TWISTOR THEORY OF MANIFOLDS WITH GRASSMANNIAN STRUCTURES

YOSHINORI MACHIDA and HAJIME SATO

Abstract

As a generalization of the conformal structure of type (2,2), we study Grassmannian structures of type (n, m) for $n, m \geq 2$. We develop their twistor theory by considering the complete integrability of the associated null distributions. The integrability corresponds to global solutions of the geometric structures.

A Grassmannian structure of type (n, m) on a manifold M is, by definition, an isomorphism from the tangent bundle $T M$ of M to the tensor product $V \otimes W$ of two vector bundles V and W with rank n and m over M respectively. Because of the tensor product structure, we have two null plane bundles with fibres $P^{m-1}(\mathbb{R})$ and $P^{n-1}(\mathbb{R})$ over M. The tautological distribution is defined on each two bundles by a connection. We relate the integrability condition to the half flatness of the Grassmannian structures. Tanaka's normal Cartan connections are fully used and the Spencer cohomology groups of graded Lie algebras play a fundamental role.

Besides the integrability conditions corrsponding to the twistor theory, the lifting theorems and the reduction theorems are derived. We also study twistor diagrams under Weyl connections.

Introduction

An aspect of the twistor theory of R. Penrose is to know the relations and correspondences between geometric structures defined by a double fibration

for three spaces F, P and M.
As a flat model, we take the spaces F, P and M to be the homogeneous spaces of a fixed Lie group G. The group G is considered as the automorphism group of each suitably defined geometric structure. Then the maps

[^0]in the double fibration have geometric meanings. As a curved analogue, we take the spaces F, P and M to be the manifolds with corresponding geometric structures. The twistor correspondence between P and M is given by choosing the moduli space of the orbits of the distribution which is naturally defined from the geometric structure.

Penrose himself treated the case where M is the Grassmann manifold of 2-planes in \mathbb{C}^{4} and $P=P^{3}(\mathbb{C})$. Between curved manifolds, the correspondence is given when M is half conformally flat ([W-W]).

As a real version of these structures, we can consider the real 4-dimensional space-time $M=S^{2} \times S^{2}$ of (2,2)-type metric and $P=P^{3}(\mathbb{R})$. We put on \mathbb{C}^{4} a Hermitian inner product with type $(2,2)$. By the restriction to the null spaces of the Hermitian inner product, we get $M=S^{3} \times S^{1}$ and $P=S^{3} \times S^{2}$. The corresponding geometric structures are 4-dimensional Lorentzian geometry and 5 -dimensional CR geometry with Levi signature $(1,1)$. We have studied the twistor theory for real space-times of $(3,1)$-type metric, i.e., Lorentzian metric in [Ma-Sa]. For real space-times of (2, 2)-type metric, i.e., neutral metric, see $[\mathrm{K}-\mathrm{M}]$.

In this paper, as a generalization of conformal structures of type $(2,2)$, we study Grassmannian structures of type (n, m). The case where $m=2$ is more interesting, since we can define the notion of half flatness meaningfully and the geometric structure of the twistor partner is a different projective structure from a Grassmannian structure. By N. Tanaka's theory [T1], the normal Cartan connection is uniquely defined on some principal bundle Q associated with G over a manifold M with a Grassmannian structure of type (n, m). By this connection, we define the notion of half flatness for the Grassmannian structures of type (n, m). Furthermore, it is important to consider the harmonic part $H K$ of the curvature function K of the normal Cartan connection, which is the fundamental invariant and is generated by the nonzero generators in the 2-dimensional generalized Spencer cohomology.

A Grassmannian structure of type (n, m) on M is defined by an isomorphism from the tangent bundle $T M$ of M to the tensor product $V \otimes W$ of two vector bundles V and W with rank n and m over M respectively. Considering a set of all the null n-planes with forms $\left\{V_{x} \otimes w \mid w \in W_{x}\right\}$ in $T_{x} M$ at each point $x \in M$, we have a null n-plane bundle F_{L} with fibre $P^{m-1}(\mathbb{R})$ and the projection $\varpi_{L}: F_{L} \rightarrow M$ over M. Similarly, considering a set of all the null m-planes with forms $\left\{v \otimes W_{x} \mid v \in V_{x}\right\}$ in $T_{x} M$,
we have a null m-plane bundle F_{R} with fibre $P^{n-1}(\mathbb{R})$ and the projection $\varpi_{R}: F_{R} \rightarrow M$ over M. By the normal Cartan connection, the tautological distribution D_{L} of null n-planes on F_{L} over M and D_{R} of null m-planes on F_{R} over M are defined respectively. We have the following result.

Theorem 5.1, 6.1. Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω. Then
(1) the tautological distribution D_{L} on the null n-plane bundle F_{L} over M is completely integrable if and only if the Grassmannian structure on M is

1. if $n, m \geq 3$, right-half torsion-free, i.e., $H K_{R}^{0}=0$,
2. if $n \geq 3, m=2$, torsion-free, i.e., $K^{0}=H K^{0}=0$,
3. if $n=2, m=2$, right-half Grassmannian flat, i.e., $H K_{R}^{1}=0$,
(2) the tautological distribution D_{R} on the null m-plane bundle F_{R} over M is completely integrable if and only if the Grassmannian structure on M is
4. if $n, m \geq 3$, left-half torsion-free, i.e., $H K_{L}^{0}=0$,
5. if $n \geq 3, m=2$, left-half Grassmannian flat, i.e., $H K^{1}=0$,
6. if $n=2, m=2$, left-half Grassmannian flat, i.e., $H K_{L}^{1}=0$.

The result has some overlap with Chapter 7 of recently published book by Akivis-Goldberg ([A-G1, Theorems 7.4.4, 7.4.5 and 7.4.6], cf. [A-G2], [A-G3], [A-G4]). We have obtained the results independently in the framework of the twistor theory using Tanaka's Cartan connection [T1].

Our result gives a construction of the global completely integrable distribution. This corresponds to a construction of a global solution more than the construction of a local solution of the differential equation which defines the null distribution.

The null n-plane bundle F_{L} and the null m-plane bundle F_{R} over M have also geometric structures, which we call co-Grassmannian structures. A co-Grassmannian structure of type (k, l) on a manifold R is defined by a pair (E, F) consisting of transversal, completely integable distributions of dimensions k and l on the tangent bundle $T R$ of R such that (i) $T R=D+[D, D]$ and (ii) $\operatorname{rank} T R / D=\operatorname{rank} E \cdot \operatorname{rank} F(=k l)$ for $D=E \oplus F$. Tanaka settled the equivalence problem of the system of ordinary differential equations of second order [T3]. On that occation, he defined a pseudo-projective systems in the sense of Tanaka ([T2]). We consider a co-Grassmannian structure of type (k, l) as the extension. When
$l=2$, it coincides with a Tanaka's pseudo-projective system. Note that a Grassmannian structure on M is defined by an isomorphism of $T M$ to a tensor product of two vector bundles. By the Tanaka theory, we have the normal Cartan connections on F_{L} and F_{R}. Then we have the following lifting theorem.

Theorem 5.2, 6.2. (Lifting Theorem) Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω.
(1) Suppose that an n-dimensional tautological distribution D_{L} of null n-planes on the null n-plane bundle F_{L} over M is completely integrable. Then a pair $\left(D_{L}, E_{L}=\operatorname{Ker}\left(\varpi_{L}\right)_{*}\right)$ defines a co-Grassmannian structure of type $(n, m-1)$ on F_{L}. Moreover the normal Cartan connection (Q, ω) of a Grassmannian structure of type (n, m) induces the normal Cartan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n, m-1)$ on F_{L}.
(2) Suppose that an m-dimensional tautological distribution D_{R} of null m-planes on the null m-plane bundle F_{R} over M is completely integrable. Then a pair $\left(E_{R}=\operatorname{Ker}\left(\varpi_{R}\right)_{*}, D_{R}\right)$ defines a co-Grassmannian structure of type $(n-1, m)$ on F_{R}. Moreover the normal Cartan connection (Q, ω) of a Grassmannian structure of type (n, m) induces the normal Cartan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n-1, m)$ on F_{R}.

A co-Grassmannian structure induces a Grassmannian structure on one of two leaf spaces defined by the structure under the vanishing of some part of the harmonic part $H K$ of the curvature function K. We have the following reduction theorem.

Theorem 7.1. (Reduction Theorem) Let F be a manifold with a coGrassmannian structure of type (k, l) by a pair $\left(D_{2}, D_{1}\right)$ and equipped with the normal Cartan connection (Q, ω). Put $M_{1}=F / D_{1}, M_{2}=F / D_{2}$ with the canonical projections $\nu: F \rightarrow M_{1}, \mu: F \rightarrow M_{2}$. Then

1. if $l \geq 3$, we have $H K=\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}$, and
(i) $\left(H K^{0}\right)_{1}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{1}, \omega_{1}\right)$ over M_{1},
(ii) $\left(H K^{0}\right)_{2}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{2}, \omega_{2}\right)$ over M_{2},
2. if $l=2$,
(a) for $k \geq 3$, we have $H K=\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}+\left(H K^{0}\right)_{3}$, and
(i) $\left(H K^{0}\right)_{1}=\left(H K^{0}\right)_{2}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1},
(ii) $\left(H K^{0}\right)_{3}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2},
(b) for $k=2$, we have $H K=\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}+\left(H K^{0}\right)_{3}+\left(H K^{0}\right)_{4}$, and
(i) $\left(H K^{0}\right)_{1}=\left(H K^{0}\right)_{2}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1},
(ii) $\left(H K^{0}\right)_{3}=\left(H K^{0}\right)_{4}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2}, 3. if $l=1$,
(a) for $k \geq 3$, we have $H K=H K^{1}+H K^{2}$, and
(i) $H K^{1}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1},
(ii) $H K^{2}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2},
(b) for $k=2$, we have $H K=H K^{0}+H K^{1}+H K^{2}$, and
(i) $H K^{1}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1},
(ii) $H K^{2}=H K^{0}=0 \Longleftrightarrow(Q, \omega)$ is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2}.

Here, $\left(Q_{1}, \omega_{1}\right)$ on M_{1} and $\left(Q_{2}, \omega_{2}\right)$ on M_{2} have Grassmannian structures, especially in 3 (a) (ii), (b) (ii) $\left(Q_{2}, \omega_{2}\right)$ has a projective structure.

We show that the normal Cartan connection on F_{L} (resp. F_{R}) over M_{1} (resp. M_{2}) is induced from a Grassmannian structure of the moduli space M_{2} (resp. M_{1}) of orbits of the distribution $D_{L}\left(\right.$ resp. $\left.D_{R}\right)$ only if the Grassmannian structure on $M_{1}\left(\right.$ resp. $\left.M_{2}\right)$ is flat. Indeed we have the following twistor theorem.

Theorem 7.2, 7.3. (Twistor Theorem)

1. Let M_{1} be a manifold with a right-half torsion-free Grassmannian structure of type (n, m). Then, if the structure on M_{1} induces a Grassmannian structure of type $(n+1, m-1)$ on $M_{2}=F_{L} / D_{L}$, the Grassmannian structure of type (n, m) on M_{1} is flat.
2. Let M_{2} be a manifold with a left-half torsion-free Grassmannian structure of type $(n+1, m-1)$. Then, if the structure on M_{2} induces a Grassmannian structure of type (n, m) on $M_{1}=F_{R} / D_{R}$, the Grassmannian structure of type $(n+1, m-1)$ on M_{2} is flat.

In particular, assume that $m=2$.

1. Let M_{1} be a $2 n$-dimensional manifold with a right-half Grassmannian flat Grassmannian structure of type $(n, 2)$. Then, if the structure on M_{1} induces a projective structure on M_{2}, the Grassmannian structure of type $(n, 2)$ on M_{1} is flat.
2. Let M_{2} be an $(n+1)$-dimensional manifold with a projective structure. Then, if the structure on M_{2} induces a Grassmannian structure of type $(n, 2)$ on the orbit space M_{1} of the geodesic flow, the projective structure on M_{2} is flat.

Here, in $1 F_{L}$ denotes the null n-plane bundle on M_{1}, and in $2 F_{R}$ denotes the null ($m-1$)-plane bundle on M_{2}.

By the theorem above, we know that the flat models play important roles in the twistor diagrams together with the geometric structures. Now, we consider Weyl connections associated with conformal structures on a linear frame bundle in place of a normal Cartan connection on a frame bundle of second order. We study geometric structures related to the geodesic flows of the Weyl connections. Then, even for some non-flat spaces the twistor diagrams work well. We have the following.

Theorem 8.1, 8.2. Let P be an $(n+1)$-dimensional manifold with a Weyl structure with constant curvature. Then the structure on P induces a right-half Grassmannian flat Grassmannian structure of type $(n, 2)$ on the orbit space M of the geodesic flow.

In particular, assume that $n=2$. Let P be a 3-dimensional manifold with an Einstein-Weyl structure. Then the structure on P induces a selfdual conformal Hermitian structure of type $(2,2)$ on the orbit space M of the geodesic flow.

This paper is organized as follows:
In Section 1, we define a Grassmannian structure of type (n, m) and consider its structure group as a geometric structure. Typical examples are Grassmann manifolds, which are the flat models. We give some non-flat examples too. A topological obstruction to the existence of a Grassmannian structure of type $(n, 2)$ is described. As a consequence, the sphere $S^{2 n}$ and the quaternionic projective space $P^{m}(\mathbb{H})(n=2 m)$ admit no Grassmannian structures of type $(n, 2)$. In the case $n=2$, we remark that the notion of a Grassmannian structure of type $(2,2)$ is equivalent to that of a conformal structure of type $(2,2)$. (See also [A-G1, Table 7.4.1] and [A-G3], [A-G4].)

In Section 2, we regard a Grassmannian structure of type (n, m) as a geometric structure related to a simple graded Lie algebra of first kind. We apply the Tanaka theory which induces the existence of a unique normal Cartan connection. As a condition of the curvature, we give the definition of half flatness due to the decomposition of two invariant subspaces of the space of 2 -forms Λ^{2}.

In Section 3, we review the Tanaka theory including the generalized Spencer cohomology, the harmonic theory and the existence of a normal Cartan connection. We explicitly write down the normal Cartan connection for a Grassmannian structure of type (n, m). We indicate the nonzero
generators as \mathfrak{g}_{0}-module in the 2-dimensional generalized Spencer cohomology H^{2}, which make use of the fundamental invariant $H K$ of the curvature function K.

In Section 4, we define a co-Grassmannian structure of type (k, l). Typical examples are some generalized flag manifolds, which are the flat models. By considering a graded Lie algebra of second kind of type (k, l) coGrassmann (abbreviated to a type (k, l) CGR), we apply the Tanaka theory which induces the existence of the normal Cartan connection. We indicate the nonzero generators in H^{2} associated with a graded Lie algebra of type (k, l) CGR.

In Section 5, we consider the null n-plane bundle F_{L} to be the set of all null n-planes for a manifold M with a Grassmannian structure of type (n, m). The space F_{L} is a fibre bundle with fibre $P^{m-1}(\mathbb{R})$ over M. We define a tautological n-dimensional distribution D_{L} on F_{L} over M using the normal Cartan connection. We prove the theorem that the distribution D_{L} on F_{L} over M is completely integrable if and only if the Grassmannian structure on M is right-half flat. We give a non-flat half-flat example. Next, under complete integrability of D_{L} on F_{L}, we mention that a co-Grassmannian structure of type $(n, m-1)$ is defined on F_{L}.

In Section 6, in the same way as in Section 5, we consider the null m plane bundle F_{R} to be the set of all null m-planes for M. The space F_{R} is a fibre bundle with fibre $P^{n-1}(\mathbb{R})$ over M. We define the tautological m dimensional distribution D_{R} on F_{R} over M, and give the condition for D_{R} to be completely integrable, that is, left-half flatness. Next, under complete integrability of D_{R} on F_{R}, we mention that a co-Grassmannian structure of type $(n-1, m)$ on F_{R} is defined on F_{R}. We describe a projective structure that is a Grassmannian structure of type ($n, 1$).

In Section 7, we interpret the results above under the diagram of the twistor theory. We explain the twistor diagrams of Grassmannian structures in terms of the Dynkin diagrams. We show the reduction theorem from co-Grassmannian structures down to Grassmannian structures under the vanishing of some part of $H K$. Furthermore we show that the flat models play important roles in the twistor diagrams together with the geometric structures.

In Section 8, after preparing the notions of Einstein-Weyl structure, Lie contact structure, geodesic flow and Jacobi field, we study twistor diagrams under Weyl connections. We show that the Weyl connections with constant curvature work well in the twistor diagrams.

The table of contents is as follows:
Introduction.
§1. Definitions and examples of Grassmannian structures.
$\S 2$. Connections and curvature of Grassmannian structures.
$\S 3$. Tanaka theory for Grassmannian structures.
$\S 4$. Co-Grassmannian structures.
$\S 5$. Null n-plane bundle.
$\S 6$. Null m-plane bundle.
§7. Twistor theory of Grassmannian structures.
§8. Twistor theory by Weyl connections.
References.
Acknowledgements. The authors would like to express their sincere gratitude to Keizo Yamaguchi, Vladislav V. Goldberg and the referee for many useful comments and advices. The first named author was partially supported by Grand-in-Aid for Scientific Research (C) (No. 11640097), Ministry of Education, Science and Culture, Japan.

§1. Definitions and examples of Grassmannian structures

1.1. Definitions

We define Grassmannian structures of type (n, m).
Let M be an l-dimensional real manifold. In this paper we study only the real category and not the complex category.

A Grassmannian structure of type (n, m) on M is defined by an isomorphism σ from the tangent bundle $T M$ of M to the tensor product $V \otimes W$ of two vector bundles V and W with rank n and $m(n, m \geq 2)$ over M respectively:

$$
\sigma: T M \stackrel{ }{\cong} V \otimes W .
$$

Note that there are various names and different but essentially equivalent definitions. (e.g., almost Grassmannian structure [Mi], [A-G1], Grassmannian spinor structure [Ma], tensor product structure [Ha], [I], paraconformal structure [B-E], generalized conformal structure [G].) If M has a Grassmannian structures of type (n, m), the dimension l of M is equal to $m n$.

Consider the $m n$-dimensional vector space $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$. The group $G L(n, \mathbb{R})$ acts on \mathbb{R}^{n} in the usual way and $G L(m, \mathbb{R})$ acts by inverse from the right on \mathbb{R}^{m}. The combined action $\operatorname{gr}(n, m) \subset G L(m n, \mathbb{R})$ is the $\left(n^{2}+\right.$
$\left.m^{2}-1\right)$-dimensional tensor product linear Lie group $G L(n, \mathbb{R}) \otimes G L(m, \mathbb{R})$. We have the natural projection

$$
\rho: G L(m, \mathbb{R}) \times G L(n, \mathbb{R}) \longrightarrow g r(n, m)=G L(n, \mathbb{R}) \otimes G L(m, \mathbb{R})
$$

which defines a fibre bundle with fibre \mathbb{R}^{*} by the scalar multiplication.
Let M be a manifold with a Grassmannian structure of type (n, m). Then the structure group of $T M$ is reduced to $\operatorname{gr}(n, m)$.

Let $S(G L(m, \mathbb{R}) \times G L(n, \mathbb{R}))$ be the subgroup of $S L(m+n, \mathbb{R})$ consisting of matrices of the form

$$
\left(\begin{array}{ll}
A & O \\
O & B
\end{array}\right), \quad A \in G L(m, \mathbb{R}), B \in G L(n, \mathbb{R})
$$

Restricting the homomorphism ρ to the subgroup $S(G L(m, \mathbb{R}) \times G L(n, \mathbb{R}))$, we have the homomorphism

$$
h: S(G L(m, \mathbb{R}) \times G L(n, \mathbb{R})) \longrightarrow g r(n, m)=G L(n, \mathbb{R}) \otimes G L(m, \mathbb{R})
$$

$$
S L(m+n, \mathbb{R}) \quad G L(m n, \mathbb{R})
$$

If we restrict the above $G L(m, \mathbb{R})$ and $G L(n, \mathbb{R})$ to $G L_{+}(m, \mathbb{R})=\{A \in$ $G L(m, \mathbb{R}) \mid \operatorname{det}(A)>0\}$ and $G L_{+}(n, \mathbb{R})=\{B \in G L(n, \mathbb{R}) \mid \operatorname{det}(B)>$ $0\}$ respectively, the homomorphism h is surjective. We define a Lie group $G R(n, m)$ by the image of h.

Identify $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ with the set of matrices of the form

$$
\left(\begin{array}{cc}
I_{m} & O \\
X & I_{n}
\end{array}\right), \quad X \in \operatorname{Mat}(n \times m, \mathbb{R})
$$

Then, for $g \in S(G L(m, \mathbb{R}) \times G L(n, \mathbb{R})), h(g)$ is expressed by the adjoint action of g :

$$
h(g)(x)=\operatorname{Ad}(g)(x) \quad \text { for } x \in \mathbb{R}^{m n}
$$

Therefore $G R(n, m)$ is the image of the linear isotropy representation of $S(G L(m, \mathbb{R}) \times G L(n, \mathbb{R}))$.

A spin Grassmannian structure of type (n, m) on a manifold M is a lifting for h of the structure group $G R(n, m)$ of $T M$ to $S(G L(m, \mathbb{R}) \times$ $G L(n, \mathbb{R})$). From now on, we consider manifolds with spin Grassmannian structure of type (n, m).

Let M be a manifold with a Grassmannian structure of type (n, m). Put

$$
S G R(n, m)=G R(n, m) \cap S L(m n, \mathbb{R})
$$

Suppose that the structure group of $T M$ is reduced to $S G R(n, m)$. The restriction of h on $S L(m, \mathbb{R}) \times S L(n, \mathbb{R})$ is a surjective covering

$$
\begin{array}{cc}
h: S L(m, \mathbb{R}) \times S L(n, \mathbb{R}) \longrightarrow & S G R(n, m) \\
\cap & \cap \\
S(G L(m, \mathbb{R}) \times G L(n, \mathbb{R})) & G R(n, m)
\end{array}
$$

Then M is called a manifold with a scaled Grassmannian structure of type (n, m).

1.2. Typical examples

Typical examples of manifolds with Grassmannian structures are Grassmann manifolds.

Let $G_{m, n+m}$ be a Grassmann manifold consisting of all m-dimensional subspaces in the $(n+m)$-dimensional real vector space \mathbb{R}^{n+m}. Then $G_{m, n+m}$ is of dimension $m n$.

The group $G=S L(m+n, \mathbb{R})$ acts transitively on $G_{m, n+m}$. Let G^{\prime} be the isotropy group at the base point. Then we have

$$
G_{m, n+m} \cong G / G^{\prime}
$$

Let $U_{m, n+m}$ be the universal bundle over $G_{m, n+m}$. Since the fibres are m-dimensional subspaces in \mathbb{R}^{n+m}, there is a natural bundle map from $U_{m, n+m}$ into the trivial bundle $G_{m, n+m} \times \mathbb{R}^{n+m}$. Denoting by V the quotient bundle of $U_{m, n+m}$ in $G_{m, n+m} \times \mathbb{R}^{n+m}$, we obtain the following exact sequence

$$
0 \longrightarrow U_{m, n+m} \longrightarrow G_{m, n+m} \times \mathbb{R}^{n+m} \longrightarrow V \longrightarrow 0
$$

Let $T G_{m, n+m}$ be the tangent bundle of $G_{m, n+m}$. Then we have

$$
\begin{aligned}
T G_{m, n+m} & \cong \operatorname{Hom}\left(U_{m, n+m}, V\right) \\
& \cong V \otimes U_{m, n+m}^{*}
\end{aligned}
$$

Putting $W=U_{m, n+m}^{*}$, we have

$$
T G_{m, n+m} \cong V \otimes W
$$

Therefore the Grassmann manifold $G_{m, n+m}$ has a Grassmannian structure of type (n, m).

1.3. Nontrivial examples

We describe two kinds of nontrivial examples.
(1) Let M be an n-dimensional differentiable manifold and let $T M$ be the tangent bundle of M. Denote by π the natural projection of $T M$ onto M. Taking a linear connection on M, we can decompose the tangent space $T_{v} T M$ at each point v of $T M$ into the n-dimensional horizontal space $H_{v}=$ $T_{\pi(v)}^{H} M \cong T_{\pi(v)} M$ and the n-dimensional vertical space $V_{v}=T_{\pi(v)}^{V} M \cong$ $T_{\pi(v)} M$. Then the tangent bundle $T T M$ of $T M$ is decomposed as follows:

$$
\begin{aligned}
T T M & =H \oplus V \\
& \cong \pi^{*} T M \oplus \pi^{*} T M \\
& \cong \pi^{*} T M \otimes 2_{T M},
\end{aligned}
$$

where $\pi^{*} T M$ is the induced vector bundle of $T M$ by $\pi: T M \rightarrow M$, and $2_{T M}$ is the trivial bundle with rank 2 over $T M$. Therefore the $2 n$-dimensional manifold $T M$ has a Grassmannian structure of type ($n, 2$).

Let $F^{r} M$ be the r-frame bundle of M. We mean by an r-frame a set of linearly independent r tangent vectors at a point of M. In the case $r=1$, $F^{1} M$ is nothing but the tangent bundle $T M$ of M. In the case $r=n$, $F^{n} M$ is nothing but the linear frame bundle $F M$ of M. Denote by $\bar{\pi}$ the natural projection of $F^{r} M$ onto M. Take a linear connection on M. An r frame ξ is regarded as an into-isomorphism of \mathbb{R}^{r} to $T_{\bar{\pi}(\xi)} M$. We denote by $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ the basis of \mathbb{R}^{r}. Then we can define an isomorphism of the tangent space $T_{\xi} F^{r} M$ at ξ to $r+1$ direct sum $T_{\bar{\pi}(\xi)}^{H} M \oplus T_{\bar{\pi}(\xi)}^{V} M \oplus T_{\bar{\pi}(\xi)}^{V} M \oplus$ $\cdots \oplus T_{\bar{\pi}(\xi)}^{V} M$ as follows:

$$
X \longmapsto\left(\left(\bar{\pi}_{*} X\right)^{H},\left(\xi\left(e_{1}\right)\right)^{V},\left(\xi\left(e_{2}\right)\right)^{V}, \ldots,\left(\xi\left(e_{r}\right)\right)^{V}\right) .
$$

Therefore

$$
\begin{aligned}
T F^{r} M & \cong \bar{\pi}^{*} T M \oplus \bar{\pi}^{*} T M \oplus \bar{\pi}^{*} T M \oplus \cdots \oplus \bar{\pi}^{*} T M \\
& \cong \bar{\pi}^{*} T M \otimes(r+1)_{F^{r} M},
\end{aligned}
$$

where $\bar{\pi}^{*} T M$ is the induced vector bundle of $T M$ by $\bar{\pi}: F^{r} M \rightarrow M$, and $(r+1)_{F^{r} M}$ is the trivial bundle with rank $r+1$ over $F^{r} M$. Thus the $n(r+1)$-dimensional manifold $F^{r} M$ has a Grassmannian structure of type $(n, r+1)$.
(2) Let h be a Hermitian inner product of type $(m+1, m)$ on the complex $(2 m+1)$-dimensional vector space $\mathbb{C}^{m+1, m}$. Put $n=2 m$. It follows that the quadric hypersurface N defined by $h(z, z)=1$ is the (real) $(2 n+1)$ dimensional pseudo-hyperbolic space $H^{n+1, n}$ of type $(n+1, n)$ with negative constant curvature. On $H^{n+1, n}, U(m+1, m)$ acts transitively and $S^{1}=\left\{e^{i \theta}\right\}$ acts freely by $z \mapsto e^{i \theta} z$. The base space M of the principal bundle $H^{n+1, n}$ with structure group S^{1} is nothing but the complex pseudo-hyperbolic space $H^{m, m}(\mathbb{C})$ of type (m, m) :

The group $U(m+1, m)$ acts transitively on $H^{m, m}(\mathbb{C})$ and the space $H^{m, m}(\mathbb{C})$ has the form

$$
H^{m, m}(\mathbb{C}) \cong U(m+1, m) / U(1) \times U(m, m)
$$

as a symmetric space.
The Lie algebra $\mathfrak{g}=\mathfrak{u}(m+1, m)$ has the canonical decomposition $\mathfrak{g}=$ $\mathfrak{h}+\mathfrak{m}([\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m},[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h})$ as follows:

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{u}(m+1, m), \\
& \mathfrak{h}=\mathfrak{u}(1)+\mathfrak{u}(m, m) \\
&=\left\{\left(\begin{array}{ccc}
i \lambda & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}+\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & A & B \\
0 & t \bar{B} & C
\end{array}\right)\right\} \\
&\left(\lambda \in \mathbb{R} ; A, B, C \in \mathfrak{g l}(m, \mathbb{C}), A=-{ }^{t} \bar{A}, C=-{ }^{t} \bar{C}\right) \\
& \mathfrak{m}=\left\{\left(\begin{array}{ccc}
0 & -{ }^{t} \overline{\mathbf{x}} & \overline{\mathbf{y}} \\
\mathbf{x} & 0 & 0 \\
\mathbf{y} & 0 & 0
\end{array}\right)\right\} \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{C}^{m}\right) .
\end{aligned}
$$

The adjoint action of $H=U(1) \times U(m, m)$ on \mathfrak{m} is the form

$$
A d\left(\begin{array}{ccc}
e^{i \theta} & 0 & 0 \\
0 & A & B \\
0 & C & D
\end{array}\right)\left(\begin{array}{ccc}
0 & -{ }^{t} \overline{\mathbf{x}}^{t} \overline{\mathbf{y}} \\
\mathbf{x} & 0 & 0 \\
\mathbf{y} & 0 & 0
\end{array}\right)
$$

$$
\left.\begin{array}{rl}
= & \left(\begin{array}{ccc}
0 & -e^{i \theta t} \overline{\mathbf{x}} A^{\prime}+e^{i \theta t} \overline{\mathbf{y}} C^{\prime}-e^{i \theta t} \overline{\mathbf{x}} B^{\prime}+e^{i \theta t} \overline{\mathbf{y}} D^{\prime} \\
A \mathbf{x} e^{-i \theta}+B \mathbf{y} e^{-i \theta} & 0 & 0 \\
C \mathbf{x} e^{-i \theta}+D \mathbf{y} e^{-i \theta} & 0 & 0
\end{array}\right) \\
& \left(\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in U(m, m),\right.
\end{array}\left(\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)^{-1} \cdot\right) .
$$

We identify $\mathfrak{m}\left(\ni\left(\begin{array}{ccc}0 & -{ }^{t} \overline{\mathbf{x}}^{t} \overline{\mathbf{y}} \\ \mathbf{x} & 0 & 0 \\ \mathbf{y} & 0 & 0\end{array}\right)\right)$ with $\mathbb{C}^{n}\left(\ni\binom{\mathbf{x}}{\mathbf{y}}\right)$. Therefore the action of

$$
\left(e^{i \theta},\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right) \in U(1) \times U(m, m)
$$

on $\mathbb{C}^{n}=\mathbb{C}^{m, m}=\mathbb{C}^{m, m} \otimes \mathbb{C}^{1}$ is given as follows:

$$
\left(e^{i \theta},\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right)\binom{\mathbf{x}}{\mathbf{y}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}} e^{-i \theta}
$$

Since $\binom{\mathbf{x}}{\mathbf{y}} \in \mathbb{C}^{m, m} \otimes \mathbb{C}^{1}$ is regarded as $\left(\begin{array}{cc}x & x^{\prime} \\ y & y^{\prime}\end{array}\right) \in \mathbb{R}^{n} \otimes \mathbb{R}^{2}\left(\mathbf{x}_{i}=x_{i}+\sqrt{-1} x_{i}^{\prime}\right.$, $\left.\mathbf{y}_{i}=y_{i}+\sqrt{-1} y_{i}^{\prime} \in \mathbb{C} ; x, x^{\prime}, y, y^{\prime} \in \mathbb{R}^{n}\right)$ and $U(1) \cong S O(2)$,

$$
U(m, m) \otimes U(1) \ni\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \otimes\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

acts on $\mathbb{R}^{n} \otimes \mathbb{R}^{2}$. Therefore $H^{m, m}(\mathbb{C})$ has a Grassmannian structure of type $(n, 2)$. Remark that $H^{m, m}(\mathbb{C})$ also has a canonical pseudo-Riemannian structure of type (n, n). (See $[\mathrm{K}-\mathrm{M}]$ for $H^{1,1}(\mathbb{C})$.)

1.4. Topological obstructions

There are topological obstructions for admitting a Grassmannian structure of type $(n, 2)$. If M has a Grassmannian structure of type $(n, 2)$, then we have

$$
T M \cong V \otimes W
$$

where V and W are vector bundles with rank $n(\geq 2)$ and 2 over M respectively.

Now assume that $H^{2}(M ; \mathbb{Z})=0$. Then any vector bundle with rank 2 over M is trivial. Therefore it follows that

$$
T M \cong V \oplus V
$$

Let M be the $2 n$-dimensional sphere $S^{2 n}$. Since the homotopy set $\left[S^{2 n} ; B_{S O(n)}\right]\left(\cong \pi_{2 n-1}(S O(n))\right)$ from $S^{2 n}$ to the classifying space $B_{S O(n)}$ of
$S O(n)$ is $0 \bmod$ torsion, the vector bundle V with rank n over $S^{2 n}$ is trivial. So $V \oplus V$ is trivial. By the way, the Euler number of the tangent bundle $T S^{2 n}$ of $S^{2 n}$ is equal to 2 . This is a contradiction. Therefore $S^{2 n}$ admits no Grassmannian structures of type $(n, 2)$.

Let M be the quaternionic projective space $P^{m}(\mathbb{H})(n=2 m)$. The total Pontryagin classes $\left\{p_{i}\right\}$ are given by

$$
\frac{(1+u)^{2 m+2}}{1+4 u}=1+p_{1} u+p_{2} u^{2}+\cdots
$$

where u is the generator of $H^{4}\left(P^{m}(\mathbb{H}) ; \mathbb{Z}\right) \cong \mathbb{Z}$ (see e.g. [Mi-St]). It follows that $p_{1}=2(m-1), p_{2}=2 m^{2}-5 m+9$. For example, in the case of $P^{2}(\mathbb{H})$, $p_{1}=2, p_{2}=7$ hold. On the other hand, for the vector bundle $V \oplus V$ over M, up to mod torsion,

$$
\begin{aligned}
& p_{1}(V \oplus V)=p_{1}(V)+p_{1}(V) \\
& p_{2}(V \oplus V)=p_{1}(V) \cdot p_{1}(V)
\end{aligned}
$$

Putting $p_{1}(V)=x$, we have

$$
2 x=2(m-1), \quad x^{2}=2 m^{2}-5 m+9
$$

This is a contradiction. Therefore $P^{m}(\mathbb{H})$ admits no Grassmannian structures of type $(n, 2)$.

Let M be the Cayley projective space $P^{2}(C a)$. Then it is known that $p_{2}=6, p_{4}=39$. In a similar way to $P^{m}(\mathbb{H}), P^{2}(C a)$ admits no Grassmannian structures of type $(n, 2)$.

If we let M be the complex projective space $P^{n}(\mathbb{C}), H^{2}\left(P^{n}(\mathbb{C}) ; \mathbb{Z}\right) \cong$ \mathbb{Z} holds. We do not use the argument above. But if M is $P^{2}(\mathbb{C}), P^{2}(\mathbb{C})$ admits no Grassmannian structures of type $(2,2)$. In fact, according to the following 1.5, the notion of Grassmannian structures of type $(2,2)$ is equivalent to the notion of conformal structures of type $(2,2)$. By the way, $P^{2}(\mathbb{C})$ admits no conformal structures of type $(2,2)$ (cf. [K-M]). Therefore $P^{2}(\mathbb{C})$ admits no Grassmannian structures of type $(2,2)$.

1.5. Grassmannian structures of type $(2,2)$

Let us see that in 4-dimensinal case the notion of Grassmannian structures of type $(2,2)$ is equivalent to the notion of conformal structures of type $(2,2)$. Let M be a 4 -dimensional manifold and let $x \in M$. Denote by U the tangent space $T_{x} M$ at x.

Now suppose that M has a Grassmannian structure of type $(2,2)$. Then U is represented by $U=V \otimes W$, where V and W are 2-dimensional vector spaces. As V and W are 2-dimensional, there exist canonical (conformal) symplectic forms ω_{V} and ω_{W} respectively. We take symplectic basis $\left\{e_{1}, e_{2}\right\}$ of V and $\left\{f_{1}, f_{2}\right\}$ such that $\omega_{V}\left(e_{1}, e_{2}\right)=1$ and $\omega_{W}\left(f_{1}, f_{2}\right)=1$ respectively. Note that $\left\{e_{i} \otimes f_{j}(1 \leq i, j \leq 2)\right\}$ is a null basis of U and $\Pi_{1}=\operatorname{span}\left\{e_{1} \otimes f_{1}\right.$, $\left.e_{2} \otimes f_{1}\right\}, \Pi_{2}=\operatorname{span}\left\{e_{1} \otimes f_{2}, e_{2} \otimes f_{2}\right\}$ are null 2-planes. (See 5.1.)

A (conformal) inner product (\cdot, \cdot) of type $(2,2)$ on U is defined as follows:

$$
\left(e_{i} \otimes f_{j}, e_{k} \otimes f_{l}\right)=\omega_{V}\left(e_{i}, e_{k}\right) \cdot \omega_{W}\left(f_{j}, f_{l}\right)
$$

Extending it to the whole U linearly, a conformal structure of type $(2,2)$ is defined on M. Note that with respect to the inner product $(\cdot, \cdot), e_{i} \otimes f_{j}$ $(1 \leq i, j \leq 2)$ is a null vector and Π_{1}, Π_{2} are totally null planes.

Conversely suppose that M has a conformal structure of type $(2,2)$. With respect to a (conformal) inner product (\cdot, \cdot) of type $(2,2)$, take a basis $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ such that

$$
\begin{aligned}
& \left(s_{i}, s_{i}\right)=1, \quad\left(s_{1}, s_{2}\right)=0 \\
& \left(t_{i}, t_{i}\right)=-1, \quad\left(t_{1}, t_{2}\right)=0 \\
& \left(s_{i}, t_{j}\right)=0 \quad(1 \leq i, j \leq 2)
\end{aligned}
$$

Then $S=\operatorname{span}\left\{s_{1}, s_{2}\right\}$ and $T=\operatorname{span}\left\{t_{1}, t_{2}\right\}$ are definite planes. For $U=$ $S \oplus T$, we define a mapping f from $S \oplus T$ to $\operatorname{Mat}(2, \mathbb{R})$ as follows:

$$
\begin{aligned}
f: S \oplus T & \longrightarrow \operatorname{Mat}(2, \mathbb{R}) \\
\left(a_{i}, b_{j}\right) & \longmapsto\left(\begin{array}{cc}
a_{1}+b_{1} & -a_{2}+b_{2} \\
a_{2}+b_{2} & a_{1}-b_{1}
\end{array}\right) .
\end{aligned}
$$

Then the mapping f is an isomorphism as 4 -dimensional vector spaces. Furthermore we have a linear isometry from $(U,(\cdot, \cdot))$ to $(\operatorname{Mat}(2, \mathbb{R})$, det). There exist 2-dimensional vector spaces V, W and bases $\left\{e_{1}, e_{2}\right\}$ of V, $\left\{f_{1}, f_{2}\right\}$ of W such that

$$
\begin{aligned}
\operatorname{Mat}(2, \mathbb{R}) & \cong \\
\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right) & \longmapsto \sum_{i, j=1}^{2} m_{i j} e_{i} \otimes f_{j} .
\end{aligned}
$$

Using a well-known two-to-one mapping

$$
\phi: S L(2, \mathbb{R}) \otimes S L(2, \mathbb{R}) \longrightarrow S O_{0}(2,2)
$$

we have the following commutative diagram: for $g \otimes h \in S L(2, \mathbb{R}) \otimes S L(2, \mathbb{R})$,

Therefore, independently of bases, a Grassmannian structure of type (2, 2) is canonically defined on M.

§2. Connection and curvature of Grassmannian structures

2.1. Decomposition of the space of 2 -forms

Let M be a manifold with a Grassmannian structure of type (n, m). Then the tensor spaces and the tensor fields on M give rise to decompositions with respect to the structure.

Denote by Λ^{2} the space of 2 -forms $\Lambda^{2}(T M)$ or $\Lambda^{2}\left(T^{*} M\right)$. Then Λ^{2} is decomposed as follows:

$$
\Lambda^{2}=S^{2}(V) \otimes \Lambda^{2}(W) \oplus \Lambda^{2}(V) \otimes S^{2}(W)
$$

Here we identify $T M$ with $V \otimes W$ under σ. The decomposition is invariant under the group $G R(n, m)$. Put

$$
\begin{aligned}
& \Lambda_{L}^{2}=S^{2}(V) \otimes \Lambda^{2}(W) \\
& \Lambda_{R}^{2}=\Lambda^{2}(V) \otimes S^{2}(W)
\end{aligned}
$$

The dimensions are

$$
\operatorname{dim} \Lambda_{L}^{2}=\frac{n(n+1) m(m-1)}{4} \quad \text { and } \quad \operatorname{dim} \Lambda_{R}^{2}=\frac{n(n-1) m(m+1)}{4}
$$

Especially, in the case $n=m=2$, the decomposition corresponds to the decomposition of the self-dual part and the anti-self-dual part for a conformal structure of type $(4,0)$ or $(2,2)$.

Let us write down the components of Λ_{L}^{2} and Λ_{R}^{2} explicitly. Let $\left\{e_{i}\right\}$ $(1 \leq i \leq n)$ be local basis vector fields on V and $\left\{f_{j}\right\}(1 \leq j \leq m)$ local basis vector fields on W. Then $\left\{e_{i} \otimes f_{j}\right\}(1 \leq i \leq n, 1 \leq j \leq m)$ are local basis vector fields on $V \otimes W$.

A vector u belonging to $V \otimes W$ is represented by

$$
u=\sum_{i, j} \alpha_{i j} e_{i} \otimes f_{j}=\left(\alpha_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}
$$

Put $x_{i k}=e_{i} \otimes f_{k}$. The space Λ_{L}^{2} has a basis of forms $\frac{1}{2}(x \wedge y+y \wedge x)$, that is to say,

$$
\begin{aligned}
a_{i, k l} & =x_{i k} \wedge x_{i l}, \quad \operatorname{dim}=n \frac{m(m-1)}{2} \\
b_{i j, k l} & =\frac{1}{2}\left(x_{i k} \wedge x_{j l}+x_{j k} \wedge x_{i l}\right), \quad \operatorname{dim}=\frac{n(n-1)}{2} \frac{m(m-1)}{2}
\end{aligned}
$$

Here, for example,

$$
\begin{aligned}
a_{1,12} & =x_{11} \wedge x_{12} \\
& =\left(e_{1} \otimes f_{1}\right) \wedge\left(e_{1} \otimes f_{2}\right)=\left(e_{1} \odot e_{1}\right) \otimes\left(f_{1} \wedge f_{2}\right) \\
b_{12,12} & =\frac{1}{2}\left(x_{11} \wedge x_{22}+x_{21} \wedge x_{12}\right) \\
& =\frac{1}{2}\left(\left(e_{1} \otimes f_{1}\right) \wedge\left(e_{2} \otimes f_{2}\right)+\left(e_{2} \otimes f_{1}\right) \wedge\left(e_{1} \otimes f_{2}\right)\right) \\
& =\left(e_{1} \odot e_{2}\right) \otimes\left(f_{1} \wedge f_{2}\right)
\end{aligned}
$$

The space Λ_{R}^{2} has a basis of forms $\frac{1}{2}(x \wedge y-y \wedge x)$, that is to say,

$$
\begin{aligned}
c_{i j, k} & =x_{i k} \wedge x_{j k}, \quad \operatorname{dim}=\frac{n(n-1)}{2} m \\
d_{i j, k l} & =\frac{1}{2}\left(x_{i k} \wedge x_{j l}-x_{j k} \wedge x_{i l}\right), \quad \operatorname{dim}=\frac{n(n-1)}{2} \frac{m(m-1)}{2}
\end{aligned}
$$

Here, for example,

$$
\begin{aligned}
c_{12,1} & =x_{11} \wedge x_{21} \\
& =\left(e_{1} \otimes f_{1}\right) \wedge\left(e_{2} \otimes f_{1}\right)=\left(e_{1} \wedge e_{2}\right) \otimes\left(f_{1} \odot f_{1}\right) \\
d_{12,12} & =\frac{1}{2}\left(x_{11} \wedge x_{22}-x_{21} \wedge x_{12}\right) \\
& =\frac{1}{2}\left(\left(e_{1} \otimes f_{1}\right) \wedge\left(e_{2} \otimes f_{2}\right)-\left(e_{2} \otimes f_{1}\right) \wedge\left(e_{1} \otimes f_{2}\right)\right) \\
& =\left(e_{1} \wedge e_{2}\right) \otimes\left(f_{1} \odot f_{2}\right)
\end{aligned}
$$

2.2. Prolongation of $G R(n, m)$

If we prolongate the group $G R(n, m)$ or the Lie algebra, the second prolongation of it becomes trivial. Therefore it is of finite type of order 2 (cf. [Ko], [S]). According to Kobayashi-Nagano [K-Na], it has a structure of the following graded Lie algebra of first kind:

$$
\begin{aligned}
\mathfrak{g}= & \mathfrak{s l}(m+n, \mathbb{R}) \\
= & \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \\
= & \left\{\left(\begin{array}{ll}
0 & 0 \\
A & 0
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}
B & 0 \\
0 & C
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}
0 & D \\
0 & 0
\end{array}\right)\right\} \\
& (A \in \operatorname{Mat}(n \times m, \mathbb{R}), B \in \operatorname{Mat}(m, \mathbb{R}), C \in \operatorname{Mat}(n, \mathbb{R}), \\
& D \in \operatorname{Mat}(m \times n, \mathbb{R}), \operatorname{trace} B+\operatorname{trace} C=0)
\end{aligned}
$$

$\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$.
Here \mathfrak{g} is the Lie algebra of $G=S L(m+n, \mathbb{R})$, \mathfrak{g}_{0} the Lie algebra of $G_{0}=G R(n, m)$ and \mathfrak{g}_{1} the Lie algebra of the first prolongation of \mathfrak{g}_{0}. We denote by G^{\prime} the Lie group of a Lie subalgebra $\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ of \mathfrak{g}. We put $\mathfrak{m}=\mathfrak{g}_{-1}$.

The flat model, which is a flat homogeneous space ([O]), is the Grassmann manifold $G_{m, n+m}$ consisting of all m-dimensional subspaces in the $(n+m)$-dimensional real vector space \mathbb{R}^{n+m} :

$$
G_{m, n+m} \cong G / G^{\prime}
$$

The isotropy group G^{\prime} is regarded as a subgroup of the group $G^{2}(m n)$ consisting of frames of second order at the origin o in $\mathbb{R}^{m n}$. Therefore we can regard G as a G^{\prime}-structure of second order on G / G^{\prime} (cf. [A-G1, p. 274], [A-G2, p. 26] and [A-G3, p. 195]). The group $G_{0} \subset G^{\prime}$ is the linear isotropy group.

2.3. Normal Cartan connection and half flatness

Let M be a manifold with a Grassmannian structure of type (n, m). Let P be the $G R(n, m)$-structure on M, namely, P is a linear frame bundle with structure group $G R(n, m)$ on M. Note that a $G R(n, m)$-connection on P generally has a torsion (cf. [O]). Let Q be the G^{\prime}-structure of second order on M, namely, Q is the frame bundle of second order with structure group G^{\prime} on M. From $2.2, G / G^{\prime}$ is the flat model associated with the graded Lie algebra \mathfrak{g} of first kind.

A Cartan connection ω of type G / G^{\prime} on Q is a $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$-valued 1-form such that
(i) $\omega(X) \neq 0 \quad(X \in T Q, X \neq 0)$,
(ii) $\omega\left(A^{*}\right)=A, \quad A \in \mathfrak{g}^{\prime}$,
(iii) $R_{a}{ }^{*} \omega=\operatorname{Ad}\left(a^{-1}\right) \omega, \quad a \in G^{\prime}$.

We have the following theorem due to Tanaka ([T1]).
Theorem 2.1. Under the assumption above, there exists a unique normal Cartan connection of type G / G^{\prime} on Q.

The normality condition is explained in Section 3.
We have two decompositions: the one is the space $\Lambda^{2}=\Lambda_{L}^{2} \oplus \Lambda_{R}^{2}$ of 2-forms, the other the graded Lie algebra $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ of first kind. According to the decompositions, the torsion part Ω_{-1} of the curvature form Ω, which is a \mathfrak{g}_{-1}-valued 2 -form, is decomposed as follows:

$$
\Omega_{-1}=\mathfrak{g}_{-1} \otimes \Lambda_{L}^{2} \oplus \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}
$$

And the curvature part Ω_{0} of Ω, which is a \mathfrak{g}_{0}-valued 2 -form, is decomposed as follows:

$$
\Omega_{0}=\mathfrak{g}_{0} \otimes \Lambda_{L}^{2} \oplus \mathfrak{g}_{0} \otimes \Lambda_{R}^{2}
$$

If the components $\mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$ and $\mathfrak{g}_{0} \otimes \Lambda_{L}^{2}$ are 0 , a Grassmannian structure of type (n, m) is called left-half Grassmannian flat. If the components $\mathfrak{g}_{-1} \otimes$ Λ_{R}^{2} and $\mathfrak{g}_{0} \otimes \Lambda_{R}^{2}$ are 0 , it is called right-half Grassmannian flat. Both are called half Grassmannian flat.

In particular, if $n=m=2$, the torsion of the normal Cartan connection vanishes for any manifold with a Grassmannian structure of type (2,2). The left-half Grassmannian flatness and the right-half Grassmannian flatness correspond to anti-self-duality and self-duality of a conformal structure of type $(4,0)$ or $(2,2)$ respectively. Both are called half conformally flat.

§3. Tanaka theory for Grassmannian structures

3.1. Review of Tanaka theory

Let us recall the definition of the normal Cartan connections in the Tanaka theory ([T1], cf. [Ko], [O]).

Let \mathfrak{g} be a simple graded Lie algebra of μ-th kind. Consider the subalgebra $\mathfrak{m}=\sum_{p<0} \mathfrak{g}_{p}$ of \mathfrak{g}. The Lie algebra \mathfrak{g} is regarded as the \mathfrak{m}-module with respect to the adjoint representation $a d: \mathfrak{m} \rightarrow \mathfrak{g l}(\mathfrak{g})$. Then we have the Lie algebra cohomology called the generalized Spencer cohomology.

First, we define C^{q} by

$$
C^{q}=\mathfrak{g} \otimes \Lambda^{q}\left(\mathfrak{m}^{*}\right)=\operatorname{Hom}\left(\Lambda^{q}(\mathfrak{m}), \mathfrak{g}\right)
$$

and the operator ∂ is given by, for $c \in C^{q}, X_{1}, \ldots, X_{q+1} \in \mathfrak{m}$,

$$
\begin{aligned}
& (\partial c)\left(X_{1} \wedge \cdots \wedge X_{q+1}\right) \\
& =\sum_{i}(-1)^{i+1}\left[X_{i}, c\left(X_{1} \wedge \ldots \wedge \check{X}_{i} \wedge \cdots \wedge X_{q+1}\right)\right] \\
& \quad+\sum_{i<j}(-1)^{i+j} c\left(\left[X_{i}, X_{j}\right] \wedge X_{1} \wedge \cdots \wedge \check{X}_{i} \wedge \cdots \wedge \check{X}_{j} \wedge \cdots \wedge X_{q+1}\right)
\end{aligned}
$$

Then we obtain a complex $\left\{C^{q}, \partial\right\}$:

$$
\cdots \longrightarrow C^{q} \xrightarrow{\partial} C^{q+1} \longrightarrow \cdots .
$$

Therefore we can define the cohomology group $H^{q}(\mathfrak{m}, \mathfrak{g})$ of this cochain complex. The group $H^{q}(\mathfrak{m}, \mathfrak{g})$ is the Lie algebra cohomology of the nilpotent Lie algebra \mathfrak{m} with respect to the adjoint representation $a d: \mathfrak{m} \rightarrow \mathfrak{g l}(\mathfrak{g})$.

Next, we define the adjoint operator ∂^{*} of the operator ∂. With respect to the Killing form B, a subalgebra $\sum_{p>0} \mathfrak{g}_{p}$ of \mathfrak{g} can be identified with the dual space \mathfrak{m}^{*} of \mathfrak{m}. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis of \mathfrak{m}. The dual basis $\left\{e_{1}^{*}, \ldots, e_{m}^{*}\right\}$ of $\mathfrak{m}^{*}=\sum_{p>0} \mathfrak{g}_{p}$ with $B\left(e_{i}, e_{j}^{*}\right)=\delta_{i j}$ is determined. Then the operator $\partial^{*}: C^{q+1} \rightarrow C^{q}$ is defined as follows: for $c \in C^{q+1}, X_{1}, \ldots, X_{q} \in \mathfrak{m}$,

$$
\begin{aligned}
& \left(\partial^{*} c\right)\left(X_{1} \wedge \cdots \wedge X_{q}\right) \\
& =\sum_{j}\left[e_{j}^{*}, c\left(e_{j} \wedge X_{1} \wedge \cdots \wedge X_{q}\right)\right] \\
& \quad+\frac{1}{2} \sum_{i, j}(-1)^{i+1} c\left(\left[e_{j}^{*}, X_{i}\right]_{-} \wedge e_{j} \wedge X_{1} \wedge \cdots \wedge \check{X}_{i} \wedge \cdots \wedge X_{q}\right)
\end{aligned}
$$

where $\left[e_{j}^{*}, X_{i}\right]_{-}$is an \mathfrak{m}-component of $\left[e_{j}^{*}, X_{i}\right]$ with respect to the decomposition $\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{g}^{\prime}$. Let ρ be an involutive automorphism of \mathfrak{g} such that $\rho \mathfrak{g}_{p}=\mathfrak{g}_{-p}$ and $B(X, \rho X)<0(X \neq 0)$. Then we define a positive definite inner product (\cdot, \cdot) in \mathfrak{g} by

$$
(X, Y)=-B(X, \rho Y), \quad X, Y \in \mathfrak{g}
$$

We have

$$
\left(\partial c, c^{\prime}\right)=\left(c, \partial^{*} c^{\prime}\right), \quad c \in C^{q}, c^{\prime} \in C^{q+1}
$$

The operator Δ called the Laplacian is defined as usual:

$$
\Delta=\partial^{*} \partial+\partial \partial^{*}: C^{q} \longrightarrow C^{q}
$$

If $\Delta c=0$ for $c \in C^{q}, c$ is called harmonic. Evidently c is harmonic if and only if $\partial c=\partial^{*} c=0$. We denote by H^{q} the set of all harmonic forms in C^{q}. It is well-known that

$$
H^{q} \cong H^{q}(\mathfrak{m}, \mathfrak{g})
$$

Since $\mathfrak{m}=\sum_{j<0} \mathfrak{g}_{j}$, the space $\Lambda^{q}\left(\mathfrak{m}^{*}\right)$ is decomposed as follows:

$$
\Lambda^{q}\left(\mathfrak{m}^{*}\right)=\sum_{r_{1}, \ldots, r_{q}<0} \mathfrak{g}_{r_{1}}^{*} \wedge \cdots \wedge \mathfrak{g}_{r_{q}}^{*}
$$

Furthermore, we define the subspace $\Lambda_{i}^{q}\left(\mathfrak{m}^{*}\right)$ as follows:

$$
\Lambda_{i}^{q}\left(\mathfrak{m}^{*}\right)=\sum_{\substack{r_{1}+\cdots+r_{q}=i \\ r_{1}, \ldots, r_{q}<0}} \mathfrak{g}_{r_{1}}^{*} \wedge \cdots \wedge \mathfrak{g}_{r_{q}}^{*}
$$

Then we have

$$
\left.\Lambda^{q}\left(\mathfrak{m}^{*}\right)=\sum_{i} \Lambda_{i}^{q}\left(\mathfrak{m}^{*}\right) \quad \text { (direct sum }\right)
$$

Since $\mathfrak{g}=\sum_{j} \mathfrak{g}_{j}$, the space $C^{q}=\mathfrak{g} \otimes \Lambda^{q}\left(\mathfrak{m}^{*}\right)$ is decomposed as follows:

$$
C^{q}=\mathfrak{g} \otimes \Lambda^{q}\left(\mathfrak{m}^{*}\right)=\sum_{i, j} \mathfrak{g}_{j} \otimes \Lambda_{i}^{q}\left(\mathfrak{m}^{*}\right)
$$

We define the subspace $C^{p, q}$ by

$$
C^{p, q}=\sum_{j} \mathfrak{g}_{j} \otimes \Lambda_{j-p-q+1}^{q}\left(\mathfrak{m}^{*}\right)
$$

In particular, we have

$$
\begin{aligned}
& C^{p, 0}=\mathfrak{g}_{p-1}, \\
& C^{p, 1}=\sum_{j<p} \mathfrak{g}_{j} \otimes \mathfrak{g}_{j-p}^{*} .
\end{aligned}
$$

Furthermore, we have

$$
C^{q}=\sum_{p} C^{p, q} \quad(\text { direct sum })
$$

and

$$
\begin{aligned}
\partial C^{p, q} & \subset C^{p-1, q+1} \\
\partial^{*} C^{p, q} & \subset C^{p+1, q-1} \\
\Delta C^{p, q} & \subset C^{p, q}
\end{aligned}
$$

We denote by $H^{p, q}$ the set of all harmonic forms in $C^{p, q}$. Then we have

$$
H^{q}=\sum_{p} H^{p, q} \quad(\text { direct sum })
$$

The group G_{0} linearly acts on C^{q} as follows: for $c \in C^{q}$ and $a \in G_{0}$,

$$
(a c)\left(X_{1} \wedge \cdots \wedge X_{q}\right)=\operatorname{Ad}\left(a^{-1}\right) c\left(\operatorname{Ad}(a) X_{1} \wedge \cdots \wedge \operatorname{Ad}(a) X_{q}\right)
$$

where $X_{1}, \ldots, X_{q} \in \mathfrak{m}$. It follows that $\mathfrak{g}_{j} \otimes \Lambda_{i}^{q}\left(\mathfrak{m}^{*}\right)$ is G_{0} invariant and $a(\partial c)=\partial(a c), a\left(\partial^{*} c\right)=\partial^{*}(a c)$. Hence $C^{p, q}$ and $H^{p, q}$ are G_{0} invariant subspaces of C^{q} and H^{q} respectively.

The case $q=2$ is important.
Let G / G^{\prime} be a homogeneous space associated with the simple graded Lie algebra \mathfrak{g}. Let M be a manifold with $\operatorname{dim} M=\operatorname{dim} G / G^{\prime}$. Let Q be a G^{\prime}-principal bundle over M and ω a Cartan connection of type G / G^{\prime} on Q. It is a \mathfrak{g}-valued 1 -form. Let Ω be the curvature form on Q. It is a \mathfrak{g}-valued 2 -form. Then the curvature function $K: Q \rightarrow C^{2}=\mathfrak{g} \otimes \Lambda^{2}\left(\mathfrak{m}^{*}\right)$ on Q is defined:

$$
\Omega=\frac{1}{2} K\left(\omega_{-} \wedge \omega_{-}\right)
$$

where ω_{-}is an \mathfrak{m}-component with respect to the decomposition $\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{g}^{\prime}$ of ω.

Corresponding to the decomposition $\mathfrak{g}=\sum_{j} \mathfrak{g}_{j}, \omega$ and Ω are decomposed as follows:

$$
\omega=\sum_{j} \omega_{j}, \quad \Omega=\sum_{j} \Omega_{j} .
$$

The curvature function K is decomposed as follows:

$$
K=\sum_{j} K_{j}=\sum_{p} K^{p, 2}
$$

We abbreviate $K^{p, 2}$ to K^{p}.
A Cartan connection ω is called normal if
(1) $K^{p}=0 \quad(p<0)$,
(2) $\partial^{*} K^{p}=0 \quad(p \geq 0)$.

Take $M=G / G^{\prime}$. Then the Maurer-Cartan form is a Cartan connection ω which is a \mathfrak{g}-valued 1-form on $Q=G$. As $K=0$ holds, ω is normal.

The space C^{2} is orthogonally decomposed into

$$
C^{2}=H^{2}+\Delta C^{2}
$$

Denote by H the orthogonal projection $C^{2} \rightarrow H^{2}$. We have

$$
H C^{p, 2}=H^{p, 2}
$$

The function $H K: Q \rightarrow H^{2}$ on Q is the harmonic part of K. As $K=$ $\sum_{p} K^{p}$,

$$
H K=\sum_{p} H K^{p}
$$

We remark that $H K$ gives the fundamental invariant of the normal Cartan connection for the geometric structure subordinate to type G / G^{\prime} associated with the simple graded Lie algebra \mathfrak{g}. Namely, we have the following theorem due to Tanaka ([T1]).

Theorem 3.1. We have

$$
K=0 \Longleftrightarrow H K=0
$$

Moreover we have the following theorem.
Theorem 3.2. We have, for some $p \geq 0$,

$$
K^{q}=0 \text { for all } q<p \Longrightarrow K^{p}=H K^{p}
$$

3.2. Tanaka theory for Grassmannian structure

Let M be a manifold with a Grassmannian structure of type (n, m). The flat model is the Grassmann manifold $G_{m, n+m} \cong G / G^{\prime}$ associated with the graded Lie algebra $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ of first kind:

$$
\begin{aligned}
\mathfrak{g}= & \mathfrak{s l}(m+n, \mathbb{R}) \\
= & \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \\
= & \left\{\left(\begin{array}{cc}
O_{m} & 0 \\
A & O_{n}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{cc}
O_{m} & D \\
0 & O_{n}
\end{array}\right)\right\}, \\
& (A \in \operatorname{Mat}(n \times m, \mathbb{R}), B \in \operatorname{Mat}(m, \mathbb{R}), C \in \operatorname{Mat}(n, \mathbb{R}), \\
& D \in \operatorname{Mat}(m \times n, \mathbb{R}), \text { trace } B+\operatorname{trace} C=0),
\end{aligned}
$$

$\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$.

We put their bases and coordinates as follows:

$$
\mathbf{e}_{i j}=\left(\begin{array}{cc}
O_{m} & 0 \\
E_{i j} & O_{n}
\end{array}\right)
$$

$\left(E_{i j} \in \operatorname{Mat}(n \times m), \mathbb{R}\right)$: matrix unit, i.e., (i, j)-component $=1$, otherwise $=0)$,

$$
\begin{aligned}
& \mathbf{g}_{i j}=\left(\begin{array}{cc}
E_{i j} & 0 \\
0 & O_{n}
\end{array}\right), \mathbf{h}_{i j}=\left(\begin{array}{cc}
O_{m} & 0 \\
0 & E_{i j}
\end{array}\right), \mathbf{e}_{i j}^{*}={ }^{t} \mathbf{e}_{j i} \\
& \left(E_{i j} \in \operatorname{Mat}(m, \mathbb{R}), E_{i j} \in \operatorname{Mat}(n, \mathbb{R}): \text { matrix units respectively }\right)
\end{aligned}
$$

and

$$
\left(\begin{array}{cc}
g_{i j} & d_{i j} \\
x_{i j} & h_{i j}
\end{array}\right)=\sum x_{i j} \mathbf{e}_{i j}+\sum g_{i j} \mathbf{g}_{i j}+\sum h_{i j} \mathbf{h}_{i j}+\sum d_{i j} \mathbf{e}_{i j}^{*}
$$

Let Q be the frame bundle of second order with structure group G^{\prime} on M. By 2.3, there exists a $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$-valued normal Cartan connection of type G / G^{\prime}. As \mathfrak{g} is of first kind, we have

$$
\begin{aligned}
C^{2} & =C^{0,2} \oplus C^{1,2} \oplus C^{2,2} \\
& =\mathfrak{g}_{-1} \otimes \Lambda_{-2}^{2} \oplus \mathfrak{g}_{0} \otimes \Lambda_{-2}^{2} \oplus \mathfrak{g}_{1} \otimes \Lambda_{-2}^{2}
\end{aligned}
$$

The curvature function K of the connection ω has

$$
\begin{aligned}
K\left(=K_{-1}+K_{0}+K_{1}\right) & =K^{0,2}+K^{1,2}+K^{2,2} \\
& =K^{0}+K^{1}+K^{2}
\end{aligned}
$$

We can view K^{0} as the torsion part and K^{1} as the curvature part.
It follows that K satisfies the condition (1) of normality as a consequence. Let us write down the condition (2) of normality:
(i) $\partial^{*} K^{0}=0$,
(ii) $\partial^{*} K^{1}=0$.

Since $\partial^{*}: C^{2,2} \rightarrow C^{3,1}=0$, we have $\partial^{*} K^{2}=0$.
In particular, in the case $m=2$, i.e., a Grassmannian structure of type $(n, 2)$, let us see it explicitly. Put $\mathbf{a}_{i}=\mathbf{e}_{i 1}, \mathbf{b}_{i}=\mathbf{a}_{n+i}=\mathbf{e}_{i 2}$. The dual basis of \mathfrak{g}_{1} is $\mathbf{a}_{1}^{*}={ }^{t} \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}^{*}={ }^{t} \mathbf{a}_{n}, \mathbf{a}_{n+1}^{*}={ }^{t} \mathbf{b}_{1}, \ldots, \mathbf{a}_{2 n}^{*}={ }^{t} \mathbf{b}_{n}$.

We investigate the case (i):

$$
\begin{aligned}
\partial^{*}: C^{0,2}=\mathfrak{g}_{-1} \otimes \Lambda_{-2}^{2} & \longrightarrow C^{1,1}=\mathfrak{g}_{0} \otimes \Lambda_{-1}^{1} \\
K^{0} & \longmapsto \partial^{*} K^{0} .
\end{aligned}
$$

For $X \in \mathfrak{m}=\mathfrak{g}_{-1}$,

$$
\begin{aligned}
\left(\partial^{*} K^{0}\right)(X) & =\sum_{j=1}^{2 n}\left[\mathbf{a}_{j}^{*}, K^{0}\left(\mathbf{a}_{j} \wedge X\right)\right]+\frac{1}{2} \sum_{j=1}^{2 n} K^{0}\left(\left[\mathbf{a}_{j}^{*}, X\right]_{-} \wedge \mathbf{a}_{j}\right) \\
& =\sum_{j=1}^{2 n}\left[\mathbf{a}_{j}^{*}, K^{0}\left(\mathbf{a}_{j} \wedge X\right)\right]
\end{aligned}
$$

where the second equality holds from $\left[\mathbf{a}_{j}^{*}, X\right]_{-}=0$ for $\left[\mathbf{a}_{j}^{*}, X\right] \in \mathfrak{g}_{0}$.
The Lie bracket of \mathfrak{g}_{1} and \mathfrak{g}_{-1} are given by, for $i, j=1, \ldots, n$,

$$
\begin{array}{ll}
{\left[\mathbf{a}_{i}^{*}, \mathbf{a}_{j}\right]=\delta_{i j} \mathbf{g}_{11}-\mathbf{h}_{j i},} & {\left[\mathbf{b}_{i}^{*}, \mathbf{b}_{j}\right]=\delta_{i j} \mathbf{g}_{22}-\mathbf{h}_{j i},} \\
{\left[\mathbf{a}_{i}^{*}, \mathbf{b}_{j}\right]=\delta_{i j} \mathbf{g}_{12},} & {\left[\mathbf{b}_{i}^{*}, \mathbf{a}_{j}\right]=\delta_{i j} \mathbf{g}_{21} .}
\end{array}
$$

If we assume that $\partial^{*} K^{0}=0$, the following relations hold in \mathfrak{g}_{0} :

$$
\begin{aligned}
& \mathbf{g}_{11} \text {-component }=0 \Longleftrightarrow \sum_{i=1}^{n} K_{i}^{0}\left(\mathbf{a}_{i} \wedge X\right)=0, \\
& \mathbf{g}_{12} \text {-component }=0 \Longleftrightarrow \sum_{i=1}^{n} K_{n+i}^{0}\left(\mathbf{a}_{i} \wedge X\right)=0, \\
& \mathbf{g}_{21} \text {-component }=0 \Longleftrightarrow \sum_{i=1}^{n} K_{i}^{0}\left(\mathbf{a}_{n+i} \wedge X\right)=0, \\
& \mathbf{g}_{22} \text {-component }=0 \Longleftrightarrow \sum_{i=1}^{n} K_{n+i}^{0}\left(\mathbf{a}_{n+i} \wedge X\right)=0, \\
& \mathbf{h}_{i, j} \text {-component }=0 \Longleftrightarrow K_{i}^{0}\left(\mathbf{a}_{j} \wedge X\right)+K_{n+i}^{0}\left(\mathbf{a}_{n+j} \wedge X\right)=0 .
\end{aligned}
$$

Here K_{i}^{0} and K_{n+i}^{0} are \mathbf{a}_{i} and $\mathbf{a}_{n+i}=\mathbf{b}_{i}$ components in \mathfrak{g}_{-1} respectively.
From $\partial^{*} K^{0}=0$ of the normality, we have the following.
Proposition 3.1. Let M be a manifold with a Grassmannian structure of type ($n, 2$). Then, for the normal Cartan connection ω of type G / G^{\prime} on Q, the $\mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$-component of the torsion part Ω_{-1} is 0 .

Proof. We use the relations

$$
K_{i}^{0}\left(\mathbf{a}_{j} \wedge X\right)=-K_{n+i}^{0}\left(\mathbf{a}_{n+j} \wedge X\right)
$$

Putting $X=\mathbf{a}_{n+j}$, we obtain

$$
K_{i}^{0}\left(\mathbf{a}_{j} \wedge \mathbf{a}_{n+j}\right)=0
$$

Putting $X=\mathbf{a}_{j}$, we obtain

$$
K_{n+i}^{0}\left(\mathbf{a}_{n+j} \wedge \mathbf{a}_{j}\right)=0
$$

Putting $X=\mathbf{a}_{n+k}$, we have

$$
\begin{aligned}
K_{i}^{0}\left(\mathbf{a}_{j} \wedge \mathbf{a}_{n+k}\right) & =-K_{n+i}^{0}\left(\mathbf{a}_{n+j} \wedge \mathbf{a}_{n+k}\right) \\
& =K_{n+i}^{0}\left(\mathbf{a}_{n+k} \wedge \mathbf{a}_{n+j}\right) \\
& =-K_{i}^{0}\left(\mathbf{a}_{k} \wedge \mathbf{a}_{n+j}\right) .
\end{aligned}
$$

Thus we obtain

$$
K_{i}^{0}\left(\mathbf{a}_{j} \wedge \mathbf{a}_{n+k}+\mathbf{a}_{k} \wedge \mathbf{a}_{n+j}\right)=0
$$

Putting $X=\mathbf{a}_{k}$, we similarly obtain

$$
K_{n+i}^{0}\left(\mathbf{a}_{j} \wedge \mathbf{a}_{n+k}+\mathbf{a}_{k} \wedge \mathbf{a}_{n+j}\right)=0
$$

Therefore it follows that $\mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$-component is 0 .
Proposition 3.2. Let M be a 4-dimensional manifold with a Grassmannian structure (or a conformal structure) of type (2,2). Then, for the normal Cartan connection ω, the torsion part Ω_{-1} is 0 .

Proof. A basis of \mathfrak{g}_{-1} is $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}=\mathbf{b}_{1}, \mathbf{a}_{4}=\mathbf{b}_{2}$.
We have

$$
\begin{gathered}
K_{i}^{0}\left(\mathbf{a}_{1} \wedge \mathbf{a}_{2}\right)=0, \quad K_{2+i}^{0}\left(\mathbf{a}_{1} \wedge \mathbf{a}_{2}\right)=0 \quad(i=1,2) \\
K_{i}^{0}\left(\mathbf{b}_{1} \wedge \mathbf{b}_{2}\right)=0, \quad K_{2+i}^{0}\left(\mathbf{b}_{1} \wedge \mathbf{b}_{2}\right)=0 \quad(i=1,2)
\end{gathered}
$$

Moreover we have

$$
\begin{array}{lll}
K_{i}^{0}\left(\mathbf{a}_{1} \wedge \mathbf{b}_{2}\right)=0, & K_{2+i}^{0}\left(\mathbf{a}_{1} \wedge \mathbf{b}_{2}\right)=0 & (i=1,2) \\
K_{i}^{0}\left(\mathbf{a}_{2} \wedge \mathbf{b}_{1}\right)=0, & K_{2+i}^{0}\left(\mathbf{a}_{2} \wedge \mathbf{b}_{1}\right)=0 & (i=1,2)
\end{array}
$$

Thus it follows that $\mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$-component is 0 . Therefore the torsion part Ω_{-1} is 0 .

We investigate the case (ii):

$$
\begin{aligned}
& \partial^{*}: C^{1,2}=\mathfrak{g}_{0} \otimes \Lambda_{-2}^{2} \longrightarrow C^{2,1}=\mathfrak{g}_{1} \otimes \Lambda_{-1}^{1} \\
& K^{1} \longmapsto \partial^{*} K^{1} .
\end{aligned}
$$

We will adopt the notation and the argument of (i) similarly. For $X \in \mathfrak{m}=$ \mathfrak{g}_{-1},

$$
\left(\partial^{*} K^{1}\right)(X)=\sum_{j=1}^{2 n}\left[\mathbf{a}_{j}^{*}, K^{1}\left(\mathbf{a}_{j} \wedge X\right)\right] .
$$

The Lie bracket of \mathfrak{g}_{1} and \mathfrak{g}_{0} are given by, for $i, j=1, \ldots, n$,

$$
\begin{aligned}
& {\left[\mathbf{a}_{i}^{*}, \mathbf{g}_{11}\right]=-\mathbf{a}_{i}^{*}, \quad\left[\mathbf{a}_{i}^{*}, \mathbf{g}_{12}\right]=0,\left[\mathbf{a}_{i}^{*}, \mathbf{g}_{21}\right]=-\mathbf{a}_{n+i}^{*}, \quad\left[\mathbf{a}_{i}^{*}, \mathbf{g}_{22}\right]=0,} \\
& {\left[\mathbf{a}_{n+i}^{*}, \mathbf{g}_{11}\right]=0,\left[\mathbf{a}_{n+i}^{*}, \mathbf{g}_{12}\right]=-\mathbf{a}_{i}^{*},\left[\mathbf{a}_{n+i}^{*}, \mathbf{g}_{21}\right]=0,\left[\mathbf{a}_{n+i}^{*}, \mathbf{g}_{22}\right]=-\mathbf{a}_{n+i}^{*},} \\
& {\left[\mathbf{a}_{i}^{*}, \mathbf{h}_{j k}\right]=\delta_{i j} \mathbf{a}_{k}^{*}, \quad\left[\mathbf{a}_{n+i}^{*}, \mathbf{h}_{j k}\right]=\delta_{i j} \mathbf{a}_{n+k}^{*}}
\end{aligned}
$$

If we assume that $\partial^{*} K^{1}=0$, the following relations hold in \mathfrak{g}_{1} : for $i=$ $1, \ldots, n$,

$$
\begin{aligned}
& \mathbf{a}_{i} \text {-component }=0 \\
& \quad \Longleftrightarrow K_{x}^{1}\left(\mathbf{a}_{i} \wedge X\right)+K_{y}^{1}\left(\mathbf{a}_{n+i} \wedge X\right)=\sum_{j=1}^{n} K_{j i}^{1}\left(\mathbf{a}_{j} \wedge X\right), \\
& \mathbf{a}_{n+i}=\mathbf{b}_{i} \text {-component }=0 \\
& \quad \Longleftrightarrow K_{z}^{1}\left(\mathbf{a}_{i} \wedge X\right)+K_{w}^{1}\left(\mathbf{a}_{n+i} \wedge X\right)=\sum_{j=1}^{n} K_{j i}^{1}\left(\mathbf{a}_{n+j} \wedge X\right) .
\end{aligned}
$$

Here $K_{x}^{1}, K_{y}^{1}, K_{z}^{1}, K_{w}^{1}$ are $\mathbf{g}_{11}, \mathbf{g}_{12}, \mathbf{g}_{21}, \mathbf{g}_{22}$ components and $K_{i j}^{1}$ are $\mathbf{h}_{i j}$ components in \mathfrak{g}_{0} respectively. The number of independent equations is $4 n^{2}$. We write down $4 n^{2}$ independent relations of the normality:

$$
\begin{aligned}
& K_{x}^{1}\left(\mathbf{a}_{i} \wedge \mathbf{a}_{k}\right)+K_{y}^{1}\left(\mathbf{b}_{i} \wedge \mathbf{a}_{k}\right)=\sum_{j=1}^{n} K_{j i}^{1}\left(\mathbf{a}_{j} \wedge \mathbf{a}_{k}\right), \\
& K_{x}^{1}\left(\mathbf{a}_{i} \wedge \mathbf{b}_{k}\right)+K_{y}^{1}\left(\mathbf{b}_{i} \wedge \mathbf{b}_{k}\right)=\sum_{j=1}^{n} K_{j i}^{1}\left(\mathbf{a}_{j} \wedge \mathbf{b}_{k}\right), \\
& K_{z}^{1}\left(\mathbf{a}_{i} \wedge \mathbf{a}_{k}\right)+K_{w}^{1}\left(\mathbf{b}_{i} \wedge \mathbf{a}_{k}\right)=\sum_{j=1}^{n} K_{j i}^{1}\left(\mathbf{b}_{j} \wedge \mathbf{a}_{k}\right), \\
& K_{z}^{1}\left(\mathbf{a}_{i} \wedge \mathbf{b}_{k}\right)+K_{w}^{1}\left(\mathbf{b}_{i} \wedge \mathbf{b}_{k}\right)=\sum_{j=1}^{n} K_{j i}^{1}\left(\mathbf{b}_{j} \wedge \mathbf{b}_{k}\right) .
\end{aligned}
$$

Next, we consider the Bianchi identities. They are given, by Lemmas 2.10, 2.11 in [T1], as follows: for $p \geq 0$,

$$
\partial K^{p}=\Psi^{p-1}
$$

We consider $K=K^{0}+K^{1}+K^{2}$ with respect to a graded Lie algebra \mathfrak{g} of first kind.

For $K^{0}, \partial K^{0}=\Psi^{-1} \in C^{-1,3}=\mathfrak{g}_{-2} \otimes \Lambda_{-3}^{3}=0$ holds. Joining $\partial^{*} K^{0}=0$ of normality together, we see that K^{0} is harmonic, that is,

$$
H K^{0}=K^{0}=K_{-1} \in H^{0,2}
$$

For K^{1}, assume that the torsion part $K^{0}=K_{-1}$ is 0 . Then it follows that $\partial K^{1}=\Psi^{0} \in C^{0,3}=\mathfrak{g}_{-1} \otimes \Lambda_{-3}^{3}$ is 0 from the definition of Ψ^{0}. Joining $\partial^{*} K^{1}=0$ of normality together, we see that K^{1} is harmonic, that is, under the assumption $K^{0}=0$,

$$
H K^{1}=K^{1}=K_{0} \in H^{1,2}
$$

For K^{2}, in general $\partial K^{2}=\Psi^{1}$ is not 0 .

3.3. Nonzero generators in H^{2}

Before we investigate the harmonic part $H K$ of the curvature function K, which is the fundamental invariant of a Grassmannian structure of type (n, m), we calculate $H^{2} \cong H^{2}(\mathfrak{m}, \mathfrak{g})$ according to Yamaguchi ([Y, Proposition 5.5]).

A nonzero generator in H^{2} decomposed as an irreducible \mathfrak{g}_{0}-module is represented by

$$
x_{\sigma(\theta)} \otimes x_{\Phi_{\sigma}} \in H^{p_{i j}, 2}
$$

for $\sigma=\sigma_{i j} \in W^{0}(2)$. Here $\sigma=\sigma_{i j}=\sigma_{i} \cdot \sigma_{j}=\sigma_{\alpha_{i}} \cdot \sigma_{\alpha_{j}}\left(\alpha_{i}, \alpha_{j} \in \Delta\right.$: a fixed simple root system of \mathfrak{g}) is the composition of reflections by α_{i}, α_{j}, and $x_{\sigma(\theta)} \in \mathfrak{g}_{\sigma(\theta)(E)}$ is the root vector for the root by the reflection $\sigma=\sigma_{i j}$ of the highest root θ, and $x_{\Phi_{\sigma}} \in \Lambda^{2} \mathfrak{m}^{*}$ is the exterior product of two root vectors for $\Phi_{\sigma}=\Phi_{\sigma_{i j}}=\left\{\alpha_{i}, \alpha_{j}-\left\langle\alpha_{j}, \alpha_{i}\right\rangle \alpha_{i}\right\}$, and $p_{i j}$ is a nonnegative integer decided by $\sigma_{i j}$. See $[\mathrm{Y}]$ in detail.

We consider the simple graded Lie algebra

$$
\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}, \quad \mathfrak{m}=\mathfrak{g}_{-1}
$$

of first kind for the Lie algebra $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ of $G=S L(m+n, \mathbb{R})$ associated with a Grassmannian structure of type (n, m). We have

$$
\Lambda^{2} \mathfrak{m}^{*}=\Lambda^{2} \mathfrak{g}_{-1}^{*}=\Lambda_{-2}^{2}=\Lambda_{L}^{2} \oplus \Lambda_{R}^{2}
$$

where, from $T M \cong V \otimes W$,

$$
\Lambda_{L}^{2}=S^{2}(V) \otimes \Lambda^{2}(W), \quad \Lambda_{R}^{2}=\Lambda^{2}(V) \otimes S^{2}(W) .
$$

This is a decomposition as a \mathfrak{g}_{0}-module. We remark that

$$
\begin{aligned}
& C^{0,2}=\mathfrak{g}_{-1} \otimes \Lambda_{-2}^{2}=\mathfrak{g}_{-1} \otimes \Lambda_{L}^{2} \oplus \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}, \\
& C^{1,2}=\mathfrak{g}_{0} \otimes \Lambda_{-2}^{2}=\left(\mathfrak{g}_{0}^{L} \oplus \mathfrak{g}_{0}^{R} \oplus z\right) \otimes\left(\Lambda_{L}^{2} \oplus \Lambda_{R}^{2}\right), \\
& C^{2,2}=\mathfrak{g}_{1} \otimes \Lambda_{-2}^{2}=\mathfrak{g}_{1} \otimes \Lambda_{L}^{2} \oplus \mathfrak{g}_{1} \otimes \Lambda_{R}^{2},
\end{aligned}
$$

where

$$
\mathfrak{g}_{0}^{L}=\mathfrak{s l}_{L}=\mathfrak{s l}(n, \mathbb{R}), \quad \mathfrak{g}_{0}^{R}=\mathfrak{s l}_{R}=\mathfrak{s l}(m, \mathbb{R})
$$

and z is the trace part of \mathfrak{g}_{0}.
Assume that $n \geq m$. Then we obtain the following.
Proposition 3.3. The components of nonzero generators as \mathfrak{g}_{0}-modules in H^{2} are represented by

1. if $n, m \geq 3$,
(i) $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{1 m-1}{ }^{*} \wedge \mathbf{e}_{1 m}{ }^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$,
(ii) $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{1 m}{ }^{*} \wedge \mathbf{e}_{2 m}{ }^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$,
2. if $n \geq 3, m=2$,
(i) $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{12}{ }^{*} \wedge \mathbf{e}_{22}{ }^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$,
(ii) $\mathbf{h}_{n 1} \otimes\left(\mathbf{e}_{11}{ }^{*} \wedge \mathbf{e}_{12}{ }^{*}\right) \in H^{1,2} \subset \mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}$,
3. if $n=2, m=2$,
(i) $\mathbf{h}_{21} \otimes\left(\mathbf{e}_{11}{ }^{*} \wedge \mathbf{e}_{12}{ }^{*}\right) \in H^{1,2} \subset \mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}$,
(ii) $\mathbf{g}_{21} \otimes\left(\mathbf{e}_{12}{ }^{*} \wedge \mathbf{e}_{22}{ }^{*}\right) \in H^{1,2} \subset \mathfrak{g}_{0}^{R} \otimes \Lambda_{R}^{2}$.

If $n \geq 3, m=2$, from 2 (i) in the above proposition, it follows that the $\mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$-component of the torsion part is 0 . See Proposition 3.1.

If $n=2, m=2$, from 3 in the above proposition, it follows that $K^{0}=0$, i.e., the torsion part is 0 . See Proposition 3.2. Hence $K^{1}=H K^{1}$ holds.

When we take $m=1$, the geometric structure becomes a projective structure whose flat model is the n-dimensional projective space $P^{n}(\mathbb{R})$ $(n \geq 3)$. See 6.5, 7.1. There is not the notion of half flatness. Now we remark that

$$
\mathfrak{g}_{-1}=\operatorname{span}\left\{\mathbf{a}_{i}=\mathbf{e}_{i j}\right\}_{1 \leq i \leq n, j=1}, \quad \mathfrak{g}_{0}=\operatorname{span}\left\{\mathbf{g}_{11}, \mathbf{h}_{i j}\right\}_{1 \leq i, j \leq n}, \mathfrak{g}_{1}=\mathfrak{g}_{-1}^{*}
$$

Then the components of nonzero generators as \mathfrak{g}_{0}-modules in H^{2} are represented by

$$
\mathbf{h}_{n 1} \otimes\left(\mathbf{a}_{1}^{*} \wedge \mathbf{a}_{2}^{*}\right) \in H^{1,2} \subset \mathfrak{g}_{0} \otimes \Lambda^{2}
$$

Therefore it follows that $K^{0}=0$, i.e., the torsion part is 0 . Hence $K^{1}=$ $H K^{1}$ holds.

§4. Co-Grassmannian structures

4.1. Example as the flat model

Before we argue the twistor theory of Grassmannian structures in Section 7 , we define and study co-Grassmannian structures that are geometric structures of the top space, that is, the incidence space of the double fibration by twistor theory of Grassmannian structures.

In the $(n+m)$-dimensional real vector space $V=\mathbb{R}^{n+m}$, let $F_{m-1, m}$ be the following generalized flag manifold:

$$
F_{m-1, m}=\left\{\left(S_{m-1}, S_{m}\right) \mid S_{i}: i \text {-dimensional subspace of } V, S_{m-1} \subset S_{m}\right\}
$$

The dimension of $F_{m-1, m}$ is $m n+m-1$. The group $G=S L(m+n, \mathbb{R})$ acts transitively on $F_{m-1, m}$.

Let $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right\}$ be a basis of $V=\mathbb{R}^{n+m}$. Choose $Z_{0}=$ $\left(X_{0}, Y_{0}\right) \in F_{m-1, m}$ such that

$$
\begin{aligned}
& X_{0}=\operatorname{span}\left\{a_{1}, \ldots, a_{m-1}\right\} \cong \operatorname{span}\binom{I_{m-1}}{O}(\in \operatorname{Mat}((m+n) \times(m-1), \mathbb{R})) \\
& Y_{0}=\operatorname{span}\left\{a_{1}, \ldots, a_{m-1}, a_{m}\right\} \cong \operatorname{span}\binom{I_{m}}{O}(\in \operatorname{Mat}((m+n) \times m, \mathbb{R}))
\end{aligned}
$$

where $a_{i}={ }^{t}(0, \ldots, 0, \stackrel{i}{1}, 0, \ldots, 0) \in V=\mathbb{R}^{n+m}$. Let G^{\prime} be the isotropy group of $G=S L(m+n, \mathbb{R})$ at the base point $Z_{0}=\left(X_{0}, Y_{0}\right)$. Then we have

$$
F_{m-1, m} \cong G / G^{\prime}
$$

and it is easy to check that

$$
G^{\prime}=\left\{\left(\begin{array}{ccc}
m-1 & 1 & n \\
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right) \begin{array}{c}
m-1 \\
1 \\
n
\end{array} \in S L(m+n, \mathbb{R})\right\}
$$

This is the flat model of manifolds with co-Grassmannian structures of type $(n, m-1)$, which are defined in the next 4.2 .

The Lie algebra $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ of $G=S L(m+n, \mathbb{R})$ has a decomposition as follows:

$$
\begin{aligned}
\mathfrak{g}= & \mathfrak{s l}(m+n, \mathbb{R}) \\
= & \mathfrak{m} \oplus \mathfrak{g}^{\prime} \\
= & \left\{\left(\begin{array}{ccc}
O_{m-1} & 0 & 0 \\
\mathbf{f} & 0 & 0 \\
A & \mathbf{e} & O_{n}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
B^{t} \mathbf{h} & D \\
0 & d & { }^{t} \mathbf{g} \\
0 & 0 & C
\end{array}\right)\right\} \\
& (A \in \operatorname{Mat}(n \times(m-1), \mathbb{R}), B \in \operatorname{Mat}(m-1, \mathbb{R}), C \in \operatorname{Mat}(n, \mathbb{R}), \\
& D \in \operatorname{Mat}((m-1) \times n, \mathbb{R}), d \in \mathbb{R}, \mathbf{e}, \mathbf{g} \in \mathbb{R}^{n}, \mathbf{f}, \mathbf{h} \in \mathbb{R}^{m-1}, \\
& \quad \operatorname{trace} B+d+\operatorname{trace} C=0) .
\end{aligned}
$$

The subalgebra \mathfrak{g}^{\prime} is the Lie algebra of G^{\prime}, and \mathfrak{m} is identified with the tangent space $T_{Z_{0}} F_{m-1, m}$ of $F_{m-1, m}$ at Z_{0}. Furthermore, $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ has more decompositions:

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{s l}(m+n, \mathbb{R}) \\
& =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \\
& =\left\{\left(\begin{array}{ccc}
O_{m-1} & 0 & 0 \\
0 & 0 & 0 \\
A & 0 & O_{n}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
O_{m-1} & 0 & 0 \\
\mathbf{f} & 0 & 0 \\
0 & \mathbf{e} & O_{n}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
B & 0 & 0 \\
0 & d & 0 \\
0 & 0 & C
\end{array}\right)\right\} \\
& \oplus\left\{\left(\begin{array}{ccc}
O_{m-1} & { }^{t} \mathbf{h} & 0 \\
0 & 0 & { }^{t} \mathbf{g} \\
0 & 0 & O_{n}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
O_{m-1} & 0 & D \\
0 & 0 & 0 \\
0 & 0 & O_{n}
\end{array}\right)\right\} \\
\mathfrak{m} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}, \\
\mathfrak{g}^{\prime} & =\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2},
\end{aligned}
$$

and has a structure of a simple graded Lie algebra of second kind.

We consider

$$
\mathfrak{e}=\left\{\left(\begin{array}{ccc}
O_{m-1} & 0 & 0 \\
0 & 0 & 0 \\
0 & \mathbf{e} & O_{n}
\end{array}\right)\right\}, \quad \mathfrak{f}=\left\{\left(\begin{array}{ccc}
O_{m-1} & 0 & 0 \\
\mathbf{f} & 0 & 0 \\
0 & 0 & O_{n}
\end{array}\right)\right\}
$$

Then we have

1) $\mathfrak{g}_{-1}=\mathfrak{e} \oplus \mathfrak{f}$,
2) $[\mathfrak{e}, \mathfrak{e}]=[\mathfrak{f}, \mathfrak{f}]=0$,
3) $\mathfrak{g}_{-2}=[\mathfrak{e}, \mathfrak{f}] \cong \mathfrak{e} \otimes \mathfrak{f}$,
4) $\left[\mathfrak{g}_{0}, \mathfrak{e}\right]=\mathfrak{g}_{0} \mathfrak{e} \subset \mathfrak{e},\left[\mathfrak{g}_{0}, \mathfrak{f}\right]=\mathfrak{g}_{0} \mathfrak{f} \subset \mathfrak{f}$.

Furthermore, we consider

$$
\mathfrak{a}=\mathfrak{e}+\mathfrak{g}^{\prime}, \quad \mathfrak{b}=\mathfrak{f}+\mathfrak{g}^{\prime}
$$

Then we can easily verify that
5) $\operatorname{Ad}\left(G^{\prime}\right) \mathfrak{a}=\mathfrak{a}, \operatorname{Ad}\left(G^{\prime}\right) \mathfrak{b}=\mathfrak{b}$,
6) $\mathfrak{a} \cap \mathfrak{b}=\mathfrak{g}^{\prime}$,
7) both \mathfrak{a} and \mathfrak{b} are subalgebras of \mathfrak{g}.

By 5), \mathfrak{a} and \mathfrak{b} induce invariant differential systems E (with dimension n) and F (with dimension $m-1$) on $F_{m-1, m}=G / G^{\prime}$ respectively. By 6) and 7), the pair (E, F) has

1) E and F are transversal,
2) both E and F are completely integrable,
and, by $\mathfrak{g}_{-2}=\left[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}\right]$,
3) $T F_{m-1, m}=D+[D, D]$,
where we put $D=E \oplus F$. Moreover, the quotient bundle $T F_{m-1, m} / D$ has
4) $\operatorname{rank} T F_{m-1, m} / D=\operatorname{rank} E \cdot \operatorname{rank} F(=n(m-1))$.

Motivated by the discussion of the above example, we will give the definition of a co-Grassmannian structure in the next 4.2, 4.3.

We note the following. Fix an (positive definite) inner product on V. For $Z_{0}=\left(X_{0}, Y_{0}\right) \in F_{m-1, m}$, put

$$
Y_{0}=X_{0} \oplus \mathbb{R} \quad \text { (orthogonal sum). }
$$

We consider two orthogonal projections

$$
p_{1}: V=Y_{0} \oplus Y_{0}^{\perp} \longrightarrow Y_{0}
$$

and

$$
p_{2}: Y_{0}=X_{0} \oplus \mathbb{R} \longrightarrow X_{0}
$$

Let W be an open subset consisting of all $Z=(X, Y) \in F_{m-1, m}$ such that $p_{1}(Y)=Y_{0}, p_{2}(X)=X_{0}$. Then $Z=(X, Y) \in W$ can be regarded as the direct product of graphs of two linear mappings $T_{1}(Y): Y_{0} \rightarrow Y_{0}^{\perp}$ and $T_{2}(X): X_{0} \rightarrow \mathbb{R}$. Let $\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$ be an orthonormal basis of X_{0}. By adding x_{m}, we let $\left\{x_{1}, x_{2}, \ldots, x_{m-1}, x_{m}\right\}$ be an orthonormal basis of Y_{0}. For each $Z=(X, Y) \in W$, there exist a unique basis $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ of Y and a unique basis $\left\{v_{1}, v_{2}, \ldots, v_{m-1}\right\}$ of X such that

$$
\begin{aligned}
& p_{1_{*}}\left(u_{1}\right)=x_{1}, p_{1_{*}}\left(u_{2}\right)=x_{2}, \ldots, p_{1_{*}}\left(u_{m}\right)=x_{m} \\
& p_{2_{*}}\left(v_{1}\right)=x_{1}, p_{2_{*}}\left(v_{2}\right)=x_{2}, \ldots, p_{2_{*}}\left(v_{m-1}\right)=x_{m-1}, p_{2_{*}}\left(v_{m}\right)=x_{m}
\end{aligned}
$$

Then the equations hold:

$$
\begin{aligned}
u_{i} & =x_{i}+T_{1}(Y) x_{i} \quad(i=1, \ldots, m) \\
v_{i} & =x_{i}+T_{2}(X) x_{i} \quad(i=1, \ldots, m-1)
\end{aligned}
$$

Therefore, for the tangent space $T_{Z} F_{m-1, m}$ at $Z=(X, Y) \in F_{m-1, m}$, we have

$$
\begin{aligned}
T_{Z} F_{m-1, m} & \cong \operatorname{Hom}\left(Y_{0}, Y_{0}^{\perp}\right) \oplus \operatorname{Hom}\left(X_{0}, \mathbb{R}\right) \\
& \cong Y_{0}^{\perp} \otimes Y_{0}^{*} \oplus X_{0}^{*}
\end{aligned}
$$

Let U_{m-1}, U_{m} be the tautological vector bundles with rank $m-1, m$ over $F_{m-1, m}$ respectively. Then $U_{m-1} \subset U_{m}$. Let V_{n+1}, V_{n} be the quotient bundles of U_{m-1}, U_{m} in a trivial bundle $F_{m-1, m} \times \mathbb{R}^{n+m}$ respectively. Then $V_{n+1} \supset V_{n}$. Then we have the following:

$$
\begin{aligned}
T F_{m-1, m} & \cong V_{n} \otimes U_{m}^{*} \oplus U_{m-1}^{*} \\
& \cong V_{n} \otimes\left(U_{m-1}^{*} \oplus 1_{F_{m-1, m}}\right) \oplus U_{m-1}^{*} \\
& \cong V_{n} \oplus U_{m-1}^{*} \oplus V_{n} \otimes U_{m-1}^{*} \\
& =E \oplus F \oplus E \otimes F
\end{aligned}
$$

where we put $E=V_{n}$ and $F=U_{m-1}^{*}$.

4.2. Definition

Let R be an r-dimensional real manifold. Let E and F be two differential systems on R, i.e., subbundles with rank k and $l(k+l<r)$ of the tangent bundle $T R$ of R respectively. A co-Grassmannian structure of type (k, l) on R is defined by the pair (E, F) which satisfies the following conditions:
(1) E and F are transversal.
(2) Both E and F are completely integable.
(3) The derived system of a differential system $D=E \oplus F$ on R coincides with $T R$, i.e.,

$$
T R=D+[D, D]
$$

(4) The quotient bundle $T R / D$ has

$$
\operatorname{rank} T R / D=\operatorname{rank} E \cdot \operatorname{rank} F(=k l)
$$

Here the equation in (3) means the equality by taking the sheaf of germs of local sections at each point of R. The dimension r of R is $k+l+k l$. This is a subclass of pseudo-product structures in the sense of Tanaka ([T2]).

The pair (E, F) is called an almost co-Grassmannian structure of type (k, l) on R if the condition (2) is not necessarily satisfied.

We remark the following. Now, assume globally that the quotient bundle $T R / D$ is isomorphic to the tensor product bundle $E \otimes F$ over R, i.e.,

$$
T R \cong E \oplus F \oplus E \otimes F
$$

Then, the leaf space $R_{E}=R / E$ is of dimension $(k+1) l$ and

$$
T R_{E} \cong F \oplus E \otimes F=\left(E \oplus 1_{R_{E}}\right) \otimes F
$$

Therefore R_{E} has a Grassmannian structure of type $(k+1, l)$. The leaf space $R_{F}=R / F$ is of dimension $k(l+1)$ and

$$
T R_{F} \cong E \oplus E \otimes F=E \otimes\left(F \oplus 1_{R_{F}}\right)
$$

Therefore R_{F} has a Grassmannian structure of type $(k, l+1)$.

4.3. Normal Cartan connection

Let R be a manifold with a pair (E, F) that satisfies (1), (2), (3) in 4.2. For each point $x \in R$, with a differential system $D=E \oplus F$ we associate a graded algebra $\mathfrak{m}(x)$ called a symbol algebra of D ([T2]).

For $x \in R$, put

$$
\begin{aligned}
\mathfrak{g}_{-1}(x) & =D_{x} \\
\mathfrak{g}_{-2}(x) & =T_{x} R / D_{x}, \\
\mathfrak{m}(x) & =\mathfrak{g}_{-2}(x) \oplus \mathfrak{g}_{-1}(x) .
\end{aligned}
$$

Let ϖ be the projection of $T R$ onto $T R / D$. We define a bracket operator $[\cdot, \cdot]$ in $\mathfrak{m}(x)$ by the requirement that

$$
\begin{aligned}
& {\left[X_{x}, Y_{x}\right]=\varpi\left([X, Y]_{x}\right), \quad X, Y \in \Gamma(D)(\text { local sections of } D)} \\
& {\left[\mathfrak{g}_{-2}(x), \mathfrak{g}_{-2}(x)\right]=\left[\mathfrak{g}_{-2}(x), \mathfrak{g}_{-1}(x)\right]=0}
\end{aligned}
$$

Then we see that $[\cdot, \cdot]$ is well-defined and that $\mathfrak{m}(x)$ becomes a Lie algebra. Further $\mathfrak{m}(x)$ is a (truncated) graded Lie algebra of second kind. It is called the symbol algebra of the differential system D at the point x.

Let R be a manifold with a co-Grassmannian structure of type (k, l) equipped with a pair (E, F). The spaces E_{x} and F_{x} are subspaces of $\mathfrak{g}_{-1}(x)$ $=D_{x}$:

$$
\mathfrak{g}_{-1}(x)=E_{x} \oplus F_{x}
$$

Since E and F are completely integrable,

$$
\left[E_{x}, E_{x}\right]=\left[F_{x}, F_{x}\right]=0
$$

Moreover we have

$$
\operatorname{dim} \mathfrak{g}_{-2}(x)=\operatorname{dim} E_{x} \cdot \operatorname{dim} F_{x}(=k l)
$$

This implies that

$$
\mathfrak{g}_{-2}(x) \cong\left[E_{x}, F_{x}\right] \cong E_{x} \otimes F_{x}
$$

Let $\mathfrak{m}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ be a (truncated) graded Lie algebra of second kind such that $\mathfrak{g}_{p}=0$ for all $p \geq 0$. Let \mathfrak{e} and \mathfrak{f} be subspaces of \mathfrak{g}_{-1} and $\operatorname{dim} \mathfrak{e}=k, \operatorname{dim} \mathfrak{f}=l$. A triplet $\mathfrak{L}=\{\mathfrak{m} ; \mathfrak{e}, \mathfrak{f}\}$ is called a graded Lie algebra of type (k, l) co-Grassmann or briefly a type (k, l) CGR if it satisfies the following conditions:
(1) $\mathfrak{g}_{-1}=\mathfrak{e} \oplus \mathfrak{f}$,
(2) $[\mathfrak{e}, \mathfrak{e}]=[\mathfrak{f}, \mathfrak{f}]=0$,
(3) $\mathfrak{g}_{-2}=\left[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}\right]$,
(4) $\operatorname{dim} \mathfrak{g}_{-2}=\operatorname{dim} \mathfrak{e} \cdot \operatorname{dim} \mathfrak{f}(=k l)$.

There exist bases $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right\}$ of \mathfrak{e} and $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{l}\right\}$ of \mathfrak{f} such that $\left\{\left[\mathbf{e}_{i}, \mathbf{f}_{j}\right]\right\}_{1 \leq i \leq k, 1 \leq j \leq l}$ of \mathfrak{g}_{-2}. By corresponding $\left[\mathbf{e}_{i}, \mathbf{f}_{j}\right]$ to $\mathbf{e}_{i} \otimes \mathbf{f}_{j}$, from (2), (3), (4), it follows that $\mathfrak{g}_{-2}=[\mathfrak{e}, \mathfrak{f}] \cong \mathfrak{e} \otimes \mathfrak{f}$. A graded Lie algebra of type (k, l) CGR is uniquely determined up to isomorphisms by the conditions above. A triplet \mathfrak{L} is nothing but $\mathfrak{m}, \mathfrak{e}, \mathfrak{f}$ defined in 4.1 for $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$.

Let $\mathfrak{g}_{0}(\mathfrak{m})$ be the gradation preserving derivation algebra $\operatorname{Der}(\mathfrak{m})$ of \mathfrak{m} and $\operatorname{Der}(\mathfrak{L})$ of \mathfrak{L} be as follows:

$$
\operatorname{Der}(\mathfrak{L})=\left\{X \in \mathfrak{g}_{0}(\mathfrak{m}) \mid X \mathfrak{e} \subset \mathfrak{e}, X \mathfrak{f} \subset \mathfrak{f}\right\}
$$

We denote $\operatorname{Der}(\mathfrak{L})$ by \mathfrak{g}_{0}. The prolongation $\mathfrak{g}=\mathfrak{g}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ of $\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ is called the prolongation of type CGR \mathfrak{L}. Then \mathfrak{g} is finite dimensional ([T2]). In the case $k \neq 1, l \neq 1$, since we can easily see that

$$
\mathfrak{g}_{0}=\mathfrak{g}_{0}(\mathfrak{m})
$$

the prolongation \mathfrak{g} of type CGR \mathfrak{L} becomes the prolongation $\mathfrak{g}(\mathfrak{m})$ of \mathfrak{m}. According to Yamaguchi ([Y, Theorem 5.3], cf. [Ka]), if $\operatorname{dime}=n, \operatorname{dim} \mathfrak{f}=$ $m-1$, it follows that $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$. The group $G_{0}=\operatorname{Aut}(\mathfrak{L})$ is the Lie group of \mathfrak{g}_{0}. And if we let G and G^{\prime} be the Lie groups of \mathfrak{g} and $\mathfrak{g}^{\prime}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ respectively, we have

$$
F_{m-1, m} \cong G / G^{\prime}
$$

Let R be a manifold with a co-Grassmannian structure of type (k, l) equipped with a pair (E, F). Then, at each point $x \in R$, the symbol algebra $\mathfrak{m}(x)$ of a differential system $D=E \oplus F$ is isomorphic to a graded Lie algebra $\mathfrak{L}=\{\mathfrak{m} ; \mathfrak{e}, \mathfrak{f}\}$ of type (k, l) CGR. Conversely, let R be a manifold with a differential system D of $\mathfrak{L}=\{\mathfrak{m} ; \mathfrak{e}, \mathfrak{f}\}$ of type (k, l) CGR. Then a co-Grassmannian structure of type (k, l) equipped with a pair (E, F) on R is defined. At each point $x \in R$, the symbol algebra $\mathfrak{m}(x)$ of $D=E \oplus F$ is isomorphic to \mathfrak{L}.

According to Tanaka ([T1], [T2]), we have the following.
Theorem 4.1. Let R be a manifold with a co-Grassmannian structure of type (k, l). Then there exist a principal bundle Q with structure group G^{\prime} over R and a unique normal Cartan connection ω of type G / G^{\prime} on Q.

4.4. Nonzero generators in H^{2}

We consider the simple graded Lie algebra

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \\
\mathfrak{m} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \\
\mathfrak{g}_{-1} & =\mathfrak{e} \oplus \mathfrak{f}
\end{aligned}
$$

of second kind of type (k, l) CGR for the Lie algebra $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ of $G=S L(m+n, \mathbb{R})(m+n=k+l+1)$ associated with a co-Grassmannian structure of type (k, l). We write it down explicitly:

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R}) \\
& =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \\
& =\left\{\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
0 & 0 & 0 \\
A & 0 & O_{k}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
\mathbf{f} & 0 & 0 \\
0 & \mathbf{e} & O_{k}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
B & 0 & 0 \\
0 & d & 0 \\
0 & 0 & C
\end{array}\right)\right\} \\
& \oplus\left\{\left(\begin{array}{ccc}
O_{l}{ }^{t} \mathbf{h} & 0 \\
0 & 0 & { }^{t} \mathbf{g} \\
0 & 0 & O_{k}
\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ccc}
O_{l} & 0 & D \\
0 & 0 & 0 \\
0 & 0 & O_{k}
\end{array}\right)\right\}, \\
& (A \in \operatorname{Mat}(k \times l, \mathbb{R}), B \in \operatorname{Mat}(l, \mathbb{R}), C \in \operatorname{Mat}(k, \mathbb{R}) \text {, } \\
& D \in \operatorname{Mat}(l \times k, \mathbb{R}), d \in \mathbb{R}, \mathbf{e}, \mathbf{g} \in \mathbb{R}^{k}, \mathbf{f}, \mathbf{h} \in \mathbb{R}^{l} \text {, } \\
& \text { trace } B+d+\operatorname{trace} C=0) \text {, } \\
& \mathfrak{e}=\left\{\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
0 & 0 & 0 \\
0 & \mathbf{e} & O_{k}
\end{array}\right)\right\}, \quad \mathfrak{f}=\left\{\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
\mathbf{f} & 0 & 0 \\
0 & 0 & O_{k}
\end{array}\right)\right\}, \\
& {[\mathfrak{e}, \mathfrak{e}]=[\mathfrak{f}, \mathfrak{f}]=0, \quad \mathfrak{g}_{-2}=[\mathfrak{e}, \mathfrak{f}] \cong \mathfrak{e} \otimes \mathfrak{f},} \\
& {\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} .}
\end{aligned}
$$

We put their bases and coordinates as follows:

$$
\begin{aligned}
\mathbf{e}_{i j}=(& \left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
0 & 0 & 0 \\
E_{i j} & 0 & O_{k}
\end{array}\right), \quad \mathbf{e}_{i}=\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
0 & 0 & 0 \\
0 & e_{i} & O_{k}
\end{array}\right), \quad \mathbf{f}_{i}=\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
f_{i} & 0 & 0 \\
0 & 0 & O_{k}
\end{array}\right) \\
& \left(E_{i j} \in \operatorname{Mat}(k \times l, \mathbb{R}): \text { matrix unit, i.e., }(i, j) \text {-component }=1,\right. \\
& \text { otherwise }=0, \\
& \left.e_{i} \in \mathbb{R}^{k}, f_{i} \in \mathbb{R}^{l}: i \text {-component }=1, \text { otherwise }=0\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{g}_{i j}= & \left(\begin{array}{ccc}
E_{i j} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & O_{k}
\end{array}\right), \quad \mathbf{h}_{i j}=\left(\begin{array}{ccc}
O_{l} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & E_{i j}
\end{array}\right) \\
& \left(E_{i j} \in \operatorname{Mat}(l, \mathbb{R}), E_{i j} \in \operatorname{Mat}(k, \mathbb{R}): \text { matrix units respectively }\right)
\end{aligned}
$$

and

$$
\left(\begin{array}{ccc}
g_{i j} & { }^{t} h_{j} & d_{i j} \\
y_{j} & d & { }^{t} g_{i} \\
x_{i j} & x_{i} & h_{i j}
\end{array}\right)=\sum x_{i j} \mathbf{e}_{i j}+\sum x_{i} \mathbf{e}_{i}+\sum y_{j} \mathbf{f}_{j}+\sum g_{i j} \mathbf{g}_{i j}+\sum h_{i j} \mathbf{h}_{i j}+\cdots
$$

As in 3.3 , we calculate $H^{2} \cong H^{2}(\mathfrak{m}, \mathfrak{g})$. We have

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \\
\mathfrak{g}_{-1} & =\mathfrak{g}_{-1}^{R} \oplus \mathfrak{g}_{-1}^{L}
\end{aligned}
$$

where

$$
\mathfrak{g}_{-1}^{R}=\mathfrak{f}, \quad \mathfrak{g}_{-1}^{L}=\mathfrak{e}
$$

Further we have

$$
\Lambda^{2} \mathfrak{m}^{*}=\Lambda_{-4}^{2} \oplus \Lambda_{-3}^{2} \oplus \Lambda_{-2}^{2}
$$

where

$$
\begin{aligned}
\Lambda_{-4}^{2} & =\Lambda^{2} \mathfrak{g}_{-2}^{*} \\
\Lambda_{-3}^{2} & =\mathfrak{g}_{-2}^{*} \wedge \mathfrak{g}_{-1}^{L *} \oplus \mathfrak{g}_{-2}^{*} \wedge \mathfrak{g}_{-1}^{R *} \\
\Lambda_{-2}^{2} & =\Lambda^{2} \mathfrak{g}_{-1}^{L *} \oplus \mathfrak{g}_{-1}^{L *} \wedge \mathfrak{g}_{-1}^{R *} \oplus \Lambda^{2} \mathfrak{g}_{-1}^{R *}
\end{aligned}
$$

We remark that

$$
C^{2}=\bigoplus_{p=-1}^{5} C^{p, 2}
$$

where

$$
\begin{array}{rlr}
C^{-1,2} & = & \mathfrak{g}_{-2} \otimes \Lambda_{-2}^{2} \\
C^{0,2} & = & \mathfrak{g}_{-2} \otimes \Lambda_{-3}^{2} \oplus \mathfrak{g}_{-1} \otimes \Lambda_{-2}^{2} \\
C^{1,2} & =\mathfrak{g}_{-2} \otimes \Lambda_{-4}^{2} \oplus \mathfrak{g}_{-1} \otimes \Lambda_{-3}^{2} \oplus & \mathfrak{g}_{0} \otimes \Lambda_{-2}^{2} \\
C^{2,2} & =\mathfrak{g}_{-1} \otimes \Lambda_{-4}^{2} \oplus & \mathfrak{g}_{0} \otimes \Lambda_{-3}^{2} \oplus \\
C_{1} \otimes \mathfrak{g}_{1} \otimes \Lambda_{-2}^{2} \\
C^{3,2} & =\mathfrak{g}_{0} \otimes \Lambda_{-4}^{2} \oplus & \mathfrak{g}_{1} \otimes \Lambda_{-3}^{2} \oplus \\
C^{4,2} & =\mathfrak{g}_{2} \otimes \Lambda_{-2}^{2} \\
C^{5,2} & =\Lambda_{-4}^{2} \oplus \mathfrak{g}_{2} \otimes \Lambda_{-3}^{2} & \\
C_{-4}^{2}
\end{array}
$$

Then we obtain the following.

Proposition 4.1. The components of nonzero generators as \mathfrak{g}_{0}-modules in H^{2} are represented by

1. if $l \geq 3$,
(i) $\mathbf{e}_{k 1} \otimes\left(\mathbf{f}_{l}^{*} \wedge \mathbf{e}_{1 l}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$,
(ii) $\mathbf{e}_{k 1} \otimes\left(\mathbf{e}_{1 l}^{*} \wedge \mathbf{e}_{1}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$,
2. if $l=2$,
(a) for $k+l+1 \geq 6$, i.e., $k \geq 3$,
(i) $\mathbf{e}_{k} \otimes\left(\mathbf{f}_{1}^{*} \wedge \mathbf{f}_{2}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}$,
(ii) $\mathbf{e}_{k 1} \otimes\left(\mathbf{e}_{1 l}^{*} \wedge \mathbf{f}_{l}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$,
(iii) $\mathbf{e}_{k 1} \otimes\left(\mathbf{e}_{1 l}^{*} \wedge \mathbf{e}_{1}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$,
(b) for $k+l+1=5$, i.e., $k=2$,
(i) $\mathbf{e}_{2} \otimes\left(\mathbf{f}_{1}^{*} \wedge \mathbf{f}_{2}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}$,
(ii) $\mathbf{e}_{21} \otimes\left(\mathbf{e}_{12}^{*} \wedge \mathbf{f}_{2}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$,
(iii) $\mathbf{e}_{21} \otimes\left(\mathbf{e}_{12}^{*} \wedge \mathbf{e}_{1}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$,
(iv) $\mathbf{f}_{1} \otimes\left(\mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1}^{R} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}$,
3. if $l=1$,
(a) for $k+l+1 \geq 5$, i.e., $k \geq 3$,
(i) $\mathbf{e}_{k} \otimes\left(\mathbf{e}_{1(1)}^{*} \wedge \mathbf{f}^{*}\right) \in H^{1,2} \subset \mathfrak{g}_{-1}^{L} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$,
(ii) $\mathbf{h}_{k 1} \otimes\left(\mathbf{e}_{1(1)}^{*} \wedge \mathbf{e}_{1}^{*}\right) \in H^{2,2} \subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$, therefore, $K^{0}=0, K^{1}=H K^{1}$,
(b) for $k+l+1=4$, i.e., $k=2$,
(i) $\mathbf{f} \otimes\left(\mathbf{e}_{1}^{*} \wedge \mathbf{e}_{2}^{*}\right) \in H^{0,2} \subset \mathfrak{g}_{-1}^{R} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}$,
(ii) $\mathbf{e}_{2} \otimes\left(\mathbf{e}_{1(1)}^{*} \wedge \mathbf{f}^{*}\right) \in H^{1,2} \subset \mathfrak{g}_{-1}^{L} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$,
(iii) $\mathbf{h}_{21} \otimes\left(\mathbf{e}_{1(1)}^{*} \wedge \mathbf{e}_{1}^{*}\right) \in H^{2,2} \subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$.

§5. Null n-plane bundle

5.1. Definition

In the vector space $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$, a vector u is called null (simple, or decomposable) if there exist a vector v belonging to \mathbb{R}^{n} and a vector w belonging to \mathbb{R}^{m} such that $u=v \otimes w$.

Let $\left\{e_{i}\right\}(1 \leq i \leq n)$ be a basis of \mathbb{R}^{n} and $\left\{f_{j}\right\}(1 \leq j \leq m)$ a basis of \mathbb{R}^{m}. For $v=\sum_{i=1}^{n} \alpha_{i} e_{i}, w=\sum_{j=1}^{m} \beta_{j} f_{j}$,

$$
\begin{aligned}
u & =v \otimes w=\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right) \otimes\left(\sum_{j=1}^{m} \beta_{j} f_{j}\right) \\
& =\sum_{i, j} \alpha_{i} \beta_{j} e_{i} \otimes f_{j}=\left(\alpha_{i} \beta_{j}\right)_{1 \leq i \leq n, 1 \leq j \leq m}
\end{aligned}
$$

In particular, each vector $e_{i} \otimes f_{j}$ that makes a basis of $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ is null.

A k-dimensional subspace of $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ is called a null k-plane (or an isotropic k-plane) if each vector in the k-dimensional subspace is a null vector. Note that $k \leq \max (n, m)$ holds. We consider the set of all n-planes with forms $\left\{\mathbb{R}^{n} \otimes w \mid w \in \mathbb{R}^{m}\right\}$. It has a $P^{m-1}(\mathbb{R})$ family. Each the null n-plane is called a null n-plane. And moreover we consider the set of all null m-planes with forms $\left\{v \otimes \mathbb{R}^{m} \mid v \in \mathbb{R}^{n}\right\}$. It has a $P^{n-1}(\mathbb{R})$ family. Each the null m-plane is called a null m-plane. We remark that the intersection of each null n-plane and each null m-plane is 1 -dimensional subspace.

Let M be a manifold with a Grassmannian structure of type (n, m). Considering a set of all the null n-planes in the tangent space at each point of M, we have a fibre bundle F_{L} with fibre $P^{m-1}(\mathbb{R})$ over M, called a null n-plane bundle:

5.2. Tautological distribution

An n-dimensional distribution D on the null n-plane bundle F_{L} over M is called an n-dimensional tautological distribution of null n-planes if it satisfies the following: for the n-dimensional subspace $D_{\Pi} \subset T_{\Pi} F_{L}$,

$$
\varpi_{L_{*}}\left(D_{\Pi}\right)=\Pi \subset T_{\varpi_{L}(\Pi)} M
$$

Here note that $\Pi \in F_{L}$ is a null n-plane in $T_{\varpi_{L}(\Pi)} M$.
From now, we will define an n-dimensional tautological distribution D of null n-planes on F_{L}. When we consider the horizontal lift of a null n plane Π in M to the null n-plane bundle F_{L} by a connection, we note that
F_{L}, which is the bundle associated with the linear frame bundle P with structure group $G R(n, m)$ on M, does not have a canonical connection. But F_{L} is the bundle associated with the frame bundle Q of second order with structure group G^{\prime} on M as well. We observe from 2.3 that there exists a unique Cartan connection on Q. Considering the horizontal lift of Π in M to Q and doing the reduction to F_{L}, we can define an n-dimensional tautological distribution D_{L} of null n-planes on F_{L}. We will describe the argument fully in the following.

Let M be a manifold with a Grassmannian structure of type (n, m). We identify $T M$ with $V \otimes W$ under σ. For $x \in M$,

$$
T_{x} M=V_{x} \otimes W_{x}
$$

where V_{x} is an n-dimensional vector space and W_{x} an m-dimensional vector space. Take a basis $\left\{e_{i}\right\}(1 \leq i \leq n)$ of V_{x} and a basis $\left\{f_{j}\right\}(1 \leq j \leq m)$ of W_{x}. A set $\left\{e_{i} \otimes f_{j}\right\}(1 \leq i \leq n, 1 \leq j \leq m)$ is a null basis of $V_{x} \otimes W_{x}$. Therefore $\lambda_{x}=\left(e_{1} \otimes f_{1}, e_{2} \otimes f_{1}, \ldots, e_{n} \otimes f_{1}, \ldots, e_{1} \otimes f_{m}, e_{2} \otimes f_{m}, \ldots, e_{n} \otimes f_{m}\right)$ belongs to P.

Put

$$
\Pi_{L_{x}}=\operatorname{span}\left(e_{1} \otimes f_{m}, e_{2} \otimes f_{m}, \ldots, e_{n} \otimes f_{m}\right)
$$

The space $\Pi_{L_{x}}$ is a null n-plane in $T_{x} M$. Namely, $\Pi_{L_{x}}$ belongs to F_{L}. Then a mapping $p_{L}: P \rightarrow F_{L}$ is defined by

$$
p_{L}: \lambda_{x} \longmapsto \Pi_{L_{x}} .
$$

A subgroup of $G_{0}=G R(n, m)$ which leaves the null n-plane $\Pi_{L_{x}}$ invariant is

$$
H_{0 L}=S(\{B\} \times G L(n, \mathbb{R}))
$$

where

$$
B=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 m-1} & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m-1} & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m-11} & a_{m-12} & \cdots & a_{m-1 m-1} & a_{m-1 m} \\
0 & 0 & \cdots & 0 & a_{m m}
\end{array}\right) \in G L(m, \mathbb{R})
$$

Consequently we define a principal bundle $P\left(F_{L}, H_{0 L}, p_{L}\right)$. The null n plane bundle F_{L} over M is the fibre bundle with fibre $G_{0} / H_{0 L} \cong P^{m-1}(\mathbb{R})$ associated with P :

$$
F_{L}=P \times_{G_{0}} G_{0} / H_{0 L}=P / H_{0 L}
$$

For a linear frame bundle P with structure group $G_{0}=G R(n, m)$ over M, let us consider the frame bundle Q of second order with structure group G^{\prime}. Let π_{P} be a canonical projection $Q \rightarrow P$. Then the null n-plane bundle F_{L} over M is the fibre bundle with fibre $G^{\prime} / H_{L}^{\prime} \cong P^{m-1}(\mathbb{R})$ associated with Q :

$$
F_{L}=Q \times_{G^{\prime}} G^{\prime} / H_{L}^{\prime}=Q / H_{L}^{\prime}
$$

Consequently a mapping $\pi_{L}: Q \rightarrow F_{L}$ being defined, we define a principal bundle $Q\left(F_{L}, H_{L}^{\prime}, \pi_{L}\right)$.

Summarizing them, we have the following diagram:

From 2.3, there exists a unique $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$-valued Cartan connection ω of type G / G^{\prime} on Q. For $v \in Q$, the linear isomorphism

$$
\omega: T_{v} Q \longrightarrow \mathfrak{g}
$$

is defined. The Lie algebra $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ of $G=S L(m+n, \mathbb{R})$ is a graded Lie algebra of first kind:

$$
\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

We identify $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ with \mathfrak{g}_{-1} as follows:

$$
{ }^{t}(0, \ldots, 0, \stackrel{i}{1}, 0, \ldots, 0) \otimes(0, \ldots, 0, \stackrel{j}{1}, 0, \ldots, 0) \longleftrightarrow \mathbf{e}_{i j}=\left(\begin{array}{cc}
O_{m} & 0 \\
E_{i j} & O_{n}
\end{array}\right)
$$

where $E_{i j} \in \operatorname{Mat}(n \times m, \mathbb{R})$ is a matrix unit, i.e., (i, j)-component is 1 and otherwise 0.

A subspace

$$
\mathfrak{n}_{L}=\operatorname{span}\left(\mathbf{e}_{1 m}, \mathbf{e}_{2 m}, \ldots, \mathbf{e}_{n m}\right)
$$

spanned by $\mathbf{e}_{1 m}, \mathbf{e}_{2 m}, \ldots, \mathbf{e}_{n m}$ is a null n-plane. The Lie algebra \mathfrak{h}_{L} of H_{L}^{\prime} is a subalgebra of $\mathfrak{g}^{\prime}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ and has the following form:

$$
\mathfrak{h}_{L}=\left\{\left(\begin{array}{cccccc}
a_{11} & a_{12} & \cdots & a_{1 m-1} & a_{1 m} & \\
a_{21} & a_{22} & \cdots & a_{2 m-1} & a_{2 m} & \\
\vdots & \vdots & \ddots & \vdots & \vdots & D \\
a_{m-11} & a_{m-12} & \cdots & a_{m-1 m-1} & a_{m-1 m} & \\
0 & 0 & \cdots & 0 & a_{m m} & \\
& & O & & & C
\end{array}\right\} \subset \mathfrak{g}^{\prime}\right.
$$

where $a_{i j} \in \mathbb{R}, C \in \operatorname{Mat}(n, \mathbb{R}), D \in \operatorname{Mat}(m \times n, \mathbb{R})$, and $\sum_{i=1}^{m} a_{i i}+\operatorname{trace} C=$ 0.

For the vector subspace $\mathfrak{n}_{L}+\mathfrak{h}_{L}$ of \mathfrak{g}, we have the following:
Lemma 5.1. The space $\mathfrak{n}_{L}+\mathfrak{h}_{L}$ is invariant under the adjoint actions of H_{L}^{\prime} and \mathfrak{h}_{L}.

Remark that the space \mathfrak{n}_{L} is invariant under the adjoint action of $H_{0 L}$.
Let $v \in Q$. Let $x=\pi_{M}(v) \in M$. Let $\lambda_{x}=\pi_{P}(v)$ and $\Pi_{L_{x}}=\pi_{L}(v)$. Then $p_{L}\left(\lambda_{x}\right)=\Pi_{L_{x}}$ holds. An element $\lambda_{x}=\left(e_{1} \otimes f_{1}, \ldots, e_{n} \otimes f_{1}, \ldots, e_{1} \otimes\right.$ $\left.f_{m}, \ldots, e_{n} \otimes f_{m}\right) \in P$ is regarded as an isomorphism $\lambda_{x}: \mathbb{R}^{m n}\left(=\mathbb{R}^{n} \otimes \mathbb{R}^{m}\right)=$ $\mathfrak{g}_{-1} \rightarrow T_{x} M:$

$$
\mathbf{e}_{i j} \longmapsto e_{i} \otimes f_{j} .
$$

Then

$$
\mathfrak{n}_{L} \longmapsto \Pi_{L_{x}}
$$

holds.
By using the normal Cartan connection ω, vectors $\omega^{-1}\left(\mathbf{e}_{i j}\right) \in T_{v} Q$ are the horizontal lift of vectors $e_{i} \otimes f_{j} \in T_{x} M$.

Next, putting

$$
\mathcal{D}_{L_{v}}=\omega^{-1}\left(\mathfrak{n}_{L}+\mathfrak{h}_{L}\right),
$$

we can define a distribution \mathcal{D}_{L} on Q. From the lemma above, we have the following:

Lemma 5.2. The distribution \mathcal{D}_{L} on Q is invariant under the right action of H_{L}^{\prime}.

Therefore an n-dimensional distribution D_{L} is defined on the null n plane bundle $F_{L}=Q / H_{L}^{\prime}$:

$$
D_{L}=\mathcal{D}_{L} \bmod H_{L}^{\prime}
$$

This is a tautological distribution of null n-planes.
Investigating the complete integrability of the distribution D_{L} on F_{L} is equivalent to investigating the complete integrability of the distribution \mathcal{D}_{L} on Q modulo H_{L}^{\prime}.

Lemma 5.3. We have

$$
\begin{aligned}
& {\left[D_{L}, D_{L}\right] \subset D_{L} \text { on } F_{L}} \\
& \quad \Longleftrightarrow\left[\mathcal{D}_{L} \bmod H_{L}^{\prime}, \mathcal{D}_{L} \bmod H_{L}^{\prime}\right] \subset \mathcal{D}_{L} \bmod H_{L}^{\prime} \text { on } Q
\end{aligned}
$$

For $v \in Q$, elements in $T_{v} Q$

$$
\tilde{\mathbf{e}}_{i m \mid v}=\omega^{-1}\left(\mathbf{e}_{i m}\right), \quad 1 \leq i \leq n
$$

are defined. Put

$$
\tilde{\mathfrak{n}}_{L}=\omega^{-1}\left(\mathfrak{n}_{L}\right) .
$$

We will investigate the condition modulo H_{L}^{\prime} satisfying

$$
\left[\tilde{\mathbf{e}}_{i m}, \tilde{\mathbf{e}}_{j m}\right] \in \tilde{\mathfrak{n}}_{L}
$$

for vector fields $\tilde{\mathbf{e}}_{i m}(1 \leq i \leq n)$ on Q.
Before investigating the complete integrability of the distribution, we prepare several lemmas.

Corresponding to the decomposition

$$
\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

the normal Cartan connection form ω and the curvature form Ω are decomposed respectively as follows:

$$
\begin{aligned}
& \omega=\omega_{-1} \oplus \omega_{0} \oplus \omega_{1} \\
& \Omega=\Omega_{-1} \oplus \Omega_{0} \oplus \Omega_{1}
\end{aligned}
$$

Put

$$
\Omega^{\prime}=\Omega_{0} \oplus \Omega_{1}
$$

Recall that the curvature form Ω is defined as follows:

$$
\Omega=d \omega+\frac{1}{2}[\omega, \omega] .
$$

Denote by $h X$ and $v X$ the components of the decomposition of $\omega^{-1}\left(\mathfrak{g}_{-1}\right)$ and $\omega^{-1}\left(\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}\right)$ respectively (cf. a horizontal component and a vertical component). Denote by A^{*} the fundamental vector field on Q corresponding to $A \in \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$.

First we remark the following lemma. Put $\mathbf{e}_{i}=\mathbf{e}_{i m}(1 \leq i \leq n)$. For an element $\tilde{\mathbf{e}}_{i \mid v a}(1 \leq i \leq n)$ in $T_{v a} Q$ at $R_{a} v=v a\left(a \in G^{\prime}\right)$, we have the relation to an element in $T_{v} Q$:

Lemma 5.4.

$$
\tilde{\mathbf{e}}_{i \mid v a}=R_{a_{*}} \omega_{\mid v}^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right) \quad(1 \leq i \leq n)
$$

Proof. At $v \in Q$, take \tilde{X} such that $\omega(\tilde{X})=\operatorname{Ad}(a) \mathbf{e}_{i}: \tilde{X}=$ $\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right)$. At $v a \in Q$,

$$
\omega\left(R_{a_{*}} \tilde{X}\right)=R_{a}^{*} \omega(\tilde{X})=\operatorname{Ad}\left(a^{-1}\right) \cdot \omega(\tilde{X})=\operatorname{Ad}\left(a^{-1}\right) \cdot \operatorname{Ad}(a) \mathbf{e}_{i}=\mathbf{e}_{i}
$$

Therefore

$$
\tilde{\mathbf{e}}_{i \mid v a}=\omega^{-1}\left(\mathbf{e}_{i}\right)=R_{a_{*}} \tilde{X}=R_{a_{*}} \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right)
$$

Next we have the relations between $v X, h X$ and $\Omega^{\prime}, \Omega_{-1}$ respectively.
Lemma 5.5. We have
(i) $v\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]=-2 \Omega^{\prime}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)^{*} \quad(1 \leq i \leq n)$,
(ii) $v\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]_{\mid v a}=-2\left(\operatorname{Ad}\left(a^{-1}\right)\right) \cdot \Omega^{\prime}\left(\omega_{\mid v}^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega_{\mid v}^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right)^{*}$.

Proof. (i): The following holds:

$$
\begin{aligned}
\Omega_{0}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right) & =d \omega_{0}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)+\frac{1}{2}\left[\omega_{-1}\left(\tilde{\mathbf{e}}_{i}\right), \omega_{1}\left(\tilde{\mathbf{e}}_{j}\right)\right]+\frac{1}{2}\left[\omega_{0}\left(\tilde{\mathbf{e}}_{i}\right), \omega_{0}\left(\tilde{\mathbf{e}}_{j}\right)\right] \\
& =d \omega_{0}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)=-\frac{1}{2} \omega_{0}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right) .
\end{aligned}
$$

Thus

$$
\omega_{0}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right)=-2 \Omega_{0}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)
$$

Similarly, from $\Omega_{1}=d \omega_{1}+\left[\omega_{1}, \omega_{0}\right]$,

$$
\omega_{1}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right)=-2 \Omega_{1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)
$$

Hence

$$
\begin{aligned}
v\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right] & =\omega^{-1}\left(\omega_{0}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right)+\omega_{1}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right)\right) \\
& =\omega^{-1}\left(-2 \Omega_{0}\left(\tilde{\mathbf{e}}_{i}, \tilde{e}_{j}\right)-2 \Omega_{1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)\right) \\
& =-2 \omega^{-1} \Omega^{\prime}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right) \\
& =-2 \Omega^{\prime}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)^{*} .
\end{aligned}
$$

(ii): It follows that

$$
\begin{aligned}
v\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]_{\mid v a} & =v\left[R_{a_{*}} \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), R_{a_{*}} \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right] \\
& =v R_{a_{*}}\left[\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right] \\
& =R_{a_{*}} v\left[\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right] \\
& =-2 R_{a_{*}} \Omega^{\prime}\left(\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right)^{*} \\
& =-2\left(\operatorname{Ad}\left(a^{-1}\right) \cdot \Omega^{\prime}\left(\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right)^{*},\right.
\end{aligned}
$$

where the third equality is obtained from $v R_{a_{*}}=R_{a_{*}} v$ and the fifth equality from $\left(R_{a_{*}} A_{v}^{*}\right)_{\mid v a}=\left(A d\left(a^{-1}\right) A\right)_{\mid v a}^{*}$.

Lemma 5.6. We have
(i) $h\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]=-2 \omega^{-1}\left(\Omega_{-1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)\right) \quad(1 \leq i \leq n)$,
(ii) $h\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]_{\mid v a}=-2 \omega^{-1}\left(a^{-1} \Omega_{-1} \omega_{\mid v}^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}, \omega_{\mid v}^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right)\right)$.

Proof. (i): From $\Omega_{-1}=d \omega_{-1}+\left[\omega_{-1}, \omega_{0}\right]$,

$$
\begin{aligned}
\Omega_{-1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right) & =d \omega_{-1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)+\left[\omega_{-1}\left(\tilde{\mathbf{e}}_{i}\right), \omega_{0}\left(\tilde{\mathbf{e}}_{j}\right)\right] \\
& =d \omega_{-1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right) \\
& =\frac{1}{2}\left(\tilde{\mathbf{e}}_{i} \cdot \omega_{-1}\left(\tilde{\mathbf{e}}_{j}\right)-\tilde{\mathbf{e}}_{j} \cdot \omega_{-1}\left(\tilde{\mathbf{e}}_{i}\right)-\omega_{-1}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right)\right) \\
& =-\frac{1}{2} \omega_{-1}\left(\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]=-\frac{1}{2} h\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]\right.
\end{aligned}
$$

Here note that $\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}$ are the basic vector fields of $\mathbf{e}_{i}, \mathbf{e}_{j}$, that is to say, $e_{i} \otimes f_{m}, e_{j} \otimes f_{m}$. Hence

$$
h\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]=-2 \Omega_{-1}\left(\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right)
$$

(ii): It follows that

$$
\begin{aligned}
h\left[\tilde{\mathbf{e}}_{i}, \tilde{\mathbf{e}}_{j}\right]_{\mid v a} & =h\left[R_{a_{*}} \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), R_{a_{*}} \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right] \\
& =h R_{a_{*}}\left[\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right] \\
& =R_{a_{*}} h\left[\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right] \\
& =-2 R_{a_{*}} \omega^{-1}\left(\Omega_{-1}\left(\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right)\right) \\
& =-2\left(\omega^{-1}\left(a^{-1} \cdot \Omega_{-1}\left(\omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{i}\right), \omega^{-1}\left(\operatorname{Ad}(a) \mathbf{e}_{j}\right)\right)\right),\right.
\end{aligned}
$$

where in the last term \mathfrak{g}_{-1} and $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ are identified.

5.3. Complete integrability

Let M be a manifold with a Grassmannian structure of type (n, m). An n-dimensional tautological distribution D_{L} of null n-planes on the null n-plane bundle F_{L} over M and the distribution \mathcal{D}_{L} on a frame bundle Q of second order with structure group G^{\prime} on M are defined.

Now, assume that the distribution D_{L} on F_{L}, namely, the distribution \mathcal{D}_{L} on Q is completely integrable.

Let $x \in M$. Let $\left\{e_{1} \otimes f_{1}, \ldots, e_{n} \otimes f_{1}, \ldots, e_{1} \otimes f_{m}, \ldots, e_{n} \otimes f_{m}\right\}$ be a local basis field about x. Then $\lambda_{x}=\left(e_{1} \otimes f_{1}, \ldots, e_{n} \otimes f_{1}, \ldots, e_{1} \otimes f_{m}, \ldots, e_{n} \otimes f_{m}\right)_{x}$ belongs to $\pi^{-1}(x) \subset P$. Let $v \in \pi_{M}^{-1}(x) \subset Q$ such that $\pi_{P}(v)=\lambda_{x}$. And let $\tilde{\mathbf{e}}_{i m \mid v}, \tilde{\mathbf{e}}_{j m \mid v} \in \mathcal{D}_{L v} \subset T_{v} Q$. Here $\tilde{\mathbf{e}}_{i m}=\omega^{-1}\left(\mathbf{e}_{i m}\right)$ and $\pi_{M_{* \mid v}}\left(\tilde{\mathbf{e}}_{i m}\right)=e_{i} \otimes f_{m}$ $(i=1, \ldots, n)$. We describe conditions such that $\left[\tilde{\mathbf{e}}_{i m}, \tilde{\mathbf{e}}_{j m}\right]_{\mid v} \in \mathcal{D}_{L v}$.

By $\Omega_{a b}^{R}(1 \leq a, b \leq m)$ and $\Omega_{i j}^{L}(1 \leq i, j \leq n)$ we denote (a, b)-component of \mathfrak{g}_{0}^{R} and (i, j)-component of \mathfrak{g}_{0}^{L} with respect to the decomposition $\Omega=\Omega_{-1} \oplus \Omega_{0} \oplus \Omega_{1}=\Omega_{-1} \oplus \Omega^{\prime}$ of the curvature form Ω of the normal Cartan connection ω respectively, and by $\Omega_{-1}^{\alpha, \beta}(1 \leq \alpha \leq n, 1 \leq \beta \leq m)$ (α, β)-component of \mathfrak{g}_{-1}.

From lemmas in 5.2 , we have the following.
Proposition 5.1. We have

$$
\begin{aligned}
& {\left[\tilde{\mathbf{e}}_{i m}, \tilde{\mathbf{e}}_{j m}\right]_{\mid v} \in \mathcal{D}_{L v}} \\
& \quad \Longleftrightarrow \begin{cases}\text { (i) } \Omega_{m b}^{R}\left(\tilde{\mathbf{e}}_{i m}, \tilde{\mathbf{e}}_{j m}\right)=0, & (1 \leq b \leq m-1) \\
(\text { ii }) \Omega_{-1}^{\alpha \beta}\left(\tilde{\mathbf{e}}_{i m}, \tilde{\mathbf{e}}_{j m}\right)=0, & (1 \leq \alpha \leq n, 1 \leq \beta \leq m-1)\end{cases}
\end{aligned}
$$

In the case $n, m \geq 3$:
In particular, we have $\Omega_{-1}^{n 1}\left(\tilde{\mathbf{e}}_{1 m}, \tilde{\mathbf{e}}_{2 m}\right)=0$, namely, $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{1 m}^{*} \wedge \mathbf{e}_{2 m}^{*}\right) \in$ $\mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$-component of K^{0} is 0 . From Proposition 3.3, 1 (ii) in 3.3, this
component is the component of one nonzero generator as \mathfrak{g}_{0}-module in H^{2}. Therefore the Grassmannian structure is right-half torsion-free, i.e., $H K_{R}^{0}=$ 0 . Here $K^{0}=H K^{0}=H K_{L}^{0}+H K_{R}^{0}\left(H K_{L}^{0} \subset \mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}, H K_{R}^{0} \subset \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}\right.$ in Proposition 3.3, 1 (i), (ii) respectively).

Conversely, assume that $H K_{R}^{0}=0$. If $H K_{R}^{0}=0$, the component of the generator $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{1 m}^{*} \wedge \mathbf{e}_{2 m}^{*}\right) \in \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$ as \mathfrak{g}_{0}-module in H^{2} of K^{0} is 0 . Thus, by lemmas in 5.2 , we get (ii) in the above proposition. Further, from Proposition 5.2, 1 in 5.5 which appears later on (cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on F_{L}, we get (i) in the above proposition. Therefore D_{L} on F_{L} is completely integrable.

In the case $n \geq 3, m=2$:
In particular, we have $\Omega_{-1}^{n 1}\left(\tilde{\mathbf{e}}_{12}, \tilde{\mathbf{e}}_{22}\right)=0$, namely, $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{12}^{*} \wedge \mathbf{e}_{22}^{*}\right) \in$ $\mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$ component of K^{0} is 0 . From Proposition 3.3, 2 (i) in 3.3, this component is the component of one nonzero generator as \mathfrak{g}_{0}-module in H^{2}. Therefore the Grassmannian structure is torsion-free (especially right-half Grassmannian flat), i.e., $K^{0}=H K^{0}=0$.

Conversely, assume that $K^{0}=H K^{0}=0$. If $H K^{0}=0$, the component of the generator $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{12}^{*} \wedge \mathbf{e}_{22}^{*}\right) \in \mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$ as \mathfrak{g}_{0}-module in H^{2} of K^{0} is 0 . Thus, by lemmas in 5.2 , we get (ii) in the above proposition. Further, from Proposition 5.2, 2 in the next 5.5 (cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on F_{L}, we get (i) in the above proposition. Therefore D_{L} on F_{L} is completely integrable.

In the case $n=2, m=2$:
In particular, we have $\Omega_{21}^{R}\left(\tilde{\mathbf{e}}_{12}, \tilde{\mathbf{e}}_{22}\right)=0$, namely, $\mathbf{g}_{21} \otimes\left(\mathbf{e}_{12}^{*} \wedge \mathbf{e}_{22}^{*}\right) \in$ $\mathfrak{g}_{0}^{R} \otimes \Lambda_{R}^{2}$ component of K^{1} is 0 . From Proposition 3.3, 3 (ii) in 3.3, this component is the component of one nonzero generator as \mathfrak{g}_{0}-module in H^{2}. Therefore, in consideration of Proposition 3.2 in 3.2 , the Grassmannian structure is right-half Grassmannian flat, i.e., $H K_{R}^{1}=0$. Here $K^{0}=0$, $K^{1}=H K^{1}=H K_{L}^{1}+H K_{R}^{1}\left(H K_{L}^{1} \subset \mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}, H K_{R}^{1} \subset \mathfrak{g}_{0}^{R} \otimes \Lambda_{R}^{2}\right.$ in Proposition 3.3, 3 (i), (ii) respectively).

Conversely, assume that $H K_{R}^{1}=0$. If $H K_{R}^{1}=0$, the component of the generator $\mathbf{g}_{21} \otimes\left(\mathbf{e}_{12}^{*} \wedge \mathbf{e}_{22}^{*}\right) \in \mathfrak{g}_{0}^{R} \otimes \Lambda_{R}^{2}$ as \mathfrak{g}_{0}-module in H^{2} of K^{1} is 0 . Thus, by lemmas in 5.2 , we get (i) in the above proposition. Further, from Proposition 5.2, 3 in the next 5.5 (cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on F_{L}, we get (ii) in the above proposition. Therefore D_{L} on F_{L} is completely integrable.

Summarizing them, we have the following.

Theorem 5.1. Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω. Then the tautological distribution D_{L} on the null n-plane bundle F_{L} over M is completely integrable if and only if the Grassmannian structure on M is

1. if $n, m \geq 3$, right-half torsion-free, i.e., $H K_{R}^{0}=0$,
2. if $n \geq 3, m=2$, torsion-free, i.e., $K^{0}=H K^{0}=0$,
3. if $n=2, m=2$, right-half Grassmannian flat, i.e., $H K_{R}^{1}=0$.

If $n=2, m=2, K^{0}=0$ holds. Therefore $K=K^{1}=H K^{1}$ is nothing but the conformal Weyl tensor of a conformal structure of type $(2,2)$ (see 1.5, 2.3. cf. [O]).

5.4. An example of type $(n, 2)$

We give an example M with the completely integrable condition of 2 in the above theorem.

We study the example described in 1.3 (2):

$$
M=H^{m, m}(\mathbb{C}) \cong U(m+1, m) / U(1) \times U(m, m)
$$

Since $U(m+1, m)$ acts transitively on M, we consider the origin $o=U(1) \times$ $U(m, m)$. Moreover, since $U(1) \times U(m, m)$ acts transitively on the set of all null n-planes in the tangent space $T_{o} M$ at the origin o, we consider a distinguished null n-plane.

In $T_{o} M \cong \mathfrak{m}$,

$$
\mathfrak{n}=\left\{\left(\begin{array}{ccc}
0 & -{ }^{t} x & y \\
x & 0 & 0 \\
y & 0 & 0
\end{array}\right)\right\}, \quad\left(x, y \in \mathbb{R}^{m} \subset \mathbb{C}^{m}\right)
$$

is a null n-plane. We show that $\exp \mathfrak{n}$ is a null n-manifold in M, that is, each null vector in \mathfrak{n} is mapped to a null vector in the tangent space at each point in $\exp \mathfrak{n}$ under the differential $\exp _{*}$. If so, it follows that, for any point in M and any null n-plane in tangent space at the point, there exists a null n-manifold through the point such that the tangent space at the point is the null n-plane. Then, from the above Theorem, $M=H^{m, m}(\mathbb{C})$ is right-half Grassmannian flat.

Since M is a symmetric space, according to [He], for $X \in \mathfrak{n} \subset \mathfrak{m} \subset \mathfrak{g}$,

$$
\exp _{*_{X}}=\left(L_{\exp }\right)_{*_{e}} \circ \frac{1-e^{-a d X}}{a d X}
$$

holds, where e is the unit element of $G=U(m+1, m)$ and $\left(1-e^{-A}\right) / A=$ $\sum_{m=0}^{\infty} \frac{1}{(m+1)!}(-A)^{m}$. Thus, it suffices that, for $Y \in \mathfrak{n}$,

$$
\frac{1-e^{-a d X(Y)}}{a d X(Y)}=\sum_{m=0}^{\infty} \frac{1}{(m+1)!}\left(-a d^{m} X(Y)\right)
$$

belongs to $\mathfrak{n} \bmod \mathfrak{h}$. Since $[\mathfrak{n}, \mathfrak{n}] \subset[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$, if m is odd, $a d^{m} X(Y)$ is an element of \mathfrak{h}. By simple calculations, if m is even, it follows directly that $a d^{m} X(Y)$ is an element of \mathfrak{n}. Thus $\exp _{*_{X}}(Y)$ is a null vector. Therefore $\exp \mathfrak{n}$ is a null n-manifold.

5.5. Co-Grassmannian structure of type $(n, m-1)$ and its normal Cartan connection

Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω. Suppose that an n dimensional tautological distribution D_{L} of null n-planes on the null n plane bundle F_{L} over M is completely integrable. For the natural projection $\varpi_{L}: F_{L} \rightarrow M$, put $E_{L}=\operatorname{Ker}\left(\varpi_{L}\right)_{*}$. Then E_{L} is a completely integrable ($m-1$)-dimensional distribution on F_{L}. In the following, by considering a differential system $\widehat{D}_{L}=D_{L} \oplus E_{L}$, we will see that a transversal pair $\left(D_{L}, E_{L}\right)$ defines a co-Grassmannian structure of type $(n, m-1)$ on F_{L}, that is, the symbol algebra of $\widehat{D}_{L}=D_{L} \oplus E_{L}$ at each point of F_{L} is isomorphic to a graded Lie algebra of type $(n, m-1)$ CGR. Moreover we will show that the normal Cartan connection (Q, ω) induced by a Grassmannian structure of type (n, m) on M decides the normal Cartan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n, m-1)$ on F_{L}.

In Sections 2 and 3, we considered $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$. Now we write it as $\mathfrak{k}=\mathfrak{s l}(m+n, \mathbb{R})=\mathfrak{k}_{-1} \oplus \mathfrak{k}_{0} \oplus \mathfrak{k}_{1}$. On the other hand, in Section 4, we have the decomposition $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ as type $(n, m-1)$ CGR. Thus we have the two decompositions $\mathfrak{g}=\mathfrak{k}=\mathfrak{s l}(m+n, \mathbb{R})$ of $G=K=S L(m+n, \mathbb{R})$, as graded Lie algebras of first kind and second kind respectively, as follows:

$$
\begin{aligned}
\mathfrak{k} & =\mathfrak{k}_{-1} \oplus \mathfrak{k}_{0} \oplus \mathfrak{k}_{1} \\
=\mathfrak{g} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} .
\end{aligned}
$$

We have

$$
\mathfrak{k}_{-1}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{L}, \quad\left(\mathfrak{g}_{-1}^{L}=\mathfrak{e}\right)
$$

$$
\begin{aligned}
\mathfrak{k}_{0} & =\mathfrak{g}_{-1}^{R} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{R}, \quad\left(\mathfrak{g}_{-1}^{R}=\mathfrak{f}, \mathfrak{g}_{1}^{R}=\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right) \\
\mathfrak{g}_{-1} & =\mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{-1}^{R}, \quad \mathfrak{g}_{-2} \cong \mathfrak{g}_{-1}^{L} \otimes \mathfrak{g}_{-1}^{R}
\end{aligned}
$$

Moreover we have the following:

$$
\begin{aligned}
\Lambda^{2} \mathfrak{k}_{-1}^{*} & =\Lambda_{L}^{2} \oplus \Lambda_{R}^{2} \\
& =\Lambda^{2} \mathfrak{g}_{-2}^{*} \oplus\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right) \oplus \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*} \\
\Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*} & \subset \Lambda_{R}^{2}
\end{aligned}
$$

We identify $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ with \mathfrak{k}_{-1} and $\mathbb{R}^{m n+m-1}=\mathbb{R}^{n} \otimes \mathbb{R}^{m-1} \oplus$ $\mathbb{R}^{n} \oplus \mathbb{R}^{m-1}$ with $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{-1}^{R}$ respectively. The set of all isomorphisms of \mathfrak{k}_{-1} to the tangent space at each point of M is the linear frame bundle of M and the structure group is the Lie group of \mathfrak{k}_{0}. The set of all isomorphisms of $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{-1}^{R}$ to the tangent space at each point of F_{L} is the linear frame bundle of F_{L} and the structure group is the Lie group of \mathfrak{g}_{0}.

Let K^{\prime} be the Lie group of $\mathfrak{k}^{\prime}=\mathfrak{k}_{0} \oplus \mathfrak{k}_{1}$ and G^{\prime} the Lie group of $\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$. The flat model with a Grassmannian structure of type (n, m) is $G_{m, n+m} \cong$ K / K^{\prime} (see 1.2) and the flat model with a co-Grassmannian structure of type $(n, m-1)$ is $F_{m-1, m} \cong G / G^{\prime}$ (see 4.2).

From the diagram in 5.2 , we can regard the frame bundle Q of second order with structure group K^{\prime} on M as a principal bundle with structure group G^{\prime} over F_{L}. The normal Cartan connection ω of type K / K^{\prime} on Q is a $\mathfrak{g}=\mathfrak{k}=\mathfrak{s l}(m+n, \mathbb{R})$-valued 1-form and a linear isomorphism $\omega: T_{v} Q \rightarrow \mathfrak{k}$ for $v \in Q$. At the same time, ω defines a Cartan connection $\bar{\omega}$ of type G / G^{\prime} on Q. The curvature function \bar{K} by the curvature form $\bar{\Omega}$ of ω is said to be the lift of the curvature function K by the curvature form Ω of ω.

We show that $\bar{\omega}$ satisfies normality condition, that is, $\bar{K}^{-1}=0, \partial^{*} \bar{K}^{p}=$ $0(p \geq 0)$.

$$
\begin{aligned}
& \bar{K}^{-1}=0: \\
& \bar{K}^{-1}=\bar{K}^{-1,2} \text { has the values in }
\end{aligned}
$$

$$
\begin{aligned}
C^{-1,2} & =\mathfrak{g}_{-2} \otimes \Lambda_{-2}^{2}=\mathfrak{g}_{-2} \otimes \Lambda^{2} \mathfrak{g}_{-1}^{*} \\
& =\mathfrak{g}_{-2} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*} \oplus\left(\mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-1}^{L}\right)^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right) \oplus \mathfrak{g}_{-2} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}
\end{aligned}
$$

Since \bar{K} is the lift of K, it follows that

$$
\bar{K}^{-1}=0 \Longleftrightarrow \mathfrak{g}_{-2} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*} \text {-component of } K=0
$$

If an n-dimensional tautological distribution D_{L} of null n-planes on F_{L} is completely integrable (see 5.3), these equivalent conditions are satisfied.
$\partial^{*} \bar{K}^{p}=0:$
Let $\left\{e_{i}\right\}$ be a basis of $\mathfrak{m}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and take $X \in \mathfrak{m}$. Then

$$
\begin{aligned}
\left(\partial^{*} \bar{K}\right)(X) & =\sum_{j}\left[e_{j}^{*}, \bar{K}\left(e_{j} \wedge X\right)\right]+\frac{1}{2} \sum_{j} \bar{K}\left(\left[e_{j}^{*}, X\right]_{-} \wedge e_{j}\right) \\
& =\sum_{j}\left[e_{j}^{*}, K\left(e_{j} \wedge X\right)\right]+\frac{1}{2} \sum_{j} K\left(\left[e_{j}^{*}, X\right]_{-} \wedge e_{j}\right)
\end{aligned}
$$

Since $e_{j}^{*} \in \mathfrak{m}^{*}=\mathfrak{g}_{-2}^{*} \oplus\left(\mathfrak{g}_{-1}^{L}\right)^{*} \oplus\left(\mathfrak{g}_{-1}^{R}\right)^{*}=\mathfrak{k}_{-1}^{*} \oplus\left(\mathfrak{g}_{-1}^{R}\right)^{*}$ and $\left[\mathfrak{g}_{1}^{L}, \mathfrak{g}_{-2}\right] \subset \mathfrak{g}_{-1}^{R}$, the second term does not appear. Remark that $K\left(e_{j} \wedge X\right)=0$ for $e_{j} \in \mathfrak{g}_{-1}^{R}$. Thus it follows that

$$
\partial^{*} \bar{K}=\partial^{*} K
$$

From normality condition of K, we have $\partial^{*} K^{p}=0(p \geq 0)$. Therefore we get $\partial^{*} \bar{K}^{p}=0$.

We have the following.
Theorem 5.2. Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω. Suppose that an n-dimensional tautological distribution D_{L} of null n-planes on the null n-plane bundle F_{L} over M is completely integrable. Then a pair $\left(D_{L}, E_{L}=\operatorname{Ker}\left(\varpi_{L}\right)_{*}\right)$ defines a co-Grassmannian structure of type $(n, m-1)$ on F_{L}. Moreover the normal Cartan connection (Q, ω) of a Grassmannian structure of type (n, m) induces the normal Cartan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n, m-1)$ on F_{L}.

We have the harmonic part $H K$ of the curvature function K of ω and the harmonic part $H \bar{K}$ of the curvature function \bar{K} of $\bar{\omega}$ that is its lift. The relation of them is as follows.

Proposition 5.2. If the conditions of the theorem above are satisfied,

1. if $n, m \geq 3$, for $K^{0}=H K^{0}=H K_{L}^{0}+H K_{R}^{0}$,
(a) the vanishing of the generator of $H K_{R}^{0} \subset \mathfrak{k}_{-1} \otimes \Lambda_{R}^{2}$ implies the normality condition of \bar{K} (plus the complete integrability of D_{L}),
(b) the generator of $H K_{L}^{0} \subset \mathfrak{k}_{-1} \otimes \Lambda_{L}^{2}$ is lifted to the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$, (the other generator of $H \bar{K}^{0} \subset$ $\mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$ vanishes $)$
2. if $n \geq 3, m=2$, for $K^{0}=H K^{0}$ and $H K^{1}$,
(a) the vanishing of the generator of $K^{0}=H K^{0} \subset \mathfrak{k}_{-1} \otimes \Lambda_{R}^{2}$ implies the normality condition of \bar{K} (plus the complete integrability of D_{L}),
(b) the generator of $H K^{1} \subset \mathfrak{k}_{0}^{L} \otimes \Lambda_{L}^{2}$ is lifted to the generator of $H \bar{K}^{2} \subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$, (the generator of $H \bar{K}^{1} \subset \mathfrak{g}_{-1}^{L} \otimes$ $\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$ vanishes $)$
3. if $n=2, m=2$, for $K^{1}=H K^{1}=H K_{L}^{1}+H K_{R}^{1}$,
(a) the generator of $H K_{R}^{1} \subset \mathfrak{k}_{0}^{R} \otimes \Lambda_{R}^{2}$ is lifted to the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{R} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}$, the vanishing of the generator of $H K_{R}^{1}$ implies the normality condition (plus the complete integrability of D_{L},
(b) the generator of $H K_{L}^{1} \subset \mathfrak{k}_{0}^{L} \otimes \Lambda_{L}^{2}$ is lifted to the generator of $H \bar{K}^{2} \subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$. (the generator of $H \bar{K}^{1} \subset \mathfrak{g}_{-1}^{L} \otimes$ $\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$ vanishes $)$.

Here $\mathfrak{k}_{0}^{L}=\mathfrak{s l}_{L}=\mathfrak{s l}(n, \mathbb{R})$ and $\mathfrak{k}_{0}^{R}=\mathfrak{s l}_{R}=\mathfrak{s l}(m, \mathbb{R})$.
Remark that, from Proposition 4.1, 2 (a), (b) in 4.4, if $n \geq 2, m=3$, the relations are the same ones as the above 1 (a), (b). If $n=2, m=3$, the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{R} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}$ vanishes besides, because of the complete integrability of D_{L}. (The other generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}$ vanishes.)

§6. Null m-plane bundle

6.1. Definition

Let M be a manifold with a Grassmannian structure of type (n, m). Considering a set of all the null m-planes as in 5.1 in the tangent space at each point of M, we have a fibre bundle F_{R} with fibre $P^{n-1}(\mathbb{R})$ over M,
called a null m-plane bundle:

$$
\begin{aligned}
& F_{R} \longleftarrow P^{n-1}(\mathbb{R}) \\
& \downarrow^{\downarrow} \varpi_{R} \\
& M
\end{aligned}
$$

6.2. Tautological distribution

An m-dimensional distribution D on the null m-plane bundle F_{R} over M is called an m-dimensional tautological distribution of null m-planes if it satisfies the following: for the m-dimensional subspace $D_{\Pi} \subset T_{\Pi} F_{R}$,

$$
\varpi_{R *}\left(D_{\Pi}\right)=\Pi \subset T_{\varpi_{R}(\Pi)} M
$$

Here note that $\Pi \in F_{R}$ is a null m-plane in $T_{\varpi_{R}(\Pi)} M$. As in the way that we defined an n-dimensional tautological distribution of null n-planes on the null n-plane bundle F_{L} over M in Section 5 , by the use of the normal Cartan connection on Q we will define an m-dimensional tautological distribution D_{R} of null m-planes on the null m-plane bundle F_{R} over M.

Let M be a manifold with a Grassmannian structure of type (n, m). We identify $T M$ with $V \otimes W$ under σ. For $x \in M$, we denote $T_{x} M$ by $V_{x} \otimes W_{x}$. Take a basis $\left\{e_{i}\right\}(1 \leq i \leq n)$ of V_{x} and a basis $\left\{f_{j}\right\}(1 \leq j \leq m)$ of W_{x}. A set $\left\{e_{i} \otimes f_{j}\right\}(1 \leq i \leq n, 1 \leq j \leq m)$ is a null basis of $V_{x} \otimes W_{x}$. Therefore $\lambda_{x}=\left(e_{1} \otimes f_{1}, e_{2} \otimes f_{1}, \ldots, e_{n} \otimes f_{1}, \ldots, e_{1} \otimes f_{m}, e_{2} \otimes f_{m}, \ldots, e_{n} \otimes f_{m}\right)$ belongs to P.

Put

$$
\Pi_{R_{x}}=\operatorname{span}\left(e_{1} \otimes f_{1}, e_{1} \otimes f_{2}, \ldots, e_{1} \otimes f_{m}\right)
$$

The subspace $\Pi_{R_{x}}$ is a null m-plane in $T_{x} M$. Namely, $\Pi_{R_{x}}$ belongs to F_{R}. Then a mapping $p_{R}: P \rightarrow F_{R}$ is defined by

$$
p_{R}: \lambda_{x} \longmapsto \Pi_{R_{x}} .
$$

A subgroup of $G_{0}=G R(n, m)$ which leaves the null m-plane $\Pi_{R_{x}}$ invariant is

$$
H_{0 R}=S(G L(m, \mathbb{R}) \times\{C\})
$$

where

$$
C=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \in G L(n, \mathbb{R})
$$

Consequently we define a principal bundle $P\left(F_{R}, H_{0 R}, p_{R}\right)$. The null m plane bundle F_{R} over M is the fibre bundle with fibre $G_{0} / H_{0 R} \cong P^{n-1}(\mathbb{R})$ associated with P :

$$
F_{R}=P \times_{G_{0}} G_{0} / H_{0 R}=P / H_{0 R} .
$$

For a linear frame bundle P with structure group $G_{0}=G R(n, m)$ over M, let us consider the frame bundle Q of second order with structure group G^{\prime}. Let π_{P} be a canonical projection $Q \rightarrow P$. Then the null m-plane bundle F_{R} over M is the fibre bundle with fibre $G^{\prime} / H_{R}^{\prime} \cong P^{n-1}(\mathbb{R})$ associated with Q :

$$
F_{R}=Q \times_{G^{\prime}} G^{\prime} / H_{R}^{\prime}=Q / H_{R}^{\prime} .
$$

Consequently a mapping $\pi_{R}: Q \rightarrow F_{R}$ being defined, we define a principal bundle $Q\left(F_{R}, H_{R}^{\prime}, \pi_{R}\right)$.

Summarizing them, we have the following diagram:

We use the same notations as in 5.2.
A subspace

$$
\mathfrak{n}_{R}=\operatorname{span}\left(\mathbf{e}_{11}, \mathbf{e}_{12}, \ldots, \mathbf{e}_{1 m}\right)
$$

spanned by $\mathbf{e}_{11}, \mathbf{e}_{12}, \ldots, \mathbf{e}_{1 m}$ is a null m-plane. The Lie algebra \mathfrak{h}_{R} of H_{R}^{\prime} is a subalgebra of $\mathfrak{g}^{\prime}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ and has the following form:

$$
\mathfrak{h}_{R}=\left\{\left(\begin{array}{ccccc}
B & & D & D \\
& a_{11} & a_{12} & \cdots & a_{1 n} \\
O & 0 & a_{22} & \cdots & a_{2 n} \\
& \vdots & \vdots & \ddots & \vdots \\
& 0 & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\right\} \subset \mathfrak{g}^{\prime},
$$

where $a_{i j} \in \mathbb{R}, B \in \operatorname{Mat}(m, \mathbb{R}), D \in \operatorname{Mat}(m \times n, \mathbb{R})$, and trace $B+\sum_{i=1}^{n} a_{i i}=$ 0.

For the vector subspace $\mathfrak{n}_{R}+\mathfrak{h}_{R}$ of \mathfrak{g}, We have the following:
Lemma 6.1. The space $\mathfrak{n}_{R}+\mathfrak{h}_{R}$ of \mathfrak{g} is invariant under the adjoint action of H_{R}^{\prime} and \mathfrak{h}_{R}.

Remark that the space \mathfrak{n}_{R} is invariant under the adjoint action of $H_{0 R}$.
Let $v \in Q$. Let $x=\pi_{M}(v) \in M$. Let $\lambda_{x}=\pi_{P}(v)$ and $\Pi_{R_{x}}=\pi_{R}(v)$. Then $p_{R}\left(\lambda_{x}\right)=\Pi_{R_{x}}$ holds. An element $\lambda_{x}=\left(e_{1} \otimes f_{1}, \ldots, e_{n} \otimes f_{1}, \ldots, e_{1} \otimes\right.$ $\left.f_{m}, \ldots, e_{n} \otimes f_{m}\right) \in P$ is regarded as an isomorphism $\lambda_{x}: \mathbb{R}^{m n}\left(=\mathbb{R}^{n} \otimes \mathbb{R}^{m}\right)=$ $\mathfrak{g}_{-1} \rightarrow T_{x} M:$

$$
\mathbf{e}_{i j} \longmapsto e_{i} \otimes f_{j} .
$$

Then

$$
\mathfrak{n}_{R} \longmapsto \Pi_{R_{x}}
$$

holds.
By using the normal Cartan connection ω, vectors $\omega^{-1}\left(\mathbf{e}_{i j}\right) \in T_{v} Q$ are the horizontal lift of vectors $e_{i} \otimes f_{j} \in T_{x} M$.

Next, putting

$$
\mathcal{D}_{R_{v}}=\omega^{-1}\left(\mathfrak{n}_{R}+\mathfrak{h}_{R}\right),
$$

we can define a distribution \mathcal{D}_{R} on Q. From the lemma above, we have the following:

Lemma 6.2. The distribution \mathcal{D}_{R} on Q is invariant under the right action of H_{R}^{\prime}.

Therefore an m-dimensional distribution D_{R} is defined on the null m plane bundle $F_{R}=Q / H_{R}^{\prime}$:

$$
D_{R}=\mathcal{D}_{R} \bmod H_{R}^{\prime}
$$

This is a tautological distribution of null m-planes.
Investigating the complete integrability of the distribution D_{R} on F_{R} is equivalent to investigating the complete integrability of the distribution \mathcal{D}_{R} on Q modulo H_{R}^{\prime}.

Lemma 6.3. We have

$$
\begin{aligned}
& {\left[D_{R}, D_{R}\right] \subset D_{R} \text { on } F_{R}} \\
& \quad \Longleftrightarrow\left[\mathcal{D}_{R} \bmod H_{R}^{\prime}, \mathcal{D}_{R} \bmod H_{R}^{\prime}\right] \subset \mathcal{D}_{R} \bmod H_{R}^{\prime} \text { on } Q .
\end{aligned}
$$

For $v \in Q$, elements in $T_{v} Q$

$$
\tilde{\mathbf{e}}_{1 j \mid v}=\omega^{-1}\left(\mathbf{e}_{1 j}\right), \quad 1 \leq j \leq m
$$

are defined. Put

$$
\tilde{\mathfrak{n}}_{R}=\omega^{-1}\left(\mathfrak{n}_{R}\right) .
$$

We will investigate the condition modulo H_{R}^{\prime} satisfying

$$
\left[\tilde{\mathbf{e}}_{1 i}, \tilde{\mathbf{e}}_{1 j}\right] \in \tilde{\mathfrak{n}}_{R},
$$

for vector fields $\tilde{\mathbf{e}}_{1 j}(1 \leq j \leq m)$ on Q.

6.3. Complete integrability

Now, assume that the distribution D_{R} on F_{R}, namely, the distribution \mathcal{D}_{R} on Q is completely integrable.

We describe conditions such that $\left[\tilde{\mathbf{e}}_{1 i}, \tilde{\mathbf{e}}_{1 j}\right]_{\mid v} \in \mathcal{D}_{R v}$ for $\tilde{\mathbf{e}}_{1 i \mid v}, \tilde{\mathbf{e}}_{1 j \mid v} \in$ $\mathcal{D}_{R} \subset T_{v} Q$.

We use the same notations as in 5.3.
From lemmas in 5.2 , we have the following.
Proposition 6.1. We have

$$
\begin{aligned}
& {\left[\tilde{\mathbf{e}}_{1 i}, \tilde{\mathbf{e}}_{1 j}\right]_{\mid v} \in \mathcal{D}_{R v}} \\
& \quad \Longleftrightarrow\left\{\begin{array}{l}
\text { (i) } \Omega_{k 1}^{L}\left(\tilde{\mathbf{e}}_{1 i}, \tilde{\mathbf{e}}_{1 j}\right)=0, \quad(2 \leq k \leq n) \\
(\text { ii }) \Omega_{-1}^{\alpha \beta}\left(\tilde{\mathbf{e}}_{1 i}, \tilde{\mathbf{e}}_{1 j}\right)=0, \quad(2 \leq \alpha \leq n, 1 \leq \beta \leq m) .
\end{array}\right.
\end{aligned}
$$

In the case $n, m \geq 3$:
In particular, we have $\Omega_{-1}^{n 1}\left(\tilde{\mathbf{e}}_{1 m-1}, \tilde{\mathbf{e}}_{1 m}\right)=0$, namely, $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{1 m-1}^{*} \wedge\right.$ $\left.\mathbf{e}_{1 m}^{*}\right) \in \mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$ component of K^{0} is 0 . From Proposition 3.3, 1 (i) in 3.3, this component is the component of one nonzero generator as \mathfrak{g}_{0}-module in H^{2}. Therefore the Grassmannian structure is left-half torsion-free, i.e., $H K_{L}^{0}=0$. Here $K^{0}=H K^{0}=H K_{L}^{0}+H K_{R}^{0}\left(H K_{L}^{0} \subset \mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}, H K_{R}^{0} \subset\right.$ $\mathfrak{g}_{-1} \otimes \Lambda_{R}^{2}$ in Proposition 3.3, 1 (i), (ii) respectively).

Conversely, assume that $H K_{L}^{0}=0$. If $H K_{L}^{0}=0$, the component of the generator $\mathbf{e}_{n 1} \otimes\left(\mathbf{e}_{1 m-1}^{*} \wedge \mathbf{e}_{1 m}^{*}\right) \in \mathfrak{g}_{-1} \otimes \Lambda_{L}^{2}$ as \mathfrak{g}_{0}-module in H^{2} of
K^{0} is 0 . Thus, by lemmas in 5.2 , we get (ii) in the above proposition. Further, from Proposition 6.2, 1 in 6.4 which appears in the next subsection (cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on F_{R}, we get (i) in the above proposition. Therefore D_{R} on F_{R} is completely integrable.

In the case $n \geq 3, m=2$:
In particular, we have $\Omega_{0}^{n 1}\left(\tilde{\mathbf{e}}_{11}, \tilde{\mathbf{e}}_{12}\right)=0$, namely, $\mathbf{h}_{n 1} \otimes\left(\mathbf{e}_{11}^{*} \wedge \mathbf{e}_{12}^{*}\right) \in$ $\mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}$ component of K^{1} is 0 . From Proposition 3.3, 2 (ii) in 3.3, this component is the component of one nonzero generator as \mathfrak{g}_{0}-module in H^{2}. Therefore, in consideration of Proposition 3.1 in 3.2 , the Grassmannian structure is left-half Grassmannian flat, i.e., $H K^{1}=0$.

Conversely, assume that $H K^{1}=0$. If $H K^{1}=0$, the component of the generator $\mathbf{h}_{n 1} \otimes\left(\mathbf{e}_{11}^{*} \wedge \mathbf{e}_{12}^{*}\right) \in \mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}$ as \mathfrak{g}_{0}-module in H^{2} of K^{1} is 0 . Thus, by lemmas in 5.2 , we get (i) in the above proposition. Further, from Proposition 6.2, 2 in the next 6.4 (cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on F_{R}, we get (ii) in the above proposition. Therefore D_{R} on F_{R} is completely integrable.

In the case $n=2, m=2$:
In particular, we have $\Omega_{21}^{L}\left(\tilde{\mathbf{e}}_{11}, \tilde{\mathbf{e}}_{12}\right)=0$, namely, $\mathbf{h}_{21} \otimes\left(\mathbf{e}_{11}^{*} \wedge \mathbf{e}_{12}^{*}\right) \in$ $\mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}$ component of K^{1} is 0 . From Proposition 3.3, 3 (i) in 3.3, this component is the component of one nonzero generator as \mathfrak{g}_{0}-module in H^{2}. Therefore, by Proposition 3.2 in 3.2, the Grassmannian structure is left-half Grassmannian flat, i.e., $H K_{L}^{1}=0$. Here $K^{0}=0, K^{1}=H K^{1}=$ $H K_{L}^{1}+H K_{R}^{1}\left(H K_{L}^{1} \subset \mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}, H K_{R}^{1} \subset \mathfrak{g}_{0}^{R} \otimes \Lambda_{R}^{2}\right.$ in Proposition 3.3, 3 (i), (ii) respectively).

Conversely, assume that $H K_{L}^{1}=0$. If $H K_{L}^{1}=0$, the component of the generator $\mathbf{h}_{21} \otimes\left(\mathbf{e}_{11}^{*} \wedge \mathbf{e}_{12}^{*}\right) \in \mathfrak{g}_{0}^{L} \otimes \Lambda_{L}^{2}$ as \mathfrak{g}_{0}-module in H^{2} of K^{1} is 0 . Thus, by lemmas in 5.2 , we get (i) in the above proposition. Further, from Proposition 6.2, 3 in the next 6.4 (cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on F_{R}, we get (ii) in the above proposition. Therefore D_{R} on F_{R} is completely integrable.

Summarizing them, we have the following.
Theorem 6.1. Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω. Then the tautological distribution D_{R} on the null m-plane bundle F_{R} over M is completely integrable if and only if the Grassmannian structure on M is

1. if $n, m \geq 3$, left-half torsion-free, i.e., $H K_{L}^{0}=0$,
2. if $n \geq 3, m=2$, left-half Grassmannian flat, i.e., $H K^{1}=0$,
3. if $n=2, m=2$, left-half Grassmannian flat, i.e., $H K_{L}^{1}=0$.

6.4. Co-Grassmannian structure of type $(n-1, m)$ and its normal Cartan connection

Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection ω. Suppose that an m dimensional tautological distribution D_{R} of null m-planes on the null m plane bundle F_{R} over M is completely integrable. For the natural projection $\varpi_{R}: F_{R} \rightarrow M$, put $E_{R}=\operatorname{Ker}\left(\varpi_{R}\right)_{*}$. Then E_{R} is a completely integrable ($n-1$)-dimensional distribution on F_{R}. In the following, by considering a differential system $\widehat{D}_{R}=E_{R} \oplus D_{R}$, we will see that a transversal pair $\left(E_{R}, D_{R}\right)$ defines a co-Grassmannian structure of type $(n-1, m)$ on F_{R}, that is, the symbol algebra of $\widehat{D}_{R}=E_{R} \oplus D_{R}$ at each point of F_{R} is isomorphic to a graded Lie algebra of type $(n-1, m)$ CGR. Moreover we will show that the normal Cartan connection (Q, ω) induced by a Grassmannian structure of type (n, m) on M decides the normal Cratan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n-1, m)$ on F_{R}.

As appeared in 5.5 , we have the two decompositions $\mathfrak{g}=\mathfrak{k}=\mathfrak{s l}(m+n, \mathbb{R})$ of $G=K=S L(m+n, \mathbb{R})$, as graded Lie algebras of first kind and second kind respectively, as follows:

$$
\begin{aligned}
\mathfrak{k} & =\mathfrak{k}_{-1} \oplus \mathfrak{k}_{0} \oplus \mathfrak{k}_{1} \\
=\mathfrak{g} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathfrak{k}_{-1} & =\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{R}, \quad\left(\mathfrak{g}_{-1}^{R}=\mathfrak{f}\right) \\
\mathfrak{k}_{0} & =\mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}^{L}, \quad\left(\mathfrak{g}_{-1}^{L}=\mathfrak{e}, \mathfrak{g}_{1}^{L}=\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right) \\
\mathfrak{g}_{-1} & =\mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{-1}^{R}, \quad \mathfrak{g}_{-2} \cong \mathfrak{g}_{-1}^{L} \otimes \mathfrak{g}_{-1}^{R}
\end{aligned}
$$

Moreover we have the following:

$$
\begin{aligned}
\Lambda^{2} \mathfrak{k}_{-1}^{*} & =\Lambda_{L}^{2} \oplus \Lambda_{R}^{2} \\
& =\Lambda^{2} \mathfrak{g}_{-2}^{*} \oplus\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right) \oplus \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}, \\
\Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*} & \subset \Lambda_{L}^{2} .
\end{aligned}
$$

We identify $\mathbb{R}^{m n}=\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ with \mathfrak{k}_{-1} and $\mathbb{R}^{m n+n-1}=\mathbb{R}^{n-1} \otimes \mathbb{R}^{m} \oplus$ $\mathbb{R}^{n-1} \oplus \mathbb{R}^{m}$ with $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{-1}^{R}$ respectively. The set of all isomorphisms of \mathfrak{k}_{-1} to the tangent space at each point of M is the linear frame bundle of M and the structure group is the Lie group of \mathfrak{k}_{0}. The set of all isomorphisms of $\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}^{L} \oplus \mathfrak{g}_{-1}^{R}$ to the tangent space at each point of F_{R} is the linear frame bundle of F_{R} and the structure group is the Lie group of \mathfrak{g}_{0}.

Let K^{\prime} be the Lie group of $\mathfrak{k}^{\prime}=\mathfrak{k}_{0} \oplus \mathfrak{k}_{1}$ and G^{\prime} the Lie group of $\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$. The flat model with a Grassmannian structure of type (n, m) is $G_{m, n+m} \cong$ K / K^{\prime} (see 1.2) and the flat model with a co-Grassmannian structure of type $(n-1, m)$ is $F_{m, m+1} \cong G / G^{\prime}$ (see 4.2).

From the diagram in 6.2 , we can regard the frame bundle Q of second order with structure group K^{\prime} on M as a principal bundle with structure group G^{\prime} over F_{R}. The normal Cartan connection ω of type K / K^{\prime} on Q is $\mathfrak{a} \mathfrak{g}=\mathfrak{k}=\mathfrak{s l}(m+n, \mathbb{R})$-valued 1-form and a linear isomorphism $\omega: T_{v} Q \rightarrow \mathfrak{k}$ for $v \in Q$. At the same time, ω defines a Cartan connection $\bar{\omega}$ of type G / G^{\prime} on Q. The curvature function \bar{K} by the curvature form $\bar{\Omega}$ of ω is the lift of the curvature function K by the curvature form Ω of ω.

We show that $\bar{\omega}$ satisfies normality condition, that is, $\bar{K}^{-1}=0, \partial^{*} \bar{K}^{p}=$ $0(p \geq 0)$.

$$
\begin{aligned}
\bar{K}^{-1} & =0: \\
\bar{K}^{-1} & =\bar{K}^{-1,2} \text { has the values in } \\
C^{-1,2} & =\mathfrak{g}_{-2} \otimes \Lambda_{-2}^{2}=\mathfrak{g}_{-2} \otimes \Lambda^{2} \mathfrak{g}_{-1}^{*} \\
& =\mathfrak{g}_{-2} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*} \oplus\left(\mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-1}^{L}\right)^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right) \oplus \mathfrak{g}_{-2} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}
\end{aligned}
$$

Since \bar{K} is the lift of K, it follows that

$$
\bar{K}^{-1}=0 \Longleftrightarrow \mathfrak{g}_{-2} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*} \text {-component of } K=0
$$

If an m-dimensional tautological distribution D_{R} of null m-planes on F_{R} is completely integrable (see 6.3), these equivalent conditions are satisfied.

$$
\partial^{*} \bar{K}^{p}=0
$$

Remark that $\mathfrak{m}^{*}=\mathfrak{g}_{-2}^{*} \oplus\left(\mathfrak{g}_{-1}^{L}\right)^{*} \oplus\left(\mathfrak{g}_{-1}^{R}\right)^{*}=\mathfrak{k}_{-1}^{*} \oplus\left(\mathfrak{g}_{-1}^{L}\right)^{*}$ and $\left[\mathfrak{g}_{1}^{R}, \mathfrak{g}_{-2}\right] \subset$ \mathfrak{g}_{-1}^{L}. Then in the similar way to 5.5 it follows that $\partial^{*} \bar{K}^{p}=0$.

We have the following.

Theorem 6.2. Let M be a manifold with a Grassmannian structure of type (n, m) and equipped with the normal Cartan connection w. Suppose that an m-dimensional tautological distribution D_{R} of null m-planes on the null m-plane bundle F_{R} over M is completely integrable. Then a pair $\left(E_{R}=\operatorname{Ker}\left(\varpi_{R}\right)_{*}, D_{R}\right)$ defines a co-Grassmannian structure of type $(n-1, m)$ on F_{R}. Moreover the normal Cartan connection (Q, ω) of a Grassmannian structure of type (n, m) induces the normal Cartan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n-1, m)$ on F_{R}.

We have the harmonic part $H K$ of the curvature function K of ω and the harmonic part $H \bar{K}$ of the curvature function \bar{K} of $\bar{\omega}$ that is its lift. The relation of them is as follows.

Proposition 6.2. If the conditions of the theorem above are satisfied,

1. if $n, m \geq 3$, for $K^{0}=H K^{0}=H K_{L}^{0}+H K_{R}^{0}$,
(a) the vanishing of the generator of $H K_{L}^{0} \subset \mathfrak{k}_{-1} \otimes \Lambda_{L}^{2}$ implies the normality condition of \bar{K} (plus the complete integrability of D_{R}),
(b) the generator of $H K_{R}^{0} \subset \mathfrak{k}_{-1} \otimes \Lambda_{R}^{2}$ is lifted to the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$, (the other generator of $H \bar{K}^{0} \subset$ $\mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$ vanishes $)$
2. if $n \geq 3, m=2$, for $K^{0}=H K^{0}$ and $H K^{1}$,
(a) the vanishing of the generator of $H K^{1} \subset \mathfrak{k}_{0}^{L} \otimes \Lambda_{L}^{2}$ is lifted to the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}$, the vanishing of the generator of $H K^{1}$ implies the normality condition of \bar{K} (plus the complete integrability of D_{R}),
(b) the generator of $K^{0}=H K^{0} \subset \mathfrak{k}_{-1} \otimes \Lambda_{R}^{2}$ is lifted to the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$, (the other generator of $H \bar{K}^{0} \subset$ $\mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$ vanishes $)$
3. if $n=2, m=2$, for $K^{1}=H K^{1}=H K_{L}^{1}+H K_{R}^{1}$,
(a) the generator of $H K_{L}^{1} \subset \mathfrak{k}_{0}^{L} \otimes \Lambda_{L}^{2}$ is lifted to the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}$, the vanishing of the generator of $H K_{L}^{1}$ implies the normality condition of \bar{K} (plus the complete integrability of D_{R}),
(b) the generator of $H K_{R}^{1} \subset \mathfrak{k}_{0}^{R} \otimes \Lambda_{R}^{2}$ is lifted to the generator of $H \bar{K}^{2} \subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)\left(\right.$ the generator of $H \bar{K}^{1} \subset \mathfrak{g}_{-1}^{R} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\right.$ $\left.\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$ vanishes $)$.

Remark that, from Proposition 4.1, 2 (b) in 4.4, if $n=2, m=3$, the relations are the same ones as the above 2 (a), (b). (The other generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{R} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}$ vanishes.)

Remark that the above (3) corresponds to the argument of the case $k=1, l=2$ in 4.4. Although we do not describe it in Proposition 4.1 in 4.4, compare with the proposition 3 (b).

6.5. Projective structure

Let M be an l-dimensional real manifold. A Grassmannian structure of type $(n, 1)$ on M is defined by an isomorphism σ from the tangent bundle $T M$ of M to the tensor product $V \otimes W$ of two vector bundles V and W with rank $n(n \geq 2)$ and 1 over M respectively (cf. 1.1). The flat model like that in 1.2 is the Grassmann manifold $G_{1, n+1} \cong G / G^{\prime}(G=S L(n+$ $1, \mathbb{R})$) consisting of all 1-dimensional subspaces in the $(n+1)$-dimensional real vector space \mathbb{R}^{n+1}. This is nothing but the n-dimensional projective space $P^{n}(\mathbb{R})$. Therefore Grassmannian structure of type ($n, 1$) implies n dimensional projective structure.

As is well known ([Ko], [O]), there exists a normal Cartan (or projective) connection ω of type G / G^{\prime} on the principal bundle Q with structure group G^{\prime} over M. The Lie algebra $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{R})$ of $G=S L(n+1, \mathbb{R})$ has the structure of a graded Lie algebra of first kind like that in 2.2. We described the component of nonzero generator as \mathfrak{g}_{0}-module in H^{2} in a remark of Proposition 3.3 in 3.3.

For each point x of M, a null n-plane in the tangent space $T_{x} M$ is an only form $V_{x} \otimes w\left(w \in W_{x} \cong \mathbb{R}\right)$. Thus the null n-plane bundle F_{L} over M is the tangent bundle $T M$ itself. A null 1-plane (line) in $T_{x} M$ is a form $v \otimes W_{x}\left(v \in V_{x}\right)$ and is a line through the origin. Thus the null line bundle F_{R} over M is the projective tangent bundle $P(T M)$ with fibre $P^{n-1}(\mathbb{R})$.

A 1-dimensional tautological distribution D_{R} of null lines on $F_{R}=$ $P(T M)$ over M is completely integrable because of dimension 1 . For the natural projection $\varpi_{R}: F_{R} \rightarrow M$, put $E_{R}=\operatorname{Ker}\left(\varpi_{R}\right)_{*}$. Then E_{R} is transversal to D_{R} and the fibre of E_{R} at $x \in M$ is the projective space $P^{n-1}(\mathbb{R})$ of $T_{x} M$. A pair $\left(E_{R}, D_{R}\right)$ defines a co-Grassmannian structure of type $(n-1,1)$ on F_{R}. In the same manner as mentioned Theorem 6.2 in 6.4 , the normal

Cartan connection (Q, ω) of an n-dimensional projective structure induces the normal Cartan connection $(Q, \bar{\omega})$ of the co-Grassmannian structure of type $(n-1,1)$ on F_{R}.

Proposition 6.3. Under the above condition, for $K^{0}=0, K^{1}=$ $H K^{1}$, the generator of $H K^{1} \subset \mathfrak{g}_{0} \otimes \Lambda^{2}$ is lifted to the generator of $H \bar{K}^{1} \subset$ $\mathfrak{g}_{-1}^{L} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)$. (the generator of $H \bar{K}^{2} \subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)$ vanishes. $)$ (when $n=3$, the generator of $H \bar{K}^{0} \subset \mathfrak{g}_{-1}^{R} \otimes \Lambda\left(\mathfrak{g}_{-1}^{L}\right)^{*}$ vanishes.)

§7. Twistor theory of Grassmannian structures

7.1. Twistor diagrams

In the real $(n+m)$-dimensional vector space $V=\mathbb{R}^{n+m}(m \geq 2)$, define

$$
\begin{aligned}
\mathbf{G}_{1} & =G_{m, n+m}=\{m \text {-dimensional subspace of } V\} \\
\mathbf{G}_{2} & =G_{m-1, n+m}=\{(m-1) \text {-dimensional subspace of } V\} \\
\mathbf{F} & =F_{m-1, m} \\
& =\left\{\left(S_{m-1}, S_{m}\right) \mid S_{i}: i \text {-dimensional subspace of } V, S_{m-1} \subset S_{m}\right\}
\end{aligned}
$$

We have the double fibration that is considered as the twistor diagram of the flat model (cf. [W-W], [W]):

where μ, ν are the natural projections.
Each space $\mathbf{G}_{1}, \mathbf{G}_{2}$ and \mathbf{F} has a natural G structure (geometric structure).

The space \mathbf{G}_{1} has the Grassmannian structure of type (n, m), as is explained in 1.2. Each null n-submanifold of \mathbf{G}_{1} is diffeomorphic to $P^{n}(\mathbb{R})$. Then \mathbf{G}_{2} can be regarded as the space of all null n-submanifolds. Let m_{1} be a point in \mathbf{G}_{1}. The set of all null n-submanifolds through m_{1} is diffeomorphic to $P^{m-1}(\mathbb{R})$ in \mathbf{G}_{1}. Remark that there is the other space of all null m submanifolds of \mathbf{G}_{1}.

The space \mathbf{G}_{2} has the Grassmannian structure of type $(n+1, m-1)$. Each null $(m-1)$-submanifold of \mathbf{G}_{2} is diffeomorphic to $P^{m-1}(\mathbb{R})$. Then \mathbf{G}_{1} can be regarded as the space of all null $(m-1)$-submanifolds. Let m_{2} be a point in \mathbf{G}_{2}. The set of all null $(m-1)$-submanifolds through m_{2} is
diffeomorphic to $P^{n}(\mathbb{R})$ in \mathbf{G}_{1}. Remark that there is the other space of all null $(n+1)$-submanifolds of \mathbf{G}_{2}.

The space \mathbf{F} has the co-Grassmannian structure of type $(n, m-1)$, as is explained in 4.2. There are two transversal n-dimensional and $(m-1)$ dimensional foliations. Each leaf is diffeomorphic to $P^{n}(\mathbb{R})$ and $P^{m-1}(\mathbb{R})$ respectively. The former leaf space is identified with \mathbf{G}_{2} and the latter leaf space \mathbf{G}_{1}.

The three spaces are regarded as homogeneous spaces of $G=S L(m+$ $n, \mathbb{R})$:

$$
\mathbf{G}_{1}=G / H_{1}, \quad \mathbf{G}_{2}=G / H_{2}, \quad \mathbf{F}=G / H_{12} .
$$

In complexified flag manifolds, we study them. Choose the Cartan subalgebra consisting of all the diagonal matrices in the Lie algebra $A_{l}(l=$ $m+n-1)=\mathfrak{g}_{\mathbb{C}}=\mathfrak{s l}(m+n, \mathbb{C})$ of $G_{\mathbb{C}}=S L(m+n, \mathbb{C})$. Denote the simple root system by $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{m+n-1}\right\}$.

The manifolds $\mathbf{G}_{1}, \mathbf{G}_{2}$ and \mathbf{F} are flag manifolds corresponding to the parabolic subalgebras defined by $\Delta_{1}=\left\{\alpha_{m}\right\},\left\{\alpha_{m-1}\right\},\left\{\alpha_{m-1}, \alpha_{m}\right\}$ respectively. We indicate them by the double fibration in terms of the Dynkin diagrams:

The simple graded Lie algebras of $\mathfrak{g}=\mathfrak{s l}(m+n, \mathbb{R})$ associated with $\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{F}$ are of first kind, first kind (see $\S 2, \S 3$), second kind (see $\S 4$) respectively:

$$
\begin{aligned}
\mathbf{G}_{1}: \mathfrak{g}= & \mathfrak{g}_{-1}^{1} \oplus \mathfrak{g}_{0}^{1} \oplus \mathfrak{g}_{1}^{1}, \quad \mathfrak{m}_{1}=\mathfrak{g}_{-1}^{1}, \quad \operatorname{dim} \mathfrak{m}_{1}=m n \\
\mathbf{G}_{2}: \mathfrak{g}= & \mathfrak{g}_{-1}^{2} \oplus \mathfrak{g}_{0}^{2} \oplus \mathfrak{g}_{1}^{2}, \quad \mathfrak{m}_{2}=\mathfrak{g}_{-1}^{2}, \quad \operatorname{dim} \mathfrak{m}_{2}=m n+m-n-1, \\
\mathbf{F}: \mathfrak{g}= & \mathfrak{g}_{-2}^{12} \oplus \mathfrak{g}_{-1}^{12} \oplus \mathfrak{g}_{0}^{12} \oplus \mathfrak{g}_{1}^{12} \oplus \mathfrak{g}_{2}^{12}, \quad \mathfrak{m}_{12}=\mathfrak{g}_{-2}^{12} \oplus \mathfrak{g}_{-1}^{12}, \\
& \operatorname{dim} \mathfrak{m}_{12}=m n+m-1, \quad \operatorname{dim} \mathfrak{g}_{-2}^{12}=n(m-1), \\
& \operatorname{dim} \mathfrak{g}_{-1}^{12}=n+m-1 .
\end{aligned}
$$

Nonzero generators in H^{2} are as follows. See 3.3 and 4.4 (cf. [Y]) in detail.

For $A_{l} ; m-1 \geq 3$, i.e., $m \geq 4$,

$$
\begin{aligned}
& H^{2}\left(\mathfrak{m}_{1}, \mathfrak{g}\right): x_{m, m-1} \in H^{0,2} \subset \mathfrak{g}_{-1}^{1} \otimes \Lambda_{-2}^{2}, \\
& x_{m, m+1} \in H^{0,2} \subset \mathfrak{g}_{-1}^{1} \otimes \Lambda_{-2}^{2}, \\
& H^{2}\left(\mathfrak{m}_{2}, \mathfrak{g}\right): x_{m-1, m-2} \in H^{0,2} \subset \mathfrak{g}_{-1}^{2} \otimes \Lambda_{-2}^{2}, \\
& x_{m-1, m} \in H^{0,2} \subset \mathfrak{g}_{-1}^{2} \otimes \Lambda_{-2}^{2}, \\
& H^{2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right): x_{m-1, m} \in H^{0,2} \subset \mathfrak{g}_{-2}^{12} \otimes \Lambda_{-3}^{2}, \\
& x_{m, m-1} \in H^{0,2} \subset \mathfrak{g}_{-2}^{12} \otimes \Lambda_{-3}^{2} . \\
& \begin{array}{c}
\circ-\cdots-\circ-\bullet \bullet-\circ-\cdots-\circ \\
x_{m-1, m}, x_{m, m-1}
\end{array}
\end{aligned}
$$

$x_{m-1, m-2}, x_{m-1, m}$

$x_{m, m-1}, x_{m, m+1}$

For $A_{l}(l \geq 5), m+n \geq 6 ; m-1=2$, i.e., $m=3$,

For $A_{4}, m+n=5 ; m-1=2$, i.e., $m=3$,

$$
\begin{aligned}
& H^{2}\left(\mathfrak{m}_{1}, \mathfrak{g}\right): x_{32} \in H^{0,2} \subset \mathfrak{g}_{-1}^{1} \otimes \Lambda_{-2}^{2}, \\
& x_{34} \in H^{0,2} \subset \mathfrak{g}_{-1}^{1} \otimes \Lambda_{-2}^{2}, \\
& H^{2}\left(\mathfrak{m}_{2}, \mathfrak{g}\right): x_{21} \in H^{1,2} \subset \mathfrak{g}_{-1}^{2} \otimes \Lambda_{-2}^{2}, \\
& x_{23} \in H^{1,2} \subset \mathfrak{g}_{-1}^{2} \otimes \Lambda_{-2}^{2},
\end{aligned}
$$

We consider the case $m=2$ especially.
In the real $(n+2)$-dimensional vector space $V=\mathbb{R}^{n+2}$, define
$\mathbf{G}=G_{2, n+2}=\{2$-dimensional subspace of $V\}$,
$\mathbf{P}=G_{1, n+2}=P^{n+1}(\mathbb{R})=\{1$-dimensional subspace of $V\}$,
$\mathbf{F}=F_{12}=\left\{\left(S_{1}, S_{2}\right) \mid S_{i}: i\right.$-dimensional subspace of $\left.V, S_{1} \subset S_{2}\right\}$.
We have the double fibration that is considered as the twistor diagram of the flat model (cf. [W-W], [W]):

where μ, ν are the natural projections.
The space \mathbf{G} has the Grassmannian structure of type $(n, 2)$. Each null n-submanifold of \mathbf{G} is diffeomorphic to $P^{n}(\mathbb{R})$. Then \mathbf{P} can be regarded as the space of all null n-submanifolds. Let m_{1} be a point in \mathbf{G}. The set of all null n-submanifolds through m_{1} is diffeomorphic to $P^{1}(\mathbb{R}) \cong S^{1}$ in \mathbf{P}. Remark that there is the other space of all null 2-submanifolds of \mathbf{G}.

The space \mathbf{P} has the projective structure. Each projective line of \mathbf{P} is diffeomorphic to $P^{1}(\mathbb{R})$. Then \mathbf{G} can be regarded as the space of all projective lines. Let m_{2} be a point in \mathbf{P}. The set of all projective lines through m_{2} is diffeomorphic to $P^{n}(\mathbb{R})$ in \mathbf{G}.

The space \mathbf{F} has the co-Grassmannian structure of type $(n, 1)$. There are two transversal n-dimensional and 1-dimensional foliations. Each leaf is diffeomorphic to $P^{n}(\mathbb{R})$ and $P^{1}(\mathbb{R})$ respectively. The former leaf space is identified with \mathbf{P} and the latter leaf space \mathbf{G}.

The manifolds \mathbf{G}, \mathbf{P} and \mathbf{F} are flag manifolds corresponding to the parabolic subalgebras defined by $\Delta_{1}=\left\{\alpha_{2}\right\},\left\{\alpha_{1}\right\},\left\{\alpha_{1}, \alpha_{2}\right\}$ respectively. We indicate them by the double fibration in terms of the Dynkin diagrams:

Nonzero generators in H^{2} are as follows.
For $A_{l}(l \geq 4), n \geq 4$,

$$
\begin{aligned}
H^{2}\left(\mathfrak{m}_{1}, \mathfrak{g}\right) & : x_{21} \in H^{1,2} \subset \mathfrak{g}_{0}^{1} \otimes \Lambda_{-2}^{2}, \\
& x_{23} \in H^{0,2} \subset \mathfrak{g}_{-1}^{1} \otimes \Lambda_{-2}^{2}, \\
H^{2}\left(\mathfrak{m}_{2}, \mathfrak{g}\right): & x_{12} \in H^{1,2} \subset \mathfrak{g}_{0}^{2} \otimes \Lambda_{-2}^{2}, \\
H^{2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right) & : x_{12} \in H^{1,2} \subset \mathfrak{g}_{-1}^{12} \otimes \Lambda_{-3}^{2}, \\
& x_{21} \in H^{2,2} \subset \mathfrak{g}_{0}^{12} \otimes \Lambda_{-3}^{2} .
\end{aligned}
$$

For $A_{3}, n=3$,

$$
\begin{aligned}
& H^{2}\left(\mathfrak{m}_{1}, \mathfrak{g}\right): x_{21} \in H^{1,2} \subset \mathfrak{g}_{0}^{1} \otimes \Lambda_{-2}^{2}, \\
& x_{23} \in H^{1,2} \subset \mathfrak{g}_{0}^{1} \otimes \Lambda_{-2}^{2}, \\
& H^{2}\left(\mathfrak{m}_{2}, \mathfrak{g}\right): x_{12} \in H^{1,2} \subset \mathfrak{g}_{0}^{2} \otimes \Lambda_{-2}^{2}, \\
& H^{2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right): x_{12} \in H^{1,2} \subset \mathfrak{g}_{-1}^{12} \otimes \Lambda_{-3}^{2}, \\
& x_{21} \in H^{2,2} \subset \mathfrak{g}_{0}^{12} \otimes \Lambda_{-3}^{2}, \\
& x_{23} \in H^{0,2} \subset \mathfrak{g}_{-1}^{12} \otimes \Lambda_{-2}^{2} \text {. }
\end{aligned}
$$

Summarizing them, we have a twistor diagram chain of Grassmannian structures. Let V be a real $(n+m)$-dimensional vector space. We consider $G=S L(m+n, \mathbb{R})$. We write $G(m, n)$ for $G_{m, n+m}$. We simply write $F\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ for $F_{i_{1}, i_{2}, \ldots, i_{k}}=\left\{\left(S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{k}}\right) \mid S_{i_{1}} \subset S_{i_{2}} \subset\right.$ $\cdots \subset S_{i_{k}}, S_{i_{l}}: i_{l}$-dimensional subspace of $\left.V\right\}$. Note that $G(m, n)=F(m)$, $G(1, n)=P^{n}(\mathbb{R})$. Then, for $m+n \geq 6$, we have the following chain. We write nonzero generators in H^{2} (Diagram 1).

$$
\begin{aligned}
& \{\text { point in } G(m-1, n+1)\} \\
& \quad \longleftrightarrow\{n \text {-dimensional null surface in } G(m, n)\} \\
& \{(m-1) \text {-dimensional null surface in } G(m-1, n+1)\} \\
& \quad \longleftrightarrow\{\text { point in } G(m, n)\} \\
& \{m \text {-dimensional null surface in } G(m, n)\} \\
& \quad \longleftrightarrow\{\text { point in } G(m+1, n-1)\} \\
& \\
& \{\text { point in } G(m, n)\} \\
& \quad \longleftrightarrow\{(n-1) \text {-dimensional null surface in } G(m+1, n-1)\}
\end{aligned}
$$

For $m+n=5$, let V be a 5 -dimensional real vector space and $G=$ $S L(5, \mathbb{R})$. We have the following.

For $m+n=4$, let V be a 4 -dimensional real vector space and $G=$ $S L(4, \mathbb{R})$. We have the following.

We see the contents in detail.

$$
F(m-1, m)
$$

co-Grassmannian structure of type $(n, m-1)$

$$
F(m, m+1)
$$

co-Grassmannian structure

$$
\text { of type }(n-1, m)
$$

$$
G(m-1, n+1)
$$

Grassmannian structure of type $(n+1, m-1)$

Grassmannian structure of type (n, m)

$$
G(m+1, n-1)
$$

Grassmannian structure of type $(n-1, m+1)$.

Diagram 1.

7.2. Reduction theorem

Let F be a manifold with a co-Grassmannian structure of type (k, l) by a pair $\left(D_{2}, D_{1}\right)$ and equipped with the normal Cartan connection (Q, ω). The dimension of F is $k+l+k l$. By definition, D_{2} is a subbundle of $T F$ with rank k and is completely integrable, and D_{1} is a subbundle of $T F$ with rank l and is completely integrable.

For F, leaf spaces

$$
M_{1}=F / D_{1}, \quad M_{2}=F / D_{2}
$$

are defined and they are (locally) manifolds with Grassmannian structures of type $(k, l+1)$ and of type $(k+1, l)$ respectively. Let

$$
\nu: F \longrightarrow M_{1}, \quad \mu: F \longrightarrow M_{2}
$$

be canonical projections. Then

$$
F \longrightarrow M_{2} \times M_{1} ; x \longmapsto(\mu(x), \nu(x))
$$

is an embedding locally. We have the following double fibration:

We consider the harmonic part $H K$ of the curvature function K of the normal Cartan connection (Q, ω) over F. The places of nonzero generators in H^{2} in $7.1(3.3,4.4)$ show when (Q, ω) is reduced to that over M_{1} or M_{2}. We have the following reduction theorem.

Theorem 7.1. We have

1. if $l \geq 3$, we have $K^{0}=H K^{0}=H K=\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}$, and
(i) $\left(H K^{0}\right)_{1}\left(\subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to the normal Cartan connection ω_{1} of type G / H_{1} on Q_{1} over M_{1} and $(Q, \omega)=\left(Q_{1}, \omega_{1}\right)_{\mid F_{L}}, \omega=\nu^{*} \omega_{1}$,
(ii) $\left(H K^{0}\right)_{2}\left(\subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to the normal Cartan connection ω_{2} of type G / H_{2} on Q_{2} over M_{2} and $(Q, \omega)=\left(Q_{2}, \omega_{2}\right)_{\mid F_{R}}, \omega=\mu^{*} \omega_{2}$,
2. if $l=2$,
(a) for $k+l+1 \geq 6$, i.e., $k \geq 3$, we have $K^{0}=H K^{0}=H K=$ $\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}+\left(H K^{0}\right)_{3}$, and
(i) $\left(H K^{0}\right)_{1}\left(\subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)=0,\left(H K^{0}\right)_{2}\left(\subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\right.\right.$ $\left.\left.\left(\mathfrak{g}_{-1}^{R}\right) *\right)\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1} (as in the above (1) (i)),
(ii) $\left(H K^{0}\right)_{3}\left(\subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2} (as in the above (1) (ii)),
(b) for $k+l+1=5$, i.e., $k=2$, we have $K^{0}=H K^{0}=H K=$ $\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}+\left(H K^{0}\right)_{3}+\left(H K^{0}\right)_{4}$, and
(i) $\left(H K^{0}\right)_{1}\left(\subset \mathfrak{g}_{-1}^{L} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)=0,\left(H K^{0}\right)_{2}\left(\subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\right.\right.$ $\left.\left.\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1} (as in the above (1) (i)),
(ii) $\left(H K^{0}\right)_{3}\left(\subset \mathfrak{g}_{-2} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)\right)=0,\left(H K^{0}\right)_{4}\left(\subset \mathfrak{g}_{-1}^{R} \otimes\right.$ $\left.\Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2} (as in the above (1) (ii)),
3. if $l=1$,
(a) for $k+l+1 \geq 5$, i.e., $k \geq 3$, we have $H K=H K^{1}+H K^{2}$, and (i) $H K^{1}\left(\subset \mathfrak{g}_{-1}^{L} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1} with a Grassmannian structure of type $(k, 2)$ (as in the above (1) (i)),
(ii) $H K^{2}\left(\subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2} with a $(k+1)$-dimensional projective structure (as in the above (1) (ii),
(b) for $k+l+1=4$, i.e., $k=2$, we have $H K=H K^{0}+H K^{1}+H K^{2}$, and
(i) $H K^{1}\left(\subset \mathfrak{g}_{-1}^{L} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{R}\right)^{*}\right)\right)=0$, if and only if (Q, ω) is reduced to $\left(Q_{1}, \omega_{1}\right)$ on M_{1} with a Grassmannian structure of type $(2,2)$ (as in the above (1) (i)),
(ii) $H K^{2}\left(\subset \mathfrak{g}_{0} \otimes\left(\mathfrak{g}_{-2}^{*} \wedge\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)\right)=0$, $H K^{0}\left(\subset \mathfrak{g}_{-1}^{R} \otimes \Lambda^{2}\left(\mathfrak{g}_{-1}^{L}\right)^{*}\right)=$ 0 , if and only if (Q, ω) is reduced to $\left(Q_{2}, \omega_{2}\right)$ on M_{2} with a 3dimensional projective structure (as in the above (1) (ii)).

In the theorem above, 3 (a), (b) are Tanaka's results ([T3]).

7.3. Relation between both Grassmannian structures

Let M_{1} be a manifold with a Grassmannian structure of type (n, m). Assume that $n, m \geq 4$. Suppose that the Grassmannian structure has $H K_{R}^{0}=0$ for the normal Cartan connection ω_{1}. The component of the generator $x_{m, m+1} \in H^{0,2}\left(\mathfrak{m}_{1}, \mathfrak{g}\right)$ is 0 . Then, from Theorem 5.1 in 5.3 , the n dimensional tautological distribution D_{L} of null n-planes on the null n-plane bundle F_{L} over M_{1} is completely integrable. Therefore a co-Grassmannian structure of type $(n, m-1)$ is defined on F_{L}. Since, of course, the structure on F_{L} is reduced onto M_{1}, by the reduction theorem $7.1\left(H K^{0}\right)_{1}=0$ for $K^{0}=H K^{0}=H K=\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}$ of the normal Cartan connection ω on F_{L}. The component of the generator $x_{m-1, m} \in H^{0,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . A condition for a Grassmannian structure of type $(n+1, m-1)$ to be defined on the (locally) $(m n+m-n-1)$-dimensional manifold $M_{2}=F_{L} / D_{L}$ is $\left(H K^{0}\right)_{2}=0$. The component of the generator $x_{m, m-1} \in H^{0,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . That is to say, if a Grassmannian structure of type $(n+1, m-1)$ is defined on M_{2}, a co-Grassmannian structure of type $(n, m-1)$ on F_{L} must be flat. Then the Grassmannian structure of type $(n+1, m-1)$ on M_{2} is also flat. And the right-half torsion-free Grassmannian structure of type (n, m) on M_{1} is also flat.

If we assume that $m=3$, we have the same conclusion as in the case $n, m \geq 4$.

We discuss the converse. Let M_{2} be a manifold with a Grassmannian structure of type $(n+1, m-1)$. Assume that $n, m \geq 4$. Suppose that the Grassmannian structure has $H K_{L}^{0}=0$ for the normal Cartan connection ω_{2}. The component of the generator $x_{m-1, m-2} \in H^{0,2}\left(\mathfrak{m}_{2}, \mathfrak{g}\right)$ is 0 . Then, from Theorem 6.1 in 6.3, the $(m-1)$-dimensional tautological distribution D_{R} of null $(m-1)$-planes on the null $(m-1)$-plane bundle F_{R} over M_{2} is completely integrable. Therefore a co-Grassmannian structure of type $(n, m-1)$ is defined on F_{R}. Since, of course, the structure on F_{R} is reduced onto M_{2}, by the reduction theorem $7.1\left(H K^{0}\right)_{2}=0$ for $K^{0}=H K^{0}=$ $H K=\left(H K^{0}\right)_{1}+\left(H K^{0}\right)_{2}$ of the normal Cartan connection ω on F_{R}. The component of the generator $x_{m, m-1} \in H^{0,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . A condition for a Grassmannian structure of type (n, m) to be defined on the (locally) $m n$ dimensional manifold $M_{1}=F_{R} / D_{R}$ is $\left(H K^{0}\right)_{1}=0$. The component of the generator $x_{m-1, m} \in H^{0,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . That is to say, if a Grassmannian structure of type (n, m) is defined on M_{1}, a co-Grassmannian structure of type $(n, m-1)$ on F_{R} must be flat. Then the Grassmannian structure of
type (n, m) on M_{1} is also flat. And the left-half torsion-free Grassmannian structure of type $(n+1, m-1)$ on M_{2} is also flat.

If we assume that $m=3$, we have the same conclusion as in the case $n, m \geq 4$.

Consequently, if $n, m \geq 3$, we have the following.

Theorem 7.2.

1. Let M_{1} be a manifold with a right-half torsion-free Grassmannian structure of type (n, m). Then, if the structure on M_{1} induces a Grassmannian structure of type $(n+1, m-1)$ on $M_{2}=F_{L} / D_{L}$, the Grassmannian structure of type (n, m) on M_{1} is flat.
2. Let M_{2} be a manifold with a left-half torsion-free Grassmannian structure of type $(n+1, m-1)$. Then, if the structure on M_{2} induces a Grassmannian structure of type (n, m) on $M_{1}=F_{R} / D_{R}$, the Grassmannian structure of type $(n+1, m-1)$ on M_{2} is flat.

Here, in $1 F_{L}$ denotes the null n-plane bundle on M_{1}, and in $2 F_{R}$ denotes the null $(m-1)$-plane bundle on M_{2}.

In the case $m=2$ we discuss the above argument.
Let M_{1} be a $2 n$-dimensional manifold with a Grassmannian structure of type ($n, 2$). Assume that $n \geq 4$. Suppose that the Grassmannian structure has $H K^{0}=0$ for the normal Cartan connection ω_{1}. The component of the generator $x_{23} \in H^{0,2}\left(\mathfrak{m}_{1}, \mathfrak{g}\right)$ is 0 . Then, from Theorem 5.1 in 5.3 , the n dimensional tautological distribution D_{L} of null n-planes on the null n-plane bundle F_{L} over M_{1} is completely integrable. Therefore a co-Grassmannian structure of type $(n, 1)$ is defined on F_{L}. Since, of course, the structure on F_{L} is reduced onto M_{1}, by the reduction theorem $7.1 H K^{1}=0$ for $H K=$ $H K^{1}+H K^{2}$ of the normal Cartan connection ω on F_{L}. The component of the generator $x_{12} \in H^{1,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . A condition for a projective structure to be defined on the (locally) $(n+1)$-dimensional manifold $M_{2}=F_{L} / D_{L}$ is $H K^{2}=0$. The component of the generator $x_{21} \in H^{2,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . That is to say, if a projective structure is defined on M_{2}, a co-Grassmannian structure of type $(n, 1)$ on F_{L} must be flat. Then the projective structure on M_{2} is also flat. And the right-half Grassmannian flat Grassmannian structure of type $(n, 2)$ on M_{1} is also flat.

If we assume that $n=3$, we have the same conclusion as in the case $n \geq 4$.

We discuss the converse.
Let M_{2} be an $(n+1)$-dimensional manifold with a projective structure. Assume that $n \geq 4$. In the $(2 n+1)$-dimensional projective tangent bundle $F_{R}=P\left(T M_{2}\right)$ of M_{2}, fibers $P^{n}(\mathbb{R})$ over M_{2} define an n-dimensional distribution D_{L} on F_{R}. On the other hand, the geodesic flow vector field on F_{R} with respect to the normal Cartan connection of the projective structure on M_{2} defines a 1-dimensional distribution D_{R} on F_{R}. Therefore a co-Grassmannian structure of type $(n, 1)$ is defined on F_{R}. Since, of course, the structure on F_{R} is reduced onto M_{2}, by the reduction theorem 7.1 $H K^{2}=0$ for $H K=H K^{1}+H K^{2}$ of the normal Cartan connection F_{R}. The component of the generator $x_{21} \in H^{2,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . A condition for a Grassmannian structure of type $(n, 2)$ to be defined on the (locally) $2 n$ dimensional manifold $M_{1}=F_{R} / D_{R}$ is $H K^{1}=0$. The component of the generator $x_{12} \in H^{1,2}\left(\mathfrak{m}_{12}, \mathfrak{g}\right)$ is 0 . That is to say, if a Grassmannian structure of type $(n, 2)$ is defined on M_{1}, a co-Grassmannian structure of type $(n, 1)$ on F_{R} must be flat. Then the projective structure on M_{2} is also flat. And since the n-dimensional distribution D_{L} on F_{R} is completely integrable, the Grassmannian structure on M_{1} has $H K^{0}=0$ for the normal Cartan connection. The component of the generator $x_{23} \in H^{0,2}$ is 0 . Therefore the Grassmannian structure of type $(n, 2)$ on M_{1} is also flat.

If we assume that $n=3$, we have the same conclusions as in the case $n \geq 4$.

If $m=2$, we have the following.

Theorem 7.3.

1. Let M_{1} be a $2 n$-dimensional manifold with a right-half Grassmannian flat Grassmannian structure of type $(n, 2)$ (if $n \geq 3$, equivalently torsion-free). Then, if the structure on M_{1} induces a projective structure on M_{2}, the Grassmannian structure of type $(n, 2)$ on M_{1} is flat.
2. Let M_{2} be an $(n+1)$-dimensional manifold with a projective structure. Then, if the structure on M_{2} induces a Grassmannian structure of type $(n, 2)$ on the orbit space M_{1} of the geodesic flow, the projective structure on M_{2} is flat.

$\S 8$. Twistor theory by Weyl connections

In this section, we will investigate the twistor theory between projective structures and Grassmannian structures of type $(n, 2)$. By imposing a
restriction to projective structures, we deal with the twistor theory by Weyl connections. See the introduction.

In the next three subsections, we recall the notions of Einstein-Weyl structure, Lie contact structure and geodesic flow before studying the twistor theory by Weyl connections.

8.1. Einstein-Weyl structure

Let M be an n-dimensional manifold with a conformal structure. The conformal structure is represented by a conformal class $C=[g]$ whose representative is a Riemannian metric g on M.

Let D be a torsion-free linear connection on M which preserves the conformal class C. Namely, for $g \in C$, there exists a 1-form ω_{g} on M such that

$$
D g=\omega_{g} \otimes g
$$

For another $g^{\prime}=e^{\lambda} g \in C\left(\lambda \in C^{\infty}(M)\right)$, the 1-form $\omega_{g^{\prime}}$ is given by $\omega_{g}+d \lambda$. The connection D is called a Weyl connection and we say that M has a Weyl structure. To give a Weyl connection on M is equivalent to give a torsion-free $C O(n)$ connection on the linear frame bundle L of M with structure group $C O(n)$.

A Weyl structure on M is called an Einstein-Weyl structure if the symmetric part Rics of the Ricci tensor Ric for the Weyl connection D is proportional to $g \in C$:

$$
R i c^{s}=\Lambda g
$$

where Λ is a generally nonconstant function on M.
Let (M, g) be an Einstein manifold. Then, taking the conformal structure $C=[g]$ of g and the Levi-Civita connection ∇ of g as a Weyl connection D (then $\omega_{g}=0$), we have an Einstein-Weyl structure on M. Therefore the notion of Einstein-Weyl is a generalization of the notion of Einstein. The simplest example of an Einstein-Weyl structure that is not Einstein is $S^{n-1} \times S^{1}$ as a Hopf manifold. On $S^{n-1} \times S^{1}$ with the conformal class $C=\left[g_{0}\right]$ defined by the standard Riemannian product metric g_{0}, we can give a Weyl flat connection D by 1-form $\omega_{g_{0}}=-2 d t$, where t is the standard coordinate on S^{1}. The metric g_{0} is not Einstein, but the Weyl connection D is Einstein-Weyl.

Many examples of Einstein-Weyl structures are known (cf. $[\mathrm{P}-\mathrm{T}],[\mathrm{P}-\mathrm{S}]$). There is a twistor correspondence between complex 3-dimensional EinsteinWeyl manifolds and (complex 2-dimensional) mini-twistor spaces ([Hi], $[\mathrm{J}-\mathrm{T}]$).

We can decompose the curvature tensor R of a Weyl connection D from the irreducible $C O(n)$-decomposition as follows:

$$
R=P+U+Z+W
$$

Here P is the part represented by the distance curvature $\theta=-d \omega_{g}$ (not depended on $g \in C$), U the part represented by $K=s_{g} g$ (not depended on $g \in C$) of the scalar curvature s_{g}, Z the part represented by the symmetric traceless Ricci tensor $\operatorname{Ric}_{s}^{0}$ and W the Weyl conformal curvature tensor of C not depending on D.

If D is an Einstein-Weyl connection,

$$
Z=0, \text { i.e., } \quad R=P+U+W
$$

There are two important subclasses in Einstein-Weyl classes.
One class is Weyl Ricci-flat. It implies that

$$
P+U+Z=0, \text { i.e., } R=W
$$

Therefore it is decided only by C.
Another class is the set of Weyl structures with constant curvature. It implies that

$$
Z+W=0, \text { i.e., } R=P+U
$$

This imposes no conditions on P. Therefore it includes wider classes than the constant curvature class of a Levi-Civita connection. The classification problem of Weyl structures with constant curvature is not known.

Let Π be a 2-plane in $T_{x} M(x \in M)$ and let X, Y be an orthonormal basis of Π with respect to $g \in C$. Then, put

$$
K_{g}(\Pi)=g(R(X, Y) Y, X)
$$

It does not depend on the choice of an orthonormal basis of Π. It follows that K_{g} is constant on all 2-planes if and only if the Weyl structure is of Weyl constant curvature.

If the dimension of M is equal to 3 , the notion of Einstein-Weyl structure is equivalent to that of Weyl structure with constant curvature. The proof is similar to that of the equivalence between 3-dimensional Riemannian manifolds which are Einstein and manifolds of constant curvature (cf. [K-No, p. 293]). The examples and the classification of 3-dimensional Einstein-Weyl manifolds are given in [To].

8.2. Lie contact structure

Let M be a $(2 n+1)$-dimensional manifold with a contact structure. By definition, there exists a distribution D of codimension 1 on M such that at each point $x \in M$ the $2 n$-dimensional subspace $D(x) \subset T_{x} M$ is defined by

$$
D(x)=\left\{X \in T_{x} M \mid \theta(X)=0\right\}
$$

where θ is a local 1-form such that $\theta \wedge(d \theta)^{n}$ is a volume element. Remark that $\left.d \theta_{x}\right|_{D}$ defines a symplectic structure on D. As θ is unique up to nonzero functions, we have a conformal symplectic structure on the vector subbundle $D \subset T M$.

Put

$$
\mathfrak{g}_{-2}(x)=T_{x} M / D(x), \quad \mathfrak{g}_{-1}(x)=D(x), \quad \mathfrak{m}(x)=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}(x)
$$

Then a graded Lie algebra of contact type on $\mathfrak{m}(x)$ is naturally defined by the Lie bracket of vector fields on M. Namely, at each point $x \in M$ $\mathfrak{m}(x)$ is equivalent to the fundamental graded Lie algebra $\mathfrak{m}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ of contact type. Here \mathfrak{m} is a nilpotent graded Lie algebra and $\operatorname{dim} \mathfrak{g}_{-2}=1$, $\operatorname{dim} \mathfrak{g}_{-1}=2 n,[\cdot, \cdot]: \mathfrak{g}_{-1} \times \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{-2}$ is nondegenerate.

Let C be the contact group which is a subgroup of $G L(\mathfrak{m})$ consisting of the set of a linear isomorphism $\sigma: \mathfrak{m} \rightarrow \mathfrak{m}$ such that $\sigma\left(\mathfrak{g}_{-1}\right)=\mathfrak{g}_{-1}$ and the induced graded map $\sigma: \mathfrak{m} \rightarrow \mathfrak{m}$ is a Lie algebra isomorphism. With respect to a contact basis by the decomposition $\mathfrak{m}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}, C$ is represented by

$$
C=\left\{\left(\begin{array}{ll}
c & 0 \\
\xi & A
\end{array}\right) \subset G L(2 n+1, \mathbb{R}) \left\lvert\, \begin{array}{l}
{ }^{t} A J A=c J, A \in G L(2 n, \mathbb{R}), \\
c \neq 0 \in \mathbb{R}, \xi \in \mathbb{R}^{2 n}
\end{array}\right.\right\}
$$

where $J=\left(\begin{array}{cc}O_{n} & -I_{n} \\ I_{n} & O_{n}\end{array}\right)$. Remark that A belongs to the conformal symplectic group $C S p(n, \mathbb{R})$.

We mean by a frame z at $x \in M$ a linear isomorphism $z: \mathfrak{m} \cong \mathbb{R}^{2 n+1} \rightarrow$ $T_{x} M$. A frame $z: \mathfrak{m} \rightarrow T_{x} M$ is called adapted if $z\left(\mathfrak{g}_{-1}\right)=D(x)$ and the induced graded map $z: \mathfrak{m} \rightarrow \mathfrak{m}(x)$ is a Lie algebra isomorphism. Let $L_{C}(M)$ be the set of all adapted frames. Then $L_{C}(M)$ is a subbundle of the linear frame bundle $L(M)$ with structure group C.

Define a subgroup \tilde{G} of C by

$$
\tilde{G}=\left\{\left.\left(\begin{array}{cc}
\operatorname{det} \alpha & 0 \\
\xi & B \otimes \alpha
\end{array}\right) \in G L(2 n+1, \mathbb{R}) \right\rvert\, \begin{array}{l}
B \in O(n), \alpha \in G L(2, \mathbb{R}) \\
\xi \in \mathbb{R}^{2 n}
\end{array}\right\}
$$

A Lie contact structure on M is by definition a subbundle \tilde{P} of $L_{C}(M)$ with structure group \tilde{G}.

The model space is the unit tangent bundle $T_{1} S^{n+1}$ of the sphere S^{n+1}. It is a homogeneous space:

$$
T_{1} S^{n+1} \cong G / G^{\prime}, \quad G=P O(n+2,2)
$$

The image $\rho\left(G^{\prime}\right)$ of the linear isotropy representation $\rho: G^{\prime} \rightarrow G L(\mathfrak{m})$ of G^{\prime} is \tilde{G}. We remark that the Lie contact structures is a G structure of finite type while the general contact structures infinite type. In detail, see [S-Y1], [S-Y2], [Ta].

Moreover, define a subgroup \tilde{G}_{1} of \tilde{G} by

$$
\tilde{G}_{1}=\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a B & O \\
\zeta & b B & B
\end{array}\right) \right\rvert\, B \in O(n), a \neq 0 \in \mathbb{R}, b \in \mathbb{R}, \zeta \in \mathbb{R}^{n}\right\}
$$

For an n-dimensional manifold N with a conformal structure, a Lie contact structure is induced on the tangent sphere bundle $M=S(N)$ of N. See [S-Y1]. The conformal structure on N gives rise to the canonical reduction of the structure group of $L_{C}(S(N))$ to the subgroup \tilde{G}_{1}. So, a subbundle \tilde{P}_{1} of $L_{C}(M)$ with structure group \tilde{G}_{1} is called a conformal contact structure on M. In detail, see [S-Y2].

8.3. Geodesic flow

Let P be an $(n+1)$-dimensional manifold. The tangent sphere bundle $S(P)$ of P is a quotient space of $\dot{T} P$ defined as follows: Let $\dot{T} P$ denote the set removed the zero section from $T P$, then

$$
\begin{aligned}
S(P) & =\dot{T} P / \mathbb{R}_{+} \\
& =\left\{[v] \mid[v]: \text { the equivalence class of }\{t v\}, v \in T P\left(t \in \mathbb{R}_{+}\right)\right\}
\end{aligned}
$$

The natural projection $p: \dot{T} P \rightarrow S(P)$ defines a principal bundle with structure group \mathbb{R}_{+}and $p^{-1}([v])=\left\{t v \in \dot{T} P \mid t \in \mathbb{R}_{+}\right\}$. The transformation $a: \mathbb{R}_{+} \times \dot{T} P \rightarrow \dot{T} P$ of the structure group is $a:(t, v) \mapsto t v$ and, if $t \in \mathbb{R}_{+}$ is fixed, it defines the dilation $a_{t}: v \mapsto t v$. The fundamental vector field A^{*} satisfies $A_{v}^{*}=s v^{V}(v \in \dot{T} P)$ for Lie $\mathbb{R}_{+} \cong \mathbb{R} \ni s$. Here v^{V} denotes the vertical lift of v.

Assume that P has a conformal structure C. Take a Weyl connection ∇ on P associated with the conformal structure. A Weyl connection is defined,
as a linear connection, on the tangent bundle $T P$ of P. Let $\bar{H} \subset T \dot{T} P$ be the subbundle of the set of $(n+1)$-dimensional horizontal subspaces and $\bar{V} \subset T \dot{T} P$ the subbundle of the set of $(n+1)$-dimensional vertical subspaces. The bundle $T \dot{T} P$ is decomposed as the direct sum \bar{H} and $\bar{V}: T \dot{T} P=\bar{H} \oplus \bar{V}$.

Let $\bar{\pi}: \dot{T} P \rightarrow P$ and $\pi: S(P) \rightarrow P$ be the natural projections. Taking an arbitrary metric g in the conformal structure C, we define a subbundle $\bar{D} \subset T \dot{T} P$ with rank $2 n$ as follows: for $v \in \dot{T} P, x=\bar{\pi}(v)$,

$$
\bar{D}_{v}=\left\{\left(w_{1}^{H}, w_{2}^{V}\right) \in \bar{H} \oplus \bar{V} \mid g\left(v, w_{i}\right)=0, w_{i} \in \dot{T}_{x} P(i=1,2)\right\}
$$

where w^{H}, w^{V} are the horizontal lift, vertical lift of $w \in \dot{T}_{x} P$ to $T_{v} \dot{T} P$ respectively. We denote the horizontal component, vertical component of \bar{D}_{v} by $\bar{D}_{v}^{H}, \bar{D}_{v}^{V}$. The subbundle \bar{D} does not depend on the choice of g in C.

The geodesic flow on $S(P)$ is given as follows.
We fix an arbitrary metric g in the conformal structure C. Define a vector field $\bar{\eta}$ on $\dot{T}(P)$ by

$$
\bar{\eta}_{v}=\left(\frac{v^{i}}{|v|},-\sum_{j, k} \Gamma_{j k}^{i} \frac{v^{j} v^{k}}{|v|}\right) \in \bar{H}_{v} \oplus \bar{V}_{v}
$$

where $v=\left(v^{i}\right) \in \dot{T} P$ and $\Gamma_{j k}^{i}(i, j, k=1, \ldots, n+1)$ denote the Christoffel symbol of the Weyl connection. If $|v|=1, \bar{\eta}$ is equal to the horizontal lift v_{v}^{H} of v at $v \in \dot{T} P$.

Since the tangential mapping $a_{t_{*}}$ for the dilation a_{t} is written as $a_{t_{*}}$: $(X, Y) \mapsto(X, t Y)$, it follows that

$$
a_{t_{*}} \bar{\eta}_{v}=\bar{\eta}_{t v}
$$

Thus a vector field η is defined on $S(P)$ from the vector field $\bar{\eta}$ on $\dot{T} P$. Remark that trajectories are the same if we change the metric g in the conformal class C.

The projection of a trajectory of η to P is equal to a geodesic with respect to the Weyl connection. The parameter is not affine. We call the vector field η the geodesic flow vector field and the flow the geodesic flow ϕ_{t} on $S(P)$.

Put $\bar{H}_{v}=\bar{D}_{v} \oplus\left\langle\bar{\eta}_{v}\right\rangle$ and $\bar{D}_{v}=\bar{D}_{v}^{H} \oplus \bar{D}_{v}^{V}$. We have $a_{t_{*}}\left(\bar{H}_{v}\right)=$ $\bar{H}_{t v}, a_{t_{*}}\left(\bar{\eta}_{v}\right)=\bar{\eta}_{t v}, a_{t_{*}}\left(\bar{D}_{v}\right)=\bar{D}_{t v}, a_{t_{*}}\left(\bar{D}_{v}^{H}\right)=\bar{D}_{t v}^{H}$ and $a_{t_{*}}\left(\bar{D} v^{V}\right)=\bar{D}_{t v}^{V}$. Thus we get corresponding subbundles $H,\langle\eta\rangle, D, D^{H}$ and D^{V} of $T S(P)$. The space $T_{[v]} S(P)$ is regarded as $D_{[v]} \oplus\left\langle\left[v^{H}\right]\right\rangle$.

We recall the notion and the properties of Jacobi fields.
Let c be a geodesic on P with respect to the Weyl connection ∇. By definition a Jacobi field J along c is a vector field along c which satisfies a second order differential equation

$$
\nabla_{\dot{c}} \nabla_{\dot{c}} J+R(J, \dot{c}) \dot{c}=0
$$

If we put $R_{\dot{c}} J=R(J, \dot{c}) \dot{c}$, the equation above becomes $\nabla_{\dot{c}} \nabla_{\dot{c}} J+R_{\dot{c}} J=0$. A Jacobi field along c means the transversal vector field of the variation of c by means of geodesics.

An orthogonal Jacobi field $J=J(t)$ along $c=c(t)$ on P corresponds to one-to-one geodesic flow invariant vector field $Y=Y(t)=\phi_{t_{*}} Y(0)$ along $\dot{c}=\dot{c}(t)=\phi_{t} \dot{c}(0)$ on $S(P)$ as follows:

$$
T_{c(t)} P \ni J(t) \longmapsto Y(t)=\left(J(t)^{H},\left(\nabla_{\dot{c}} J(t)\right)^{V}\right) \in T_{\dot{c}(t)}^{H} S(P) \oplus T_{\dot{c}(t)}^{V} S(P)
$$

The tangential mapping for the geodesic flow ϕ_{t} is described as follows. Let v be an element of $S(P)$ and X an element of $T_{v} S(P)$. If $Y=Y(t)$ is a Jacobi field such that $Y(0)=X$,

$$
\phi_{t_{* \mid v}}(X)=Y(t)
$$

holds. See [B].
Hence a vector field J along c on P is a Jacobi field if and only if, for a vector field $Y=J^{C}=\left(J^{H},\left(\nabla_{\dot{c}} J\right)^{V}\right)$ (called the complete lift J^{C} of J, see [Y-I]) along \dot{c} on $S(P)$,

$$
\phi_{t_{*}} Y=Y
$$

holds.
We have another look of Jacobi fields that satisfy the second order differential equation along c on P as the first order differential equation along \dot{c} on $S(P)$. We write $W=\binom{w_{1}}{w_{2}}$ for $W=w_{1}^{H}+w_{2}^{V} \in D_{v} \subset T_{v}^{H} S(P) \oplus$ $T_{v}^{V} S(P)=T_{v} S(P)$, where $w_{1}, w_{2} \in T_{\pi(v)}(P), g\left(v, w_{i}\right)=0(i=1,2)$. We define an endomorphism K_{v} on $T_{v} S(P)$ by

$$
K_{v}\binom{w_{1}}{w_{2}}=\left(\begin{array}{cc}
O & I \\
-R_{v} & O
\end{array}\right)\binom{w_{1}}{w_{2}}
$$

for $v \in T_{x} P(x \in P)$. This defines a cross section K of the bundle $\operatorname{Hom}(T S(P), T S(P))$ over $S(P)$.

We remark that, for the geodesic flow vector field η to \dot{c} on $S(P)$ corresponding to a geodesic $c=c(t)$ on $P, \eta_{\mid \dot{c}(t)}=\binom{\dot{c}(t)}{0}$ holds. For a vector field $Y=Y(t)=\binom{Y_{1}(t)}{Y_{2}(t)}$ along $\dot{c}=\dot{c}(t)$, put

$$
\nabla_{\eta}^{H}\binom{Y_{1}}{Y_{2}}=\binom{\nabla_{\dot{c}} Y_{1}}{\nabla_{\dot{C}} Y_{2}}
$$

We consider the following first order differential equation along \dot{c} on $S(P)$:

$$
\nabla_{\eta}^{H} Y=K_{\dot{c}} Y
$$

 that $Y_{1}=Y_{1}(t)$ is a Jacobi field along c on P.

8.4. Twistor theory by Weyl connections

With respect to the bases on $S(P)$ of the horizontal lift and the vertical lift of the conformal bases on P, the structure group of the tangent bundle $T S(P)$ reduces to

$$
\tilde{G}_{1}=\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a B & O \\
\zeta & b B & B
\end{array}\right) \right\rvert\, B \in O(n), a \neq 0 \in \mathbb{R}, b \in \mathbb{R}, \zeta \in \mathbb{R}^{n}\right\}
$$

This defines a Lie contact structure on $S(P)$. Remark that we call the induced Lie contact structure a conformal contact structure.

According to [S-Y1], we have the following.
Proposition 8.1. Let P be an $(n+1)$-dimensional manifold with a conformal structure C. Then, a Lie contact structure on the tangent sphere bundle $S(P)$ of P is defined by the conformal structure C on P.

Next, we have the following.
Proposition 8.2. The Lie contact structure on $S(P)$ induced by a Weyl structure on P is invariant under the geodesic flow if and only if the Weyl structure on P is of Weyl constant curvature.

Proof. Let $c=c(t)$ be a geodesic on P. Let $e_{i}=e_{i}(t)(i=0,1, \ldots, n)$ be parallel orthonormal vector fields along c and with $e_{0}=\dot{c}=v$. Vectors e_{i}^{H} and e_{i}^{V} are regarded as the horizontal lifts and vertical lifts of them
along the geodesic flow orbit $\dot{c}=\dot{c}(t)$ respectively. For $B \in O(n)$ and $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, \mathbb{R})$, we define an endomorphism $\sigma_{B, \alpha}$ on D_{v} by

$$
\sigma_{B, \alpha}=\left(\begin{array}{cc}
a B & b B \\
c B & d B
\end{array}\right) \in O(n) \otimes G L(2, \mathbb{R})
$$

with respect to $e_{1}^{H}, \ldots, e_{n}^{H}, e_{1}^{V}, \ldots, e_{n}^{V}$. Furthermore, define an endomor$\operatorname{phism} \tilde{\sigma}_{B, \alpha, \xi}$ on $T_{v} S(P)$ at $v \in S(P)$ by $\tilde{\sigma}_{B, \alpha}=\left(\begin{array}{cc}\operatorname{det} \alpha & 0 \\ \xi & \sigma_{B, \alpha}\end{array}\right), \xi \in \mathbb{R}^{2 n}$.

A Lie contact structure is to assign the following subset of frames at $v \in S(P)$:

$$
\tilde{P}_{v}=\left\{\left.\tilde{\sigma}_{B, \alpha, \xi}\left(\begin{array}{c}
e_{0}^{H}(0) \\
e_{i}^{H}(0) \\
e_{i}^{V}(0)
\end{array}\right) \right\rvert\, B \in O(n), \alpha \in G L(2, \mathbb{R}), \xi \in \mathbb{R}^{2 n}\right\}
$$

Then, that the Lie contact structure on $S(P)$ is invariant under the geodesic flow ϕ_{t} means

$$
\phi_{t_{*}} \tilde{P}_{v} \subset \tilde{P}_{\phi_{t}(v)}
$$

in other words,

$$
\phi_{t_{*}}\left(\begin{array}{c}
e_{0}^{H}(0) \\
e_{i}^{H}(0) \\
e_{i}^{V}(0)
\end{array}\right)=\tilde{\sigma}_{B^{\prime}, \alpha^{\prime}, \xi^{\prime}}\left(\begin{array}{c}
e_{0}^{H}(t) \\
e_{i}^{H}(t) \\
e_{i}^{V}(t)
\end{array}\right)
$$

for some $B^{\prime} \in O(n), \alpha^{\prime} \in G L(2, \mathbb{R})$ and $\xi^{\prime} \in \mathbb{R}^{2 n}$. Here $\tilde{\sigma}_{B^{\prime}, \alpha^{\prime}, \xi^{\prime}}$ depends on the parameter t.

By differentiating with respect to the variable t, it follows that the Lie contact structure on $S(P)$ is invariant under the geodesic flow ϕ_{t} if and only if

$$
K_{v}=\left(\begin{array}{cc}
O & I \\
-R_{v} & O
\end{array}\right)=\left(\begin{array}{cc}
x I+A & y I+A \\
z I+A & w I+A
\end{array}\right) \in I_{n} \otimes \mathfrak{g l}(2, \mathbb{R}) \oplus \mathfrak{o}(n) \otimes I_{2}
$$

for some $A \in \mathfrak{o}(n)$ and $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right) \in \mathfrak{g l}(2, \mathbb{R})$. Here $I_{n} \otimes \mathfrak{g l}(2, \mathbb{R}) \oplus \mathfrak{o}(n) \otimes I_{2}$ is the Lie algebra of $O(n) \otimes G L(2, \mathbb{R})$.

Therefore it follows that $x=0, w=0, y=1, A=O$ and $R_{v}=-z I$. From this, we have $\sigma_{B^{\prime}, \alpha^{\prime}}=\left(\begin{array}{cc}I & I I \\ z I & I\end{array}\right)$ and

$$
R_{v}=\lambda_{v} I
$$

for some $\lambda_{v} \in \mathbb{R}$. Taking $w \in D_{v}$ such that $g(w, w)=1$, we obtain

$$
\begin{aligned}
g(R(w, v) v, w) & =g\left(R_{v}(w), w\right) \\
& =g\left(\lambda_{v} w, w\right) \\
& =\lambda_{v}
\end{aligned}
$$

This means that the sectional curvature of any planes including v with respect to g is constant λ_{v}.

For v^{\prime} orthogonal to v, from a similar argument to v, the sectional curvature of any planes including v^{\prime} with respect to g is constant $\lambda_{v^{\prime}}$. The sectional curvature of the plane spanned by v and v^{\prime} is $\lambda_{v}=\lambda_{v^{\prime}}$.

Hence, for an arbitrary $v \in T_{x} P$ with $g(v, v)=1, \lambda=\lambda_{v}$ is identically constant. Therefore P has a Weyl structure with constant curvature.

Therefore this completes the proof.
We note that, as compared with a Levi-Civita connection, a Weyl connection does not make the metric g parallel in general. Therefore R_{v} is not symmetric in general. We can decompose R_{v} into the symmetric part and the anti-symmetric part:

$$
R_{v}=R_{v}^{s}+R_{v}^{a}
$$

The Ricci tensor Ric is not also symmetric in general.
We remark that, when a conformal structure is defined from a Riemannian structure and a Weyl connection from the Levi-Civita connection on P, the Lie contact structure on the unit tangent bundle $T_{1} P$ is invariant under the geodesic flow if and only if P is of constant curvature.

In order to ensure that M is a manifold, we assume that P is an enough small convex domain.

From the above proposition and the proof, we have the following:
Theorem 8.1. Let P be an $(n+1)$-dimensional manifold with a Weyl structure with constant curvature. Then the structure on P induces a righthalf Grassmannian flat Grassmannian structure of type $(n, 2)$ on the orbit space M of the geodesic flow.

We may regard the manifold $S(P)$ as a null n-plane bundle F_{L} of M with the Grassmannian structure of type $(n, 2)$ and the fibre is $\mathbb{R}^{1}\left(\subset S^{1}\right)$. Each null n-manifold is diffeomorphic to S^{n}.

Assume that $n=2$.
Remark that, in 3-dimensional Weyl structures, the notion of EinsteinWeyl and that of Weyl constant curvature are equivalent.

On the 5 -dimensional $S(P)$, a CR structure of type $(1,1)$ is naturally defined as follows: for $T_{v} S(P)$ at $v \in S(P)$, it is defined by $\pi / 2$-rotation in the horizontal lift and $\pi / 2$-rotation in the vertical lift of D_{v} respectively. The CR structure is integrable. As there is a (graded) Lie algebra isomorphism of $\mathfrak{o}(4,2) \cong \mathfrak{s u}(2,2)$, a Lie contact structure on a 5 -dimensional contact manifold is equivalent to a CR structure with a nondegenerate and indefinite Levi form. See [S-Y1]. Therefore a complex structure J on M is induced by the CR structure on $S(P)$.

Remark that, on M as the manifold of geodesics, a symplectic structure is not necessarily defined from $S(P)$ with the contact structure (cf. [B, p. 58]).

Since the notion of Grassmannian structures of type $(2,2)$ and that of conformal structures of type $(2,2)$ are equivalent, we have the following:

Theorem 8.2. Let P be a 3-dimensional manifold with an EinsteinWeyl structure. Then the structure on P induces a self-dual conformal Hermitian structure of type $(2,2)$ on the orbit space M of the geodesic flow.

References

[A-G1] M. A. Akivis and V. V. Goldberg, Conformal differential geometry and its generalizations, John Wiley and Sons, Inc., New York, 1996.
[A-G2] , On the theory of almost Grassmann structures, in New developments in differential geometry (J. Szenthe, ed.), Kluwer Academic Publishers, Dordrecht, Boston, London (1998), pp. 1-37.
[A-G3] _, Conformal and Grassmann structures, Differential Geom. Appl., 8 (1998), 177-203.
[A-G4] -, Semiintegrable almost Grassmann structures, Differential Geom. Appl., 10 (1999), 257-294.
[B] A. L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
[B-E] T. N. Bailey and M. G. Eastwood, Complex paraconformal manifolds - their differential geometry and twistor theory, Forum Math., 3 (1991), 61-103.
[G] A. B. Goncharov, Generalized conformal structures on manifolds, Selecta Math. Sov., 6 (1987), 307-340.
[Ha] T. Hangan, Geómétrie différentielle Grassmannienne, Rev. Roum. Math. Pures Appl., 11 (1966), 519-531.
[He] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, London, 1978.
[Hi] N. J. Hitchin, Complex manifolds and Einstein's equations, in Twistor geometry and non-linear systems (H. D. Doebner, T. D. Palev, eds.), Lecture Notes in Math. 970, Springer-Verlag, Berlin, Heidelberg, New York (1982), pp. 73-99.
[I] T. Ishihara, On tensor-product structures and Grassmannian structures, J. Math. Tokushima Univ., 4 (1970), 1-17.
[J-T] P. E. Jones and K. P. Tod, Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum. Grav., 2 (1985), 565-577.
[Ka] S. Kaneyuki, On the subalgebras \mathfrak{g}_{0} and $\mathfrak{g}_{\text {ev }}$ of semisimple graded Lie algebras, J. Math. Soc. Japan., 45 (1993), 1-19.
[Ko] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[K-M] H. Kamada and Y. Machida, Self-duality of metrics of type $(2,2)$ on four-dimensional manifolds, Tohoku Math. J., 49 (1997), 259-275.
[K-Na] S. Kobayashi and T. Nagano, On filterd Lie algebras and geometric structures I, J. Math. Mech., 13 (1964), 875-907.
[K-No] S. Kobayashi and K. Nomizu, Foundations of differential geometry I, Interscience Publishers, John Wiley and Sons, New York, London, 1963.
[Ma] Y. I. Manin, Gauge field theory and complex geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
[Mi] Y. I. Mikhailov, On the structure of almost Grassmannian manifolds, Soviet Maht., 22 (1978), 54-63.
[Ma-Sa] Y. Machida and H. Sato, Twistor spaces for real four-dimensional Lorentzian manifolds, Nagoya Math. J., 134 (1994), 107-135.
[Mi-St] J. Milnor and J.D. Stasheff, Characteristic classes, Princeton Univ., 1974.
[O] T. Ochiai, Geometry associated with semisimple flat homogeneous spaces, Trans. Amer. Math. Soc., 152 (1970), 159-193.
[P-S] H. Pedersen and A. Swann, Riemannian submersions, four-manifolds and Ein-stein-Weyl geometry, Proc. London Math. Soc., 66 (1993), 381-399.
[P-T] H. Pedersen and K. P. Tod, Three-dimensional Einstein-Weyl geometry, Adv. in Math., 97 (1993), 74-109.
[S] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., New Jersey, 1964.
[S-Y1] H. Sato and K. Yamaguchi, Lie contact manifods, in Geometry of manifolds (K. Shiohama, ed.), Academic Press, Boston (1989), pp. 191-238.
[S-Y2] _, Lie contact manifolds II, Math. Ann., 297 (1993), 33-57.
[Ta] M. Takeuchi, A remark on Lie contact structures, Science Report Coll. Ge. Ed. Osaka Univ., 42 (1993), 29-37.
[To] K. P. Tod, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc., 45 (1992), 341-351.
[T1] N. Tanaka, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 8 (1979), 23-84.
[T2] , On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J., 14 (1985), 277-351.
[T3] , On geometric theory of systems of ordinary differential equations, Lectures in Colloq. on Diff. Geom. at Sendai, August, 1989.
[W] R. O. Wells, Jr., Complex geometry in mathematical physics, Presses de l'Université de Montréal, Montréal, 1982.
[W-W] R. S. Ward and R. O. Wells, Jr., Twistor geometry and field theory, Cambridge Univ. Press, 1990.
[Y] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Advanced Studies in Pure Math., 22 (1993), 413-494.
[Y-I] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, New york, 1973.

Yoshinori Machida
Numazu College of Technology
3600 Ooka
Numazu-shi
Shizuoka, 410-8501
Japan
nachida@la.numazu-ct.ac.jp
Hajime Sato
Graduate School of Mathematics
Nagoya University
Chikusa-ku
Nagoya, 464-8602
Japan
hsato@math.nagoya-u.ac.jp

[^0]: Received February 12, 1998. Revised October 21, 1999.
 2000 Mathematics Subject Classification: 53C28, 53C15.

