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TWISTOR THEORY OF MANIFOLDS WITH

GRASSMANNIAN STRUCTURES

YOSHINORI MACHIDA and HAJIME SATO

Abstract. As a generalization of the conformal structure of type (2, 2), we
study Grassmannian structures of type (n, m) for n, m ≥ 2. We develop their
twistor theory by considering the complete integrability of the associated null
distributions. The integrability corresponds to global solutions of the geometric
structures.

A Grassmannian structure of type (n, m) on a manifold M is, by definition,
an isomorphism from the tangent bundle TM of M to the tensor product
V ⊗W of two vector bundles V and W with rank n and m over M respectively.
Because of the tensor product structure, we have two null plane bundles with
fibres P m−1(

�
) and P n−1(

�
) over M . The tautological distribution is defined

on each two bundles by a connection. We relate the integrability condition
to the half flatness of the Grassmannian structures. Tanaka’s normal Cartan
connections are fully used and the Spencer cohomology groups of graded Lie
algebras play a fundamental role.

Besides the integrability conditions corrsponding to the twistor theory, the
lifting theorems and the reduction theorems are derived. We also study twistor
diagrams under Weyl connections.

Introduction

An aspect of the twistor theory of R. Penrose is to know the relations

and correspondences between geometric structures defined by a double fi-

bration
F

↙ ↘
P M

for three spaces F , P and M .

As a flat model, we take the spaces F , P and M to be the homogeneous

spaces of a fixed Lie group G. The group G is considered as the automor-

phism group of each suitably defined geometric structure. Then the maps
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in the double fibration have geometric meanings. As a curved analogue, we

take the spaces F , P and M to be the manifolds with corresponding geo-

metric structures. The twistor correspondence between P and M is given by

choosing the moduli space of the orbits of the distribution which is naturally

defined from the geometric structure.

Penrose himself treated the case where M is the Grassmann manifold

of 2-planes in C
4 and P = P 3(C). Between curved manifolds, the corre-

spondence is given when M is half conformally flat ([W-W]).

As a real version of these structures, we can consider the real 4-dimen-

sional space-time M = S2 × S2 of (2, 2)-type metric and P = P 3(R). We

put on C
4 a Hermitian inner product with type (2, 2). By the restriction to

the null spaces of the Hermitian inner product, we get M = S3 × S1 and

P = S3 × S2. The corresponding geometric structures are 4-dimensional

Lorentzian geometry and 5-dimensional CR geometry with Levi signature

(1, 1). We have studied the twistor theory for real space-times of (3, 1)-type

metric, i.e., Lorentzian metric in [Ma-Sa]. For real space-times of (2, 2)-type

metric, i.e., neutral metric, see [K-M].

In this paper, as a generalization of conformal structures of type (2, 2),

we study Grassmannian structures of type (n,m). The case where m = 2 is

more interesting, since we can define the notion of half flatness meaningfully

and the geometric structure of the twistor partner is a different projective

structure from a Grassmannian structure. By N. Tanaka’s theory [T1], the

normal Cartan connection is uniquely defined on some principal bundle Q

associated with G over a manifold M with a Grassmannian structure of

type (n,m). By this connection, we define the notion of half flatness for the

Grassmannian structures of type (n,m). Furthermore, it is important to

consider the harmonic part HK of the curvature function K of the normal

Cartan connection, which is the fundamental invariant and is generated by

the nonzero generators in the 2-dimensional generalized Spencer cohomol-

ogy.

A Grassmannian structure of type (n,m) on M is defined by an iso-

morphism from the tangent bundle TM of M to the tensor product V ⊗W

of two vector bundles V and W with rank n and m over M respectively.

Considering a set of all the null n-planes with forms {Vx ⊗ w | w ∈ Wx}
in TxM at each point x ∈ M , we have a null n-plane bundle FL with fibre

Pm−1(R) and the projection $L : FL → M over M . Similarly, consider-

ing a set of all the null m-planes with forms {v ⊗Wx | v ∈ Vx} in TxM ,
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we have a null m-plane bundle FR with fibre Pn−1(R) and the projection

$R : FR →M over M . By the normal Cartan connection, the tautological

distribution DL of null n-planes on FL over M and DR of null m-planes on

FR over M are defined respectively. We have the following result.

Theorem 5.1, 6.1. Let M be a manifold with a Grassmannian struc-

ture of type (n,m) and equipped with the normal Cartan connection ω. Then

(1) the tautological distribution DL on the null n-plane bundle FL over

M is completely integrable if and only if the Grassmannian structure on M

is

1. if n, m ≥ 3, right-half torsion-free, i.e., HK0
R = 0,

2. if n ≥ 3, m = 2, torsion-free, i.e., K0 = HK0 = 0,

3. if n = 2, m = 2, right-half Grassmannian flat, i.e., HK1
R = 0,

(2) the tautological distribution DR on the null m-plane bundle FR over

M is completely integrable if and only if the Grassmannian structure on M

is

1. if n, m ≥ 3, left-half torsion-free, i.e., HK0
L = 0,

2. if n ≥ 3, m = 2, left-half Grassmannian flat, i.e., HK1 = 0,

3. if n = 2, m = 2, left-half Grassmannian flat, i.e., HK1
L = 0.

The result has some overlap with Chapter 7 of recently published book

by Akivis-Goldberg ([A-G1, Theorems 7.4.4, 7.4.5 and 7.4.6], cf. [A-G2],

[A-G3], [A-G4]). We have obtained the results independently in the frame-

work of the twistor theory using Tanaka’s Cartan connection [T1].

Our result gives a construction of the global completely integrable dis-

tribution. This corresponds to a construction of a global solution more than

the construction of a local solution of the differential equation which defines

the null distribution.

The null n-plane bundle FL and the null m-plane bundle FR over M

have also geometric structures, which we call co-Grassmannian structures.

A co-Grassmannian structure of type (k, l) on a manifold R is defined

by a pair (E,F ) consisting of transversal, completely integable distribu-

tions of dimensions k and l on the tangent bundle TR of R such that

(i) TR = D + [D,D] and (ii) rank TR/D = rank E · rank F (= kl) for

D = E ⊕ F . Tanaka settled the equivalence problem of the system of or-

dinary differential equations of second order [T3]. On that occation, he

defined a pseudo-projective systems in the sense of Tanaka ([T2]). We con-

sider a co-Grassmannian structure of type (k, l) as the extension. When
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l = 2, it coincides with a Tanaka’s pseudo-projective system. Note that

a Grassmannian structure on M is defined by an isomorphism of TM to

a tensor product of two vector bundles. By the Tanaka theory, we have

the normal Cartan connections on FL and FR. Then we have the following

lifting theorem.

Theorem 5.2, 6.2. (Lifting Theorem) Let M be a manifold with a

Grassmannian structure of type (n,m) and equipped with the normal Cartan

connection ω.

(1) Suppose that an n-dimensional tautological distribution DL of null

n-planes on the null n-plane bundle FL over M is completely integrable.

Then a pair (DL, EL = Ker($L)∗) defines a co-Grassmannian structure of

type (n,m− 1) on FL. Moreover the normal Cartan connection (Q,ω) of a

Grassmannian structure of type (n,m) induces the normal Cartan connec-

tion (Q,ω) of the co-Grassmannian structure of type (n,m− 1) on FL.

(2) Suppose that an m-dimensional tautological distribution DR of null

m-planes on the null m-plane bundle FR over M is completely integrable.

Then a pair (ER = Ker($R)∗,DR) defines a co-Grassmannian structure of

type (n− 1,m) on FR. Moreover the normal Cartan connection (Q,ω) of a

Grassmannian structure of type (n,m) induces the normal Cartan connec-

tion (Q,ω) of the co-Grassmannian structure of type (n− 1,m) on FR.

A co-Grassmannian structure induces a Grassmannian structure on one

of two leaf spaces defined by the structure under the vanishing of some part

of the harmonic part HK of the curvature function K. We have the following

reduction theorem.

Theorem 7.1. (Reduction Theorem) Let F be a manifold with a co-

Grassmannian structure of type (k, l) by a pair (D2,D1) and equipped with

the normal Cartan connection (Q,ω). Put M1 = F/D1,M2 = F/D2 with

the canonical projections ν : F →M1, µ : F →M2. Then

1. if l ≥ 3, we have HK = (HK0)1 + (HK0)2, and

(i) (HK0)1 = 0⇐⇒ (Q,ω) is reduced to (Q1, ω1) over M1,

(ii) (HK0)2 = 0⇐⇒ (Q,ω) is reduced to (Q2, ω2) over M2,

2. if l = 2,

(a) for k ≥ 3, we have HK = (HK0)1 + (HK0)2 + (HK0)3, and

(i) (HK0)1 = (HK0)2 = 0⇐⇒ (Q,ω) is reduced to (Q1, ω1) on M1,

(ii) (HK0)3 = 0⇐⇒ (Q,ω) is reduced to (Q2, ω2) on M2,
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(b) for k = 2, we have HK = (HK0)1 + (HK0)2 + (HK0)3 + (HK0)4,

and

(i) (HK0)1 = (HK0)2 = 0⇐⇒ (Q,ω) is reduced to (Q1, ω1) on M1,

(ii) (HK0)3 = (HK0)4 = 0⇐⇒ (Q,ω) is reduced to (Q2, ω2) on M2,

3. if l = 1,

(a) for k ≥ 3, we have HK = HK1 + HK2, and

(i) HK1 = 0⇐⇒ (Q,ω) is reduced to (Q1, ω1) on M1,

(ii) HK2 = 0⇐⇒ (Q,ω) is reduced to (Q2, ω2) on M2,

(b) for k = 2, we have HK = HK0 + HK1 + HK2, and

(i) HK1 = 0⇐⇒ (Q,ω) is reduced to (Q1, ω1) on M1,

(ii) HK2 = HK0 = 0⇐⇒ (Q,ω) is reduced to (Q2, ω2) on M2.

Here, (Q1, ω1) on M1 and (Q2, ω2) on M2 have Grassmannian struc-

tures, especially in 3 (a) (ii), (b) (ii) (Q2, ω2) has a projective structure.

We show that the normal Cartan connection on FL (resp. FR) over

M1 (resp. M2) is induced from a Grassmannian structure of the moduli

space M2 (resp. M1) of orbits of the distribution DL (resp. DR) only if

the Grassmannian structure on M1 (resp. M2) is flat. Indeed we have the

following twistor theorem.

Theorem 7.2, 7.3. (Twistor Theorem)

1. Let M1 be a manifold with a right-half torsion-free Grassmannian

structure of type (n,m). Then, if the structure on M1 induces a Grassman-

nian structure of type (n + 1,m − 1) on M2 = FL/DL, the Grassmannian

structure of type (n,m) on M1 is flat.

2. Let M2 be a manifold with a left-half torsion-free Grassmannian

structure of type (n + 1,m − 1). Then, if the structure on M2 induces a

Grassmannian structure of type (n,m) on M1 = FR/DR, the Grassman-

nian structure of type (n + 1,m− 1) on M2 is flat.

In particular, assume that m = 2.

1. Let M1 be a 2n-dimensional manifold with a right-half Grassmannian

flat Grassmannian structure of type (n, 2). Then, if the structure on M1

induces a projective structure on M2, the Grassmannian structure of type

(n, 2) on M1 is flat.

2. Let M2 be an (n+1)-dimensional manifold with a projective structure.

Then, if the structure on M2 induces a Grassmannian structure of type

(n, 2) on the orbit space M1 of the geodesic flow, the projective structure on

M2 is flat.
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Here, in 1 FL denotes the null n-plane bundle on M1, and in 2 FR

denotes the null (m− 1)-plane bundle on M2.

By the theorem above, we know that the flat models play important

roles in the twistor diagrams together with the geometric structures. Now,

we consider Weyl connections associated with conformal structures on a lin-

ear frame bundle in place of a normal Cartan connection on a frame bundle

of second order. We study geometric structures related to the geodesic flows

of the Weyl connections. Then, even for some non-flat spaces the twistor

diagrams work well. We have the following.

Theorem 8.1, 8.2. Let P be an (n + 1)-dimensional manifold with a

Weyl structure with constant curvature. Then the structure on P induces a

right-half Grassmannian flat Grassmannian structure of type (n, 2) on the

orbit space M of the geodesic flow.

In particular, assume that n = 2. Let P be a 3-dimensional manifold

with an Einstein-Weyl structure. Then the structure on P induces a self-

dual conformal Hermitian structure of type (2, 2) on the orbit space M of

the geodesic flow.

This paper is organized as follows:

In Section 1, we define a Grassmannian structure of type (n,m) and

consider its structure group as a geometric structure. Typical examples

are Grassmann manifolds, which are the flat models. We give some non-flat

examples too. A topological obstruction to the existence of a Grassmannian

structure of type (n, 2) is described. As a consequence, the sphere S2n and

the quaternionic projective space Pm(H) (n = 2m) admit no Grassmannian

structures of type (n, 2). In the case n = 2, we remark that the notion of a

Grassmannian structure of type (2, 2) is equivalent to that of a conformal

structure of type (2, 2). (See also [A-G1, Table 7.4.1] and [A-G3], [A-G4].)

In Section 2, we regard a Grassmannian structure of type (n,m) as a

geometric structure related to a simple graded Lie algebra of first kind. We

apply the Tanaka theory which induces the existence of a unique normal

Cartan connection. As a condition of the curvature, we give the definition

of half flatness due to the decomposition of two invariant subspaces of the

space of 2-forms Λ2.

In Section 3, we review the Tanaka theory including the generalized

Spencer cohomology, the harmonic theory and the existence of a normal

Cartan connection. We explicitly write down the normal Cartan connec-

tion for a Grassmannian structure of type (n,m). We indicate the nonzero
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generators as g0-module in the 2-dimensional generalized Spencer cohomol-

ogy H2, which make use of the fundamental invariant HK of the curvature

function K.

In Section 4, we define a co-Grassmannian structure of type (k, l). Typ-

ical examples are some generalized flag manifolds, which are the flat mod-

els. By considering a graded Lie algebra of second kind of type (k, l) co-

Grassmann (abbreviated to a type (k, l) CGR), we apply the Tanaka theory

which induces the existence of the normal Cartan connection. We indicate

the nonzero generators in H2 associated with a graded Lie algebra of type

(k, l) CGR.

In Section 5, we consider the null n-plane bundle FL to be the set of

all null n-planes for a manifold M with a Grassmannian structure of type

(n,m). The space FL is a fibre bundle with fibre Pm−1(R) over M . We define

a tautological n-dimensional distribution DL on FL over M using the normal

Cartan connection. We prove the theorem that the distribution DL on FL

over M is completely integrable if and only if the Grassmannian structure

on M is right-half flat. We give a non-flat half-flat example. Next, under

complete integrability of DL on FL, we mention that a co-Grassmannian

structure of type (n,m− 1) is defined on FL.

In Section 6, in the same way as in Section 5, we consider the null m-

plane bundle FR to be the set of all null m-planes for M . The space FR is

a fibre bundle with fibre Pn−1(R) over M . We define the tautological m-

dimensional distribution DR on FR over M , and give the condition for DR

to be completely integrable, that is, left-half flatness. Next, under complete

integrability of DR on FR, we mention that a co-Grassmannian structure of

type (n− 1,m) on FR is defined on FR. We describe a projective structure

that is a Grassmannian structure of type (n, 1).

In Section 7, we interpret the results above under the diagram of the

twistor theory. We explain the twistor diagrams of Grassmannian structures

in terms of the Dynkin diagrams. We show the reduction theorem from

co-Grassmannian structures down to Grassmannian structures under the

vanishing of some part of HK. Furthermore we show that the flat models

play important roles in the twistor diagrams together with the geometric

structures.

In Section 8, after preparing the notions of Einstein-Weyl structure, Lie

contact structure, geodesic flow and Jacobi field, we study twistor diagrams

under Weyl connections. We show that the Weyl connections with constant

curvature work well in the twistor diagrams.
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§1. Definitions and examples of Grassmannian structures

1.1. Definitions

We define Grassmannian structures of type (n,m).

Let M be an l-dimensional real manifold. In this paper we study only

the real category and not the complex category.

A Grassmannian structure of type (n,m) on M is defined by an isomor-

phism σ from the tangent bundle TM of M to the tensor product V ⊗W

of two vector bundles V and W with rank n and m (n,m ≥ 2) over M

respectively:

σ : TM
∼=−→ V ⊗W.

Note that there are various names and different but essentially equivalent

definitions. (e.g., almost Grassmannian structure [Mi], [A-G1], Grassman-

nian spinor structure [Ma], tensor product structure [Ha], [I], paraconformal

structure [B-E], generalized conformal structure [G].) If M has a Grassman-

nian structures of type (n,m), the dimension l of M is equal to mn.

Consider the mn-dimensional vector space R
mn = R

n⊗R
m. The group

GL(n, R) acts on R
n in the usual way and GL(m, R) acts by inverse from

the right on R
m. The combined action gr(n,m) ⊂ GL(mn, R) is the (n2 +
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m2−1)-dimensional tensor product linear Lie group GL(n, R)⊗GL(m, R).

We have the natural projection

ρ : GL(m, R)×GL(n, R) −→ gr(n,m) = GL(n, R)⊗GL(m, R)

which defines a fibre bundle with fibre R
∗ by the scalar multiplication.

Let M be a manifold with a Grassmannian structure of type (n,m).

Then the structure group of TM is reduced to gr(n,m).

Let S(GL(m,R)×GL(n, R)) be the subgroup of SL(m+n, R) consisting

of matrices of the form
(

A O

O B

)
, A ∈ GL(m, R), B ∈ GL(n, R).

Restricting the homomorphism ρ to the subgroup S(GL(m,R)×GL(n, R)),

we have the homomorphism

h : S(GL(m,R)×GL(n, R)) −−−→ gr(n,m) = GL(n, R)⊗GL(m, R)

∩ ∩
SL(m + n, R) GL(mn, R).

If we restrict the above GL(m, R) and GL(n, R) to GL+(m, R) = {A ∈
GL(m, R) | det(A) > 0} and GL+(n, R) = {B ∈ GL(n, R) | det(B) >

0} respectively, the homomorphism h is surjective. We define a Lie group

GR(n,m) by the image of h.

Identify R
mn = R

n ⊗ R
m with the set of matrices of the form

(
Im O

X In

)
, X ∈ Mat(n×m, R).

Then, for g ∈ S(GL(m,R) × GL(n, R)), h(g) is expressed by the adjoint

action of g:

h(g)(x) = Ad(g)(x) for x ∈ R
mn.

Therefore GR(n,m) is the image of the linear isotropy representation of

S(GL(m,R) ×GL(n, R)).

A spin Grassmannian structure of type (n,m) on a manifold M is a

lifting for h of the structure group GR(n,m) of TM to S(GL(m,R) ×
GL(n, R)). From now on, we consider manifolds with spin Grassmannian

structure of type (n,m).
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Let M be a manifold with a Grassmannian structure of type (n,m).

Put

SGR(n,m) = GR(n,m) ∩ SL(mn, R).

Suppose that the structure group of TM is reduced to SGR(n,m). The

restriction of h on SL(m, R)× SL(n, R) is a surjective covering

h : SL(m, R)× SL(n, R) −−−→ SGR(n,m)

∩ ∩
S(GL(m,R) ×GL(n, R)) GR(n,m).

Then M is called a manifold with a scaled Grassmannian structure of type

(n,m).

1.2. Typical examples

Typical examples of manifolds with Grassmannian structures are Grass-

mann manifolds.

Let Gm,n+m be a Grassmann manifold consisting of all m-dimensional

subspaces in the (n+m)-dimensional real vector space R
n+m. Then Gm,n+m

is of dimension mn.

The group G = SL(m + n, R) acts transitively on Gm,n+m. Let G′ be

the isotropy group at the base point. Then we have

Gm,n+m
∼= G/G′.

Let Um,n+m be the universal bundle over Gm,n+m. Since the fibres are

m-dimensional subspaces in R
n+m, there is a natural bundle map from

Um,n+m into the trivial bundle Gm,n+m×R
n+m. Denoting by V the quotient

bundle of Um,n+m in Gm,n+m×R
n+m, we obtain the following exact sequence

0 −→ Um,n+m −→ Gm,n+m × R
n+m −→ V −→ 0.

Let TGm,n+m be the tangent bundle of Gm,n+m. Then we have

TGm,n+m
∼= Hom(Um,n+m, V )

∼= V ⊗ U∗
m,n+m.

Putting W = U∗
m,n+m, we have

TGm,n+m
∼= V ⊗W.

Therefore the Grassmann manifold Gm,n+m has a Grassmannian structure

of type (n,m).
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1.3. Nontrivial examples

We describe two kinds of nontrivial examples.

(1) Let M be an n-dimensional differentiable manifold and let TM be

the tangent bundle of M . Denote by π the natural projection of TM onto

M . Taking a linear connection on M , we can decompose the tangent space

TvTM at each point v of TM into the n-dimensional horizontal space Hv =

TH
π(v)M

∼= Tπ(v)M and the n-dimensional vertical space Vv = T V
π(v)M

∼=
Tπ(v)M . Then the tangent bundle TTM of TM is decomposed as follows:

TTM = H ⊕ V

∼= π∗TM ⊕ π∗TM

∼= π∗TM ⊗ 2TM ,

where π∗TM is the induced vector bundle of TM by π : TM →M , and 2TM

is the trivial bundle with rank 2 over TM . Therefore the 2n-dimensional

manifold TM has a Grassmannian structure of type (n, 2).

Let F rM be the r-frame bundle of M . We mean by an r-frame a set of

linearly independent r tangent vectors at a point of M . In the case r = 1,

F 1M is nothing but the tangent bundle TM of M . In the case r = n,

FnM is nothing but the linear frame bundle FM of M . Denote by π the

natural projection of F rM onto M . Take a linear connection on M . An r-

frame ξ is regarded as an into-isomorphism of R
r to Tπ(ξ)M . We denote by

{e1, e2, . . . , er} the basis of R
r. Then we can define an isomorphism of the

tangent space TξF
rM at ξ to r+1 direct sum TH

π(ξ)M ⊕T V
π(ξ)M ⊕T V

π(ξ)M ⊕
· · · ⊕ T V

π(ξ)M as follows:

X 7−→
(
(π∗X)H , (ξ(e1))

V , (ξ(e2))
V , . . . , (ξ(er))

V
)
.

Therefore

TF rM ∼= π∗TM ⊕ π∗TM ⊕ π∗TM ⊕ · · · ⊕ π∗TM

∼= π∗TM ⊗ (r + 1)F rM ,

where π∗TM is the induced vector bundle of TM by π : F rM → M ,

and (r + 1)F rM is the trivial bundle with rank r + 1 over F rM . Thus the

n(r + 1)-dimensional manifold F rM has a Grassmannian structure of type

(n, r + 1).
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(2) Let h be a Hermitian inner product of type (m + 1,m) on the

complex (2m+1)-dimensional vector space C
m+1,m. Put n = 2m. It follows

that the quadric hypersurface N defined by h(z, z) = 1 is the (real) (2n+1)-

dimensional pseudo-hyperbolic space Hn+1,n of type (n+1, n) with negative

constant curvature. On Hn+1,n, U(m+1,m) acts transitively and S1 = {eiθ}
acts freely by z 7→ eiθz. The base space M of the principal bundle Hn+1,n

with structure group S1 is nothing but the complex pseudo-hyperbolic space

Hm,m(C) of type (m,m):

C
m+1,m ⊃ Hn+1,n ←−−− S1

π

y
Hm,m(C) .

The group U(m+1,m) acts transitively on Hm,m(C) and the space Hm,m(C)

has the form

Hm,m(C) ∼= U(m + 1,m)/U(1) × U(m,m)

as a symmetric space.

The Lie algebra g = u(m + 1,m) has the canonical decomposition g =

h + m ([h,m] ⊂ m, [m,m] ⊂ h) as follows:

g = u(m + 1,m),

h = u(1) + u(m,m)

=








iλ 0 0

0 0 0

0 0 0





+








0 0 0

0 A B

0 tB C







(λ ∈ R; A,B,C ∈ gl(m, C), A = −tA,C = −tC)

m =








0 −tx ty

x 0 0

y 0 0





 (x,y ∈ C

m).

The adjoint action of H = U(1)× U(m,m) on m is the form

Ad




eiθ 0 0

0 A B

0 C D






0 −tx ty

x 0 0

y 0 0
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=




0 −eiθtxA′ + eiθtyC ′ −eiθtxB′ + eiθtyD′

Axe−iθ + Bye−iθ 0 0

Cxe−iθ + Dye−iθ 0 0


 ,

((
A B

C D

)
∈ U(m,m),

(
A′ B′

C ′ D′

)
=

(
A B

C D

)−1

.

)

We identify m

(
3
(

0 −t
x

t
y

x 0 0
y 0 0

))
with C

n
(
3
(

x

y

))
. Therefore the action of

(
eiθ,

(
A B

C D

))
∈ U(1)× U(m,m)

on C
n = C

m,m = C
m,m ⊗ C

1 is given as follows:
(

eiθ,

(
A B

C D

))(
x

y

)
=

(
A B

C D

)(
x

y

)
e−iθ.

Since
(

x

y

)
∈ C

m,m⊗C
1 is regarded as

(
x x′

y y′

)
∈ R

n⊗R
2 (xi = xi +

√
−1 x′

i,

yi = yi +
√
−1 y′i ∈ C; x, x′, y, y′ ∈ R

n) and U(1) ∼= SO(2),

U(m,m)⊗ U(1) 3
(

A B

C D

)
⊗
(

cos θ − sin θ

sin θ cos θ

)

acts on R
n ⊗ R

2. Therefore Hm,m(C) has a Grassmannian structure of

type (n, 2). Remark that Hm,m(C) also has a canonical pseudo-Riemannian

structure of type (n, n). (See [K-M] for H1,1(C).)

1.4. Topological obstructions

There are topological obstructions for admitting a Grassmannian struc-

ture of type (n, 2). If M has a Grassmannian structure of type (n, 2), then

we have

TM ∼= V ⊗W,

where V and W are vector bundles with rank n (≥ 2) and 2 over M respec-

tively.

Now assume that H2(M ; Z) = 0. Then any vector bundle with rank 2

over M is trivial. Therefore it follows that

TM ∼= V ⊕ V.

Let M be the 2n-dimensional sphere S2n. Since the homotopy set

[S2n;BSO(n)] (∼= π2n−1(SO(n))) from S2n to the classifying space BSO(n) of
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SO(n) is 0 mod torsion, the vector bundle V with rank n over S2n is trivial.

So V ⊕ V is trivial. By the way, the Euler number of the tangent bundle

TS2n of S2n is equal to 2. This is a contradiction. Therefore S2n admits no

Grassmannian structures of type (n, 2).

Let M be the quaternionic projective space Pm(H) (n = 2m). The total

Pontryagin classes {pi} are given by

(1 + u)2m+2

1 + 4u
= 1 + p1u + p2u

2 + · · · ,

where u is the generator of H4(Pm(H); Z) ∼= Z (see e.g. [Mi-St]). It follows

that p1 = 2(m− 1), p2 = 2m2− 5m + 9. For example, in the case of P 2(H),

p1 = 2, p2 = 7 hold. On the other hand, for the vector bundle V ⊕ V over

M , up to mod torsion,

p1(V ⊕ V ) = p1(V ) + p1(V ),

p2(V ⊕ V ) = p1(V ) · p1(V ).

Putting p1(V ) = x, we have

2x = 2(m− 1), x2 = 2m2 − 5m + 9.

This is a contradiction. Therefore Pm(H) admits no Grassmannian struc-

tures of type (n, 2).

Let M be the Cayley projective space P 2(Ca). Then it is known that

p2 = 6, p4 = 39. In a similar way to Pm(H), P 2(Ca) admits no Grassman-

nian structures of type (n, 2).

If we let M be the complex projective space Pn(C), H2(Pn(C); Z) ∼=
Z holds. We do not use the argument above. But if M is P 2(C), P 2(C)

admits no Grassmannian structures of type (2, 2). In fact, according to

the following 1.5, the notion of Grassmannian structures of type (2, 2) is

equivalent to the notion of conformal structures of type (2, 2). By the way,

P 2(C) admits no conformal structures of type (2, 2) (cf. [K-M]). Therefore

P 2(C) admits no Grassmannian structures of type (2, 2).

1.5. Grassmannian structures of type (2, 2)

Let us see that in 4-dimensinal case the notion of Grassmannian struc-

tures of type (2, 2) is equivalent to the notion of conformal structures of

type (2, 2). Let M be a 4-dimensional manifold and let x ∈ M . Denote by

U the tangent space TxM at x.
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Now suppose that M has a Grassmannian structure of type (2, 2). Then

U is represented by U = V ⊗W , where V and W are 2-dimensional vector

spaces. As V and W are 2-dimensional, there exist canonical (conformal)

symplectic forms ωV and ωW respectively. We take symplectic basis {e1, e2}
of V and {f1, f2} such that ωV (e1, e2) = 1 and ωW (f1, f2) = 1 respectively.

Note that {ei⊗fj (1 ≤ i, j ≤ 2)} is a null basis of U and Π1 = span{e1⊗f1,

e2 ⊗ f1}, Π2 = span{e1 ⊗ f2, e2 ⊗ f2} are null 2-planes. (See 5.1.)

A (conformal) inner product ( · , · ) of type (2, 2) on U is defined as

follows:

(ei ⊗ fj, ek ⊗ fl) = ωV (ei, ek) · ωW (fj, fl).

Extending it to the whole U linearly, a conformal structure of type (2, 2) is

defined on M . Note that with respect to the inner product ( · , · ), ei ⊗ fj

(1 ≤ i, j ≤ 2) is a null vector and Π1, Π2 are totally null planes.

Conversely suppose that M has a conformal structure of type (2, 2).

With respect to a (conformal) inner product ( · , · ) of type (2, 2), take a

basis {s1, s2, t1, t2} such that

(si, si) = 1, (s1, s2) = 0,

(ti, ti) = −1, (t1, t2) = 0,

(si, tj) = 0 (1 ≤ i, j ≤ 2).

Then S = span{s1, s2} and T = span{t1, t2} are definite planes. For U =

S ⊕ T , we define a mapping f from S ⊕ T to Mat(2,R) as follows:

f : S ⊕ T −→ Mat(2,R)

(ai, bj) 7−→
(

a1 + b1 −a2 + b2

a2 + b2 a1 − b1

)
.

Then the mapping f is an isomorphism as 4-dimensional vector spaces.

Furthermore we have a linear isometry from (U, ( · , · )) to (Mat(2,R),det).

There exist 2-dimensional vector spaces V , W and bases {e1, e2} of V ,

{f1, f2} of W such that

Mat(2,R)
∼=−→ V ⊗W

(
m11 m12

m21 m22

)
7−→

2∑

i,j=1

mijei ⊗ fj.

Using a well-known two-to-one mapping

φ : SL(2,R)⊗ SL(2,R) −→ SO0(2, 2),
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we have the following commutative diagram: for g⊗h ∈ SL(2,R)⊗SL(2,R),

V ⊗W
g⊗h
−−−→ V ⊗W

yf−1

yf−1

S ⊕ T −−−→
φ(g⊗h)

S ⊕ T.

Therefore, independently of bases, a Grassmannian structure of type (2, 2)

is canonically defined on M .

§2. Connection and curvature of Grassmannian structures

2.1. Decomposition of the space of 2-forms

Let M be a manifold with a Grassmannian structure of type (n,m).

Then the tensor spaces and the tensor fields on M give rise to decomposi-

tions with respect to the structure.

Denote by Λ2 the space of 2-forms Λ2(TM) or Λ2(T ∗M). Then Λ2 is

decomposed as follows:

Λ2 = S2(V )⊗ Λ2(W )⊕ Λ2(V )⊗ S2(W ).

Here we identify TM with V ⊗W under σ. The decomposition is invariant

under the group GR(n,m). Put

Λ2
L = S2(V )⊗ Λ2(W ),

Λ2
R = Λ2(V )⊗ S2(W ).

The dimensions are

dimΛ2
L =

n(n + 1)m(m− 1)

4
and dimΛ2

R =
n(n− 1)m(m + 1)

4
.

Especially, in the case n = m = 2, the decomposition corresponds to the de-

composition of the self-dual part and the anti-self-dual part for a conformal

structure of type (4, 0) or (2, 2).

Let us write down the components of Λ2
L and Λ2

R explicitly. Let {ei}
(1 ≤ i ≤ n) be local basis vector fields on V and {fj} (1 ≤ j ≤ m) local

basis vector fields on W . Then {ei ⊗ fj} (1 ≤ i ≤ n, 1 ≤ j ≤ m) are local

basis vector fields on V ⊗W .
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A vector u belonging to V ⊗W is represented by

u =
∑

i,j

αijei ⊗ fj = (αij)1≤i≤n, 1≤j≤m.

Put xik = ei ⊗ fk. The space Λ2
L has a basis of forms 1

2(x∧ y + y ∧ x), that

is to say,

ai,kl = xik ∧ xil, dim = n
m(m− 1)

2
,

bij,kl =
1

2
(xik ∧ xjl + xjk ∧ xil), dim =

n(n− 1)

2

m(m− 1)

2
.

Here, for example,

a1,12 = x11 ∧ x12

= (e1 ⊗ f1) ∧ (e1 ⊗ f2) = (e1 � e1)⊗ (f1 ∧ f2),

b12,12 =
1

2
(x11 ∧ x22 + x21 ∧ x12)

=
1

2

(
(e1 ⊗ f1) ∧ (e2 ⊗ f2) + (e2 ⊗ f1) ∧ (e1 ⊗ f2)

)

= (e1 � e2)⊗ (f1 ∧ f2).

The space Λ2
R has a basis of forms 1

2(x ∧ y − y ∧ x), that is to say,

cij,k = xik ∧ xjk, dim =
n(n− 1)

2
m,

dij,kl =
1

2
(xik ∧ xjl − xjk ∧ xil), dim =

n(n− 1)

2

m(m− 1)

2
.

Here, for example,

c12,1 = x11 ∧ x21

= (e1 ⊗ f1) ∧ (e2 ⊗ f1) = (e1 ∧ e2)⊗ (f1 � f1)

d12,12 =
1

2
(x11 ∧ x22 − x21 ∧ x12)

=
1

2

(
(e1 ⊗ f1) ∧ (e2 ⊗ f2)− (e2 ⊗ f1) ∧ (e1 ⊗ f2)

)

= (e1 ∧ e2)⊗ (f1 � f2).
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2.2. Prolongation of GR(n,m)

If we prolongate the group GR(n,m) or the Lie algebra, the second

prolongation of it becomes trivial. Therefore it is of finite type of order 2

(cf. [Ko], [S]). According to Kobayashi-Nagano [K-Na], it has a structure of

the following graded Lie algebra of first kind:

g = sl(m + n, R)

= g−1 ⊕ g0 ⊕ g1

=

{(
0 0

A 0

)}
⊕
{(

B 0

0 C

)}
⊕
{(

0 D

0 0

)}
,

(A ∈ Mat(n×m, R), B ∈ Mat(m,R), C ∈ Mat(n,R),

D ∈ Mat(m× n, R), traceB + traceC = 0),

[gi, gj ] ⊂ gi+j .

Here g is the Lie algebra of G = SL(m + n, R), g0 the Lie algebra of

G0 = GR(n,m) and g1 the Lie algebra of the first prolongation of g0. We

denote by G′ the Lie group of a Lie subalgebra g0⊕g1 of g. We put m = g−1.

The flat model, which is a flat homogeneous space ([O]), is the Grass-

mann manifold Gm,n+m consisting of all m-dimensional subspaces in the

(n + m)-dimensional real vector space R
n+m:

Gm,n+m
∼= G/G′.

The isotropy group G′ is regarded as a subgroup of the group G2(mn)

consisting of frames of second order at the origin o in R
mn. Therefore we

can regard G as a G′-structure of second order on G/G′ (cf. [A-G1, p. 274],

[A-G2, p. 26] and [A-G3, p. 195]). The group G0 ⊂ G′ is the linear isotropy

group.

2.3. Normal Cartan connection and half flatness

Let M be a manifold with a Grassmannian structure of type (n,m).

Let P be the GR(n,m)-structure on M , namely, P is a linear frame bundle

with structure group GR(n,m) on M . Note that a GR(n,m)-connection

on P generally has a torsion (cf. [O]). Let Q be the G′-structure of second

order on M , namely, Q is the frame bundle of second order with structure

group G′ on M . From 2.2, G/G′ is the flat model associated with the graded

Lie algebra g of first kind.

A Cartan connection ω of type G/G′ on Q is a g = sl(m+ n, R)-valued

1-form such that
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(i) ω(X) 6= 0 (X ∈ TQ, X 6= 0),

(ii) ω(A∗) = A, A ∈ g′,

(iii) Ra
∗ω = Ad(a−1)ω, a ∈ G′.

We have the following theorem due to Tanaka ([T1]).

Theorem 2.1. Under the assumption above, there exists a unique nor-

mal Cartan connection of type G/G′ on Q.

The normality condition is explained in Section 3.

We have two decompositions: the one is the space Λ2 = Λ2
L ⊕ Λ2

R of

2-forms, the other the graded Lie algebra g = g−1 ⊕ g0 ⊕ g1 of first kind.

According to the decompositions, the torsion part Ω−1 of the curvature

form Ω, which is a g−1-valued 2-form, is decomposed as follows:

Ω−1 = g−1 ⊗ Λ2
L ⊕ g−1 ⊗ Λ2

R.

And the curvature part Ω0 of Ω, which is a g0-valued 2-form, is decomposed

as follows:

Ω0 = g0 ⊗ Λ2
L ⊕ g0 ⊗ Λ2

R.

If the components g−1⊗Λ2
L and g0⊗Λ2

L are 0, a Grassmannian structure

of type (n,m) is called left-half Grassmannian flat . If the components g−1⊗
Λ2

R and g0 ⊗ Λ2
R are 0, it is called right-half Grassmannian flat . Both are

called half Grassmannian flat.

In particular, if n = m = 2, the torsion of the normal Cartan connection

vanishes for any manifold with a Grassmannian structure of type (2, 2). The

left-half Grassmannian flatness and the right-half Grassmannian flatness

correspond to anti-self-duality and self-duality of a conformal structure of

type (4, 0) or (2, 2) respectively. Both are called half conformally flat.

§3. Tanaka theory for Grassmannian structures

3.1. Review of Tanaka theory

Let us recall the definition of the normal Cartan connections in the

Tanaka theory ([T1], cf. [Ko], [O]).

Let g be a simple graded Lie algebra of µ-th kind. Consider the sub-

algebra m =
∑

p<0 gp of g. The Lie algebra g is regarded as the m-module

with respect to the adjoint representation ad : m → gl(g). Then we have

the Lie algebra cohomology called the generalized Spencer cohomology.
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First, we define Cq by

Cq = g⊗ Λq(m∗) = Hom(Λq(m), g),

and the operator ∂ is given by, for c ∈ Cq, X1, . . . ,Xq+1 ∈ m,

(∂c)(X1 ∧ · · · ∧Xq+1)

=
∑

i

(−1)i+1[Xi, c(X1 ∧ . . . ∧ X̌i ∧ · · · ∧Xq+1)]

+
∑

i<j

(−1)i+jc([Xi,Xj ] ∧X1 ∧ · · · ∧ X̌i ∧ · · · ∧ X̌j ∧ · · · ∧Xq+1).

Then we obtain a complex {Cq, ∂}:

· · · −→ Cq ∂−→ Cq+1 −→ · · · .

Therefore we can define the cohomology group Hq(m, g) of this cochain

complex. The group Hq(m, g) is the Lie algebra cohomology of the nilpotent

Lie algebra m with respect to the adjoint representation ad : m→ gl(g).

Next, we define the adjoint operator ∂∗ of the operator ∂. With respect

to the Killing form B, a subalgebra
∑

p>0 gp of g can be identified with

the dual space m∗ of m. Let {e1, . . . , em} be a basis of m. The dual basis

{e∗1, . . . , e∗m} of m∗ =
∑

p>0 gp with B(ei, e
∗
j ) = δij is determined. Then the

operator ∂∗ : Cq+1 → Cq is defined as follows: for c ∈ Cq+1,X1, . . . ,Xq ∈ m,

(∂∗c)(X1 ∧ · · · ∧Xq)

=
∑

j

[e∗j , c(ej ∧X1 ∧ · · · ∧Xq)]

+
1

2

∑

i,j

(−1)i+1c([e∗j ,Xi]− ∧ ej ∧X1 ∧ · · · ∧ X̌i ∧ · · · ∧Xq),

where [e∗j ,Xi]− is an m-component of [e∗j ,Xi] with respect to the decom-

position g = m ⊕ g′. Let ρ be an involutive automorphism of g such that

ρgp = g−p and B(X,ρX) < 0 (X 6= 0). Then we define a positive definite

inner product ( · , · ) in g by

(X,Y ) = −B(X,ρY ), X, Y ∈ g.

We have

(∂c, c′) = (c, ∂∗c′), c ∈ Cq, c′ ∈ Cq+1.
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The operator ∆ called the Laplacian is defined as usual:

∆ = ∂∗∂ + ∂∂∗ : Cq −→ Cq.

If ∆c = 0 for c ∈ Cq, c is called harmonic. Evidently c is harmonic if and

only if ∂c = ∂∗c = 0. We denote by Hq the set of all harmonic forms in Cq.

It is well-known that

Hq ∼= Hq(m, g).

Since m =
∑

j<0 gj , the space Λq(m∗) is decomposed as follows:

Λq(m∗) =
∑

r1,...,rq<0

g∗r1
∧ · · · ∧ g∗rq

.

Furthermore, we define the subspace Λq
i (m

∗) as follows:

Λq
i (m

∗) =
∑

r1+···+rq=i

r1,...,rq<0

g∗r1
∧ · · · ∧ g∗rq

.

Then we have

Λq(m∗) =
∑

i

Λq
i (m

∗) (direct sum).

Since g =
∑

j gj , the space Cq = g⊗ Λq(m∗) is decomposed as follows:

Cq = g⊗ Λq(m∗) =
∑

i,j

gj ⊗ Λq
i (m

∗).

We define the subspace Cp,q by

Cp,q =
∑

j

gj ⊗ Λq
j−p−q+1(m

∗).

In particular, we have

Cp,0 = gp−1,

Cp,1 =
∑

j<p

gj ⊗ g∗j−p.

Furthermore, we have

Cq =
∑

p

Cp,q (direct sum)
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and

∂Cp,q ⊂ Cp−1,q+1,

∂∗Cp,q ⊂ Cp+1,q−1,

∆Cp,q ⊂ Cp,q.

We denote by Hp,q the set of all harmonic forms in Cp,q. Then we have

Hq =
∑

p

Hp,q (direct sum).

The group G0 linearly acts on Cq as follows: for c ∈ Cq and a ∈ G0,

(ac)(X1 ∧ · · · ∧Xq) = Ad(a−1)c(Ad(a)X1 ∧ · · · ∧ Ad(a)Xq),

where X1, . . . ,Xq ∈ m. It follows that gj ⊗ Λq
i (m

∗) is G0 invariant and

a(∂c) = ∂(ac), a(∂∗c) = ∂∗(ac). Hence Cp,q and Hp,q are G0 invariant

subspaces of Cq and Hq respectively.

The case q = 2 is important.

Let G/G′ be a homogeneous space associated with the simple graded

Lie algebra g. Let M be a manifold with dimM = dimG/G′. Let Q be a

G′-principal bundle over M and ω a Cartan connection of type G/G′ on Q.

It is a g-valued 1-form. Let Ω be the curvature form on Q. It is a g-valued

2-form. Then the curvature function K : Q → C2 = g ⊗ Λ2(m∗) on Q is

defined:

Ω =
1

2
K(ω− ∧ ω−),

where ω− is an m-component with respect to the decomposition g = m⊕ g′

of ω.

Corresponding to the decomposition g =
∑

j gj, ω and Ω are decom-

posed as follows:

ω =
∑

j

ωj , Ω =
∑

j

Ωj.

The curvature function K is decomposed as follows:

K =
∑

j

Kj =
∑

p

Kp,2.

We abbreviate Kp,2 to Kp.

A Cartan connection ω is called normal if
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(1) Kp = 0 (p < 0),

(2) ∂∗Kp = 0 (p ≥ 0).

Take M = G/G′. Then the Maurer-Cartan form is a Cartan connection ω

which is a g-valued 1-form on Q = G. As K = 0 holds, ω is normal.

The space C2 is orthogonally decomposed into

C2 = H2 + ∆C2.

Denote by H the orthogonal projection C2 → H2. We have

HCp,2 = Hp,2.

The function HK : Q → H2 on Q is the harmonic part of K. As K =∑
p Kp,

HK =
∑

p

HKp.

We remark that HK gives the fundamental invariant of the normal

Cartan connection for the geometric structure subordinate to type G/G′

associated with the simple graded Lie algebra g. Namely, we have the fol-

lowing theorem due to Tanaka ([T1]).

Theorem 3.1. We have

K = 0⇐⇒ HK = 0.

Moreover we have the following theorem.

Theorem 3.2. We have, for some p ≥ 0,

Kq = 0 for all q < p =⇒ Kp = HKp.

3.2. Tanaka theory for Grassmannian structure

Let M be a manifold with a Grassmannian structure of type (n,m).

The flat model is the Grassmann manifold Gm,n+m
∼= G/G′ associated with

the graded Lie algebra g = sl(m + n, R) of first kind:

g = sl(m + n, R)

= g−1 ⊕ g0 ⊕ g1

=

{(
Om 0

A On

)}
⊕
{(

B 0

0 C

)}
⊕
{(

Om D

0 On

)}
,

(A ∈ Mat(n×m, R), B ∈ Mat(m,R), C ∈ Mat(n,R),

D ∈ Mat(m× n, R), traceB + traceC = 0),

[gi, gj ] ⊂ gi+j .
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We put their bases and coordinates as follows:

eij =

(
Om 0

Eij On

)
,

(Eij ∈Mat(n×m), R): matrix unit, i.e., (i, j)-component = 1, otherwise

= 0),

gij =

(
Eij 0

0 On

)
, hij =

(
Om 0

0 Eij

)
, e∗ij = teji,

(Eij ∈Mat(m,R), Eij ∈Mat(n,R): matrix units respectively)

and
(

gij dij

xij hij

)
=
∑

xijeij +
∑

gijgij +
∑

hijhij +
∑

dije
∗
ij.

Let Q be the frame bundle of second order with structure group G′ on

M . By 2.3, there exists a g = sl(m+n, R)-valued normal Cartan connection

of type G/G′. As g is of first kind, we have

C2 = C0,2 ⊕ C1,2 ⊕ C2,2

= g−1 ⊗ Λ2
−2 ⊕ g0 ⊗ Λ2

−2 ⊕ g1 ⊗ Λ2
−2.

The curvature function K of the connection ω has

K (= K−1 + K0 + K1) = K0,2 + K1,2 + K2,2

= K0 + K1 + K2.

We can view K0 as the torsion part and K1 as the curvature part.

It follows that K satisfies the condition (1) of normality as a conse-

quence. Let us write down the condition (2) of normality:

(i) ∂∗K0 = 0,

(ii) ∂∗K1 = 0.

Since ∂∗ : C2,2 → C3,1 = 0, we have ∂∗K2 = 0.

In particular, in the case m = 2, i.e., a Grassmannian structure of type

(n, 2), let us see it explicitly. Put ai = ei1, bi = an+i = ei2. The dual basis

of g1 is a∗
1 = ta1, . . . ,a

∗
n = tan, a∗

n+1 = tb1, . . . ,a
∗
2n = tbn.

We investigate the case (i):

∂∗ : C0,2 = g−1 ⊗ Λ2
−2 −→ C1,1 = g0 ⊗ Λ1

−1

K0 7−→ ∂∗K0.
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For X ∈ m = g−1,

(∂∗K0)(X) =
2n∑

j=1

[a∗
j ,K

0(aj ∧X)] +
1

2

2n∑

j=1

K0([a∗
j ,X]− ∧ aj)

=
2n∑

j=1

[a∗
j ,K

0(aj ∧X)],

where the second equality holds from [a∗
j ,X]− = 0 for [a∗

j ,X] ∈ g0.

The Lie bracket of g1 and g−1 are given by, for i, j = 1, . . . , n,

[a∗
i ,aj ] = δijg11 − hji, [b∗

i ,bj ] = δijg22 − hji,

[a∗
i ,bj ] = δijg12, [b∗

i ,aj ] = δijg21.

If we assume that ∂∗K0 = 0, the following relations hold in g0:

g11-component = 0⇐⇒
n∑

i=1

K0
i (ai ∧X) = 0,

g12-component = 0⇐⇒
n∑

i=1

K0
n+i(ai ∧X) = 0,

g21-component = 0⇐⇒
n∑

i=1

K0
i (an+i ∧X) = 0,

g22-component = 0⇐⇒
n∑

i=1

K0
n+i(an+i ∧X) = 0,

hi,j-component = 0⇐⇒ K0
i (aj ∧X) + K0

n+i(an+j ∧X) = 0.

Here K0
i and K0

n+i are ai and an+i = bi components in g−1 respectively.

From ∂∗K0 = 0 of the normality, we have the following.

Proposition 3.1. Let M be a manifold with a Grassmannian struc-

ture of type (n, 2). Then, for the normal Cartan connection ω of type G/G′

on Q, the g−1 ⊗ Λ2
L-component of the torsion part Ω−1 is 0.

Proof. We use the relations

K0
i (aj ∧X) = −K0

n+i(an+j ∧X).
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Putting X = an+j , we obtain

K0
i (aj ∧ an+j) = 0.

Putting X = aj, we obtain

K0
n+i(an+j ∧ aj) = 0.

Putting X = an+k, we have

K0
i (aj ∧ an+k) = −K0

n+i(an+j ∧ an+k)

= K0
n+i(an+k ∧ an+j)

= −K0
i (ak ∧ an+j).

Thus we obtain

K0
i (aj ∧ an+k + ak ∧ an+j) = 0.

Putting X = ak, we similarly obtain

K0
n+i(aj ∧ an+k + ak ∧ an+j) = 0.

Therefore it follows that g−1 ⊗ Λ2
L-component is 0.

Proposition 3.2. Let M be a 4-dimensional manifold with a Grass-

mannian structure (or a conformal structure) of type (2, 2). Then, for the

normal Cartan connection ω, the torsion part Ω−1 is 0.

Proof. A basis of g−1 is a1, a2, a3 = b1, a4 = b2.

We have

K0
i (a1 ∧ a2) = 0, K0

2+i(a1 ∧ a2) = 0 (i = 1, 2),

K0
i (b1 ∧ b2) = 0, K0

2+i(b1 ∧ b2) = 0 (i = 1, 2).

Moreover we have

K0
i (a1 ∧ b2) = 0, K0

2+i(a1 ∧ b2) = 0 (i = 1, 2),

K0
i (a2 ∧ b1) = 0, K0

2+i(a2 ∧ b1) = 0 (i = 1, 2).

Thus it follows that g−1 ⊗ Λ2
R-component is 0. Therefore the torsion part

Ω−1 is 0.
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We investigate the case (ii):

∂∗ : C1,2 = g0 ⊗ Λ2
−2 −→ C2,1 = g1 ⊗ Λ1

−1

K1 7−→ ∂∗K1.

We will adopt the notation and the argument of (i) similarly. For X ∈ m =

g−1,

(∂∗K1)(X) =

2n∑

j=1

[a∗
j ,K

1(aj ∧X)].

The Lie bracket of g1 and g0 are given by, for i, j = 1, . . . , n,

[a∗
i ,g11] = −a∗

i , [a∗
i ,g12] = 0, [a∗

i ,g21] = −a∗
n+i, [a∗

i ,g22] = 0,

[a∗
n+i,g11] = 0, [a∗

n+i,g12] = −a∗
i , [a∗

n+i,g21] = 0, [a∗
n+i,g22] = −a∗

n+i,

[a∗
i ,hjk] = δija

∗
k, [a∗

n+i,hjk] = δija
∗
n+k.

If we assume that ∂∗K1 = 0, the following relations hold in g1: for i =

1, . . . , n,

ai-component = 0

⇐⇒ K1
x(ai ∧X) + K1

y (an+i ∧X) =

n∑

j=1

K1
ji(aj ∧X),

an+i = bi-component = 0

⇐⇒ K1
z (ai ∧X) + K1

w(an+i ∧X) =

n∑

j=1

K1
ji(an+j ∧X).

Here K1
x, K1

y , K1
z , K1

w are g11, g12, g21, g22 components and K1
ij are hij

components in g0 respectively. The number of independent equations is 4n2.

We write down 4n2 independent relations of the normality:

K1
x(ai ∧ ak) + K1

y (bi ∧ ak) =

n∑

j=1

K1
ji(aj ∧ ak),

K1
x(ai ∧ bk) + K1

y (bi ∧ bk) =
n∑

j=1

K1
ji(aj ∧ bk),

K1
z (ai ∧ ak) + K1

w(bi ∧ ak) =

n∑

j=1

K1
ji(bj ∧ ak),

K1
z (ai ∧ bk) + K1

w(bi ∧ bk) =

n∑

j=1

K1
ji(bj ∧ bk).
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Next, we consider the Bianchi identities. They are given, by Lem-

mas 2.10, 2.11 in [T1], as follows: for p ≥ 0,

∂Kp = Ψp−1.

We consider K = K0 + K1 + K2 with respect to a graded Lie algebra

g of first kind.

For K0, ∂K0 = Ψ−1 ∈ C−1,3 = g−2⊗Λ3
−3 = 0 holds. Joining ∂∗K0 = 0

of normality together, we see that K0 is harmonic, that is,

HK0 = K0 = K−1 ∈ H0,2.

For K1, assume that the torsion part K0 = K−1 is 0. Then it follows

that ∂K1 = Ψ0 ∈ C0,3 = g−1 ⊗ Λ3
−3 is 0 from the definition of Ψ0. Joining

∂∗K1 = 0 of normality together, we see that K1 is harmonic, that is, under

the assumption K0 = 0,

HK1 = K1 = K0 ∈ H1,2.

For K2, in general ∂K2 = Ψ1 is not 0.

3.3. Nonzero generators in H2

Before we investigate the harmonic part HK of the curvature func-

tion K, which is the fundamental invariant of a Grassmannian structure

of type (n,m), we calculate H2 ∼= H2(m, g) according to Yamaguchi ([Y,

Proposition 5.5]).

A nonzero generator in H2 decomposed as an irreducible g0-module is

represented by

xσ(θ) ⊗ xΦσ ∈ Hpij ,2

for σ = σij ∈ W 0(2). Here σ = σij = σi · σj = σαi
· σαj

(αi, αj ∈ ∆: a

fixed simple root system of g) is the composition of reflections by αi, αj ,

and xσ(θ) ∈ gσ(θ)(E) is the root vector for the root by the reflection σ = σij

of the highest root θ, and xΦσ ∈ Λ2m∗ is the exterior product of two root

vectors for Φσ = Φσij
= {αi, αj − 〈αj , αi〉αi}, and pij is a nonnegative

integer decided by σij. See [Y] in detail.

We consider the simple graded Lie algebra

g = g−1 ⊕ g0 ⊕ g1, m = g−1
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of first kind for the Lie algebra g = sl(m + n, R) of G = SL(m + n, R)

associated with a Grassmannian structure of type (n,m). We have

Λ2m∗ = Λ2g∗−1 = Λ2
−2 = Λ2

L ⊕ Λ2
R,

where, from TM ∼= V ⊗W ,

Λ2
L = S2(V )⊗ Λ2(W ), Λ2

R = Λ2(V )⊗ S2(W ).

This is a decomposition as a g0-module. We remark that

C0,2 = g−1 ⊗ Λ2
−2 = g−1 ⊗ Λ2

L ⊕ g−1 ⊗ Λ2
R,

C1,2 = g0 ⊗ Λ2
−2 =

(
gL
0 ⊕ gR

0 ⊕ z
)
⊗
(
Λ2

L ⊕ Λ2
R

)
,

C2,2 = g1 ⊗ Λ2
−2 = g1 ⊗ Λ2

L ⊕ g1 ⊗ Λ2
R,

where

gL
0 = slL = sl(n, R), gR

0 = slR = sl(m, R)

and z is the trace part of g0.

Assume that n ≥ m. Then we obtain the following.

Proposition 3.3. The components of nonzero generators as g0-mod-

ules in H2 are represented by

1. if n, m ≥ 3,

(i) en1 ⊗ (e1m−1
∗ ∧ e1m

∗) ∈ H0,2 ⊂ g−1 ⊗ Λ2
L,

(ii) en1 ⊗ (e1m
∗ ∧ e2m

∗) ∈ H0,2 ⊂ g−1 ⊗ Λ2
R,

2. if n ≥ 3, m = 2,

(i) en1 ⊗ (e12
∗ ∧ e22

∗) ∈ H0,2 ⊂ g−1 ⊗ Λ2
R,

(ii) hn1 ⊗ (e11
∗ ∧ e12

∗) ∈ H1,2 ⊂ gL
0 ⊗ Λ2

L,

3. if n = 2, m = 2,

(i) h21 ⊗ (e11
∗ ∧ e12

∗) ∈ H1,2 ⊂ gL
0 ⊗ Λ2

L,

(ii) g21 ⊗ (e12
∗ ∧ e22

∗) ∈ H1,2 ⊂ gR
0 ⊗ Λ2

R.

If n ≥ 3, m = 2, from 2 (i) in the above proposition, it follows that the

g−1 ⊗ Λ2
L-component of the torsion part is 0. See Proposition 3.1.

If n = 2, m = 2, from 3 in the above proposition, it follows that K0 = 0,

i.e., the torsion part is 0. See Proposition 3.2. Hence K1 = HK1 holds.



46 Y. MACHIDA AND H. SATO

When we take m = 1, the geometric structure becomes a projective

structure whose flat model is the n-dimensional projective space Pn(R)

(n ≥ 3). See 6.5, 7.1. There is not the notion of half flatness. Now we

remark that

g−1 = span{ai = eij}1≤i≤n,j=1, g0 = span{g11,hij}1≤i,j≤n, g1 = g∗−1.

Then the components of nonzero generators as g0-modules in H2 are rep-

resented by

hn1 ⊗ (a∗
1 ∧ a∗

2) ∈ H1,2 ⊂ g0 ⊗ Λ2.

Therefore it follows that K0 = 0, i.e., the torsion part is 0. Hence K1 =

HK1 holds.

§4. Co-Grassmannian structures

4.1. Example as the flat model

Before we argue the twistor theory of Grassmannian structures in Sec-

tion 7, we define and study co-Grassmannian structures that are geometric

structures of the top space, that is, the incidence space of the double fibra-

tion by twistor theory of Grassmannian structures.

In the (n+m)-dimensional real vector space V = R
n+m, let Fm−1,m be

the following generalized flag manifold:

Fm−1,m = {(Sm−1, Sm) | Si : i-dimensional subspace of V , Sm−1 ⊂ Sm}.

The dimension of Fm−1,m is mn+m−1. The group G = SL(m+n, R) acts

transitively on Fm−1,m.

Let {a1, . . . , am, b1, . . . , bn} be a basis of V = R
n+m. Choose Z0 =

(X0, Y0) ∈ Fm−1,m such that

X0 = span{a1, . . . , am−1} ∼= span

(
Im−1

O

)
(∈Mat((m + n)× (m− 1),R)),

Y0 = span{a1, . . . , am−1, am} ∼= span

(
Im

O

)
(∈Mat((m + n)×m, R)),

where ai = t(0, . . . , 0,
i
1, 0, . . . , 0) ∈ V = R

n+m. Let G′ be the isotropy group

of G = SL(m + n, R) at the base point Z0 = (X0, Y0). Then we have

Fm−1,m
∼= G/G′,
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and it is easy to check that

G′ =





m−1 1 n

∗ ∗ ∗
0 ∗ ∗
0 0 ∗




m−1

1

n

∈ SL(m + n, R)





.

This is the flat model of manifolds with co-Grassmannian structures of type

(n,m− 1), which are defined in the next 4.2.

The Lie algebra g = sl(m + n, R) of G = SL(m + n, R) has a decompo-

sition as follows:

g = sl(m + n, R)

= m⊕ g′

=








Om−1 0 0

f 0 0

A e On





⊕








B th D

0 d tg

0 0 C





 ,

(A ∈Mat(n× (m− 1),R), B ∈ Mat(m− 1,R), C ∈ Mat(n,R),

D ∈ Mat((m− 1)× n, R), d ∈ R, e,g ∈ R
n, f ,h ∈ R

m−1,

trace B + d + traceC = 0).

The subalgebra g′ is the Lie algebra of G′, and m is identified with the

tangent space TZ0
Fm−1,m of Fm−1,m at Z0. Furthermore, g = sl(m + n, R)

has more decompositions:

g = sl(m + n, R)

= g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

=








Om−1 0 0

0 0 0

A 0 On





⊕








Om−1 0 0

f 0 0

0 e On





⊕








B 0 0

0 d 0

0 0 C







⊕








Om−1
th 0

0 0 tg

0 0 On





⊕








Om−1 0 D

0 0 0

0 0 On





 ,

m = g−2 ⊕ g−1,

g′ = g0 ⊕ g1 ⊕ g2,

and has a structure of a simple graded Lie algebra of second kind.
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We consider

e =








Om−1 0 0

0 0 0

0 e On





 , f =








Om−1 0 0

f 0 0

0 0 On





 .

Then we have

1) g−1 = e⊕ f,

2) [e, e] = [f, f] = 0,

3) g−2 = [e, f] ∼= e⊗ f,

4) [g0, e] = g0e ⊂ e, [g0, f] = g0f ⊂ f.

Furthermore, we consider

a = e + g′, b = f + g′.

Then we can easily verify that

5) Ad(G′)a = a, Ad(G′)b = b,

6) a ∩ b = g′,

7) both a and b are subalgebras of g.

By 5), a and b induce invariant differential systems E (with dimension n)

and F (with dimension m− 1) on Fm−1,m = G/G′ respectively. By 6) and

7), the pair (E,F ) has

1) E and F are transversal,

2) both E and F are completely integrable,

and, by g−2 = [g−1, g−1],

3) TFm−1,m = D + [D,D],

where we put D = E ⊕ F . Moreover, the quotient bundle TFm−1,m/D has

4) rank TFm−1,m/D = rankE · rank F (= n(m− 1)).

Motivated by the discussion of the above example, we will give the definition

of a co-Grassmannian structure in the next 4.2, 4.3.

We note the following. Fix an (positive definite) inner product on V .

For Z0 = (X0, Y0) ∈ Fm−1,m, put

Y0 = X0 ⊕ R (orthogonal sum).

We consider two orthogonal projections

p1 : V = Y0 ⊕ Y ⊥
0 −→ Y0
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and

p2 : Y0 = X0 ⊕ R −→ X0.

Let W be an open subset consisting of all Z = (X,Y ) ∈ Fm−1,m such that

p1(Y ) = Y0, p2(X) = X0. Then Z = (X,Y ) ∈ W can be regarded as the

direct product of graphs of two linear mappings T1(Y ) : Y0 → Y ⊥
0 and

T2(X) : X0 → R. Let {x1, x2, . . . , xm−1} be an orthonormal basis of X0.

By adding xm, we let {x1, x2, . . . , xm−1, xm} be an orthonormal basis of Y0.

For each Z = (X,Y ) ∈W , there exist a unique basis {u1, u2, . . . , um} of Y

and a unique basis {v1, v2, . . . , vm−1} of X such that

p1∗(u1) = x1, p1∗(u2) = x2, . . . , p1∗(um) = xm,

p2∗(v1) = x1, p2∗(v2) = x2, . . . , p2∗(vm−1) = xm−1, p2∗(vm) = xm.

Then the equations hold:

ui = xi + T1(Y )xi (i = 1, . . . ,m),

vi = xi + T2(X)xi (i = 1, . . . ,m− 1).

Therefore, for the tangent space TZFm−1,m at Z = (X,Y ) ∈ Fm−1,m, we

have

TZFm−1,m
∼= Hom(Y0, Y

⊥
0 )⊕Hom(X0, R)

∼= Y ⊥
0 ⊗ Y ∗

0 ⊕X∗
0 .

Let Um−1, Um be the tautological vector bundles with rank m− 1, m over

Fm−1,m respectively. Then Um−1 ⊂ Um. Let Vn+1, Vn be the quotient bun-

dles of Um−1, Um in a trivial bundle Fm−1,m × R
n+m respectively. Then

Vn+1 ⊃ Vn. Then we have the following:

TFm−1,m
∼= Vn ⊗ U∗

m ⊕ U∗
m−1

∼= Vn ⊗ (U∗
m−1 ⊕ 1Fm−1,m

)⊕ U∗
m−1

∼= Vn ⊕ U∗
m−1 ⊕ Vn ⊗ U∗

m−1

= E ⊕ F ⊕ E ⊗ F,

where we put E = Vn and F = U∗
m−1.
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4.2. Definition

Let R be an r-dimensional real manifold. Let E and F be two dif-

ferential systems on R, i.e., subbundles with rank k and l (k + l < r) of

the tangent bundle TR of R respectively. A co-Grassmannian structure of

type (k, l) on R is defined by the pair (E,F ) which satisfies the following

conditions:

(1) E and F are transversal.

(2) Both E and F are completely integable.

(3) The derived system of a differential system D = E ⊕ F on R coin-

cides with TR, i.e.,

TR = D + [D,D].

(4) The quotient bundle TR/D has

rankTR/D = rank E · rank F (= kl).

Here the equation in (3) means the equality by taking the sheaf of germs

of local sections at each point of R. The dimension r of R is k + l+ kl. This

is a subclass of pseudo-product structures in the sense of Tanaka ([T2]).

The pair (E,F ) is called an almost co-Grassmannian structure of type

(k, l) on R if the condition (2) is not necessarily satisfied.

We remark the following. Now, assume globally that the quotient bun-

dle TR/D is isomorphic to the tensor product bundle E ⊗ F over R, i.e.,

TR ∼= E ⊕ F ⊕ E ⊗ F.

Then, the leaf space RE = R/E is of dimension (k + 1)l and

TRE
∼= F ⊕ E ⊗ F = (E ⊕ 1RE

)⊗ F.

Therefore RE has a Grassmannian structure of type (k+1, l). The leaf space

RF = R/F is of dimension k(l + 1) and

TRF
∼= E ⊕ E ⊗ F = E ⊗ (F ⊕ 1RF

).

Therefore RF has a Grassmannian structure of type (k, l + 1).
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4.3. Normal Cartan connection

Let R be a manifold with a pair (E,F ) that satisfies (1), (2), (3) in 4.2.

For each point x ∈ R, with a differential system D = E ⊕ F we associate a

graded algebra m(x) called a symbol algebra of D ([T2]).

For x ∈ R, put

g−1(x) = Dx,

g−2(x) = TxR/Dx,

m(x) = g−2(x)⊕ g−1(x).

Let $ be the projection of TR onto TR/D. We define a bracket operator

[ · , · ] in m(x) by the requirement that

[Xx, Yx] = $([X,Y ]x), X, Y ∈ Γ(D) (local sections of D),

[g−2(x), g−2(x)] = [g−2(x), g−1(x)] = 0.

Then we see that [ · , · ] is well-defined and that m(x) becomes a Lie algebra.

Further m(x) is a (truncated) graded Lie algebra of second kind. It is called

the symbol algebra of the differential system D at the point x.

Let R be a manifold with a co-Grassmannian structure of type (k, l)

equipped with a pair (E,F ). The spaces Ex and Fx are subspaces of g−1(x)

= Dx:

g−1(x) = Ex ⊕ Fx.

Since E and F are completely integrable,

[Ex, Ex] = [Fx, Fx] = 0.

Moreover we have

dim g−2(x) = dim Ex · dimFx (= kl).

This implies that

g−2(x) ∼= [Ex, Fx] ∼= Ex ⊗ Fx.

Let m = g−2 ⊕ g−1 be a (truncated) graded Lie algebra of second

kind such that gp = 0 for all p ≥ 0. Let e and f be subspaces of g−1 and

dim e = k, dim f = l. A triplet L = {m; e, f} is called a graded Lie algebra

of type (k, l) co-Grassmann or briefly a type (k, l) CGR if it satisfies the

following conditions:
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(1) g−1 = e⊕ f,

(2) [e, e] = [f, f] = 0,

(3) g−2 = [g−1, g−1],

(4) dim g−2 = dim e · dim f (= kl).

There exist bases {e1, . . . , ek} of e and {f1, . . . , fl} of f such that

{[ei, fj ]}1≤i≤k, 1≤j≤l of g−2. By corresponding [ei, fj ] to ei ⊗ fj, from (2),

(3), (4), it follows that g−2 = [e, f] ∼= e ⊗ f. A graded Lie algebra of type

(k, l) CGR is uniquely determined up to isomorphisms by the conditions

above. A triplet L is nothing but m, e, f defined in 4.1 for g = sl(m+ n, R).

Let g0(m) be the gradation preserving derivation algebra Der(m) of m

and Der(L) of L be as follows:

Der(L) = {X ∈ g0(m) | Xe ⊂ e, Xf ⊂ f}.

We denote Der(L) by g0. The prolongation g = g(m, g0) of (m, g0) is called

the prolongation of type CGR L. Then g is finite dimensional ([T2]). In the

case k 6= 1, l 6= 1, since we can easily see that

g0 = g0(m),

the prolongation g of type CGR L becomes the prolongation g(m) of m.

According to Yamaguchi ([Y, Theorem 5.3], cf. [Ka]), if dim e = n, dim f =

m− 1, it follows that g = sl(m + n, R). The group G0 = Aut(L) is the Lie

group of g0. And if we let G and G′ be the Lie groups of g and g′ = g0⊕g1⊕g2

respectively, we have

Fm−1,m
∼= G/G′.

Let R be a manifold with a co-Grassmannian structure of type (k, l)

equipped with a pair (E,F ). Then, at each point x ∈ R, the symbol algebra

m(x) of a differential system D = E ⊕ F is isomorphic to a graded Lie

algebra L = {m; e, f} of type (k, l) CGR. Conversely, let R be a manifold

with a differential system D of L = {m; e, f} of type (k, l) CGR. Then a

co-Grassmannian structure of type (k, l) equipped with a pair (E,F ) on R

is defined. At each point x ∈ R, the symbol algebra m(x) of D = E ⊕ F is

isomorphic to L.

According to Tanaka ([T1], [T2]), we have the following.

Theorem 4.1. Let R be a manifold with a co-Grassmannian structure

of type (k, l). Then there exist a principal bundle Q with structure group G′

over R and a unique normal Cartan connection ω of type G/G′ on Q.
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4.4. Nonzero generators in H2

We consider the simple graded Lie algebra

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

m = g−2 ⊕ g−1,

g−1 = e⊕ f

of second kind of type (k, l) CGR for the Lie algebra g = sl(m + n, R) of

G = SL(m + n, R) (m + n = k + l + 1) associated with a co-Grassmannian

structure of type (k, l). We write it down explicitly:

g = sl(m + n, R)

= g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

=








Ol 0 0

0 0 0

A 0 Ok





⊕








Ol 0 0

f 0 0

0 e Ok





⊕








B 0 0

0 d 0

0 0 C







⊕








Ol
th 0

0 0 tg

0 0 Ok





⊕








Ol 0 D

0 0 0

0 0 Ok





 ,

(A ∈ Mat(k × l, R), B ∈ Mat(l,R), C ∈ Mat(k,R),

D ∈ Mat(l× k, R), d ∈ R, e,g ∈ R
k, f ,h ∈ R

l,

traceB + d + trace C = 0),

e =








Ol 0 0

0 0 0

0 e Ok





 , f =








Ol 0 0

f 0 0

0 0 Ok





 ,

[e, e] = [f, f] = 0, g−2 = [e, f] ∼= e⊗ f,

[gi, gj ] ⊂ gi+j .

We put their bases and coordinates as follows:

eij =




Ol 0 0

0 0 0

Eij 0 Ok


 , ei =




Ol 0 0

0 0 0

0 ei Ok


 , fi =




Ol 0 0

fi 0 0

0 0 Ok


 ,

(Eij ∈ Mat(k × l, R) : matrix unit, i.e., (i, j)-component = 1,

otherwise = 0,

ei ∈ R
k, fi ∈ R

l : i-component = 1, otherwise = 0),
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gij =




Eij 0 0

0 0 0

0 0 Ok


 , hij =




Ol 0 0

0 0 0

0 0 Eij


 ,

(Eij ∈ Mat(l,R), Eij ∈ Mat(k,R) : matrix units respectively)

and



gij
thj dij

yj d tgi

xij xi hij


 =

∑
xijeij+

∑
xiei+

∑
yjfj+

∑
gijgij+

∑
hijhij+· · · .

As in 3.3, we calculate H2 ∼= H2(m, g). We have

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

g−1 = gR
−1 ⊕ gL

−1,

where

gR
−1 = f, gL

−1 = e.

Further we have

Λ2m∗ = Λ2
−4 ⊕ Λ2

−3 ⊕ Λ2
−2,

where

Λ2
−4 = Λ2g∗−2,

Λ2
−3 = g∗−2 ∧ gL∗

−1 ⊕ g∗−2 ∧ gR∗
−1,

Λ2
−2 = Λ2gL∗

−1 ⊕ gL∗
−1 ∧ gR∗

−1 ⊕ Λ2gR∗
−1.

We remark that

C2 =

5⊕

p=−1

Cp,2,

where

C−1,2 = g−2 ⊗ Λ2
−2,

C0,2 = g−2 ⊗ Λ2
−3 ⊕ g−1 ⊗ Λ2

−2,

C1,2 = g−2 ⊗ Λ2
−4 ⊕ g−1 ⊗ Λ2

−3 ⊕ g0 ⊗ Λ2
−2,

C2,2 = g−1 ⊗ Λ2
−4 ⊕ g0 ⊗ Λ2

−3 ⊕ g1 ⊗ Λ2
−2,

C3,2 = g0 ⊗ Λ2
−4 ⊕ g1 ⊗ Λ2

−3 ⊕ g2 ⊗ Λ2
−2,

C4,2 = g1 ⊗ Λ2
−4 ⊕ g2 ⊗ Λ2

−3,

C5,2 = g2 ⊗ Λ2
−4.

Then we obtain the following.
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Proposition 4.1. The components of nonzero generators as g0-mod-

ules in H2 are represented by

1. if l ≥ 3,

(i) ek1 ⊗ (f∗l ∧ e∗1l) ∈ H0,2 ⊂ g−2 ⊗ (g∗−2 ∧ (gR
−1)

∗),

(ii) ek1 ⊗ (e∗1l ∧ e∗1) ∈ H0,2 ⊂ g−2 ⊗ (g∗−2 ∧ (gL
−1)

∗),

2. if l = 2,

(a) for k + l + 1 ≥ 6, i.e., k ≥ 3,

(i) ek ⊗ (f∗1 ∧ f∗2 ) ∈ H0,2 ⊂ gL
−1 ⊗ Λ2(gR

−1)
∗,

(ii) ek1 ⊗ (e∗1l ∧ f∗l ) ∈ H0,2 ⊂ g−2 ⊗ (g∗−2 ∧ (gR
−1)

∗),

(iii) ek1 ⊗ (e∗1l ∧ e∗1) ∈ H0,2 ⊂ g−2 ⊗ (g∗−2 ∧ (gL
−1)

∗),

(b) for k + l + 1 = 5, i.e., k = 2,

(i) e2 ⊗ (f∗1 ∧ f∗2 ) ∈ H0,2 ⊂ gL
−1 ⊗ Λ2(gR

−1)
∗,

(ii) e21 ⊗ (e∗12 ∧ f∗2 ) ∈ H0,2 ⊂ g−2 ⊗ (g∗−2 ∧ (gR
−1)

∗),

(iii) e21 ⊗ (e∗12 ∧ e∗1) ∈ H0,2 ⊂ g−2 ⊗ (g∗−2 ∧ (gL
−1)

∗),

(iv) f1 ⊗ (e∗1 ∧ e∗2) ∈ H0,2 ⊂ gR
−1 ⊗ Λ2(gL

−1)
∗,

3. if l = 1,

(a) for k + l + 1 ≥ 5, i.e., k ≥ 3,

(i) ek ⊗ (e∗1(1) ∧ f∗) ∈ H1,2 ⊂ gL
−1 ⊗ (g∗−2 ∧ (gR

−1)
∗),

(ii) hk1 ⊗ (e∗1(1) ∧ e∗1) ∈ H2,2 ⊂ g0 ⊗ (g∗−2 ∧ (gL
−1)

∗),

therefore, K0 = 0, K1 = HK1,

(b) for k + l + 1 = 4, i.e., k = 2,

(i) f ⊗ (e∗1 ∧ e∗2) ∈ H0,2 ⊂ gR
−1 ⊗ Λ2(gL

−1)
∗,

(ii) e2 ⊗ (e∗1(1) ∧ f∗) ∈ H1,2 ⊂ gL
−1 ⊗ (g∗−2 ∧ (gR

−1)
∗),

(iii) h21 ⊗ (e∗1(1) ∧ e∗1) ∈ H2,2 ⊂ g0 ⊗ (g∗−2 ∧ (gL
−1)

∗).

§5. Null n-plane bundle

5.1. Definition

In the vector space Rmn = Rn ⊗ Rm, a vector u is called null (simple,

or decomposable) if there exist a vector v belonging to R
n and a vector w

belonging to R
m such that u = v ⊗ w.
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Let {ei} (1 ≤ i ≤ n) be a basis of R
n and {fj} (1 ≤ j ≤ m) a basis of

R
m. For v =

∑n
i=1 αiei, w =

∑m
j=1 βjfj,

u = v ⊗ w =
( n∑

i=1

αiei

)
⊗
( m∑

j=1

βjfj

)

=
∑

i,j

αiβj ei ⊗ fj = (αiβj)1≤i≤n, 1≤j≤m.

In particular, each vector ei ⊗ fj that makes a basis of R
mn = R

n ⊗ R
m is

null.

A k-dimensional subspace of R
mn = R

n⊗R
m is called a null k-plane (or

an isotropic k-plane) if each vector in the k-dimensional subspace is a null

vector. Note that k ≤ max(n,m) holds. We consider the set of all n-planes

with forms {Rn ⊗ w | w ∈ R
m}. It has a Pm−1(R) family. Each the null

n-plane is called a null n-plane. And moreover we consider the set of all

null m-planes with forms {v⊗R
m | v ∈ R

n}. It has a Pn−1(R) family. Each

the null m-plane is called a null m-plane. We remark that the intersection

of each null n-plane and each null m-plane is 1-dimensional subspace.

Let M be a manifold with a Grassmannian structure of type (n,m).

Considering a set of all the null n-planes in the tangent space at each point

of M , we have a fibre bundle FL with fibre Pm−1(R) over M , called a null

n-plane bundle:
FL ←−−− Pm−1(R)
y$L

M .

5.2. Tautological distribution

An n-dimensional distribution D on the null n-plane bundle FL over

M is called an n-dimensional tautological distribution of null n-planes if it

satisfies the following: for the n-dimensional subspace DΠ ⊂ TΠFL,

$L∗(DΠ) = Π ⊂ T$L(Π)M.

Here note that Π ∈ FL is a null n-plane in T$L(Π)M .

From now, we will define an n-dimensional tautological distribution D

of null n-planes on FL. When we consider the horizontal lift of a null n-

plane Π in M to the null n-plane bundle FL by a connection, we note that
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FL, which is the bundle associated with the linear frame bundle P with

structure group GR(n,m) on M , does not have a canonical connection.

But FL is the bundle associated with the frame bundle Q of second order

with structure group G′ on M as well. We observe from 2.3 that there exists

a unique Cartan connection on Q. Considering the horizontal lift of Π in

M to Q and doing the reduction to FL, we can define an n-dimensional

tautological distribution DL of null n-planes on FL. We will describe the

argument fully in the following.

Let M be a manifold with a Grassmannian structure of type (n,m).

We identify TM with V ⊗W under σ. For x ∈M ,

TxM = Vx ⊗Wx,

where Vx is an n-dimensional vector space and Wx an m-dimensional vector

space. Take a basis {ei} (1 ≤ i ≤ n) of Vx and a basis {fj} (1 ≤ j ≤ m)

of Wx. A set {ei ⊗ fj} (1 ≤ i ≤ n, 1 ≤ j ≤ m) is a null basis of Vx ⊗Wx.

Therefore λx = (e1⊗f1, e2⊗f1, . . . , en⊗f1, . . . , e1⊗fm, e2⊗fm, . . . , en⊗fm)

belongs to P .

Put

ΠLx = span(e1 ⊗ fm, e2 ⊗ fm, . . . , en ⊗ fm).

The space ΠLx is a null n-plane in TxM . Namely, ΠLx belongs to FL. Then

a mapping pL : P → FL is defined by

pL : λx 7−→ ΠLx .

A subgroup of G0 = GR(n,m) which leaves the null n-plane ΠLx invariant

is

H0L = S({B} ×GL(n, R)),

where

B =




a11 a12 · · · a1m−1 a1m

a21 a22 · · · a2m−1 a2m
...

...
. . .

...
...

am−11 am−12 · · · am−1m−1 am−1m

0 0 · · · 0 amm



∈ GL(m, R).

Consequently we define a principal bundle P (FL,H0L, pL). The null n-

plane bundle FL over M is the fibre bundle with fibre G0/H0L
∼= Pm−1(R)

associated with P :

FL = P ×G0
G0/H0L = P/H0L.



58 Y. MACHIDA AND H. SATO

For a linear frame bundle P with structure group G0 = GR(n,m) over

M , let us consider the frame bundle Q of second order with structure group

G′. Let πP be a canonical projection Q→ P . Then the null n-plane bundle

FL over M is the fibre bundle with fibre G′/H ′
L
∼= Pm−1(R) associated with

Q:

FL = Q×G′ G′/H ′
L = Q/H ′

L.

Consequently a mapping πL : Q→ FL being defined, we define a principal

bundle Q(FL,H ′
L, πL).

Summarizing them, we have the following diagram:

From 2.3, there exists a unique g = sl(m+n, R)-valued Cartan connec-

tion ω of type G/G′ on Q. For v ∈ Q, the linear isomorphism

ω : TvQ −→ g

is defined. The Lie algebra g = sl(m+n, R) of G = SL(m+n, R) is a graded

Lie algebra of first kind:

g = g−1 ⊕ g0 ⊕ g1.

We identify R
mn = R

n ⊗ R
m with g−1 as follows:

t(0, . . . , 0,
i

1, 0, . . . , 0)⊗ (0, . . . , 0,
j

1, 0, . . . , 0)←→ eij =

(
Om 0

Eij On

)
,

where Eij ∈ Mat(n×m, R) is a matrix unit, i.e., (i, j)-component is 1 and

otherwise 0.

A subspace

nL = span(e1m, e2m, . . . , enm)
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spanned by e1m, e2m, . . . , enm is a null n-plane. The Lie algebra hL of H ′
L

is a subalgebra of g′ = g0 ⊕ g1 and has the following form:

hL =








a11 a12 · · · a1m−1 a1m

a21 a22 · · · a2m−1 a2m
...

...
. . .

...
...

am−11 am−12 · · · am−1m−1 am−1m

0 0 · · · 0 amm

D

O C








⊂ g′,

where aij ∈ R, C ∈ Mat(n,R), D ∈ Mat(m×n, R), and
∑m

i=1 aii+traceC =

0.

For the vector subspace nL + hL of g, we have the following:

Lemma 5.1. The space nL + hL is invariant under the adjoint actions

of H ′
L and hL.

Remark that the space nL is invariant under the adjoint action of H0L.

Let v ∈ Q. Let x = πM (v) ∈ M . Let λx = πP (v) and ΠLx = πL(v).

Then pL(λx) = ΠLx holds. An element λx = (e1 ⊗ f1, . . . , en ⊗ f1, . . . , e1 ⊗
fm, . . . , en⊗fm) ∈ P is regarded as an isomorphism λx : R

mn (= R
n⊗R

m) =

g−1 → TxM :

eij 7−→ ei ⊗ fj.

Then

nL 7−→ ΠLx

holds.

By using the normal Cartan connection ω, vectors ω−1(eij) ∈ TvQ are

the horizontal lift of vectors ei ⊗ fj ∈ TxM .

Next, putting

DLv = ω−1(nL + hL),

we can define a distribution DL on Q. From the lemma above, we have the

following:

Lemma 5.2. The distribution DL on Q is invariant under the right

action of H ′
L.
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Therefore an n-dimensional distribution DL is defined on the null n-

plane bundle FL = Q/H ′
L:

DL = DL mod H ′
L.

This is a tautological distribution of null n-planes.

Investigating the complete integrability of the distribution DL on FL

is equivalent to investigating the complete integrability of the distribution

DL on Q modulo H ′
L.

Lemma 5.3. We have

[DL,DL] ⊂ DL on FL

⇐⇒ [DL mod H ′
L,DL mod H ′

L] ⊂ DL mod H ′
L on Q.

For v ∈ Q, elements in TvQ

ẽim|v = ω−1(eim), 1 ≤ i ≤ n,

are defined. Put

ñL = ω−1(nL).

We will investigate the condition modulo H ′
L satisfying

[ẽim, ẽjm] ∈ ñL,

for vector fields ẽim (1 ≤ i ≤ n) on Q.

Before investigating the complete integrability of the distribution, we

prepare several lemmas.

Corresponding to the decomposition

g = g−1 ⊕ g0 ⊕ g1,

the normal Cartan connection form ω and the curvature form Ω are decom-

posed respectively as follows:

ω = ω−1 ⊕ ω0 ⊕ ω1,

Ω = Ω−1 ⊕ Ω0 ⊕ Ω1.

Put

Ω′ = Ω0 ⊕ Ω1.



TWISTOR THEORY OF GRASSMANNIAN STRUCTURES 61

Recall that the curvature form Ω is defined as follows:

Ω = dω +
1

2
[ω, ω].

Denote by hX and vX the components of the decomposition of ω−1(g−1)

and ω−1(g0 ⊕ g1) respectively (cf. a horizontal component and a vertical

component). Denote by A∗ the fundamental vector field on Q corresponding

to A ∈ g0 ⊕ g1.

First we remark the following lemma. Put ei = eim (1 ≤ i ≤ n). For

an element ẽi|va (1 ≤ i ≤ n) in TvaQ at Rav = va (a ∈ G′), we have the

relation to an element in TvQ:

Lemma 5.4.

ẽi|va = Ra∗ω
−1
|v (Ad(a)ei) (1 ≤ i ≤ n).

Proof. At v ∈ Q, take X̃ such that ω(X̃) = Ad(a)ei: X̃ =

ω−1(Ad(a)ei). At va ∈ Q,

ω(Ra∗X̃) = R∗
aω(X̃) = Ad(a−1) · ω(X̃) = Ad(a−1) · Ad(a)ei = ei.

Therefore

ẽi|va = ω−1(ei) = Ra∗X̃ = Ra∗ω
−1(Ad(a)ei).

Next we have the relations between vX, hX and Ω′, Ω−1 respectively.

Lemma 5.5. We have

(i) v[ẽi, ẽj ] = −2Ω′(ẽi, ẽj)
∗ (1 ≤ i ≤ n),

(ii) v[ẽi, ẽj ]|va = −2(Ad(a−1)) · Ω′
(
ω−1
|v (Ad(a)ei), ω

−1
|v (Ad(a)ej)

)∗
.

Proof. (i): The following holds:

Ω0(ẽi, ẽj) = dω0(ẽi, ẽj) +
1

2
[ω−1(ẽi), ω1(ẽj)] +

1

2
[ω0(ẽi), ω0(ẽj)]

= dω0(ẽi, ẽj) = −1

2
ω0([ẽi, ẽj ]).

Thus

ω0([ẽi, ẽj ]) = −2Ω0(ẽi, ẽj).
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Similarly, from Ω1 = dω1 + [ω1, ω0],

ω1([ẽi, ẽj ]) = −2Ω1(ẽi, ẽj).

Hence

v[ẽi, ẽj ] = ω−1(ω0([ẽi, ẽj ]) + ω1([ẽi, ẽj ]))

= ω−1(−2Ω0(ẽi, ẽj)− 2Ω1(ẽi, ẽj))

= −2ω−1Ω′(ẽi, ẽj)

= −2Ω′(ẽi, ẽj)
∗.

(ii): It follows that

v[ẽi, ẽj ]|va = v[Ra∗ω
−1(Ad(a)ei), Ra∗ω

−1(Ad(a)ej)]

= vRa∗ [ω
−1(Ad(a)ei), ω

−1(Ad(a)ej)]

= Ra∗v[ω−1(Ad(a)ei), ω
−1(Ad(a)ej)]

= −2Ra∗Ω
′(ω−1(Ad(a)ei), ω

−1(Ad(a)ej))
∗

= −2(Ad(a−1) · Ω′(ω−1(Ad(a)ei), ω
−1(Ad(a)ej))

∗,

where the third equality is obtained from vRa∗ = Ra∗v and the fifth equality

from (Ra∗A
∗
v)|va = (Ad(a−1)A)∗|va

.

Lemma 5.6. We have

(i) h[ẽi, ẽj] = −2ω−1(Ω−1(ẽi, ẽj)) (1 ≤ i ≤ n),

(ii) h[ẽi, ẽj ]|va = −2ω−1
(
a−1Ω−1ω

−1
|v (Ad(a)ei, ω

−1
|v (Ad(a)ej))

)
.

Proof. (i): From Ω−1 = dω−1 + [ω−1, ω0],

Ω−1(ẽi, ẽj) = dω−1(ẽi, ẽj) + [ω−1(ẽi), ω0(ẽj)]

= dω−1(ẽi, ẽj)

=
1

2
(ẽi · ω−1(ẽj)− ẽj · ω−1(ẽi)− ω−1([ẽi, ẽj ]))

= −1

2
ω−1([ẽi, ẽj ] = −1

2
h[ẽi, ẽj ].

Here note that ẽi, ẽj are the basic vector fields of ei, ej, that is to say,

ei ⊗ fm, ej ⊗ fm. Hence

h[ẽi, ẽj ] = −2Ω−1(ẽi, ẽj).
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(ii): It follows that

h[ẽi, ẽj ]|va = h[Ra∗ω
−1(Ad(a)ei), Ra∗ω

−1(Ad(a)ej)]

= hRa∗ [ω
−1(Ad(a)ei), ω

−1(Ad(a)ej)]

= Ra∗h[ω−1(Ad(a)ei), ω
−1(Ad(a)ej)]

= −2Ra∗ω
−1(Ω−1(ω

−1(Ad(a)ei), ω
−1(Ad(a)ej)))

= −2(ω−1(a−1 · Ω−1(ω
−1(Ad(a)ei), ω

−1(Ad(a)ej))),

where in the last term g−1 and R
mn = R

n ⊗ R
m are identified.

5.3. Complete integrability

Let M be a manifold with a Grassmannian structure of type (n,m).

An n-dimensional tautological distribution DL of null n-planes on the null

n-plane bundle FL over M and the distribution DL on a frame bundle Q of

second order with structure group G′ on M are defined.

Now, assume that the distribution DL on FL, namely, the distribution

DL on Q is completely integrable.

Let x ∈M . Let {e1⊗f1, . . . , en⊗f1, . . . , e1⊗fm, . . . , en⊗fm} be a local

basis field about x. Then λx = (e1⊗f1, . . . , en⊗f1, . . . , e1⊗fm, . . . , en⊗fm)x
belongs to π−1(x) ⊂ P . Let v ∈ π−1

M (x) ⊂ Q such that πP (v) = λx. And let

ẽim|v, ẽjm|v ∈ DLv ⊂ TvQ. Here ẽim = ω−1(eim) and πM∗|v
(ẽim) = ei ⊗ fm

(i = 1, . . . , n). We describe conditions such that [ẽim, ẽjm]|v ∈ DLv.

By ΩR
ab (1 ≤ a, b ≤ m) and ΩL

ij (1 ≤ i, j ≤ n) we denote (a, b)-compo-

nent of gR
0 and (i, j)-component of gL

0 with respect to the decomposition

Ω = Ω−1 ⊕ Ω0 ⊕ Ω1 = Ω−1 ⊕ Ω′ of the curvature form Ω of the normal

Cartan connection ω respectively, and by Ωα,β
−1 (1 ≤ α ≤ n, 1 ≤ β ≤ m)

(α, β)-component of g−1.

From lemmas in 5.2, we have the following.

Proposition 5.1. We have

[ẽim, ẽjm]|v ∈ DLv

⇐⇒
{

(i) ΩR
mb(ẽim, ẽjm) = 0, (1 ≤ b ≤ m− 1)

(ii) Ωαβ
−1(ẽim, ẽjm) = 0, (1 ≤ α ≤ n, 1 ≤ β ≤ m− 1).

In the case n, m ≥ 3:

In particular, we have Ωn1
−1(ẽ1m, ẽ2m) = 0, namely, en1⊗ (e∗1m ∧ e∗2m) ∈

g−1 ⊗ Λ2
R-component of K0 is 0. From Proposition 3.3, 1 (ii) in 3.3, this
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component is the component of one nonzero generator as g0-module in H2.

Therefore the Grassmannian structure is right-half torsion-free, i.e., HK0
R =

0. Here K0 = HK0 = HK0
L + HK0

R (HK0
L ⊂ g−1 ⊗ Λ2

L, HK0
R ⊂ g−1 ⊗ Λ2

R

in Proposition 3.3, 1 (i), (ii) respectively).

Conversely, assume that HK0
R = 0. If HK0

R = 0, the component of the

generator en1 ⊗ (e∗1m ∧ e∗2m) ∈ g−1 ⊗ Λ2
R as g0-module in H2 of K0 is 0.

Thus, by lemmas in 5.2, we get (ii) in the above proposition. Further, from

Proposition 5.2, 1 in 5.5 which appears later on (cf. Proposition 4.1 in 4.4)

for a co-Grassmannian structure on FL, we get (i) in the above proposition.

Therefore DL on FL is completely integrable.

In the case n ≥ 3, m = 2:

In particular, we have Ωn1
−1(ẽ12, ẽ22) = 0, namely, en1 ⊗ (e∗12 ∧ e∗22) ∈

g−1 ⊗ Λ2
R component of K0 is 0. From Proposition 3.3, 2 (i) in 3.3, this

component is the component of one nonzero generator as g0-module in H2.

Therefore the Grassmannian structure is torsion-free (especially right-half

Grassmannian flat), i.e., K0 = HK0 = 0.

Conversely, assume that K0 = HK0 = 0. If HK0 = 0, the component

of the generator en1 ⊗ (e∗12 ∧ e∗22) ∈ g−1 ⊗ Λ2
R as g0-module in H2 of K0

is 0. Thus, by lemmas in 5.2, we get (ii) in the above proposition. Fur-

ther, from Proposition 5.2, 2 in the next 5.5 (cf. Proposition 4.1 in 4.4) for

a co-Grassmannian structure on FL, we get (i) in the above proposition.

Therefore DL on FL is completely integrable.

In the case n = 2, m = 2:

In particular, we have ΩR
21(ẽ12, ẽ22) = 0, namely, g21 ⊗ (e∗12 ∧ e∗22) ∈

gR
0 ⊗ Λ2

R component of K1 is 0. From Proposition 3.3, 3 (ii) in 3.3, this

component is the component of one nonzero generator as g0-module in H2.

Therefore, in consideration of Proposition 3.2 in 3.2, the Grassmannian

structure is right-half Grassmannian flat, i.e., HK1
R = 0. Here K0 = 0,

K1 = HK1 = HK1
L + HK1

R (HK1
L ⊂ gL

0 ⊗ Λ2
L, HK1

R ⊂ gR
0 ⊗ Λ2

R in

Proposition 3.3, 3 (i), (ii) respectively).

Conversely, assume that HK1
R = 0. If HK1

R = 0, the component of

the generator g21 ⊗ (e∗12 ∧ e∗22) ∈ gR
0 ⊗ Λ2

R as g0-module in H2 of K1 is

0. Thus, by lemmas in 5.2, we get (i) in the above proposition. Further,

from Proposition 5.2, 3 in the next 5.5 (cf. Proposition 4.1 in 4.4) for a

co-Grassmannian structure on FL, we get (ii) in the above proposition.

Therefore DL on FL is completely integrable.

Summarizing them, we have the following.
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Theorem 5.1. Let M be a manifold with a Grassmannian structure

of type (n,m) and equipped with the normal Cartan connection ω. Then

the tautological distribution DL on the null n-plane bundle FL over M is

completely integrable if and only if the Grassmannian structure on M is

1. if n, m ≥ 3, right-half torsion-free, i.e., HK0
R = 0,

2. if n ≥ 3, m = 2, torsion-free, i.e., K0 = HK0 = 0,

3. if n = 2, m = 2, right-half Grassmannian flat, i.e., HK1
R = 0.

If n = 2, m = 2, K0 = 0 holds. Therefore K = K1 = HK1 is noth-

ing but the conformal Weyl tensor of a conformal structure of type (2, 2)

(see 1.5, 2.3. cf. [O]).

5.4. An example of type (n, 2)

We give an example M with the completely integrable condition of 2

in the above theorem.

We study the example described in 1.3 (2):

M = Hm,m(C) ∼= U(m + 1,m)/U(1) × U(m,m).

Since U(m+1,m) acts transitively on M , we consider the origin o = U(1)×
U(m,m). Moreover, since U(1) × U(m,m) acts transitively on the set of

all null n-planes in the tangent space ToM at the origin o, we consider a

distinguished null n-plane.

In ToM ∼= m,

n =








0 −tx y

x 0 0

y 0 0





 , (x, y ∈ R

m ⊂ C
m)

is a null n-plane. We show that exp n is a null n-manifold in M , that is,

each null vector in n is mapped to a null vector in the tangent space at each

point in exp n under the differential exp∗. If so, it follows that, for any point

in M and any null n-plane in tangent space at the point, there exists a null

n-manifold through the point such that the tangent space at the point is the

null n-plane. Then, from the above Theorem, M = Hm,m(C) is right-half

Grassmannian flat.

Since M is a symmetric space, according to [He], for X ∈ n ⊂ m ⊂ g,

exp∗X
= (Lexp)∗e ◦

1− e−adX

adX
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holds, where e is the unit element of G = U(m + 1,m) and (1− e−A)/A =∑∞
m=0

1
(m+1)!(−A)m. Thus, it suffices that, for Y ∈ n,

1− e−adX(Y )

adX(Y )
=

∞∑

m=0

1

(m + 1)!
(−admX(Y ))

belongs to n mod h. Since [n, n] ⊂ [m,m] ⊂ h, if m is odd, admX(Y ) is an

element of h. By simple calculations, if m is even, it follows directly that

admX(Y ) is an element of n. Thus exp∗X
(Y ) is a null vector. Therefore

exp n is a null n-manifold.

5.5. Co-Grassmannian structure of type (n,m−1) and its nor-

mal Cartan connection

Let M be a manifold with a Grassmannian structure of type (n,m)

and equipped with the normal Cartan connection ω. Suppose that an n-

dimensional tautological distribution DL of null n-planes on the null n-

plane bundle FL over M is completely integrable. For the natural projection

$L : FL → M , put EL = Ker($L)∗. Then EL is a completely integrable

(m − 1)-dimensional distribution on FL. In the following, by considering

a differential system D̂L = DL ⊕ EL, we will see that a transversal pair

(DL, EL) defines a co-Grassmannian structure of type (n,m−1) on FL, that

is, the symbol algebra of D̂L = DL ⊕ EL at each point of FL is isomorphic

to a graded Lie algebra of type (n,m−1) CGR. Moreover we will show that

the normal Cartan connection (Q,ω) induced by a Grassmannian structure

of type (n,m) on M decides the normal Cartan connection (Q,ω) of the

co-Grassmannian structure of type (n,m− 1) on FL.

In Sections 2 and 3, we considered g = sl(m+n, R) = g−1⊕g0⊕g1. Now

we write it as k = sl(m+n, R) = k−1⊕k0⊕k1. On the other hand, in Section 4,

we have the decomposition g = sl(m+n, R) = g−2⊕g−1⊕g0⊕g1⊕g2 as type

(n,m−1) CGR. Thus we have the two decompositions g = k = sl(m+n, R)

of G = K = SL(m + n, R), as graded Lie algebras of first kind and second

kind respectively, as follows:

k = k−1 ⊕ k0 ⊕ k1

= g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

We have

k−1 = g−2 ⊕ gL
−1, (gL

−1 = e)
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k0 = gR
−1 ⊕ g0 ⊕ gR

1 , (gR
−1 = f, gR

1 = (gR
−1)

∗)

g−1 = gL
−1 ⊕ gR

−1, g−2
∼= gL

−1 ⊗ gR
−1.

Moreover we have the following:

Λ2k∗−1 = Λ2
L ⊕ Λ2

R

= Λ2g∗−2 ⊕ (g∗−2 ∧ (gL
−1)

∗)⊕ Λ2(gL
−1)

∗,

Λ2(gL
−1)

∗ ⊂ Λ2
R.

We identify R
mn = R

n ⊗ R
m with k−1 and R

mn+m−1 = R
n ⊗ R

m−1 ⊕
R

n ⊕ R
m−1 with g−2 ⊕ g−1 = g−2 ⊕ gL

−1 ⊕ gR
−1 respectively. The set of all

isomorphisms of k−1 to the tangent space at each point of M is the linear

frame bundle of M and the structure group is the Lie group of k0. The set

of all isomorphisms of g−2⊕ g−1 = g−2⊕ gL
−1⊕ gR

−1 to the tangent space at

each point of FL is the linear frame bundle of FL and the structure group

is the Lie group of g0.

Let K ′ be the Lie group of k′ = k0⊕k1 and G′ the Lie group of g0⊕g1⊕g2.

The flat model with a Grassmannian structure of type (n,m) is Gm,n+m
∼=

K/K ′ (see 1.2) and the flat model with a co-Grassmannian structure of

type (n,m− 1) is Fm−1,m
∼= G/G′ (see 4.2).

From the diagram in 5.2, we can regard the frame bundle Q of second

order with structure group K ′ on M as a principal bundle with structure

group G′ over FL. The normal Cartan connection ω of type K/K ′ on Q is a

g = k = sl(m + n, R)-valued 1-form and a linear isomorphism ω : TvQ→ k

for v ∈ Q. At the same time, ω defines a Cartan connection ω of type G/G′

on Q. The curvature function K by the curvature form Ω of ω is said to be

the lift of the curvature function K by the curvature form Ω of ω.

We show that ω satisfies normality condition, that is, K
−1

= 0, ∂∗K
p

=

0 (p ≥ 0).

K
−1

= 0:

K
−1

= K
−1,2

has the values in

C−1,2 = g−2 ⊗ Λ2
−2 = g−2 ⊗ Λ2g∗−1

= g−2 ⊗ Λ2(gL
−1)

∗ ⊕
(
g−2 ⊗ (gL

−1)
∗ ∧ (gR

−1)
∗
)
⊕ g−2 ⊗ Λ2(gR

−1)
∗.

Since K is the lift of K, it follows that

K
−1

= 0⇐⇒ g−2 ⊗ Λ2(gL
−1)

∗-component of K = 0.
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If an n-dimensional tautological distribution DL of null n-planes on FL is

completely integrable (see 5.3), these equivalent conditions are satisfied.

∂∗K
p

= 0:

Let {ei} be a basis of m = g−2 ⊕ g−1 and take X ∈ m. Then

(∂∗K)(X) =
∑

j

[e∗j ,K(ej ∧X)] +
1

2

∑

j

K([e∗j ,X]− ∧ ej)

=
∑

j

[e∗j ,K(ej ∧X)] +
1

2

∑

j

K([e∗j ,X]− ∧ ej).

Since e∗j ∈ m∗ = g∗−2 ⊕ (gL
−1)

∗ ⊕ (gR
−1)

∗ = k∗−1 ⊕ (gR
−1)

∗ and [gL
1 , g−2] ⊂ gR

−1,

the second term does not appear. Remark that K(ej ∧X) = 0 for ej ∈ gR
−1.

Thus it follows that

∂∗K = ∂∗K.

From normality condition of K, we have ∂∗Kp = 0 (p ≥ 0). Therefore we

get ∂∗K
p

= 0.

We have the following.

Theorem 5.2. Let M be a manifold with a Grassmannian structure

of type (n,m) and equipped with the normal Cartan connection ω. Sup-

pose that an n-dimensional tautological distribution DL of null n-planes

on the null n-plane bundle FL over M is completely integrable. Then a

pair (DL, EL = Ker($L)∗) defines a co-Grassmannian structure of type

(n,m−1) on FL. Moreover the normal Cartan connection (Q,ω) of a Grass-

mannian structure of type (n,m) induces the normal Cartan connection

(Q,ω) of the co-Grassmannian structure of type (n,m− 1) on FL.

We have the harmonic part HK of the curvature function K of ω and

the harmonic part HK of the curvature function K of ω that is its lift. The

relation of them is as follows.

Proposition 5.2. If the conditions of the theorem above are satisfied,

1. if n, m ≥ 3, for K0 = HK0 = HK0
L + HK0

R,

(a) the vanishing of the generator of HK0
R ⊂ k−1 ⊗ Λ2

R implies the

normality condition of K (plus the complete integrability of DL),
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(b) the generator of HK0
L ⊂ k−1 ⊗ Λ2

L is lifted to the generator of

HK
0 ⊂ g−2 ⊗ (g∗−2 ∧ (gL

−1)
∗), (the other generator of HK

0 ⊂
g−2 ⊗ (g∗−2 ∧ (gR

−1)
∗) vanishes)

2. if n ≥ 3, m = 2, for K0 = HK0 and HK1,

(a) the vanishing of the generator of K0 = HK0 ⊂ k−1 ⊗ Λ2
R implies

the normality condition of K (plus the complete integrability of

DL),

(b) the generator of HK1 ⊂ kL0 ⊗ Λ2
L is lifted to the generator of

HK
2 ⊂ g0 ⊗ (g∗−2 ∧ (gL

−1)
∗), (the generator of HK

1 ⊂ gL
−1 ⊗

(g∗−2 ∧ (gR
−1)

∗) vanishes)

3. if n = 2, m = 2, for K1 = HK1 = HK1
L + HK1

R,

(a) the generator of HK1
R ⊂ kR0 ⊗ Λ2

R is lifted to the generator of

HK
0 ⊂ gR

−1 ⊗ Λ2(gL
−1)

∗, the vanishing of the generator of HK1
R

implies the normality condition (plus the complete integrability of

DL),

(b) the generator of HK1
L ⊂ kL0 ⊗ Λ2

L is lifted to the generator of

HK
2 ⊂ g0 ⊗ (g∗−2 ∧ (gL

−1)
∗). (the generator of HK

1 ⊂ gL
−1 ⊗

(g∗−2 ∧ (gR
−1)

∗) vanishes).

Here kL0 = slL = sl(n, R) and kR0 = slR = sl(m, R).

Remark that, from Proposition 4.1, 2 (a), (b) in 4.4, if n ≥ 2, m = 3,

the relations are the same ones as the above 1 (a), (b). If n = 2, m = 3,

the generator of HK
0 ⊂ gR

−1 ⊗ Λ2(gL
−1)

∗ vanishes besides, because of the

complete integrability of DL. (The other generator of HK
0 ⊂ gL

−1⊗Λ2(gR
−1)

∗

vanishes.)

§6. Null m-plane bundle

6.1. Definition

Let M be a manifold with a Grassmannian structure of type (n,m).

Considering a set of all the null m-planes as in 5.1 in the tangent space at

each point of M , we have a fibre bundle FR with fibre Pn−1(R) over M ,
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called a null m-plane bundle:

FR ←−−− Pn−1(R)
y$R

M .

6.2. Tautological distribution

An m-dimensional distribution D on the null m-plane bundle FR over

M is called an m-dimensional tautological distribution of null m-planes if

it satisfies the following: for the m-dimensional subspace DΠ ⊂ TΠFR,

$R∗(DΠ) = Π ⊂ T$R(Π)M.

Here note that Π ∈ FR is a null m-plane in T$R(Π)M . As in the way that we

defined an n-dimensional tautological distribution of null n-planes on the

null n-plane bundle FL over M in Section 5, by the use of the normal Cartan

connection on Q we will define an m-dimensional tautological distribution

DR of null m-planes on the null m-plane bundle FR over M .

Let M be a manifold with a Grassmannian structure of type (n,m). We

identify TM with V ⊗W under σ. For x ∈M , we denote TxM by Vx⊗Wx.

Take a basis {ei} (1 ≤ i ≤ n) of Vx and a basis {fj} (1 ≤ j ≤ m) of Wx. A

set {ei ⊗ fj} (1 ≤ i ≤ n, 1 ≤ j ≤ m) is a null basis of Vx ⊗Wx. Therefore

λx = (e1⊗ f1, e2⊗ f1, . . . , en⊗ f1, . . . , e1⊗ fm, e2⊗ fm, . . . , en⊗ fm) belongs

to P .

Put

ΠRx = span(e1 ⊗ f1, e1 ⊗ f2, . . . , e1 ⊗ fm).

The subspace ΠRx is a null m-plane in TxM . Namely, ΠRx belongs to FR.

Then a mapping pR : P → FR is defined by

pR : λx 7−→ ΠRx .

A subgroup of G0 = GR(n,m) which leaves the null m-plane ΠRx

invariant is

H0R = S(GL(m,R)× {C}),
where

C =




a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 an2 · · · ann


 ∈ GL(n, R).
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Consequently we define a principal bundle P (FR,H0R, pR). The null m-

plane bundle FR over M is the fibre bundle with fibre G0/H0R
∼= Pn−1(R)

associated with P :

FR = P ×G0
G0/H0R = P/H0R.

For a linear frame bundle P with structure group G0 = GR(n,m) over

M , let us consider the frame bundle Q of second order with structure group

G′. Let πP be a canonical projection Q→ P . Then the null m-plane bundle

FR over M is the fibre bundle with fibre G′/H ′
R
∼= Pn−1(R) associated with

Q:

FR = Q×G′ G′/H ′
R = Q/H ′

R.

Consequently a mapping πR : Q→ FR being defined, we define a principal

bundle Q(FR,H ′
R, πR).

Summarizing them, we have the following diagram:

We use the same notations as in 5.2.

A subspace

nR = span(e11, e12, . . . , e1m)

spanned by e11, e12, . . . , e1m is a null m-plane. The Lie algebra hR of H ′
R is

a subalgebra of g′ = g0 ⊕ g1 and has the following form:

hR =








B D

O

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 an2 · · · ann







⊂ g′,
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where aij ∈ R, B ∈ Mat(m,R), D ∈ Mat(m×n, R), and traceB+
∑n

i=1 aii =

0.

For the vector subspace nR + hR of g, We have the following:

Lemma 6.1. The space nR + hR of g is invariant under the adjoint

action of H ′
R and hR.

Remark that the space nR is invariant under the adjoint action of H0R.

Let v ∈ Q. Let x = πM (v) ∈ M . Let λx = πP (v) and ΠRx = πR(v).

Then pR(λx) = ΠRx holds. An element λx = (e1 ⊗ f1, . . . , en ⊗ f1, . . . , e1 ⊗
fm, . . . , en⊗fm) ∈ P is regarded as an isomorphism λx : R

mn (= R
n⊗R

m) =

g−1 → TxM :

eij 7−→ ei ⊗ fj.

Then

nR 7−→ ΠRx

holds.

By using the normal Cartan connection ω, vectors ω−1(eij) ∈ TvQ are

the horizontal lift of vectors ei ⊗ fj ∈ TxM .

Next, putting

DRv = ω−1(nR + hR),

we can define a distribution DR on Q. From the lemma above, we have the

following:

Lemma 6.2. The distribution DR on Q is invariant under the right

action of H ′
R.

Therefore an m-dimensional distribution DR is defined on the null m-

plane bundle FR = Q/H ′
R:

DR = DR mod H ′
R.

This is a tautological distribution of null m-planes.

Investigating the complete integrability of the distribution DR on FR

is equivalent to investigating the complete integrability of the distribution

DR on Q modulo H ′
R.
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Lemma 6.3. We have

[DR,DR] ⊂ DR on FR

⇐⇒ [DR mod H ′
R,DR mod H ′

R] ⊂ DR mod H ′
R on Q.

For v ∈ Q, elements in TvQ

ẽ1j|v = ω−1(e1j), 1 ≤ j ≤ m,

are defined. Put

ñR = ω−1(nR).

We will investigate the condition modulo H ′
R satisfying

[ẽ1i, ẽ1j ] ∈ ñR,

for vector fields ẽ1j (1 ≤ j ≤ m) on Q.

6.3. Complete integrability

Now, assume that the distribution DR on FR, namely, the distribution

DR on Q is completely integrable.

We describe conditions such that [ẽ1i, ẽ1j ]|v ∈ DRv for ẽ1i|v, ẽ1j|v ∈
DR ⊂ TvQ.

We use the same notations as in 5.3.

From lemmas in 5.2, we have the following.

Proposition 6.1. We have

[ẽ1i, ẽ1j ]|v ∈ DRv

⇐⇒
{

(i) ΩL
k1(ẽ1i, ẽ1j) = 0, (2 ≤ k ≤ n)

(ii) Ωαβ
−1(ẽ1i, ẽ1j) = 0, (2 ≤ α ≤ n, 1 ≤ β ≤ m).

In the case n, m ≥ 3:

In particular, we have Ωn1
−1(ẽ1m−1, ẽ1m) = 0, namely, en1 ⊗ (e∗1m−1 ∧

e∗1m) ∈ g−1 ⊗ Λ2
L component of K0 is 0. From Proposition 3.3, 1 (i) in 3.3,

this component is the component of one nonzero generator as g0-module

in H2. Therefore the Grassmannian structure is left-half torsion-free, i.e.,

HK0
L = 0. Here K0 = HK0 = HK0

L + HK0
R (HK0

L ⊂ g−1 ⊗ Λ2
L, HK0

R ⊂
g−1 ⊗ Λ2

R in Proposition 3.3, 1 (i), (ii) respectively).

Conversely, assume that HK0
L = 0. If HK0

L = 0, the component of

the generator en1 ⊗ (e∗1m−1 ∧ e∗1m) ∈ g−1 ⊗ Λ2
L as g0-module in H2 of
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K0 is 0. Thus, by lemmas in 5.2, we get (ii) in the above proposition.

Further, from Proposition 6.2, 1 in 6.4 which appears in the next subsection

(cf. Proposition 4.1 in 4.4) for a co-Grassmannian structure on FR, we get

(i) in the above proposition. Therefore DR on FR is completely integrable.

In the case n ≥ 3, m = 2:

In particular, we have Ωn1
0 (ẽ11, ẽ12) = 0, namely, hn1 ⊗ (e∗11 ∧ e∗12) ∈

gL
0 ⊗ Λ2

L component of K1 is 0. From Proposition 3.3, 2 (ii) in 3.3, this

component is the component of one nonzero generator as g0-module in H2.

Therefore, in consideration of Proposition 3.1 in 3.2, the Grassmannian

structure is left-half Grassmannian flat, i.e., HK1 = 0.

Conversely, assume that HK1 = 0. If HK1 = 0, the component of

the generator hn1 ⊗ (e∗11 ∧ e∗12) ∈ gL
0 ⊗ Λ2

L as g0-module in H2 of K1 is

0. Thus, by lemmas in 5.2, we get (i) in the above proposition. Further,

from Proposition 6.2, 2 in the next 6.4 (cf. Proposition 4.1 in 4.4) for a

co-Grassmannian structure on FR, we get (ii) in the above proposition.

Therefore DR on FR is completely integrable.

In the case n = 2, m = 2:

In particular, we have ΩL
21(ẽ11, ẽ12) = 0, namely, h21 ⊗ (e∗11 ∧ e∗12) ∈

gL
0 ⊗ Λ2

L component of K1 is 0. From Proposition 3.3, 3 (i) in 3.3, this

component is the component of one nonzero generator as g0-module in

H2. Therefore, by Proposition 3.2 in 3.2, the Grassmannian structure is

left-half Grassmannian flat, i.e., HK1
L = 0. Here K0 = 0, K1 = HK1 =

HK1
L + HK1

R (HK1
L ⊂ gL

0 ⊗Λ2
L, HK1

R ⊂ gR
0 ⊗Λ2

R in Proposition 3.3, 3 (i),

(ii) respectively).

Conversely, assume that HK1
L = 0. If HK1

L = 0, the component of

the generator h21 ⊗ (e∗11 ∧ e∗12) ∈ gL
0 ⊗ Λ2

L as g0-module in H2 of K1 is

0. Thus, by lemmas in 5.2, we get (i) in the above proposition. Further,

from Proposition 6.2, 3 in the next 6.4 (cf. Proposition 4.1 in 4.4) for a

co-Grassmannian structure on FR, we get (ii) in the above proposition.

Therefore DR on FR is completely integrable.

Summarizing them, we have the following.

Theorem 6.1. Let M be a manifold with a Grassmannian structure

of type (n,m) and equipped with the normal Cartan connection ω. Then

the tautological distribution DR on the null m-plane bundle FR over M is

completely integrable if and only if the Grassmannian structure on M is

1. if n, m ≥ 3, left-half torsion-free, i.e., HK0
L = 0,



TWISTOR THEORY OF GRASSMANNIAN STRUCTURES 75

2. if n ≥ 3, m = 2, left-half Grassmannian flat, i.e., HK1 = 0,

3. if n = 2, m = 2, left-half Grassmannian flat, i.e., HK1
L = 0.

6.4. Co-Grassmannian structure of type (n−1,m) and its nor-

mal Cartan connection

Let M be a manifold with a Grassmannian structure of type (n,m)

and equipped with the normal Cartan connection ω. Suppose that an m-

dimensional tautological distribution DR of null m-planes on the null m-

plane bundle FR over M is completely integrable. For the natural projection

$R : FR → M , put ER = Ker($R)∗. Then ER is a completely integrable

(n − 1)-dimensional distribution on FR. In the following, by considering

a differential system D̂R = ER ⊕ DR, we will see that a transversal pair

(ER,DR) defines a co-Grassmannian structure of type (n−1,m) on FR, that

is, the symbol algebra of D̂R = ER ⊕DR at each point of FR is isomorphic

to a graded Lie algebra of type (n−1,m) CGR. Moreover we will show that

the normal Cartan connection (Q,ω) induced by a Grassmannian structure

of type (n,m) on M decides the normal Cratan connection (Q,ω) of the

co-Grassmannian structure of type (n− 1,m) on FR.

As appeared in 5.5, we have the two decompositions g = k = sl(m+n, R)

of G = K = SL(m + n, R), as graded Lie algebras of first kind and second

kind respectively, as follows:

k = k−1 ⊕ k0 ⊕ k1

= g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

We have

k−1 = g−2 ⊕ gR
−1, (gR

−1 = f)

k0 = gL
−1 ⊕ g0 ⊕ gL

1 , (gL
−1 = e, gL

1 = (gL
−1)

∗)

g−1 = gL
−1 ⊕ gR

−1, g−2
∼= gL

−1 ⊗ gR
−1.

Moreover we have the following:

Λ2k∗−1 = Λ2
L ⊕ Λ2

R

= Λ2g∗−2 ⊕ (g∗−2 ∧ (gR
−1)

∗)⊕ Λ2(gR
−1)

∗,

Λ2(gR
−1)

∗ ⊂ Λ2
L.
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We identify R
mn = R

n ⊗ R
m with k−1 and R

mn+n−1 = R
n−1 ⊗ R

m ⊕
R

n−1 ⊕ R
m with g−2 ⊕ g−1 = g−2 ⊕ gL

−1 ⊕ gR
−1 respectively. The set of all

isomorphisms of k−1 to the tangent space at each point of M is the linear

frame bundle of M and the structure group is the Lie group of k0. The set

of all isomorphisms of g−2⊕ g−1 = g−2⊕ gL
−1⊕ gR

−1 to the tangent space at

each point of FR is the linear frame bundle of FR and the structure group

is the Lie group of g0.

Let K ′ be the Lie group of k′ = k0⊕k1 and G′ the Lie group of g0⊕g1⊕g2.

The flat model with a Grassmannian structure of type (n,m) is Gm,n+m
∼=

K/K ′ (see 1.2) and the flat model with a co-Grassmannian structure of

type (n− 1,m) is Fm,m+1
∼= G/G′ (see 4.2).

From the diagram in 6.2, we can regard the frame bundle Q of second

order with structure group K ′ on M as a principal bundle with structure

group G′ over FR. The normal Cartan connection ω of type K/K ′ on Q is

a g = k = sl(m+n, R)-valued 1-form and a linear isomorphism ω : TvQ→ k

for v ∈ Q. At the same time, ω defines a Cartan connection ω of type G/G′

on Q. The curvature function K by the curvature form Ω of ω is the lift of

the curvature function K by the curvature form Ω of ω.

We show that ω satisfies normality condition, that is, K
−1

= 0, ∂∗K
p

=

0 (p ≥ 0).

K
−1

= 0:

K
−1

= K
−1,2

has the values in

C−1,2 = g−2 ⊗ Λ2
−2 = g−2 ⊗ Λ2g∗−1

= g−2 ⊗ Λ2(gL
−1)

∗ ⊕
(
g−2 ⊗ (gL

−1)
∗ ∧ (gR

−1)
∗
)
⊕ g−2 ⊗ Λ2(gR

−1)
∗.

Since K is the lift of K, it follows that

K
−1

= 0⇐⇒ g−2 ⊗ Λ2(gR
−1)

∗-component of K = 0.

If an m-dimensional tautological distribution DR of null m-planes on FR is

completely integrable (see 6.3), these equivalent conditions are satisfied.

∂∗K
p

= 0:

Remark that m∗ = g∗−2⊕(gL
−1)

∗⊕(gR
−1)

∗ = k∗−1⊕(gL
−1)

∗ and [gR
1 , g−2] ⊂

gL
−1. Then in the similar way to 5.5 it follows that ∂∗K

p
= 0.

We have the following.
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Theorem 6.2. Let M be a manifold with a Grassmannian structure

of type (n,m) and equipped with the normal Cartan connection ω. Sup-

pose that an m-dimensional tautological distribution DR of null m-planes

on the null m-plane bundle FR over M is completely integrable. Then a

pair (ER = Ker($R)∗,DR) defines a co-Grassmannian structure of type

(n−1,m) on FR. Moreover the normal Cartan connection (Q,ω) of a Grass-

mannian structure of type (n,m) induces the normal Cartan connection

(Q,ω) of the co-Grassmannian structure of type (n− 1,m) on FR.

We have the harmonic part HK of the curvature function K of ω and

the harmonic part HK of the curvature function K of ω that is its lift. The

relation of them is as follows.

Proposition 6.2. If the conditions of the theorem above are satisfied,

1. if n, m ≥ 3, for K0 = HK0 = HK0
L + HK0

R,

(a) the vanishing of the generator of HK0
L ⊂ k−1 ⊗ Λ2

L implies the

normality condition of K (plus the complete integrability of DR),

(b) the generator of HK0
R ⊂ k−1 ⊗ Λ2

R is lifted to the generator of

HK
0 ⊂ g−2 ⊗ (g∗−2 ∧ (gR

−1)
∗), (the other generator of HK

0 ⊂
g−2 ⊗ (g∗−2 ∧ (gL

−1)
∗) vanishes)

2. if n ≥ 3, m = 2, for K0 = HK0 and HK1,

(a) the vanishing of the generator of HK1 ⊂ kL0 ⊗ Λ2
L is lifted to

the generator of HK
0 ⊂ gL

−1 ⊗ Λ2(gR
−1)

∗, the vanishing of the

generator of HK1 implies the normality condition of K (plus the

complete integrability of DR),

(b) the generator of K0 = HK0 ⊂ k−1 ⊗ Λ2
R is lifted to the generator

of HK
0 ⊂ g−2 ⊗ (g∗−2 ∧ (gR

−1)
∗), (the other generator of HK

0 ⊂
g−2 ⊗ (g∗−2 ∧ (gL

−1)
∗) vanishes)

3. if n = 2, m = 2, for K1 = HK1 = HK1
L + HK1

R,

(a) the generator of HK1
L ⊂ kL0 ⊗ Λ2

L is lifted to the generator of

HK
0 ⊂ gL

−1 ⊗ Λ2(gR
−1)

∗, the vanishing of the generator of HK1
L

implies the normality condition of K (plus the complete integra-

bility of DR),
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(b) the generator of HK1
R ⊂ kR0 ⊗ Λ2

R is lifted to the generator of

HK
2 ⊂ g0⊗ (g∗−2∧ (gR

−1)
∗) (the generator of HK

1 ⊂ gR
−1⊗ (g∗−2∧

(gL
−1)

∗) vanishes).

Remark that, from Proposition 4.1, 2 (b) in 4.4, if n = 2, m = 3, the

relations are the same ones as the above 2 (a), (b). (The other generator of

HK
0 ⊂ gR

−1 ⊗ Λ2(gL
−1)

∗ vanishes.)

Remark that the above (3) corresponds to the argument of the case

k = 1, l = 2 in 4.4. Although we do not describe it in Proposition 4.1 in 4.4,

compare with the proposition 3 (b).

6.5. Projective structure

Let M be an l-dimensional real manifold. A Grassmannian structure of

type (n, 1) on M is defined by an isomorphism σ from the tangent bundle

TM of M to the tensor product V ⊗W of two vector bundles V and W

with rank n (n ≥ 2) and 1 over M respectively (cf. 1.1). The flat model

like that in 1.2 is the Grassmann manifold G1,n+1
∼= G/G′ (G = SL(n +

1,R)) consisting of all 1-dimensional subspaces in the (n + 1)-dimensional

real vector space R
n+1. This is nothing but the n-dimensional projective

space Pn(R). Therefore Grassmannian structure of type (n, 1) implies n-

dimensional projective structure.

As is well known ([Ko], [O]), there exists a normal Cartan (or projective)

connection ω of type G/G′ on the principal bundle Q with structure group

G′ over M . The Lie algebra g = sl(n + 1,R) of G = SL(n + 1,R) has the

structure of a graded Lie algebra of first kind like that in 2.2. We described

the component of nonzero generator as g0-module in H2 in a remark of

Proposition 3.3 in 3.3.

For each point x of M , a null n-plane in the tangent space TxM is an

only form Vx ⊗ w (w ∈ Wx
∼= R). Thus the null n-plane bundle FL over

M is the tangent bundle TM itself. A null 1-plane (line) in TxM is a form

v ⊗Wx (v ∈ Vx) and is a line through the origin. Thus the null line bundle

FR over M is the projective tangent bundle P (TM) with fibre Pn−1(R).

A 1-dimensional tautological distribution DR of null lines on FR =

P (TM) over M is completely integrable because of dimension 1. For the nat-

ural projection $R : FR →M , put ER = Ker($R)∗. Then ER is transversal

to DR and the fibre of ER at x ∈ M is the projective space Pn−1(R) of

TxM . A pair (ER,DR) defines a co-Grassmannian structure of type (n−1, 1)

on FR. In the same manner as mentioned Theorem 6.2 in 6.4, the normal
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Cartan connection (Q,ω) of an n-dimensional projective structure induces

the normal Cartan connection (Q,ω) of the co-Grassmannian structure of

type (n− 1, 1) on FR.

Proposition 6.3. Under the above condition, for K0 = 0, K1 =

HK1, the generator of HK1 ⊂ g0 ⊗Λ2 is lifted to the generator of HK
1 ⊂

gL
−1⊗(g∗−2∧(gR

−1)
∗). (the generator of HK

2 ⊂ g0⊗(g∗−2∧(gL
−1)

∗) vanishes.)

(when n = 3, the generator of HK
0 ⊂ gR

−1 ⊗ Λ(gL
−1)

∗ vanishes.)

§7. Twistor theory of Grassmannian structures

7.1. Twistor diagrams

In the real (n+m)-dimensional vector space V = R
n+m (m ≥ 2), define

G1 = Gm,n+m = {m-dimensional subspace of V },
G2 = Gm−1,n+m = {(m− 1)-dimensional subspace of V },
F = Fm−1,m

= {(Sm−1, Sm) | Si: i-dimensional subspace of V , Sm−1 ⊂ Sm}.

We have the double fibration that is considered as the twistor diagram of

the flat model (cf. [W-W], [W]):

F
µ↙ ↘ ν

G2 G1,

where µ, ν are the natural projections.

Each space G1, G2 and F has a natural G structure (geometric struc-

ture).

The space G1 has the Grassmannian structure of type (n,m), as is

explained in 1.2. Each null n-submanifold of G1 is diffeomorphic to Pn(R).

Then G2 can be regarded as the space of all null n-submanifolds. Let m1 be a

point in G1. The set of all null n-submanifolds through m1 is diffeomorphic

to Pm−1(R) in G1. Remark that there is the other space of all null m-

submanifolds of G1.

The space G2 has the Grassmannian structure of type (n + 1,m − 1).

Each null (m − 1)-submanifold of G2 is diffeomorphic to Pm−1(R). Then

G1 can be regarded as the space of all null (m − 1)-submanifolds. Let m2

be a point in G2. The set of all null (m − 1)-submanifolds through m2 is
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diffeomorphic to Pn(R) in G1. Remark that there is the other space of all

null (n + 1)-submanifolds of G2.

The space F has the co-Grassmannian structure of type (n,m− 1), as

is explained in 4.2. There are two transversal n-dimensional and (m − 1)-

dimensional foliations. Each leaf is diffeomorphic to Pn(R) and Pm−1(R)

respectively. The former leaf space is identified with G2 and the latter leaf

space G1.

The three spaces are regarded as homogeneous spaces of G = SL(m +

n, R):

G1 = G/H1, G2 = G/H2, F = G/H12.

In complexified flag manifolds, we study them. Choose the Cartan subal-

gebra consisting of all the diagonal matrices in the Lie algebra Al (l =

m + n− 1) = gC = sl(m + n, C) of GC = SL(m + n, C). Denote the simple

root system by ∆ = {α1, . . . , αm+n−1}.
The manifolds G1, G2 and F are flag manifolds corresponding to the

parabolic subalgebras defined by ∆1 = {αm}, {αm−1}, {αm−1, αm} respec-

tively. We indicate them by the double fibration in terms of the Dynkin

diagrams:

◦— · · ·—◦—αm−1•—αm•—◦— · · ·—◦
F

↙ ↘

◦— · · ·—◦—αm−1•—◦—◦— · · ·—◦ ◦— · · ·—◦—◦—αm•—◦— · · ·—◦
G2 G1

The simple graded Lie algebras of g = sl(m + n, R) associated with

G1, G2, F are of first kind, first kind (see §2, §3), second kind (see §4)

respectively:

G1 : g = g1
−1 ⊕ g1

0 ⊕ g1
1, m1 = g1

−1, dim m1 = mn,

G2 : g = g2
−1 ⊕ g2

0 ⊕ g2
1, m2 = g2

−1, dim m2 = mn + m− n− 1,

F : g = g12
−2 ⊕ g12

−1 ⊕ g12
0 ⊕ g12

1 ⊕ g12
2 , m12 = g12

−2 ⊕ g12
−1,

dimm12 = mn + m− 1, dim g12
−2 = n(m− 1),

dim g12
−1 = n + m− 1.

Nonzero generators in H2 are as follows. See 3.3 and 4.4 (cf. [Y]) in

detail.
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For Al; m− 1 ≥ 3, i.e., m ≥ 4,

H2(m1, g) : xm,m−1 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

xm,m+1 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

H2(m2, g) : xm−1,m−2 ∈ H0,2 ⊂ g2
−1 ⊗ Λ2

−2,

xm−1,m ∈ H0,2 ⊂ g2
−1 ⊗ Λ2

−2,

H2(m12, g) : xm−1,m ∈ H0,2 ⊂ g12
−2 ⊗ Λ2

−3,

xm,m−1 ∈ H0,2 ⊂ g12
−2 ⊗ Λ2

−3.

◦— · · ·—◦—•—•—◦— · · ·—◦
xm−1,m, xm,m−1

↙ ↘

◦— · · · ◦—•—◦—◦ · · ·—◦
xm−1,m−2, xm−1,m

◦— · · · ◦—◦—•—◦ · · ·—◦.
xm,m−1, xm,m+1

For Al (l ≥ 5), m + n ≥ 6; m− 1 = 2, i.e., m = 3,

H2(m1, g) : x32 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

x34 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

H2(m2, g) : x21 ∈ H1,2 ⊂ g2
−1 ⊗ Λ2

−2,

x23 ∈ H0,2 ⊂ g2
−1 ⊗ Λ2

−2,

H2(m12, g) : x21 ∈ H0,2 ⊂ g12
−1 ⊗ Λ2

−2,

x23 ∈ H0,2 ⊂ g12
−2 ⊗ Λ2

−3,

x32 ∈ H0,2 ⊂ g12
−2 ⊗ Λ2

−3.

◦—•—•—◦— · · ·—◦
x21, x23, x32

↙ ↘

◦—•—◦—◦— · · ·—◦
x21, x23

◦—◦—•— · · ·—◦.
x32, x34

For A4, m + n = 5; m− 1 = 2, i.e., m = 3,

H2(m1, g) : x32 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

x34 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

H2(m2, g) : x21 ∈ H1,2 ⊂ g2
−1 ⊗ Λ2

−2,

x23 ∈ H1,2 ⊂ g2
−1 ⊗ Λ2

−2,
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H2(m12, g) : x21 ∈ H0,2 ⊂ g12
−1 ⊗ Λ2

−2,

x23 ∈ H0,2 ⊂ g12
−2 ⊗ Λ2

−3,

x32 ∈ H0,2 ⊂ g12
−2 ⊗ Λ2

−3,

x34 ∈ H0,2 ⊂ g12
−1 ⊗ Λ2

−2.

◦—•—•—◦
x21, x23, x32, x34

↙ ↘
◦—•—◦—◦

x21, x23

◦—◦—•—◦.
x32, x34

We consider the case m = 2 especially.

In the real (n + 2)-dimensional vector space V = R
n+2, define

G = G2,n+2 = {2-dimensional subspace of V },
P = G1,n+2 = Pn+1(R) = {1-dimensional subspace of V },
F = F12 = {(S1, S2) | Si: i-dimensional subspace of V , S1 ⊂ S2}.

We have the double fibration that is considered as the twistor diagram of

the flat model (cf. [W-W], [W]):

F
µ↙ ↘ ν

P G,

where µ, ν are the natural projections.

The space G has the Grassmannian structure of type (n, 2). Each null

n-submanifold of G is diffeomorphic to Pn(R). Then P can be regarded as

the space of all null n-submanifolds. Let m1 be a point in G. The set of

all null n-submanifolds through m1 is diffeomorphic to P 1(R) ∼= S1 in P.

Remark that there is the other space of all null 2-submanifolds of G.

The space P has the projective structure. Each projective line of P

is diffeomorphic to P 1(R). Then G can be regarded as the space of all

projective lines. Let m2 be a point in P. The set of all projective lines

through m2 is diffeomorphic to Pn(R) in G.

The space F has the co-Grassmannian structure of type (n, 1). There

are two transversal n-dimensional and 1-dimensional foliations. Each leaf

is diffeomorphic to Pn(R) and P 1(R) respectively. The former leaf space is

identified with P and the latter leaf space G.
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The manifolds G, P and F are flag manifolds corresponding to the

parabolic subalgebras defined by ∆1 = {α2}, {α1}, {α1, α2} respectively.

We indicate them by the double fibration in terms of the Dynkin diagrams:

•—•—◦— · · ·—◦
F

↙ ↘
•—◦—◦— · · ·—◦

P

◦—•—◦— · · ·—◦.
G

Nonzero generators in H2 are as follows.

For Al (l ≥ 4), n ≥ 4,

H2(m1, g) : x21 ∈ H1,2 ⊂ g1
0 ⊗ Λ2

−2,

x23 ∈ H0,2 ⊂ g1
−1 ⊗ Λ2

−2,

H2(m2, g) : x12 ∈ H1,2 ⊂ g2
0 ⊗ Λ2

−2,

H2(m12, g) : x12 ∈ H1,2 ⊂ g12
−1 ⊗ Λ2

−3,

x21 ∈ H2,2 ⊂ g12
0 ⊗ Λ2

−3.

•—•—◦— · · ·—◦
x12, x21

↙ ↘
x12 •—◦—◦— · · ·—◦

x12

◦—•—◦— · · ·—◦.
x21, x23

For A3, n = 3,

H2(m1, g) : x21 ∈ H1,2 ⊂ g1
0 ⊗ Λ2

−2,

x23 ∈ H1,2 ⊂ g1
0 ⊗ Λ2

−2,

H2(m2, g) : x12 ∈ H1,2 ⊂ g2
0 ⊗ Λ2

−2,

H2(m12, g) : x12 ∈ H1,2 ⊂ g12
−1 ⊗ Λ2

−3,

x21 ∈ H2,2 ⊂ g12
0 ⊗ Λ2

−3,

x23 ∈ H0,2 ⊂ g12
−1 ⊗ Λ2

−2.

•—•—◦
x12, x21, x23

↙ ↘
•—◦—◦

x12

◦—•—◦.
x21, x23
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Summarizing them, we have a twistor diagram chain of Grassman-

nian structures. Let V be a real (n + m)-dimensional vector space. We

consider G = SL(m + n, R). We write G(m,n) for Gm,n+m. We simply

write F (i1, i2, . . . , ik) for Fi1,i2,...,ik = {(Si1 , Si2 , . . . , Sik) | Si1 ⊂ Si2 ⊂
· · · ⊂ Sik , Sil : il-dimensional subspace of V }. Note that G(m,n) = F (m),

G(1, n) = Pn(R). Then, for m + n ≥ 6, we have the following chain. We

write nonzero generators in H2 (Diagram 1).

{point in G(m− 1, n + 1)}
←→ {n-dimensional null surface in G(m,n)},

{(m− 1)-dimensional null surface in G(m− 1, n + 1)}
←→ {point in G(m,n)},

{m-dimensional null surface in G(m,n)}
←→ {point in G(m + 1, n− 1)},

{point in G(m,n)}
←→ {(n− 1)-dimensional null surface in G(m + 1, n− 1)}.

For m + n = 5, let V be a 5-dimensional real vector space and G =

SL(5,R). We have the following.

•—•—◦—◦
F12

x12, x21

◦—•—•—◦
F23

x21, x23, x32, x34

◦—◦—•—•
F34

x34, x43

↙ ↘ ↙ ↘ ↙ ↘
◦—•—•—◦

P 4(R)

x12

◦—◦—•—•
G2,5(R)

x21, x23

•—◦—◦—◦
G3,5(R)

x32, x34

◦—◦—◦—•
(P 4(R))∗.

x43

For m + n = 4, let V be a 4-dimensional real vector space and G =

SL(4,R). We have the following.

•—•—◦
F12

x12, x21, x23

◦—•—•
F23

x21, x23, x32

↙ ↘ ↙ ↘
•—◦—◦
P 3(R)

x12

◦—•—•
G2,4(R)

x21, x23

◦—◦—•
(P 3(R))∗.

x32
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F (1, 2)

x12, x21

F (2, 3)

x23, x32

↙ ↘ ↙ ↘
F (1)

= G(1, n + m− 1)

= Pn+m−1

x12

F (2)

= G(2, n + m− 2)

x21, x23

· · · · · ·

F (m− 1,m)

xm−1,m, xm,m−1

F (m,m + 1)

xm,m+1, xm+1,m

↙ ↘ ↙ ↘

· · ·
F (m− 1)

= G(m− 1, n + 1)

xm−1,m−2, xm−1,m

F (m)

= G(m,n)

xm,m−1, xm,m+1

F (m + 1)

= G(m + 1, n− 1)

xm+1,m, xm+1,m+2

· · ·

F (n + m− 3, n + m− 2)

xn+m−3,n+m−2,

xn+m−2,n+m−3

F (n + m− 2, n + m− 1)

xn+m−2,n+m−1,

xn+m−1,n+m−2

↙ ↘ ↙ ↘

· · · · · ·
F (n + m− 2)

= G(n + m− 2, 2)

xn+m−2,n+m−3,

xn+m−2,n+m−1

F (n + m− 1)

= G(n + m− 1, 1)

= (Pn+m−1)∗

xn+m−1,n+m−2

We see the contents in detail.

F (m− 1,m)

co-Grassmannian structure

of type (n, m− 1)

F (m,m + 1)

co-Grassmannian structure

of type (n− 1, m)

↙ ↘ ↙ ↘

G(m− 1, n + 1)

Grassmannian structure

of type (n + 1, m− 1)

G(m,n)

Grassmannian structure

of type (n, m)

G(m + 1, n− 1)

Grassmannian structure

of type (n− 1, m + 1).

Diagram 1.
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7.2. Reduction theorem

Let F be a manifold with a co-Grassmannian structure of type (k, l) by

a pair (D2,D1) and equipped with the normal Cartan connection (Q,ω).

The dimension of F is k + l + kl. By definition, D2 is a subbundle of TF

with rank k and is completely integrable, and D1 is a subbundle of TF with

rank l and is completely integrable.

For F , leaf spaces

M1 = F/D1, M2 = F/D2

are defined and they are (locally) manifolds with Grassmannian structures

of type (k, l + 1) and of type (k + 1, l) respectively. Let

ν : F −→M1, µ : F −→M2

be canonical projections. Then

F −→M2 ×M1; x 7−→ (µ(x), ν(x))

is an embedding locally. We have the following double fibration:

F
µ↙ ↘ ν

M2 M1.

We consider the harmonic part HK of the curvature function K of the

normal Cartan connection (Q,ω) over F . The places of nonzero generators

in H2 in 7.1 (3.3, 4.4) show when (Q,ω) is reduced to that over M1 or M2.

We have the following reduction theorem.

Theorem 7.1. We have

1. if l ≥ 3, we have K0 = HK0 = HK = (HK0)1 + (HK0)2, and

(i) (HK0)1 (⊂ g−2 ⊗ (g∗−2 ∧ (gR
−1)

∗)) = 0, if and only if (Q,ω) is

reduced to the normal Cartan connection ω1 of type G/H1 on Q1 over

M1 and (Q,ω) = (Q1, ω1)|FL
, ω = ν∗ω1,

(ii) (HK0)2 (⊂ g−2 ⊗ (g∗−2 ∧ (gL
−1)

∗)) = 0, if and only if (Q,ω) is

reduced to the normal Cartan connection ω2 of type G/H2 on Q2 over

M2 and (Q,ω) = (Q2, ω2)|FR
, ω = µ∗ω2,

2. if l = 2,
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(a) for k + l + 1 ≥ 6, i.e., k ≥ 3, we have K0 = HK0 = HK =

(HK0)1 + (HK0)2 + (HK0)3, and

(i) (HK0)1 (⊂ gL
−1 ⊗ Λ2(gR

−1)
∗) = 0, (HK0)2 (⊂ g−2 ⊗ (g∗−2 ∧

(gR
−1)∗)) = 0, if and only if (Q,ω) is reduced to (Q1, ω1) on M1

(as in the above (1) (i)),

(ii) (HK0)3 (⊂ g−2⊗ (g∗−2 ∧ (gL
−1)

∗)) = 0, if and only if (Q,ω) is

reduced to (Q2, ω2) on M2 (as in the above (1) (ii)),

(b) for k + l + 1 = 5, i.e., k = 2, we have K0 = HK0 = HK =

(HK0)1 + (HK0)2 + (HK0)3 + (HK0)4, and

(i) (HK0)1 (⊂ gL
−1 ⊗ Λ2(gR

−1)
∗) = 0, (HK0)2 (⊂ g−2 ⊗ (g∗−2 ∧

(gR
−1)

∗)) = 0, if and only if (Q,ω) is reduced to (Q1, ω1) on M1

(as in the above (1) (i)),

(ii) (HK0)3 (⊂ g−2 ⊗ (g∗−2 ∧ (gL
−1)

∗)) = 0, (HK0)4 (⊂ gR
−1 ⊗

Λ2(gL
−1)

∗) = 0, if and only if (Q,ω) is reduced to (Q2, ω2) on M2

(as in the above (1) (ii)),

3. if l = 1,

(a) for k + l + 1 ≥ 5, i.e., k ≥ 3, we have HK = HK1 + HK2, and

(i) HK1 (⊂ gL
−1 ⊗ (g∗−2 ∧ (gR

−1)
∗)) = 0, if and only if (Q,ω) is

reduced to (Q1, ω1) on M1 with a Grassmannian structure of type

(k, 2) (as in the above (1) (i)),

(ii) HK2 (⊂ g0 ⊗ (g∗−2 ∧ (gL
−1)

∗)) = 0, if and only if (Q,ω) is

reduced to (Q2, ω2) on M2 with a (k + 1)-dimensional projective

structure (as in the above (1) (ii),

(b) for k+ l+1 = 4, i.e., k = 2, we have HK = HK0 +HK1 +HK2,

and

(i) HK1 (⊂ gL
−1 ⊗ (g∗−2 ∧ (gR

−1)
∗)) = 0, if and only if (Q,ω) is

reduced to (Q1, ω1) on M1 with a Grassmannian structure of type

(2, 2) (as in the above (1) (i)),

(ii) HK2 (⊂ g0⊗(g∗−2∧(gL
−1)

∗)) = 0, HK0 (⊂ gR
−1⊗Λ2(gL

−1)
∗) =

0, if and only if (Q,ω) is reduced to (Q2, ω2) on M2 with a 3-

dimensional projective structure (as in the above (1) (ii)).

In the theorem above, 3 (a), (b) are Tanaka’s results ([T3]).
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7.3. Relation between both Grassmannian structures

Let M1 be a manifold with a Grassmannian structure of type (n,m).

Assume that n, m ≥ 4. Suppose that the Grassmannian structure has

HK0
R = 0 for the normal Cartan connection ω1. The component of the

generator xm,m+1 ∈ H0,2(m1, g) is 0. Then, from Theorem 5.1 in 5.3, the n-

dimensional tautological distribution DL of null n-planes on the null n-plane

bundle FL over M1 is completely integrable. Therefore a co-Grassmannian

structure of type (n,m− 1) is defined on FL. Since, of course, the structure

on FL is reduced onto M1, by the reduction theorem 7.1 (HK0)1 = 0 for

K0 = HK0 = HK = (HK0)1 + (HK0)2 of the normal Cartan connection

ω on FL. The component of the generator xm−1,m ∈ H0,2(m12, g) is 0. A

condition for a Grassmannian structure of type (n+1,m− 1) to be defined

on the (locally) (mn + m − n − 1)-dimensional manifold M2 = FL/DL is

(HK0)2 = 0. The component of the generator xm,m−1 ∈ H0,2(m12, g) is 0.

That is to say, if a Grassmannian structure of type (n+1,m− 1) is defined

on M2, a co-Grassmannian structure of type (n,m− 1) on FL must be flat.

Then the Grassmannian structure of type (n + 1,m− 1) on M2 is also flat.

And the right-half torsion-free Grassmannian structure of type (n,m) on

M1 is also flat.

If we assume that m = 3, we have the same conclusion as in the case

n, m ≥ 4.

We discuss the converse. Let M2 be a manifold with a Grassmannian

structure of type (n + 1,m − 1). Assume that n, m ≥ 4. Suppose that the

Grassmannian structure has HK0
L = 0 for the normal Cartan connection

ω2. The component of the generator xm−1,m−2 ∈ H0,2(m2, g) is 0. Then,

from Theorem 6.1 in 6.3, the (m− 1)-dimensional tautological distribution

DR of null (m − 1)-planes on the null (m − 1)-plane bundle FR over M2

is completely integrable. Therefore a co-Grassmannian structure of type

(n,m−1) is defined on FR. Since, of course, the structure on FR is reduced

onto M2, by the reduction theorem 7.1 (HK0)2 = 0 for K0 = HK0 =

HK = (HK0)1 + (HK0)2 of the normal Cartan connection ω on FR. The

component of the generator xm,m−1 ∈ H0,2(m12, g) is 0. A condition for a

Grassmannian structure of type (n,m) to be defined on the (locally) mn-

dimensional manifold M1 = FR/DR is (HK0)1 = 0. The component of the

generator xm−1,m ∈ H0,2(m12, g) is 0. That is to say, if a Grassmannian

structure of type (n,m) is defined on M1, a co-Grassmannian structure of

type (n,m − 1) on FR must be flat. Then the Grassmannian structure of
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type (n,m) on M1 is also flat. And the left-half torsion-free Grassmannian

structure of type (n + 1,m− 1) on M2 is also flat.

If we assume that m = 3, we have the same conclusion as in the case

n, m ≥ 4.

Consequently, if n, m ≥ 3, we have the following.

Theorem 7.2.

1. Let M1 be a manifold with a right-half torsion-free Grassmannian

structure of type (n,m). Then, if the structure on M1 induces a Grass-

mannian structure of type (n + 1,m− 1) on M2 = FL/DL, the Grass-

mannian structure of type (n,m) on M1 is flat.

2. Let M2 be a manifold with a left-half torsion-free Grassmannian struc-

ture of type (n + 1,m − 1). Then, if the structure on M2 induces a

Grassmannian structure of type (n,m) on M1 = FR/DR, the Grass-

mannian structure of type (n + 1,m− 1) on M2 is flat.

Here, in 1 FL denotes the null n-plane bundle on M1, and in 2 FR

denotes the null (m− 1)-plane bundle on M2.

In the case m = 2 we discuss the above argument.

Let M1 be a 2n-dimensional manifold with a Grassmannian structure of

type (n, 2). Assume that n ≥ 4. Suppose that the Grassmannian structure

has HK0 = 0 for the normal Cartan connection ω1. The component of

the generator x23 ∈ H0,2(m1, g) is 0. Then, from Theorem 5.1 in 5.3, the n-

dimensional tautological distribution DL of null n-planes on the null n-plane

bundle FL over M1 is completely integrable. Therefore a co-Grassmannian

structure of type (n, 1) is defined on FL. Since, of course, the structure on

FL is reduced onto M1, by the reduction theorem 7.1 HK1 = 0 for HK =

HK1 + HK2 of the normal Cartan connection ω on FL. The component of

the generator x12 ∈ H1,2(m12, g) is 0. A condition for a projective structure

to be defined on the (locally) (n + 1)-dimensional manifold M2 = FL/DL

is HK2 = 0. The component of the generator x21 ∈ H2,2(m12, g) is 0. That

is to say, if a projective structure is defined on M2, a co-Grassmannian

structure of type (n, 1) on FL must be flat. Then the projective structure

on M2 is also flat. And the right-half Grassmannian flat Grassmannian

structure of type (n, 2) on M1 is also flat.

If we assume that n = 3, we have the same conclusion as in the case

n ≥ 4.
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We discuss the converse.

Let M2 be an (n+1)-dimensional manifold with a projective structure.

Assume that n ≥ 4. In the (2n + 1)-dimensional projective tangent bundle

FR = P (TM2) of M2, fibers Pn(R) over M2 define an n-dimensional dis-

tribution DL on FR. On the other hand, the geodesic flow vector field on

FR with respect to the normal Cartan connection of the projective struc-

ture on M2 defines a 1-dimensional distribution DR on FR. Therefore a

co-Grassmannian structure of type (n, 1) is defined on FR. Since, of course,

the structure on FR is reduced onto M2, by the reduction theorem 7.1

HK2 = 0 for HK = HK1 + HK2 of the normal Cartan connection FR.

The component of the generator x21 ∈ H2,2(m12, g) is 0. A condition for

a Grassmannian structure of type (n, 2) to be defined on the (locally) 2n-

dimensional manifold M1 = FR/DR is HK1 = 0. The component of the

generator x12 ∈ H1,2(m12, g) is 0. That is to say, if a Grassmannian struc-

ture of type (n, 2) is defined on M1, a co-Grassmannian structure of type

(n, 1) on FR must be flat. Then the projective structure on M2 is also flat.

And since the n-dimensional distribution DL on FR is completely integrable,

the Grassmannian structure on M1 has HK0 = 0 for the normal Cartan

connection. The component of the generator x23 ∈ H0,2 is 0. Therefore the

Grassmannian structure of type (n, 2) on M1 is also flat.

If we assume that n = 3, we have the same conclusions as in the case

n ≥ 4.

If m = 2, we have the following.

Theorem 7.3.

1. Let M1 be a 2n-dimensional manifold with a right-half Grassman-

nian flat Grassmannian structure of type (n, 2) (if n ≥ 3, equivalently

torsion-free). Then, if the structure on M1 induces a projective struc-

ture on M2, the Grassmannian structure of type (n, 2) on M1 is flat.

2. Let M2 be an (n+1)-dimensional manifold with a projective structure.

Then, if the structure on M2 induces a Grassmannian structure of

type (n, 2) on the orbit space M1 of the geodesic flow, the projective

structure on M2 is flat.

§8. Twistor theory by Weyl connections

In this section, we will investigate the twistor theory between projec-

tive structures and Grassmannian structures of type (n, 2). By imposing a



TWISTOR THEORY OF GRASSMANNIAN STRUCTURES 91

restriction to projective structures, we deal with the twistor theory by Weyl

connections. See the introduction.

In the next three subsections, we recall the notions of Einstein-Weyl

structure, Lie contact structure and geodesic flow before studying the

twistor theory by Weyl connections.

8.1. Einstein-Weyl structure

Let M be an n-dimensional manifold with a conformal structure. The

conformal structure is represented by a conformal class C = [g] whose

representative is a Riemannian metric g on M .

Let D be a torsion-free linear connection on M which preserves the

conformal class C. Namely, for g ∈ C, there exists a 1-form ωg on M such

that

Dg = ωg ⊗ g.

For another g′ = eλg ∈ C (λ ∈ C∞(M)), the 1-form ωg′ is given by ωg +dλ.

The connection D is called a Weyl connection and we say that M has a

Weyl structure. To give a Weyl connection on M is equivalent to give a

torsion-free CO(n) connection on the linear frame bundle L of M with

structure group CO(n).

A Weyl structure on M is called an Einstein-Weyl structure if the

symmetric part Rics of the Ricci tensor Ric for the Weyl connection D is

proportional to g ∈ C:

Rics = Λg,

where Λ is a generally nonconstant function on M .

Let (M,g) be an Einstein manifold. Then, taking the conformal struc-

ture C = [g] of g and the Levi-Civita connection ∇ of g as a Weyl connec-

tion D (then ωg = 0), we have an Einstein-Weyl structure on M . Therefore

the notion of Einstein-Weyl is a generalization of the notion of Einstein.

The simplest example of an Einstein-Weyl structure that is not Einstein

is Sn−1 × S1 as a Hopf manifold. On Sn−1 × S1 with the conformal class

C = [g0] defined by the standard Riemannian product metric g0, we can

give a Weyl flat connection D by 1-form ωg0
= −2dt, where t is the standard

coordinate on S1. The metric g0 is not Einstein, but the Weyl connection

D is Einstein-Weyl.

Many examples of Einstein-Weyl structures are known (cf. [P-T], [P-S]).

There is a twistor correspondence between complex 3-dimensional Einstein-

Weyl manifolds and (complex 2-dimensional) mini-twistor spaces ([Hi],

[J-T]).
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We can decompose the curvature tensor R of a Weyl connection D from

the irreducible CO(n)-decomposition as follows:

R = P + U + Z + W.

Here P is the part represented by the distance curvature θ = −dωg (not

depended on g ∈ C), U the part represented by K = sgg (not depended on

g ∈ C) of the scalar curvature sg, Z the part represented by the symmetric

traceless Ricci tensor Ric0
s and W the Weyl conformal curvature tensor of

C not depending on D.

If D is an Einstein-Weyl connection,

Z = 0, i.e., R = P + U + W .

There are two important subclasses in Einstein-Weyl classes.

One class is Weyl Ricci-flat. It implies that

P + U + Z = 0, i.e., R = W .

Therefore it is decided only by C.

Another class is the set of Weyl structures with constant curvature. It

implies that

Z + W = 0, i.e., R = P + U .

This imposes no conditions on P . Therefore it includes wider classes than

the constant curvature class of a Levi-Civita connection. The classification

problem of Weyl structures with constant curvature is not known.

Let Π be a 2-plane in TxM (x ∈ M) and let X, Y be an orthonormal

basis of Π with respect to g ∈ C. Then, put

Kg(Π) = g(R(X,Y )Y,X).

It does not depend on the choice of an orthonormal basis of Π. It follows

that Kg is constant on all 2-planes if and only if the Weyl structure is of

Weyl constant curvature.

If the dimension of M is equal to 3, the notion of Einstein-Weyl struc-

ture is equivalent to that of Weyl structure with constant curvature. The

proof is similar to that of the equivalence between 3-dimensional Rieman-

nian manifolds which are Einstein and manifolds of constant curvature

(cf. [K-No, p. 293]). The examples and the classification of 3-dimensional

Einstein-Weyl manifolds are given in [To].
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8.2. Lie contact structure

Let M be a (2n+1)-dimensional manifold with a contact structure. By

definition, there exists a distribution D of codimension 1 on M such that

at each point x ∈ M the 2n-dimensional subspace D(x) ⊂ TxM is defined

by

D(x) = {X ∈ TxM | θ(X) = 0},

where θ is a local 1-form such that θ ∧ (dθ)n is a volume element. Remark

that dθx|D defines a symplectic structure on D. As θ is unique up to nonzero

functions, we have a conformal symplectic structure on the vector subbundle

D ⊂ TM .

Put

g−2(x) = TxM/D(x), g−1(x) = D(x), m(x) = g−2 ⊕ g−1(x).

Then a graded Lie algebra of contact type on m(x) is naturally defined

by the Lie bracket of vector fields on M . Namely, at each point x ∈ M

m(x) is equivalent to the fundamental graded Lie algebra m = g−2 ⊕ g−1

of contact type. Here m is a nilpotent graded Lie algebra and dim g−2 = 1,

dim g−1 = 2n, [ · , · ] : g−1 × g−1 → g−2 is nondegenerate.

Let C be the contact group which is a subgroup of GL(m) consisting of

the set of a linear isomorphism σ : m→ m such that σ(g−1) = g−1 and the

induced graded map σ : m→ m is a Lie algebra isomorphism. With respect

to a contact basis by the decomposition m = g−2⊕g−1, C is represented by

C =

{(
c 0

ξ A

)
⊂ GL(2n + 1,R)

∣∣∣
tAJA = cJ, A ∈ GL(2n,R),

c 6= 0 ∈ R, ξ ∈ R
2n

}
,

where J =
(

On −In

In On

)
. Remark that A belongs to the conformal symplectic

group CSp(n, R).

We mean by a frame z at x ∈M a linear isomorphism z : m ∼= R
2n+1 →

TxM . A frame z : m → TxM is called adapted if z(g−1) = D(x) and the

induced graded map z : m→ m(x) is a Lie algebra isomorphism. Let LC(M)

be the set of all adapted frames. Then LC(M) is a subbundle of the linear

frame bundle L(M) with structure group C.

Define a subgroup G̃ of C by

G̃ =

{(
det α 0

ξ B ⊗ α

)
∈ GL(2n + 1,R)

∣∣∣ B ∈ O(n), α ∈ GL(2,R),

ξ ∈ R
2n

}
.
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A Lie contact structure on M is by definition a subbundle P̃ of LC(M) with

structure group G̃.

The model space is the unit tangent bundle T1S
n+1 of the sphere Sn+1.

It is a homogeneous space:

T1S
n+1 ∼= G/G′, G = PO(n + 2, 2).

The image ρ(G′) of the linear isotropy representation ρ : G′ → GL(m) of

G′ is G̃. We remark that the Lie contact structures is a G structure of finite

type while the general contact structures infinite type. In detail, see [S-Y1],

[S-Y2], [Ta].

Moreover, define a subgroup G̃1 of G̃ by

G̃1 =








a 0 0

0 aB O

ζ bB B



∣∣∣∣∣ B ∈ O(n), a 6= 0 ∈ R, b ∈ R, ζ ∈ R

n



 .

For an n-dimensional manifold N with a conformal structure, a Lie

contact structure is induced on the tangent sphere bundle M = S(N) of

N . See [S-Y1]. The conformal structure on N gives rise to the canonical

reduction of the structure group of LC(S(N)) to the subgroup G̃1. So,

a subbundle P̃1 of LC(M) with structure group G̃1 is called a conformal

contact structure on M . In detail, see [S-Y2].

8.3. Geodesic flow

Let P be an (n + 1)-dimensional manifold. The tangent sphere bundle

S(P ) of P is a quotient space of ṪP defined as follows: Let Ṫ P denote the

set removed the zero section from TP , then

S(P ) = Ṫ P/R+

= {[v] | [v]: the equivalence class of {tv}, v ∈ TP (t ∈ R+)}.

The natural projection p : Ṫ P → S(P ) defines a principal bundle with

structure group R+ and p−1([v]) = {tv ∈ Ṫ P | t ∈ R+}. The transformation

a : R+ × ṪP → ṪP of the structure group is a : (t, v) 7→ tv and, if t ∈ R+

is fixed, it defines the dilation at : v 7→ tv. The fundamental vector field

A∗ satisfies A∗
v = svV (v ∈ ṪP ) for LieR+

∼= R 3 s. Here vV denotes the

vertical lift of v.

Assume that P has a conformal structure C. Take a Weyl connection ∇
on P associated with the conformal structure. A Weyl connection is defined,
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as a linear connection, on the tangent bundle TP of P . Let H ⊂ T ṪP be

the subbundle of the set of (n + 1)-dimensional horizontal subspaces and

V ⊂ T ṪP the subbundle of the set of (n+1)-dimensional vertical subspaces.

The bundle T ṪP is decomposed as the direct sum H and V : T ṪP = H⊕V .

Let π : Ṫ P → P and π : S(P )→ P be the natural projections. Taking

an arbitrary metric g in the conformal structure C, we define a subbundle

D ⊂ T ṪP with rank 2n as follows: for v ∈ Ṫ P , x = π(v),

Dv = {(wH
1 , wV

2 ) ∈ H ⊕ V | g(v,wi) = 0, wi ∈ ṪxP (i = 1, 2)},

where wH , wV are the horizontal lift, vertical lift of w ∈ ṪxP to TvṪ P

respectively. We denote the horizontal component, vertical component of

Dv by D
H
v , D

V
v . The subbundle D does not depend on the choice of g in C.

The geodesic flow on S(P ) is given as follows.

We fix an arbitrary metric g in the conformal structure C. Define a

vector field η on Ṫ (P ) by

ηv =

(
vi

|v| , −
∑

j,k

Γi
jk

vjvk

|v|

)
∈ Hv ⊕ V v,

where v = (vi) ∈ Ṫ P and Γi
jk (i, j, k = 1, . . . , n + 1) denote the Christoffel

symbol of the Weyl connection. If |v| = 1, η is equal to the horizontal lift

vH
v of v at v ∈ Ṫ P .

Since the tangential mapping at∗ for the dilation at is written as at∗ :

(X,Y ) 7→ (X, tY ), it follows that

at∗ηv = ηtv.

Thus a vector field η is defined on S(P ) from the vector field η on Ṫ P .

Remark that trajectories are the same if we change the metric g in the

conformal class C.

The projection of a trajectory of η to P is equal to a geodesic with

respect to the Weyl connection. The parameter is not affine. We call the

vector field η the geodesic flow vector field and the flow the geodesic flow

φt on S(P ).

Put Hv = Dv ⊕ 〈ηv〉 and Dv = D
H
v ⊕ D

V
v . We have at∗(Hv) =

Htv, at∗(ηv) = ηtv, at∗(Dv) = Dtv, at∗(D
H
v ) = D

H
tv and at∗(DvV ) = D

V
tv.

Thus we get corresponding subbundles H, 〈η〉, D, DH and DV of TS(P ).

The space T[v]S(P ) is regarded as D[v] ⊕ 〈[vH ]〉.
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We recall the notion and the properties of Jacobi fields.

Let c be a geodesic on P with respect to the Weyl connection ∇. By

definition a Jacobi field J along c is a vector field along c which satisfies a

second order differential equation

∇ċ∇ċJ + R(J, ċ)ċ = 0.

If we put RċJ = R(J, ċ)ċ, the equation above becomes ∇ċ∇ċJ + RċJ = 0.

A Jacobi field along c means the transversal vector field of the variation of

c by means of geodesics.

An orthogonal Jacobi field J = J(t) along c = c(t) on P corresponds

to one-to-one geodesic flow invariant vector field Y = Y (t) = φt∗Y (0) along

ċ = ċ(t) = φtċ(0) on S(P ) as follows:

Tc(t)P 3 J(t) 7−→ Y (t) = (J(t)H , (∇ċJ(t))V ) ∈ TH
ċ(t)S(P )⊕ T V

ċ(t)S(P ).

The tangential mapping for the geodesic flow φt is described as follows.

Let v be an element of S(P ) and X an element of TvS(P ). If Y = Y (t) is

a Jacobi field such that Y (0) = X,

φt∗|v (X) = Y (t)

holds. See [B].

Hence a vector field J along c on P is a Jacobi field if and only if, for

a vector field Y = JC = (JH , (∇ċJ)V ) (called the complete lift JC of J ,

see [Y-I]) along ċ on S(P ),

φt∗Y = Y

holds.

We have another look of Jacobi fields that satisfy the second order

differential equation along c on P as the first order differential equation

along ċ on S(P ). We write W =
(w1

w2

)
for W = wH

1 +wV
2 ∈ Dv ⊂ TH

v S(P )⊕
T V

v S(P ) = TvS(P ), where w1, w2 ∈ Tπ(v)(P ), g(v,wi) = 0 (i = 1, 2). We

define an endomorphism Kv on TvS(P ) by

Kv

(
w1

w2

)
=

(
O I

−Rv O

)(
w1

w2

)

for v ∈ TxP (x ∈ P ). This defines a cross section K of the bundle

Hom(TS(P ), TS(P )) over S(P ).
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We remark that, for the geodesic flow vector field η to ċ on S(P ) cor-

responding to a geodesic c = c(t) on P , η|ċ(t) =
(

ċ(t)
0

)
holds. For a vector

field Y = Y (t) =
(

Y1(t)
Y2(t)

)
along ċ = ċ(t), put

∇H
η

(
Y1

Y2

)
=

(
∇ċY1

∇ċY2

)
.

We consider the following first order differential equation along ċ on

S(P ):

∇H
η Y = KċY.

From
(

∇ċY1

∇ċY2

)
=
(

O I
−Rċ O

)(
Y1(t)
Y2(t)

)
=
(

Y2(t)
−RċY1(t)

)
, this equation implies

that Y1 = Y1(t) is a Jacobi field along c on P .

8.4. Twistor theory by Weyl connections

With respect to the bases on S(P ) of the horizontal lift and the vertical

lift of the conformal bases on P , the structure group of the tangent bundle

TS(P ) reduces to

G̃1 =








a 0 0

0 aB O

ζ bB B



∣∣∣∣∣ B ∈ O(n), a 6= 0 ∈ R, b ∈ R, ζ ∈ R

n



 .

This defines a Lie contact structure on S(P ). Remark that we call the

induced Lie contact structure a conformal contact structure.

According to [S-Y1], we have the following.

Proposition 8.1. Let P be an (n + 1)-dimensional manifold with a

conformal structure C. Then, a Lie contact structure on the tangent sphere

bundle S(P ) of P is defined by the conformal structure C on P .

Next, we have the following.

Proposition 8.2. The Lie contact structure on S(P ) induced by a

Weyl structure on P is invariant under the geodesic flow if and only if the

Weyl structure on P is of Weyl constant curvature.

Proof. Let c = c(t) be a geodesic on P . Let ei = ei(t) (i = 0, 1, . . . , n)

be parallel orthonormal vector fields along c and with e0 = ċ = v. Vectors

eH
i and eV

i are regarded as the horizontal lifts and vertical lifts of them
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along the geodesic flow orbit ċ = ċ(t) respectively. For B ∈ O(n) and

α =
(

a b
c d

)
∈ GL(2,R), we define an endomorphism σB,α on Dv by

σB,α =

(
aB bB

cB dB

)
∈ O(n)⊗GL(2,R)

with respect to eH
1 , . . . , eH

n , eV
1 , . . . , eV

n . Furthermore, define an endomor-

phism σ̃B,α,ξ on TvS(P ) at v ∈ S(P ) by σ̃B,α =
(

det α 0
ξ σB,α

)
, ξ ∈ R

2n.

A Lie contact structure is to assign the following subset of frames at

v ∈ S(P ):

P̃v =



σ̃B,α,ξ




eH
0 (0)

eH
i (0)

eV
i (0)



∣∣∣∣∣ B ∈ O(n), α ∈ GL(2,R), ξ ∈ R

2n



 .

Then, that the Lie contact structure on S(P ) is invariant under the geodesic

flow φt means

φt∗ P̃v ⊂ P̃φt(v),

in other words,

φt∗




eH
0 (0)

eH
i (0)

eV
i (0)


 = σ̃B′,α′,ξ′




eH
0 (t)

eH
i (t)

eV
i (t)




for some B′ ∈ O(n), α′ ∈ GL(2,R) and ξ′ ∈ R
2n. Here σ̃B′,α′,ξ′ depends on

the parameter t.

By differentiating with respect to the variable t, it follows that the Lie

contact structure on S(P ) is invariant under the geodesic flow φt if and only

if

Kv =

(
O I

−Rv O

)
=

(
xI + A yI + A

zI + A wI + A

)
∈ In ⊗ gl(2,R)⊕ o(n)⊗ I2

for some A ∈ o(n) and ( x y
z w ) ∈ gl(2,R). Here In ⊗ gl(2,R) ⊕ o(n) ⊗ I2 is

the Lie algebra of O(n)⊗GL(2,R).

Therefore it follows that x = 0, w = 0, y = 1, A = O and Rv = −zI.

From this, we have σB′,α′ =
(

I tI
zI I

)
and

Rv = λvI
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for some λv ∈ R. Taking w ∈ Dv such that g(w,w) = 1, we obtain

g(R(w, v)v,w) = g(Rv(w), w)

= g(λvw,w)

= λv.

This means that the sectional curvature of any planes including v with

respect to g is constant λv.

For v′ orthogonal to v, from a similar argument to v, the sectional

curvature of any planes including v′ with respect to g is constant λv′ . The

sectional curvature of the plane spanned by v and v′ is λv = λv′ .

Hence, for an arbitrary v ∈ TxP with g(v, v) = 1, λ = λv is identically

constant. Therefore P has a Weyl structure with constant curvature.

Therefore this completes the proof.

We note that, as compared with a Levi-Civita connection, a Weyl con-

nection does not make the metric g parallel in general. Therefore Rv is not

symmetric in general. We can decompose Rv into the symmetric part and

the anti-symmetric part:

Rv = Rs
v + Ra

v .

The Ricci tensor Ric is not also symmetric in general.

We remark that, when a conformal structure is defined from a Rieman-

nian structure and a Weyl connection from the Levi-Civita connection on

P , the Lie contact structure on the unit tangent bundle T1P is invariant

under the geodesic flow if and only if P is of constant curvature.

In order to ensure that M is a manifold, we assume that P is an enough

small convex domain.

From the above proposition and the proof, we have the following:

Theorem 8.1. Let P be an (n+1)-dimensional manifold with a Weyl

structure with constant curvature. Then the structure on P induces a right-

half Grassmannian flat Grassmannian structure of type (n, 2) on the orbit

space M of the geodesic flow.

We may regard the manifold S(P ) as a null n-plane bundle FL of M

with the Grassmannian structure of type (n, 2) and the fibre is R
1 (⊂ S1).

Each null n-manifold is diffeomorphic to Sn.
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Assume that n = 2.

Remark that, in 3-dimensional Weyl structures, the notion of Einstein-

Weyl and that of Weyl constant curvature are equivalent.

On the 5-dimensional S(P ), a CR structure of type (1, 1) is naturally

defined as follows: for TvS(P ) at v ∈ S(P ), it is defined by π/2-rotation in

the horizontal lift and π/2-rotation in the vertical lift of Dv respectively. The

CR structure is integrable. As there is a (graded) Lie algebra isomorphism

of o(4, 2) ∼= su(2, 2), a Lie contact structure on a 5-dimensional contact

manifold is equivalent to a CR structure with a nondegenerate and indefinite

Levi form. See [S-Y1]. Therefore a complex structure J on M is induced by

the CR structure on S(P ).

Remark that, on M as the manifold of geodesics, a symplectic structure

is not necessarily defined from S(P ) with the contact structure (cf. [B,

p. 58]).

Since the notion of Grassmannian structures of type (2, 2) and that of

conformal structures of type (2, 2) are equivalent, we have the following:

Theorem 8.2. Let P be a 3-dimensional manifold with an Einstein-

Weyl structure. Then the structure on P induces a self-dual conformal Her-

mitian structure of type (2, 2) on the orbit space M of the geodesic flow.
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