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The first author dedicates this work to Professor Takashi Ono

Abstract. Let K be the simplest cubic field defined by the irreducible polyno-
mial

f(x) = x
3 + mx

2
− (m + 3)x + 1,

where m is a nonnegative rational integer such that m2 +3m+9 is square-free.
We estimate the value of the Dedekind zeta function ζK(s) at s = −1 and get
class number 1 criterion for the simplest cubic fields.

§1. The simplest cubic fields

In this section, we review basic facts about the simplest cubic fields and

give a motivation for our work.

Let m be a nonnegative integer and Km (or simply K) be the cubic

field obtained by adjoining a root of the irreducible polynomial

f(x) = x3 +mx2 − (m+ 3)x+ 1.(1.1)

The discriminant of the polynomial f(x) is D2, where D = m2 + 3m+ 9.

Let ρ be the negative root of f(x). Then

ρ′ =
1

1 − ρ
, ρ′′ =

1

1 − ρ′
= 1 −

1

ρ
(1.2)

are the other two roots of f(x), so K = Q(ρ) is a cyclic cubic field. The field

K is called the simplest cubic field. The terminology “simplest cubic field”

was first introduced by Shanks [6]. He studied the arithmetic of this family
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of cyclic cubic fields in the case that D = m2 + 3m + 9 is a prime. Later

Washington [8] extended these notions to the case that m is an integer such

that m 6≡ 3 (mod 9) and studied the class number problem of these fields.

For the discriminant of the simplest cubic fields, we have:

Proposition 1.1. Let m 6≡ 3 (mod 9) and write D = m2 + 3m+ 9 =

bc3 with b cube-free. Then the discriminant of Km is (δ
∏

p|b p)
2, where δ = 1

if 36 | b and δ = 3 if 3|b.

Proof. See [8].

In the case that D = m2 + 3m + 9 is square-free, our information is

more precise:

Proposition 1.2. Let m ≥ 0 be an integer such that D = m2+3m+9

is square-free. Then {1, ρ, ρ2} forms an integral basis for K and {−1, ρ, ρ′}

generates the full unit group of K.

Proof. See [2].

Let hm denote the class number of Km. We borrow the following class

number table from Shanks [6] and extend it by computing the term 2m+3.

Note that Shanks only considered the case where D is a prime.

m hm 2m+ 3

0 1 3

1 1 5

2 1 7

4 1 11

7 1 17

8 1 19

10 1 23

11 4 25

16 7 35

17 4 37

23 4 49

25 4 53

28 7 59
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A glance of this table suggests that

(A) if hm = 1, then 2m+ 3 is a prime,

and

(B) the converse of (A) is not necessarily true.

The purpose of this paper is to prove these two facts by using special values

of zeta functions of the simplest cubic fields.

Our basic idea is simple and runs as follows:

Let ζK(s) denote the Dedekind zeta function ofK and ζK(s, C)

be the class zeta function of K belonging to the principal ideal

class of K. Then we have

ζK(2) ≥ ζK(2, C)(1.3)

or equivalently, by functional equation,

ζK(−1) ≤ ζK(−1, C),(1.4)

and the equality holds if and only if the class number of K is one.

We shall compute the values of two sides of (1.4) and compare

them.

For the values of class zeta functions, Halbritter and Pohst [3] developed

a method of expressing special values of class zeta functions of totally real

cubic fields as a finite sum involving norm, trace, and 3-fold Dedekind sums.

Their result has been exploited by Byeon [1] to give an explicit formula for

the values of class zeta functions of the simplest cubic fields. Using these

values, Byeon proved (A).

We summarize Byeon’s result as in the following theorem.

Theorem 1.3. Let m ≥ 0 be an integer such that m2 + 3m + 9 is

square-free, K the simplest cubic field defined by the equation (1.1), and C

the principal ideal class of K. Then

ζK(−1, C) = −
1

23 · 33 · 5 · 7
P (m),

where P (m) = m6 + 9m5 + 55m4 + 195m3 + 544m2 + 876m+ 840.
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Proof. By Theorem 2.3 of [1], we have

ζK(2, C) =
π6

D3

{

1

945
m6 +

1

105
m5 +

11

189
m4 +

13

63
m3 +

544

945
m2 +

292

315
m+

8

9

}

.

We apply the functional equation to get the desired result.

§2. Values of zeta functions of the simplest cubic fields

Using finite dimensionality of elliptic modular forms of weight h,

Siegel [7] developed an ingenious method of computing ζK(b), where K

is a totally real algebraic number field and b a negative odd integer. Siegel’s

formula has been exploited by Zagier [9] to give an explicit formula for the

values of zeta fuctions of real quadratic fields. In this section, we apply

Siegel’s formula to the simplest cubic fields.

2.1. Siegel’s formula and Siegel lattice

In this subsection, we introduce Siegel’s formula and the notion of Siegel

lattice.

We follow Zagier [9] in description of Siegel’s formula. To introduce

Siegel’s formula, we need some preliminary notations. Let K be a totally

real algebraic number field. First, we recall the definition of the different of

K.

The different d of K is defined to be the inverse of the fractional ideal

d−1 = {x ∈ K | tr(xOK) ⊆ Z}.(2.1)

Here OK denote the ring of integers of K. The ideal d is an integral ideal

and it is related to the discriminant dK of K by the formula

N(d) = dK .(2.2)

Next, for r = 0, 1, 2, . . . , we define

σr(n) =
∑

d|n

dr (n = 1, 2, . . .)(2.3)

to be the sum of r-th powers of positive divisors of n. We generalize this

definition to number fields by setting

σr(a) =
∑

b|a

N(b)r (a ⊂ OK an ideal).(2.4)
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Here the sum is taken over all ideals b of OK which divide a.

Finally, for l,m = 1, 2, . . . , we define

sK
l (2m) =

∑

ν∈d−1

ν�0
tr(ν)=l

σ2m−1((ν)d).(2.5)

The sum extends over all totally positive elements in d−1 with given trace l.

Note that this is a finite sum. Later we shall study this sum more precisely.

We can now state Siegel’s formula.

Theorem 2.1. (Siegel [7]) Let m = 1, 2, . . . be a natural number, K a

totally real algebraic number field of degree n, and h = 2mn. Then

ζK(1 − 2m) = 2n
r

∑

l=1

bl(h)s
K
l (2m).(2.6)

The numbers r ≥ 1 and b1(h), . . . , br(h) ∈ Q depend only on h. In particular,

r = dimC Mh,(2.7)

where Mh is the space of modular forms of weight h; thus by a well-known

formula

r =

{
[

h
12

]

, if h ≡ 2 (mod 12),
[

h
12

]

+ 1, if h 6≡ 2 (mod 12).
(2.8)

Proof. See [7] or [9].

Remark. Zagier [9] contains a table for the values of Siegel coefficients

bl(h) for 4 ≤ h ≤ 40. In our present calculation we only need b1(6) and its

value is −1/504. If K is the simplest cubic field and m = 1, then h = 6.

Therefore, by Siegel’s formula, we have

ζK(−1) = −
8

504
sK
1 (2).(2.9)

To compute sK
l (2m), we need to analyze the finite sum in the equa-

tion (2.5).

Let K be a totally real algebraic number field of degree n and SK

(or simply S) be the set of elements in K which satisfy Siegel conditions
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described in (2.5). Fix an integral basis {α1, α2, . . . , αn} of K. For ν ∈ K,

we can write

ν = x1α1 + · · · + xnαn, xi ∈ Q.(2.10)

Therefore we have an embedding φ : K → Rn given by

φ(ν) = (x1, . . . , xn).(2.11)

The condition ν ∈ d−1 implies that the denominator of xi, i = 1, 2, . . . , n, is

bounded by |dK | where dK is the discriminant of K. The condition tr(ν) = l

is equivalent to the condition that φ(ν) = (x1, . . . , xn) lies in the hyperplane

tr(α1)x1 + · · · + tr(αn)xn = l(2.12)

defined over Q. Finally the condition ν � 0 becomes n distinct linear

inequalities (defined over K) in the variables x1, . . . , xn. Therefore the ele-

ments ν ∈ S can be put in one-to-one correspondence to the lattice points

in a bounded (n− 1)-dimensional region under φ. We shall call this lattice

(or any set which can be put in one-to-one correspondence with this set

under a suitable linear transformation) as a Siegel lattice for K and denote

it by SK (or simply S). Notice that the sum sK
l (2m) is a weighted sum of

divisor functions over a Siegel lattice. Hence the description of Siegel lattice

is of crucial importance in computation of sK
l (2m).

2.2. Description of Siegel lattices for the simplest cubic fields

In this subsection, we shall describe Siegel lattices for the simplest cubic

fields and give a formula for the number of points in Siegel lattices.

Let m ≥ 0 be an integer such that D = m2 + 3m+ 9 is square-free and

K be the simplest cubic field defined by the irreducible polynomial

f(x) = x3 +mx2 − (m+ 3)x+ 1.(2.13)

Recall that the discriminant dK , the ring OK of integers, and the different

dK (cf. [5, Chap. 10, 7E]) of K are given respectively by

dK = D2 = (m2 + 3m+ 9)2,(2.14)

OK = Z[ρ] = Z ⊕ Zρ⊕ Zρ2,(2.15)

dK = (f ′(ρ)) = (3ρ2 + 2mρ− (m+ 3)),(2.16)

where ρ denotes the negative root of f(x).
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Siegel lattice for n = 2. Siegel lattice for n = 3.

Siegel lattice for n = 4.

Figure 1: Siegel lattice.

Let

ν = α+ βρ+ γρ2, α, β, γ ∈ Q,(2.17)

be an element in K.

1. ν ∈ d−1 ⇐⇒ ν · d = ((3ρ2 + 2mρ− (m+ 3))ν) ⊂ OK .

Since ν · (3ρ2 + 2mρ− (m+ 3)) ∈ OK , we can write

ν · (3ρ2 + 2mρ− (m+ 3)) = A+Bρ+ Cρ2, A,B,C ∈ Z.(2.18)

From (2.17), (2.18), we obtain

−(m + 3)α− 3β +mγ = A,(2.19)

2mα+ 2(m+ 3)β + (−m2 − 3m− 3)γ = B,(2.20)

3α −mβ + (m2 + 2m+ 6)γ = C.(2.21)

Note that the determinant of the coefficient matrix of the above linear
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system is −D2. Using Cramer’s rule, we have

α =
a

D
, β =

b

D
, γ =

c

D
, a, b, c ∈ Z.(2.22)

By substitution of (2.22) into (2.19), (2.20), (2.21), we finally have

−(m+ 3)a− 3b+mc = DA ≡ 0 (mod D),(2.23)

2ma+ 2(m+ 3)b+ (−m2 − 3m− 3)c = DB ≡ 0 (mod D),(2.24)

3a−mb+ (m2 + 2m+ 6)c = DC ≡ 0 (mod D).(2.25)

2. tr(ν) = l ⇐⇒ 3α+ β tr(ρ) + γ tr(ρ2) = l.

From the fact that tr(ρ) = −m, tr(ρ2) = m2+2m+6 and by substitution

of (2.22) into 2, we have

C = l,(2.26)

and

b =
3a+ (m2 + 2m+ 6)c− lD

m
.(2.27)

By substitution of (2.27) into (2.23), we have

− a+ 3l − 2c = mA.(2.28)

In particular, m divides a+ 2c− 3l. Put

t =
a+ 2c− 3l

m
.(2.29)

Since we are mainly interested in the value ζK(−1), from now on, we con-

centrate ourselves on the case l = 1. Thus equations (2.27), (2.29) becomes

b =
3a+ (m2 + 2m+ 6)c−D

m
,(2.30)

and

t =
a+ 2c− 3

m
.(2.31)

3. ν � 0 ⇐⇒ Dν = a+ bρ+ cρ2 � 0.

This condition becomes the following three linear inequalities defined

over K:

a+ bρ+ cρ2 > 0,(2.32)

a+ bρ′ + cρ′
2
> 0,(2.33)

a+ bρ′′ + cρ′′
2
> 0.(2.34)
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By substitution of (2.30), (2.31) into (2.32), (2.33), (2.34), we have

(ρ2 + (m+ 2)ρ− 2)c+ (m+ 3ρ)t+ (3 − (m+ 3)ρ) > 0,(2.35)

(ρ′
2
+ (m+ 2)ρ′ − 2)c+ (m+ 3ρ′)t+ (3 − (m+ 3)ρ′) > 0,(2.36)

(ρ′′
2
+ (m+ 2)ρ′′ − 2)c+ (m+ 3ρ′′)t+ (3 − (m+ 3)ρ′′) > 0.(2.37)

Let l1 (resp. l2, l3) denote the line in (c, t)-plane given by the left hand side

of the inequality of (2.35) (resp. (2.36), (2.37)). By an actual calculation,

we obtain:

(−ρ+ ρ′, 1/ρ′′) is the intersection point of l1 = l2 = 0,(2.38)

(−ρ′ + ρ′′, 1/ρ) is the intersection point of l2 = l3 = 0,(2.39)

(−ρ′′ + ρ, 1/ρ′) is the intersection point of l3 = l1 = 0.(2.40)

Note that g(x) = x3 −Dx+D (resp. h(x) = x3 − (m + 3)x2 +mx + 1) is

the cubic polynomial whose roots are the conjugates of −ρ+ ρ′ (resp. 1/ρ).

By applying simple plotting test on f(x), we obtain

−m− 2 < ρ < −m− 1 < 0 < ρ′ < 1 < ρ′′ < 2.(2.41)

Similarly, we may apply the same argument to g(x) to obtain

−m− 3 < −ρ′′ + ρ < −m− 2 < 1 < −ρ′ + ρ′′ < 2(2.42)

< m+ 1 < −ρ+ ρ′ < m+ 2,

if m ≥ 2. For m = 1, we have

− 5 < −ρ′′ + ρ < −4 < 1 < −ρ′ + ρ′′ < 2 < −ρ+ ρ′ < 3.(2.43)

Similarly, we obtain

− 1 <
1

ρ
< 0 <

1

ρ′′
< 1 < m+ 2 <

1

ρ′
< m+ 3.(2.44)

We summarize the above computation as in the following proposition.

Proposition 2.2. Let m ≥ 0 an integer such that D = m2 + 3m+ 9

is square-free and K be the simplest cubic field defined by the irreducible

polynomial (1.1). Let S be the set of elements in K which satisfy Siegel

conditions described in (2.5) and S be the set of integral points which lie in
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the triangle in (c, t)-plane surrounded by lines l1 = l2 = l3 = 0. Let ν ∈ S.

By (2.22), we can write

ν =
a

D
+

b

D
ρ+

c

D
ρ2, a, b, c ∈ Z.(2.45)

Then the map η : S → S given by η(ν) = (c, t), where

c = c and t =
a+ 2c− 3

m
,(2.46)

gives a one-to-one correspondence between S and S.

: point which belongs to the triangle
: point which does not belong to the triangle

Figure 2: Siegel lattice for the simplest cubic field with m = 10.

Example. As an illustration of our discussion, we describe an Siegel

lattice S for the simplest cubic field K with m = 10. First note that (c, t) =

(1, 0), (−m − 2,m + 2), (m + 1, 1) satisfy Siegel conditions, that is, they

are inside the triangle. Next (c, t) = (2, 0), (−m − 1,m + 1), (m − 1, 2) do

not satisfy inequalities (2.35), (2.36), and (2.37). Therefore these points lie

outside the triangle. Finally, inequalities (2.42) and (2.44) in conjunction
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with (2.38), (2.39), and (2.40) give rough location of three vertices of the

triangle. Combining these data, we conclude that Siegel lattice for K is

given as in the Figure 2 given above.

The next simple observation gives a crucial point in understanding

Siegel lattice of totally real Galois fields.

Lemma 2.3. Let K be a totally real Galois extension of Q with Galois

group G. If ν ∈ K satisfies Siegel conditions described in (2.5), then so does

σ(ν) for σ ∈ G.

Proof. This is almost clear. For example, we have

ν ∈ d−1 ⇐⇒ tr(νOK) ⊆ Z ⇐⇒ σ(tr(νOK)) ⊆ Z

⇐⇒ tr(σ(ν)σ(OK)) ⊆ Z ⇐⇒ tr(σ(ν)OK) ⊆ Z

⇐⇒ σ(ν) ∈ d−1.

By Lemma 2.3, the Galois group G = Gal(K/Q) acts on the set S and

S can be put in one-to-one correspondence with a Siegel lattice S under η.

Therefore we have the induced Galois action on S.

Now we return to the simplest cubic fields case and describe the Galois

action on S.

Proposition 2.4. Let m ≥ 0 be an integer such that D = m2+3m+9

is square-free and K be the simplest cubic field defined by (1.1). Then the

Galois group G (= 〈σ〉) induces an action on S given by

σ · (c, t) = (−2c− 3t+m+ 3, c + t).

Moreover, every G-orbit contains three points. In particular, N is di-

visible by 3, where N is the number of lattice points in S.

Proof. Let ν ∈ S. By (2.45), we can write

ν =
1

D
(a+ bρ+ cρ2), a, b, c ∈ Z.
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By an actual computation,

ν ′ =
1

D
(a+ bρ′ + cρ′

2
)(2.47)

=
1

D
{(a+ 2b+ (−m+ 2)c) + (−(m+ 1)b

+ (m2 +m+ 1)c)ρ+ (−b+mc)ρ2}.

By the transformation formula (2.46) and the equation (2.30), we have

η(ν ′) = (−2c− 3t+m+ 3, c+ t).(2.48)

Suppose ν = σ(ν). Then ν is fixed also by σ2, hence contained in Q. There-

fore ν = a/D, a ∈ Z. From the equation

tr(ν) =
3a

D
= 1,

we have 3a = D = m2 + 3m + 9. It follows that 3|m and that 9|D. This

contradicts to the choice of m. Thus G acts on S without fixed points,

hence the result.

We now come to the main result of this subsection.

Theorem 2.5. Let m ≥ 0 be an integer such that D = m2 + 3m+9 is

square-free and K be the simplest cubic field defined by (1.1). Let N be the

number of lattice points in S. Then we have

N =







3 ·
(

3l2+5l+4
2

)

if m = 3l + 1,

3 ·
(

3l2+7l+6
2

)

if m = 3l + 2.

Proof. We only give the detailed proof for the case m = 3l + 1. The

basic idea of proof is to find a set of representatives of “good” shape of the

Galois action on S. First note that (c, t) = (1, 0) is the only lattice point

in S with t = 0 and σ · (1, 0) = (m + 1, 1), σ2 · (1, 0) = (−m − 2,m + 1).

Let L1 denote the set of lattice points which lie on the straight line from

(m+ 1, 1) to (2, 1). By an actual computation, we can see that σ ·L1 is the

set of lattice points which lie on the straight line from (−m − 2,m + 2) to

(m − 4, 3) and σ2 · L1 is the set of lattice points which lie on the straight

line from (1, 0) to (−m + 2,m − 1) (See Figure 3 below). Similarly, for
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1 ≤ k ≤ l + 1, let Lk denote the set of lattice points lying on the straight

line from (3(l+1−k)+2, k) to (2, k). Then σ ·Lk becomes the set of lattice

points lying on the straight line from (−3(l+ 2− k), 3(l+ 1− k) + 2 + k) to

(3(l − k), 2 + k) and σ2 · Lk becomes the set of lattice points lying on the

straight line from (1, k−1) to (−3(l−k)−2, 3(l−k)+2+k). Finally, let Ll+2

denote the point (1, l+1). Then σ·Ll+2 = (−1, l+2) and σ2 ·Ll+2 = (0, l+1).

This proves that S0 :=
⋃l+2

k=1 Lk forms a set of representatives of Galois

action on S (See Figure 4 below). Now, by an easy calculation, the number

of lattice points in S0 becomes

l+1
∑

k=1

(3(l + 1 − k) + 1) + 1 =
3l2 + 5l + 4

2
.

Therefore we have

N =
3(3l2 + 5l + 4)

2
.

Figure 3: Galois action on S.
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Figure 4: A set of representatative of the Galois action on S.

2.3. Estimation for σ1((ν)d)

In this subsection, we introduce a new arithmetic function ψ defined

on integral ideals of OK and study some properties of ψ. Finally, we give a

lower bound for σ1((ν)d).

For an integral ideal a of OK , we define an arithmetic function ψ as

follows:

ψ(a) = σ1(NK/Q(a)),(2.49)

where σ1 on the right hand side of (2.49) denote the divisor function on

Z defined by (2.3). Since K/Q is a cyclic Galois extension of degree 3, we

can devide prime ideals of K into three types: Type I (resp. Type II, Type

III) prime is a prime ideal which lies over a rational prime p which splits

complitely (resp. ramified, remains prime) in K/Q.

Lemma 2.6. (i) Let p be a prime ideal of K of Type I or Type II. Then,

for any n ≥ 0, we have

σ1(p
n) = ψ(pn).(2.50)
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(ii) Let a, b be ideals of K. Then we have

ψ(ab) ≤ ψ(a)ψ(b),(2.51)

and equality holds in (2.51) if and only if NK/Q(a), NK/Q(b) are relatively

prime.

(iii) Let a be an ideal of K which does not contain a prime ideal of Type

III in its prime factorization. Then we have

σ1(a) ≥ ψ(a)(2.52)

and equality holds in (2.52) if and only if a satisfies the following condition:

(∗) a does not contain two prime ideals of Type I in its prime

factorization which lie over the same rational prime.

Proof. (i) By abuse of notation, for an integral ideal a, we denote

NK/Q(a) by N(a). Since p is a prime ideal of Type I or Type II, N(p) = p

is a rational prime. Therefore, we have

σ1(p
n) =

∑

b|pn

N(b) =
n

∑

i=0

N(pi) =
n

∑

i=0

pi = σ1(p
n) = ψ(pn).

(ii) Note that, for any positive integers m and n, we have

σ1(m · n) ≤ σ1(m) · σ1(n)(2.53)

with equality holds if and only if (m,n) = 1. Therefore we have

ψ(ab) = σ1(N(ab))

= σ1(N(a)N(b))

≤ σ1(N(a)) · σ1(N(b))

= ψ(a) · ψ(b),

and the equality holds if and only if (N(a),N(b)) = 1.

(iii) Let

a = pr1

1 · · · prk

k , pi a prime ideal of Type I or Type II,
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be a factorization of a into the product of distinct prime ideals of K. Since

σ1 is mutiplicative on K, we have

σ1(a) = σ1(p
r1

1 ) · · · σ1(p
rk

k )

= ψ(pr1

1 ) · · ·ψ1(p
rk

k ) (by (i))

≥ ψ(pr1

1 · · · prk

k ) (by (ii))

= ψ(a).

Here the equality holds if and only if N(pri

i ) and N(p
rj

j ) are relatively prime

for any distinct pair of i, j, or equivalently, a satisfies the condition (∗).

Let ν be an element in K which satisfies Siegel’s conditions. Then,

by (2.18), (ν)d is the principal ideal generated by A + Bρ + Cρ2 with

A,B,C ∈ Z. Furthermore, by (2.26), we have C = l. Since we are mainly

interested in the value ζK(−1), we have assumed that l = 1. Therefore the

ideal (ν)d satisfies the condition of Lemma 2.6 (iii). By applying Lemma 2.6,

we have

σ1((ν)d) ≥ ψ((ν)d) = σ1(NK/Q((ν)d)).(2.54)

By an easy calculation, for a, b, c ∈ Q, we have

NK/Q(a+ bρ+ cρ2)(2.55)

= a3 − b3 + c3 −ma2b− (m+ 3)ab2 + (m2 + 2m+ 6)a2c

+ (m2 + 4m+ 9)ac2 +mb2c+ (m+ 3)bc2

+ (m2 + 3m+ 3)abc.

By (2.22), we can write

ν =
1

D
(a+ bρ+ cρ2), a, b, c ∈ Z.(2.56)

By (2.2) and (2.55), we have

NK/Q((ν)d) = NK/Q(ν) ·NK/Q(d)(2.57)

=
1

D
{a3 − b3 + c3 −ma2b− (m+ 3)ab2 + (m2 + 2m+ 6)a2c

+ (m2 + 4m+ 9)ac2 +mb2c+ (m+ 3)bc2

+ (m2 + 3m+ 3)abc}.
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Now, by (2.30), we may replace b by (3a+ (m2 + 2m+ 6)c−D)/m and we

have

NK/Q((ν)d) =
1

m3
{−(2m+ 3)a3 − 3(m2 + 4m+ 6)a2c(2.58)

− (m3 + 9m2 + 24m+ 36)ac2 − (m3 + 6m2 + 16m+ 24)c3

+ (m+ 3)Da2 + (m2 + 4m+ 12)Dac+ (m2 + 4m+ 12)Dc2

−D2a− 2D2c+D2}.

Finally, by (2.31), we may replace a by −2c + mt + 3 in (2.58), and we

obtain

NK/Q((ν)d) = fm(c, t),(2.59)

where

fm(c, t) = [t2 + (c− 1)t]m2(2.60)

+ [−2t3 + (−3c+ 6)t2 + (−c2 + 3c)t+ (−c2 + 3c− 2)]m

+ [−3t3 + (3c2 − 9c+ 9)t+ (c3 − 6c2 + 9c− 3)].

We summarize this result as in the following theorem.

Theorem 2.7. Let S be the set of elements in K which satisfy Siegel

conditions described in (2.5) and ν ∈ S. Then we have

σ1((ν)d) ≥ σ1(fm(c, t)),(2.61)

where (c, t) is a point in S which corresponds to ν under the correspondence

of Proposition 2.2 and fm(c, t) is given by the formula (2.60). The equality

holds in (2.61) if and only if the ideal (ν)d satisfies the condition (∗).

§3. Class number 1 criterion for the simplest cubic fields

In this section, as an application of our method, we derive a class num-

ber 1 criterion for the simplest cubic fields. We also discuss further problems.

Theorem 3.1. Let m be a nonnegative integer such that D = m2 +

3m + 9 is square-free and K be the simplest cubic field defined by (1.1).

Then we have

hK = 1 if and only if fm(c, t) is a prime for

(c, t) ∈ S − {(1, 0), (m + 1, 1), (−m − 2,m+ 2)}.
(3.1)
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Proof. We only give the proof for the case m = 3l + 1 ≡ 1 (mod 3).

By Siegel’s formula (2.9), we have

ζK(−1) = −
8

504
sK
1 (2) = −

8

504

∑

ν∈S

σ1((ν)d).

By Theorem 2.7, we have

ζK(−1) ≤ −
8

504

∑

(c,t)∈S

σ1(fm(c, t)),(3.2)

and equality holds in (3.2) if and only if (ν)d satisfies the condition (∗) for

all ν ∈ S. From (2.59), we can easily see that

fm(c, t) = fm(σ · (c, t)),(3.3)

for all (c, t) ∈ S. Therefore, (3.2) becomes

ζK(−1) ≤ −
8

504
· 3 ·

∑

(c,t)∈S0

σ1(fm(c, t))(3.4)

≤ −
24

504







∑

(c,t)∈S0

1 +
∑

(c,t)∈S0−{(m+1,1)}

fm(c, t)







.

(Note that fm(m + 1, 1) = 1.) The equality holds in (3.4) if and only if

fm(c, t) is a prime for all (c, t) ∈ S0−{(m+1, 1)}. Recall that S0 =
⋃l+2

k=1 Lk

(see Figure 4). The formula (3.4) becomes

−
24

504







∑

(c,t)∈S0−{(m+1,1)}

1 +
∑

(c,t)∈S0

fm(c, t)







= −
24

504







3l2 + 5l + 2

2
+ fm(1, l + 1) +

l+1
∑

t=1

3(l+1−t)+2
∑

c=2

fm(c, t)







= −
24

504
·

1

360
(m6 + 9m5 + 55m4 + 195m3 + 544m2 + 876m+ 840)

(We checked this result by Maple II)

= −
1

23 · 33 · 5 · 7
P (m)

= ζK(−1, C),
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where C denote the principal ideal class of K.

This proves that

ζK(−1) ≤ ζK(−1, C)(3.5)

and, by (3.2), (3.4), the equality holds in (3.5) if and only if fm(c, t) is a

prime for all (c, t) ∈ S−{(1, 0), (m+1, 1), (−m−2,m+2)} and (ν)d satisfies

the condition (∗) for all ν ∈ S. Now suppose that fm(c, t) is a prime for all

(c, t) ∈ S − {(1, 0), (m + 1, 1), (−m − 2,m+ 2)}. Then, by (2.59), (ν)d is a

prime ideal, hence it satisfies the condition (∗). Therefore we conclude that

hK = 1 ⇐⇒ equality holds in (3.5)

⇐⇒ fm(c, t) is a prime for all

(c, t) ∈ S − {(1, 0), (m + 1, 1), (−m − 2,m+ 2)}.

Remark 1. (i) Note that fm(0, 1) = 2m+3. Therefore Theorem 3.1 says

the condition that 2m + 3 is a prime is a necessary condition for hK = 1.

This proves (A) in Section 1.

(ii) For m = 17, fm(0, 1) = 37 is a prime. Note that fm(0, 2) = 671 =

11 · 61 is not a prime. Therefore the condition that 2m+ 3 is a prime is not

a sufficient condition for hK = 1. This proves (B) in Section 1.

Remark 2. Let K, m be as in Theorem 3.1. Then, by (2.14), the dis-

criminant dK of K is given as follows:

dK = D2 = (m2 + 3m+ 9)2.

By the genus theory for cyclic cubic fields (see, for example, [6, Section 7]),

hK = 1 implies that dK has only one prime factor. Therefore, from Theo-

rem 3.1, we can conclude that

fm(c, t) is a prime for all (c, t) ∈ S − {(1,0), (m + 1, 1), (−m − 2,m+ 2)}

=⇒ D = m2 + 3m+ 9 is a prime.

Can we prove this in an elementary way?

Remark 3. In [4], using a lower bounds for L(1, χ) ·L(1, χ̄) for certain

cubic charater, Lettl had showed:

m = −1, 1, 2, 4, 7, 8, 10 gives all the values of m such that hK = 1.
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From Theorem 3.1 and Lettl’s result, we can conclude that:

if m ≥ 11 and m2 + 3m+ 9 is square-free, then fm(c, t) is not a

prime for some (c, t) ∈ S−{(1, 0), (m+ 1, 1), (−m− 2,m+ 2)}.

Can we prove this in an elementary way?
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