\operatorname{Re} s > \alpha$, which is a contradiction, because s = 1 is a logarithmic singularity of $L(s, \mu_m)$ as shown in the Corollary.

§3. Asymptotic properties of $N_j(x)$, (j = 0, 1, ..., m - 1)

A version of the prime number theorem is

(6)
$$\sum_{n \le x} \mu(n) = o(x)$$

and Riemann's hypothesis is equivalent to the fact that

(7)
$$\sum_{n \le x} \mu(x) = o(x^{\alpha})$$

holds for every $\alpha > 1/2$.

If m = 2, the following theorem on the asymptotic behavior of N_0, N_1 is easily deduced from (6) and (7). For the sake of completeness, we state the fact as a theorem with proof.

THEOREM 3. Let $N_0(x)$ and $N_1(x)$ be as in §1 with m = 2. Then, both $N_0(x)$ and $N_1(x)$ are $\frac{1}{2}x + o(x)$. If (7) is true, then both $N_0(x)$ and $N_1(x)$ are $\frac{1}{2}x + o(x^{\alpha})$.

Proof. It is enough to treat the second assertion. The definitions of $N_0(x)$, $N_1(x)$ and $\mu_2(x)$ imply

$$\sum_{n \le x} \mu_2(x) = N_0(x) - N_1(x).$$

On the other hand, since

(8)
$$\mu_2(n) = \sum_{k^2 \mid n} \mu\left(\frac{n}{k^2}\right)$$

the left hand side of (7) is equal to

$$\sum_{n \le x} \sum_{k^2 \mid n} \mu\left(\frac{n}{k^2}\right) = \sum_{k=1}^{\infty} \sum_{n' \le x/k^2} \mu(n') \quad (n = k^2 n').$$

So, putting

$$S(x) = \sum_{n \le x} \mu(x), \quad S_2(x) = \sum_{n \le x} \mu_2(x),$$

we have

(9)
$$S_2(x) = \sum_{k=1}^{\infty} S\left(\frac{x}{k^2}\right).$$

Under the assumption (7), there is a constant c_2 such that

$$\left|S(x)\right| < c_2 x^{\alpha}$$

for all x > 0. Hence,

(10)
$$\left|x^{-\alpha}S_2(x)\right| \le \sum_{k=1}^{\infty} x^{-\alpha} \left|S\left(\frac{x}{k^2}\right)\right|$$

and

$$x^{-\alpha} \left| S\left(\frac{x}{k^2}\right) \right| \le c_2 x^{-\alpha} \left(\frac{x}{k^2}\right)^{\alpha} = c_2 \frac{1}{k^{2\alpha}}.$$

This means that the series in (10) has an absolutely convergent majorant, and, again by the assumption (7), each term $x^{-\alpha}|S(x/k^2)|$ tends to 0 as $x \to \infty$. Thus, we have

$$\lim_{x \to \infty} x^{\alpha} S_2(x) = 0$$

or

(11)
$$N_0(x) - N_1(x) = o(x^{\alpha})$$

as desired.

Now, it is clear that

(12)
$$N_0(x) + N_1(x) \sim x$$

Therefore the Theorem follows from (11) and (12).

Remark 2. Applying Möbius' inversion formula to (9), it is also shown similarly to the above proof that $S_2(x) = o(x^{\alpha})$ implies $S(x) = o(x^{\alpha})$.

We can ask whether similar asymptotic properties as appeared in Theorem 3 exist or not for $N_j(x)$ defined in §1, too. It seems to be fairly hard to answer this kind of question. But, at least, the following theorem is valid:

THEOREM 4. If $m \geq 3$, and if asymptotic formulas of the form

$$N_j(x) = \nu_j x + o(x^{\alpha}) \quad (\alpha < 1)$$

exist for all $j = 0, 1, \ldots, m-1$, then $\nu_0, \nu_1, \ldots, \nu_{m-1}$ can not be all equal.

Proof. Assume $\nu_0 = \nu_1 = \cdots = \nu_{m-1}$. Then, since

$$S_m(x) = \sum_{j=0}^{m-1} \rho^j N_j(x),$$

it turns out that

$$S_m(x) = o(x^\alpha)$$

which contradicts Theorem 2.

$\S4.$ A computational experiment

Theorem 4 denies the possibility to get an asymptotic formula $N_j(x) = \frac{1}{m}x + o(x^{\alpha})$ (j = 0, 1, ..., m - 1) for $\alpha < 1$. But, for $\alpha = 1$, the possibility still remains. While, in this direction, the authors still do not possess any theoretical results, they made an experiment by Mathematica in order to examine the behavior of $\frac{1}{x}N_j(x)$ as $x \to \infty$ in the case of m = 3. The computation up to $x = 3 \times 10^8$ made it plausible that $\frac{1}{x}N_j(x)$, (j = 0, 1, 2), tend to a common limit 1/3.

From Theorem 3, we see that, roughly speaking, the distribution of the number of prime factors of natural numbers is uniform modulo 2. Theorem 4 shows, however, the distribution is not uniform modulo m, $(m \ge 3)$, if the uniformity is defined rather in a strong sense that $\alpha < 1$. Nevertheless, the above computational data allude that the distribution in question is uniform in the weaker sense with $\alpha = 1$.

Computational investigation supplies some more facts. Fig. 1 shows the behavior of

(13)
$$\frac{1}{\sqrt[3]{x}} \sum_{n \le x} \mu_3(n).$$

up to 3×10^8 plotted at every 10^4 of *n*. While

(14)
$$\frac{1}{x} \sum_{n \le x} \mu_3(n)$$

probably tends to 0 as $x \to \infty$, the product of (14) and $x^{3/2}$ draws the curve in Fig. 1. So, Fig. 1 shows the behavior of (14) magnified by the factor $x^{3/2}$. It is remarkable that the curve in Fig. 1 is fairly smooth.

Fig. 2 shows the behavior of

(15)
$$\frac{1}{\sqrt{x}} \sum_{n \le x} \mu_2(n)$$

up to 3×10^8 plotted at every 10^4 of *n*. The result is far more disorderly than Fig. 1.

Tables 1 and 2 show actual values of (13) and (15) restricting n to multiples of 10^7 .

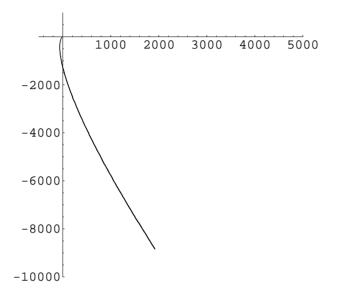
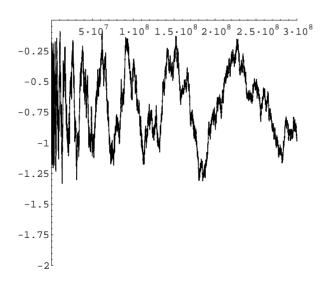


Figure 1:



$n(imes 10^7)$	$\frac{1}{\sqrt[3]{x}}\sum_{n\leq x}\mu_3(n)$	$n(\times 10^7)$	$\frac{1}{\sqrt[3]{x}}\sum_{n\leq x}\mu_3(n)$
1	-5.6210 - 1235.5215i	16	1103.9154 - 6144.6615i
2	85.6279 - 1846.3794i	17	1165.7678 - 6362.9139i
3	172.1854 - 2334.9107i	18	1230.5480 - 6576.5930i
4	254.8574 - 2752.9714i	19	1291.5799 - 6785.4313i
5	334.6198 - 3134.9381i	20	1349.3514 - 6990.6826i
6	411.6768 - 3481.0532i	21	1409.9050 - 7187.6113i
7	489.1593 - 3809.0565i	22	1466.2162 - 7384.5319i
8	559.2476 - 4115.3894i	23	1525.3580 - 7579.0326i
9	632.8016 - 4401.6940i	24	1588.7635 - 7768.3007i
10	703.6815 - 4680.1121i	25	1644.7499 - 7952.1305i
11	777.5754 - 4945.3833i	26	1700.4838 - 8135.4568i
12	839.3834 - 5201.3469i	27	1756.7184 - 8316.9325i
13	910.2625 - 5448.3369i	28	1812.3899 - 8494.9559i
14	973.7787 - 5683.9184i	29	1865.6500 - 8667.6974i
15	1039.1155 - 5914.1483i	30	1920.8040 - 8841.0852i

Table 1:

Table 2:

$n(\times 10^7)$	$\frac{1}{\sqrt{x}}\sum_{n\leq x}\mu_2(n)$	$n(\times 10^7)$	$\frac{1}{\sqrt{x}}\sum_{n\leq x}\mu_2(n)$
1	-0.266264	16	-0.569684
2	-1.00847	17	-0.820346
3	-1.02789	18	-1.26785
4	-0.5047	19	-1.12899
5	-1.07593	20	-0.786727
6	-0.389364	21	-0.669226
7	-0.788612	22	-0.331841
8	-0.797382	23	-0.401299
9	-0.229371	24	-0.61929
10	-0.3884	25	-0.504067
11	-0.968909	26	-0.597103
12	-0.784339	27	-0.8979
13	-0.978972	28	-1.031
14	-0.476329	29	-0.95987
15	-0.264871	30	-0.961173

Added in proof. In the meantime, the author proved $\sum_{n \leq x} \mu_3(n) = o(x)$, and found a more precise asymptotic formula

$$\sum_{n \le x} \mu_3(n) \sim \Gamma(\rho)^{-1} \eta_0 \cdot x (\log x)^{\rho - 1}$$

plausible.

References

[1] H. M. Edwards, Riemann's zeta function, Academic Press, 1974.

[2] S. Lang, Algebraic number theory, Addison Wesley, 1970.

Tomio Kubota Department of Mathematics Meijo University Shiogamaguchi 1-501 Tempaku-ku Nagoya, 468-8502 Japan

Mariko Yoshida Department of Mathematics Meijo University Shiogamaguchi 1-501 Tempaku-ku Nagoya, 468-8502 Japan