H. Hashimoto and K. Mashimo Nagoya Math. J.Vol. 156 (1999), 171–185

ON SOME 3-DIMENSIONAL CR SUBMANIFOLDS IN S⁶

HIDEYA HASHIMOTO AND KATSUYA MASHIMO

Dedicated to Professor Tsunero Takahashi on his sixtieth birthday

Abstract. We give two types of 3-dimensional CR-submanifolds of the 6dimensional sphere. First we study whether there exists a 3-dimensional CRsubmanifold which is obtained as an orbit of a 3-dimensional simple Lie subgroup of G_2 . There exists a unique (up to G_2) 3-dimensional CR-submanifold which is obtained as an orbit of reducible representations of SU(2) on \mathbf{R}^7 . As orbits of the subgroup which corresponds to the irreducible representation of SU(2) on \mathbf{R}^7 , we obtained 2-parameter family of 3-dimensional CRsubmanifolds. Next we give a generalization of the example which was obtained by K. Sekigawa.

Introduction

Let (M, J, \langle, \rangle) be an almost Hermitian manifold. For a submanifold Nof M, we put $\mathcal{H}_x = T_x N \cap J(T_x N)$ $(x \in N)$ and denote by \mathcal{H}_x^{\perp} the orthogonal complement of \mathcal{H}_x in $T_x N$. If the dimension of \mathcal{H}_x is constant and $J(\mathcal{H}_x^{\perp}) \subset T_x^{\perp} N$ for any $x \in N$, the submanifold N is called a *CR submanifold*. Especially if $\mathcal{H}_x = T_x N$, the submanifold N is said to be a *holomorphic* (or *invariant*) submanifold and if dim $(\mathcal{H}_x) = 0$ and $J(T_x N) \subset T_x^{\perp} N$ for any $x \in N$, the submanifold N is said to be a *totally real submanifold*.

It is well-known that the 6-dimensional sphere S^6 admits an almost complex structure. On the existence of holomorphic or totally real submanifold of S^6 , many results are obtained. A. Gray proved that there does not exist any 4-dimensional holomorphic submanifold ([7]) and R. Bryant proved that there exist infinitely many 2-dimensional holomorphic submanifolds ([1]). It was proved by Ejiri that any 3-dimensional totally real sub-

Received May 12, 1997.

The authors are partially supported by Grants-in-Aid for Scientific Research, The Ministry of Culture and Education, Japan

maifold of S^6 is a minimal submanifold ([4]). He also proved that some tubes in the direction of the first and the second normal bundle of holomorphic curves are totally real submanifolds of S^6 ([5]). The second author classified 3-dimensional homogeneous minimal submanifolds of S^6 and determined all 3-dimensional homogeneous totally real submanifolds of S^6 ([11]).

Though there are many results on the existence of holomorphic submanifolds and totally real submanifolds of S^6 , only one example is known about the existence of CR submanifold of S^6 ([13]).

The aim of this paper is to give many 3-dimensional CR submanifolds of S^6 with $\dim_{\mathbf{R}} \mathcal{H} = 2$. Second author proved that a 3-dimensional subspace V in \mathbf{C}^3 satisfies $\dim_{\mathbf{R}}(V \cap J(V)) = 2$ if and only if $\omega(V) = 0$, where J is the complex structure and ω is the Laglangean 3-form. The fact is also used in this paper.

$\S1.$ Preliminaries

1.1. Cayley algebra

Let **H** be the skew field of all quaternions. The Cayley algebra \mathfrak{C} over **R** is $\mathfrak{C} = \mathbf{H} \oplus \mathbf{H}$ with the following multiplication;

$$(q,r) \cdot (s,t) = (qs - \overline{t}r, tq + r\overline{s}), \quad q,r,s,t \in \mathbf{H}$$

where "-" means the conjugation in **H**. We define a conjugation in \mathfrak{C} by $\overline{(q,r)} = (\overline{q}, -r), q, r \in \mathbf{H}$, and an inner product \langle, \rangle by

$$\langle x, y \rangle = (x \cdot \overline{y} + y \cdot \overline{x})/2, \quad x, y \in \mathfrak{C}.$$

We put

$$\mathfrak{C}_0 = \{ x \in \mathfrak{C} | x + \overline{x} = 0 \}.$$

The Cayley algebra \mathfrak{C} is neither commutative nor associative. But we have the following

- (1) If $x, y \in \mathfrak{C}_0$, then $x \cdot y = -y \cdot x$.
- (2) For any $x, y, z \in \mathfrak{C}$,

$$\overline{x} \cdot (x \cdot y) = (\overline{x} \cdot x) \cdot y, \quad \langle x \cdot y, x \cdot z \rangle = \langle x, x \rangle \langle y, z \rangle.$$

(3) If $x, y, z \in \mathfrak{C}$ are mutually orthogonal unit vectors,

$$x \cdot (y \cdot z) = y \cdot (z \cdot x) = z \cdot (x \cdot y).$$

The unit sphere $S^6 \subset \mathfrak{C}_0$ centered at the origin has an almost complex structure J defined by

$$J_p(X) = p \cdot X \quad p \in S^6, \ X \in T_p S^6.$$

We use the canonical orthonormal basis $e_0 = (1,0)$, $e_1 = (i,0)$, $e_2 = (j,0)$, $e_3 = (k,0)$, $e_4 = (0,1)$, $e_5 = (0,i)$, $e_6 = (0,j)$, $e_7 = (0,k)$ of the Cayely algebra, where 1, i, j, k is the standard orthonormal basis of **H**. The vector e_0 is the unit element of \mathfrak{C} and the product $e_i \cdot e_j$ is given in the following table;

$i \backslash j$	1	2	3	4	5	6	7
1	$-e_0$	e_3	$-e_2$	e_5	$-e_4$	$-e_7$	e_6
2	$-e_3$	$-e_0$	e_1	e_6	e_7	$-e_4$	$-e_5$
3	e_2	$-e_1$	$-e_0$	e_7	$-e_6$	e_5	$-e_4$
4	$-e_5$	$-e_6$	$-e_7$	$-e_0$	e_1	e_2	e_3
5	e_4	$-e_7$	e_6	$-e_1$	$-e_0$	$-e_3$	e_2
6	e_7	e_4	$-e_5$	$-e_2$	e_3	$-e_0$	$-e_1$
7	$-e_6$	e_5	e_4	$-e_3$	$-e_2$	e_1	$-e_0$

1.2. Exceptional simple Lie group G_2

It is well-known that the group of all automorphisms of \mathfrak{C} is a compact connected simple Lie group of type \mathfrak{g}_2 ([6]), which we denote by G_2 . The group G_2 leaves the vector e_0 and the subspace $\mathfrak{C}_0 = \sum_{i=1}^7 \mathbf{R} e_i$ invariant. Furthermore G_2 leaves the inner product \langle , \rangle invariant. If we identify \mathfrak{C}_0 with the set of all 7-dimensional column vectors in a natural manner, then G_2 is a subgroup of SO(7).

LEMMA 1. For a pair of mutually orthogonal unit vectors a_4 , a_1 in \mathfrak{C}_0 put $a_5 = a_1 \cdot a_4$. Take a unit vector a_2 , which is perpendicular to a_4 , a_1 and a_5 . If we put $a_3 = a_1 \cdot a_2$, $a_6 = a_2 \cdot a_4$ and $a_7 = a_3 \cdot a_4$ then the matrix

 $g = (a_1, a_2, a_3, a_4, a_5, a_6, a_7) \in SO(7)$

is an element of G_2 with $g \cdot e_4 = a_4$.

For the proof of Lemma 1, we refer to [8].

Let G_{ij} $(1 \le i \ne j \le 7)$ be the skew symmetric transformation on \mathfrak{C}_0 defined by

$$G_{ij}(e_k) = \begin{cases} e_i, & \text{if } k = j, \\ -e_j, & \text{if } k = i, \\ 0, & \text{otherwise.} \end{cases}$$

The Lie algebra \mathfrak{g}_2 of G_2 is spanned by the following vectors in the Lie algebra $\mathfrak{so}(7)$ of SO(7);

$$\left\{ \begin{array}{l} aG_{23} + bG_{45} + cG_{76}, \\ aG_{31} + bG_{46} + cG_{57}, \\ aG_{12} + bG_{47} + cG_{65}, \\ aG_{51} + bG_{73} + cG_{62}, \\ aG_{14} + bG_{72} + cG_{36}, \\ aG_{17} + bG_{24} + cG_{53}, \\ aG_{61} + bG_{34} + cG_{25}, \end{array} \right.$$

where a, b, c are real numbers with a + b + c = 0.

1.3. A criterion for a CR subspace

Let J be the standard complex structure on \mathbf{C}^3 with the standard Hermitian metric. Take an orthonormal basis e_1 , e_2 , e_3 , $e_4 = J(e_1)$, $e_5 = J(e_2)$, $e_6 = J(e_3)$ of \mathbf{C}^3 . We denote by $\omega_1, \dots, \omega_6$ the orthonormal coframe on \mathbf{C}^3 dual to e_1, \dots, e_6 . Put

$$\omega = (\omega_1 + \sqrt{-1}\omega_4) \wedge (\omega_2 + \sqrt{-1}\omega_5) \wedge (\omega_3 + \sqrt{-1}\omega_6).$$

Remember that ω depends on the choise of the basis e_1, \dots, e_6 . For an element $g \in U(3)$ we have

$$g^*\omega = \det(g)\omega.$$

PROPOSITION 2. A 3-dimensional real subspace V of \mathbb{C}^3 satisfies dim_{**R**} $(V \cap J(V)) = 2$ if and only if $\omega(V) = 0$.

If a 3-dimensional real subspace V of \mathbf{C}^3 satisfies $\dim_{\mathbf{R}}(V \cap J(V)) = 2$ then it also satisfies $J((V \cap JV)^{\perp} \cap V) \subset V^{\perp}$. For a 3-dimensional CR submanifold of a 6-dimensional almost complex manifold which is not a totally real submanifold we have $\dim_{\mathbf{R}}(T_xN \cap J(T_xN)) = 2$. Thus we have the following

COROLLARY 3. Let M be a 6-dimensional almost complex manifold. A 3-dimensional submanifold N of M is a CR submanifold with dim $\mathcal{H} = 2$ if and only if $\omega(T_x N) = 0$ for any $x \in N$.

$\S 2$. Orbits of TDS in G_2

In this section, we study 3-dimensional CR submanifolds which are orbits of some 3-dimensional simple subgroup (abbreviated as TDS) of G_2 .

2.1. Classification of TDS in G₂

Let \mathfrak{g} be a compact simple Lie algebra and \mathfrak{t} be a maximal abelian subalgebra of \mathfrak{g} . Let \mathfrak{u} be a simple 3-dimensional subalgebra of \mathfrak{g} . Take a basis X_1, X_2, X_3 of \mathfrak{u} with

(1)
$$[X_1, X_2] = 2X_3, \ [X_2, X_3] = 2X_1, \ [X_3, X_1] = 2X_2$$

and put

$$\begin{cases} H = \sqrt{-1}X_1, \\ X_+ = (1/\sqrt{2})(X_2 + \sqrt{-1}X_3), \\ X_- = (1/\sqrt{2})(-X_2 + \sqrt{-1}X_3). \end{cases}$$

The bracket products of the basis H, X_+, X_- of $\mathfrak{u}^{\mathbf{C}}$ are

(2)
$$[H, X_+] = 2X_+, \ [H, X_-] = -2X_-, \ [X_+, X_-] = H.$$

We may assume that H is contained in $\sqrt{-1}\mathfrak{t}$. Hence $\alpha(H)$ is a real number for every root α of $\mathfrak{g}^{\mathbf{C}}$ with respect to $\mathfrak{t}^{\mathbf{C}}$. Furthermore $\alpha(H) = 0, 1$ or 2 if α is a simple root ([3, p.166]). The weighted Dynkin diagram with weight $\alpha(H)$ added to each vertex α of the Dynkin diagram of $\mathfrak{g}^{\mathbf{C}}$ is called the *characteristic diagram* of \mathfrak{u} . Let \mathfrak{u} and \mathfrak{u}' be 3-dimensional simple Lie subalgebras of \mathfrak{g} . Then \mathfrak{u} and \mathfrak{u}' are mutually conjugate in \mathfrak{g} if and only if $\mathfrak{u}^{\mathbf{C}}$ and $\mathfrak{u}'^{\mathbf{C}}$ have the same characteristic diagram.

Mal'cev [10] classified the 3-dimensional complex simple subalgebras of $\mathfrak{g}_2^{\mathbf{C}}$. From his classification, \mathfrak{g}_2 has 4 types of 3-dimensional simple subalgebras.

Type I
$$1 \quad 0$$
Type II $0 \quad 1$ Type II $2 \quad 0$ Type IV $2 \quad 2$ Type III $2 \quad 0$ Type IV $2 \quad 2$

We shall study 3 dimensional homogeneous CR submanifolds of S^6 which are orbits of 3 dimensional simple Lie subgroup of G_2 . We denote by ω_i the orthogonal coframes on \mathfrak{C}_0 dual to e_i . We also denote by ω_i the restriction of ω_i to S^6 . Since $J_{e_4}(e_1) = -e_5$, $J_{e_4}(e_2) = -e_6$ and $J_{e_4}(e_3) = -e_7$, we have

$$\omega_{|e_4} = (\omega_1 - \sqrt{-1}\omega_5) \wedge (\omega_2 - \sqrt{-1}\omega_6) \wedge (\omega_3 - \sqrt{-1}\omega_7).$$

2.2. Orbit of the TDS of type I

A basis of the subalgebra with (1) corresponding to the characteristic diagram of type I is as follows;

$$\begin{cases} X_1 = -G_{45} + G_{76}, \\ X_2 = -G_{46} + G_{57}, \\ X_3 = -G_{47} + G_{65}. \end{cases}$$

We denote by U_1 the Lie subgroup of G_2 generated by the subalgebra. The subgroup U_1 is isomorphic to Sp(1) and acts on \mathfrak{C}_0 as follows;

$$q \cdot (x, y) = (x, y\overline{q}), \quad q \in Sp(1)$$

In this case, $\mathbf{R}e_1$, $\mathbf{R}e_2$, $\mathbf{R}e_3$ and $\sum_{j=4}^{7} \mathbf{R}e_j$ are invariant irreducible subspaces so that each orbit is a small sphere or a great sphere.

2.3. Orbit of the TDS of type II

A basis satisfying (1) of the subalgebra corresponding to the characteristic diagram of type II is as follows;

$$\begin{cases} X_1 = -2G_{23} + G_{45} + G_{76}, \\ X_2 = -2G_{31} + G_{46} + G_{57}, \\ X_3 = -2G_{12} + G_{47} + G_{65}. \end{cases}$$

We denote by U_2 the Lie subgroup of G_2 generated by the subalgebra. The subgroup U_2 is isomorphic to Sp(1) and acts on \mathfrak{C}_0 as follows;

$$q \cdot (x, y) = (qx\overline{q}, y\overline{q}), \quad q \in Sp(1).$$

THEOREM 4. Let N be the orbit of U_2 through the point $p_0 = (1/3)e_2 + (2\sqrt{2}/3)e_4$. Any 3 dimensional CR submanifold of S^6 , which is an orbit of U_2 in S^6 , is congruent to N under the action of G_2 on S^6 .

Proof. Take a point p on S^6 and consider the orbit $M = U_2 \cdot p$ of U_2 through p. Since the action of Sp(1) on $S^3 \subset H$ by $y \to y\overline{q} \quad (q \in Sp(1))$ is transitive, we may assume that p is of the form $p = \sum_{i=1}^4 x_i e_i$. Put

$$g_t = \exp(t(X_3 - (G_{47} - G_{65}))) = \exp(-2t(G_{12} - G_{65}))$$

and consider the one parameter subgroup $Z = \{g_t : t \in \mathbf{R}\}$. Since $G_{47} - G_{65}$ commutes with X_1, X_2 and X_3 we have

$$U_2 \cdot g_t \cdot p = g_t \cdot M.$$

Namely the orbit M is congruent to the orbit through $p' = \sum_{i=2}^{4} x_i e_i$. If $x_4 = 0$ then we have $\dim(M) = 2$. Thus we assume $x_4 \neq 0$.

Put $a_4 = p'$, $a_1 = e_6$ and $a_5 = a_1 \cdot a_4$. The vector $a_2 = c(x_4e_1 + x_2e_7)$ $(c = 1/\sqrt{x_2^2 + x_4^2})$ is orthogonal to a_4 , a_1 and a_5 . Thus by Lemma 1, the matrix

	$\begin{pmatrix} 0 \end{pmatrix}$	0	0	0	0	1	0 \
	cx_4	0	0	0	0	0	cx_2
	$-cx_2$	0	0	0	0	0	cx_4
g =	0	x_2	x_3	x_4	0	0	0
	0	$-x_4$	0	x_2	$-x_3$	0	0
	0	$-cx_{3}x_{4}$	0	cx_2x_3	1/c	0	0
	0	cx_2x_3	-1/c	cx_3x_4	0	0	0 /

is an element of G_2 with $g \cdot p' = e_4$.

Substitute

$$v_1 = g_*(X_1(p')) = (3x_3x_4)e_5 + cx_4(3x_3^2 - 1)e_6 - 2cx_2e_7, v_2 = g_*(X_2(p')) = -x_4e_1 + (2cx_3x_4)e_2 - (2cx_2x_3)e_3 v_3 = g_*(X_3(p')) = -3cx_2x_4e_2 + c(2x_2^2 - x_4^2)e_3,$$

into $\omega|_{e_4}$, we have

$$\omega|_{e_4}(v_1, v_2, v_3) = \sqrt{-1}c^2 x_4^2 (8x_2^2 + x_4^2(9x_3^2 - 1)).$$

Thus the orbit $M = U_2(p')$ through the point $p' = x_2e_2 + x_3e_3 + x_4e_4$ is a 3-dimensional CR submanifold of S^6 if and only if

$$\left\{ \begin{array}{l} x_4 \neq 0, \\ x_2^2 + x_3^2 + x_4^2 = 1, \\ 8x_2^2 + x_4^2(9x_3^2 - 1) = 0 \end{array} \right.$$

The solution of the above equations is as follows;

(3)
$$x_2^2 + x_3^2 = 1/9, \ x_4^2 = 8/9$$

Every orbit through a point which satisfies (3) is congruent to N by $\exp(t(G_{23} - G_{76})) \in G_2$ for some $t \in \mathbf{R}$.

2.4. Orbit of the TDS of type III

A basis satisfying (1) of the subalgebra corresponding to the characteristic diagram of type III is as follows;

$$\begin{cases} X_1 &= -2G_{21} - 2G_{65}, \\ X_2 &= -2G_{32} - 2G_{76}, \\ X_3 &= -2G_{31} - 2G_{75}. \end{cases}$$

We denote by U_3 the Lie subgroup of G_2 generated by the subalgebra. The subgroup U_3 is isomorphic to SO(3) and the covering group Sp(1) of U_3 acts on \mathfrak{C}_0 as follows;

$$q \cdot (x, y) = (qx\overline{q}, qy\overline{q}), \quad q \in Sp(1).$$

THEOREM 5. There does not exist any 3 dimensional CR submanifold of S^6 which is an orbit of the subgroup U_3 .

Proof. Take a point p on S^6 and consider the orbit $M = U_3 \cdot p$ of U_3 through p. Since the action of Sp(1) on S^2 by $x \to qx\overline{q}$ $(q \in Sp(1))$ is transitive, we may assume that p is of the form $p = x_1e_1 + x_4e_4 + x_5e_5 + x_6e_6$. Put $a_4 = p$, $a_1 = e_7$ and $a_5 = a_1 \cdot a_4$. If $x_1 = 0$ then we have dim(M) = 2. Thus we assume $x_1 \neq 0$. The vector $a_2 = c(x_4e_1 + x_6e_3 - x_1e_4)$ $(c = 1/\sqrt{x_1^2 + x_4^2 + x_6^2})$ is orthogonal to a_4 , a_1 and a_5 . Thus by Lemma 1, the matrix

$$g = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ cx_4 & 0 & cx_6 & -cx_1 & 0 & 0 & 0 \\ 0 & 0 & cx_1 & cx_6 & 0 & -cx_4 & 0 \\ x_1 & 0 & 0 & x_4 & x_5 & x_6 & 0 \\ x_6 & -x_5 & -x_4 & 0 & 0 & -x_1 & 0 \\ -cx_1x_5 & 0 & 0 & -cx_4x_5 & 1/c & -cx_5x_6 & 0 \\ cx_5x_6 & 1/c & -cx_4x_5 & 0 & 0 & -cx_1x_5 & 0 \end{pmatrix}$$

is an element of G_2 with $g \cdot p = e_4$. Substitute

$$\begin{aligned} v_1 &= g_*(X_1(p)) = (2x_6, 0, 0, 0, 0, 0, 0), \\ v_2 &= g_*(X_2(p)) = (-2x_5, -2cx_1x_6, -2cx_1^2, 0, 2x_1x_4, 0, 2cx_1x_4x_5), \\ v_3 &= g_*(X_3(p)) = (0, 0, -2cx_4x_5, 0, -4x_1x_5, -2cx_6, 2cx_1(1-2x_5^2)), \end{aligned}$$

into $\omega|_{e_4}$, we have

$$\omega|_{e_4}(v_1, v_2, v_3) = 16c^2 x_1^2 x_6^2 \sqrt{-1}(1 - x_5^2).$$

If we assume $\omega(v_1, v_2, v_3) = 0$, we have $x_1 = 0$, $x_6 = 0$ or $x_5 = \pm 1$. In any case, the dimension of the orbit is equal to 2. Thus there does not exist any 3 dimensional orbit which is a CR submanifold of S^6 .

2.5. Orbit of the TDS of type IV

A basis satisfying (1) of the subalgebra corresponding to the characteristic diagram of type IV is as follows;

$$\begin{cases} X_1 = 4G_{32} + 2G_{54} + 6G_{76}, \\ X_2 = \sqrt{6}(G_{37} + G_{26} - 2G_{15}) + \sqrt{10}(G_{42} - G_{35}), \\ X_3 = \sqrt{6}(G_{63} + G_{27} - 2G_{41}) + \sqrt{10}(G_{25} - G_{34}). \end{cases}$$

We denote by U_4 the Lie subgroup of G_2 generated by the subalgebra. The subgroup U_4 is isomorphic to SO(3).

From Lemma 1 in [2], the linear subspace $((\mathbf{R}X_1 + \mathbf{R}X_2 + \mathbf{R}X_3)e_7)^{\perp}$ meets every orbit of the action of U_4 on \mathfrak{C}_0 . So the great sphere $S^3 = \{x_1e_1 + x_4e_4 + x_5e_5 + x_7e_7 : x_1, x_4, x_5, x_7 \in \mathbf{R}\} \cap S^6$ meets every orbit of the action of U_4 on S^6 .

THEOREM 6. If the dimension of the orbit $N = U_4 \cdot p$ through a point p of the great sphere

$${x_1e_1 + x_4e_4 + x_5e_5 + x_7e_7 : x_1, x_4, x_5, x_7 \in \mathbf{R}} \cap S^{6}$$

is 3, then it is a CR-submanifold if and only if $f(x_1, x_4, x_5, x_7) = 0$ where

$$f(x_1, x_4, x_5, x_7) = -5x_4^4 - 10x_4^2x_5^2 - 5x_5^4 + 42x_4^2x_7^2 + 72x_1^2x_7^2 + 42x_5^2x_7^2 - 9x_7^4 - 24\sqrt{15}x_4^2x_5x_7 + 8\sqrt{15}x_5^3x_7.$$

Proof. Put $a_4 = x_1e_1 + x_4e_4 + x_5e_5 + x_7e_7$, $a_1 = e_2$ and $a_2 = c(x_5e_4 - x_4e_5 - x_7e_6)$ $(c = 1/\sqrt{x_5^2 + x_4^2 + x_7^2})$. From Lemma 1, we obtain an element

$$g = \begin{pmatrix} 0 & 0 & 0 & x_1 & 0 & 1/c & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -x_1 & 0 & 1/c \\ 0 & cx_5 & cx_7 & x_4 & 0 & -cx_1x_4 & 0 \\ 0 & -cx_4 & 0 & x_5 & -x_7 & cx_1x_5 & -cx_1x_7 \\ 0 & -cx_7 & cx_5 & 0 & x_4 & 0 & cx_1x_4 \\ 0 & 0 & -cx_4 & x_7 & x_5 & -cx_1x_7 & cx_1x_5 \end{pmatrix}$$

of G_2 with $g \cdot e_4 = a_4$. The vectors $v_i = g_*^{-1}(X_i(p))$ are given as follows;

$$\begin{aligned} v_1 &= (0, 2c(-x_4^2 - x_5^2 + 3x_7^2), -8cx_5x_7, 0, -8x_4x_7, 0, -8cx_1x_4x_7), \\ v_2 &= (-\sqrt{10}x_4, -2\sqrt{6}cx_1x_4, 0, 0, \sqrt{10}x_1x_5 - 3\sqrt{6}x_1x_7, \\ &- 2\sqrt{6}cx_5, -2\sqrt{6}cx_1^2x_7 + (1/c)(-\sqrt{10}x_5 + \sqrt{6}x_7)), \\ v_3 &= (\sqrt{10}x_5 + \sqrt{6}x_7, -2\sqrt{6}cx_1x_5, -2\sqrt{6}cx_1x_7, 0, \sqrt{10}x_1x_4, \\ &2\sqrt{6}cx_4, -\sqrt{10}(1/c)x_4). \end{aligned}$$

Using the Mathematica we obtained the following

$$\begin{split} & \omega(v_1, v_2, v_3) \\ = & 24\sqrt{15}x_1x_4^3x_7 - 24\sqrt{15}c^2x_1x_4^3x_7 + 24\sqrt{15}c^2x_1^3x_4^3x_7 - 40\sqrt{15}x_1x_4x_5^2x_7 \\ & +40\sqrt{15}c^2x_1x_4x_5^2x_7 - 40\sqrt{15}c^2x_1^3x_4x_5^2x_7 + 96x_1x_4x_5x_7^2 - 96c^2x_1x_4x_5x_7^2 \\ & +96c^2x_1^3x_4x_5x_7^2 + 24\sqrt{15}x_1x_4x_7^3 - 24\sqrt{15}c^2x_1x_4x_7^3 + 24\sqrt{15}c^2x_1^3x_4x_7^3 \\ & +\sqrt{-1}\left(-20x_4^4 - 40x_4^2x_5^2 - 20x_5^4 - 64\sqrt{15}x_4^2x_5x_7 - 32\sqrt{15}c^2x_4^2x_5x_7 \\ & +32\sqrt{15}c^2x_1^2x_4^2x_5x_7 + 32\sqrt{15}c^2x_5^3x_7 - 32\sqrt{15}c^2x_1^2x_5^3x_7 + 168x_4^2x_7^2 \\ & +288c^2x_1^2x_4^2x_7^2 + 72x_5^2x_7^2 + 96c^2x_5^2x_7^2 + 192c^2x_1^2x_5^2x_7^2 - 36x_7^4 + 288c^2x_1^2x_7^4). \end{split}$$

By a tedious calculation, we verified that the real part of the above vanishes and the imaginary part of the above reduces to $f(x_1, x_4, x_5, x_7)$.

Remark 7. Put $g(x_1, x_4, x_5, x_7) = x_1^2 + x_4^2 + x_5^2 + x_7^2 - 1$. It is easily verified that $f(x_1, x_4, x_5, x_7) = g(x_1, x_4, x_5, x_7) = 0$ hold at the point $(x_1, x_4, x_5, x_7) = (\pm 1/3, 0, 0, \pm 2\sqrt{2}/3)$ and the dimension of the orbit through $p = x_1e_1 + x_4e_4 + x_5e_5 + x_7e_7$ is 3. Furthermore, since the Jacobian $\partial(f, g)/\partial(x_1, x_7)$ is regular at the point (x_1, x_4, x_5, x_7) , there exist a 2-parameter family of 3-dimensional CR submanifolds.

§3. Generalization of Sekigawa's example

3.1. Sekigawa's example and its generalization

In [13], Sekigawa obtained an example of 3-dimensional CR submanifold of S^6 . His example was given as the image of the mapping of $S^2 \times S^1$ into S^6 ;

$$\Psi(y,t) = \Psi((y_2, y_4, y_6), e^{\sqrt{-1}t})$$

= $(y_2 \cos t)e_2 - (y_2 \sin t)e_3 + (y_4 \cos 2t)e_4 + (y_4 \sin 2t)e_5 + (y_6 \cos t)e_6 + (y_6 \sin t)e_7.$

where $(y_2, y_4, y_6) \in S^2$ and $e^{\sqrt{-1}t} \in S^1$.

For a real triple $p = (p_1, p_2, p_3)$ with $p_1 + p_2 + p_3 = 0$ and $p_1 p_2 p_3 \neq 0$, define a mapping ψ_p of $S^2 \times R$ to $S^5 \subset S^6$ as follows;

$$\psi_p(x_1, x_2, x_3, t)$$

$$= \exp(t(p_1G_{51} + p_2G_{62} + p_3G_{73}))(x_1e_1 + x_2e_2 + x_3e_3)$$

$$= x_1(\cos(tp_1)e_1 + \sin(tp_1)e_5) + x_2(\cos(tp_2)e_2 + \sin(tp_2)e_6)$$

$$+ x_3(\cos(tp_3)e_3 + \sin(tp_3)e_7),$$

where $(x_1)^2 + (x_2)^2 + (x_3)^2 = 1$ and $t \in \mathbf{R}$. We use another expression;

$$\psi_p(x_1, x_2, x_3, t) = (x_1, x_2, x_3)R_p(t),$$

where $R_p(t)$ is the \mathfrak{C} -valued (3, 1)-matrix

$$R_p(t) = \begin{pmatrix} \cos(tp_1)e_1 + \sin(tp_1)e_5\\ \cos(tp_2)e_2 + \sin(tp_2)e_6\\ \cos(tp_3)e_3 + \sin(tp_3)e_7 \end{pmatrix}.$$

It is easily seen that there exists an element $g \in G_2$ with $\Psi = g \circ \psi_{(2,-1,-1)}$.

The tangent space $d\psi_{(p_1,p_2,p_3)}(T_xS^2\oplus T_t\mathbf{R})$ is generated by

$$d\psi_p((v, 0)) = (v_1, v_2, v_3)R_p(t), d\psi_p((0, D_t)) = (x_1p_1, x_2p_2, x_3p_3)R'_p(t),$$

where $v = (v_1, v_2, v_3)$ is a tangent vector of S^2 , $D_t = \partial/\partial t$ is a tangent vector of **R** and

$$R'_p(t) = \begin{pmatrix} -\sin(tp_1)e_1 + \cos(tp_1)e_5\\ -\sin(tp_2)e_2 + \cos(tp_2)e_6\\ -\sin(tp_3)e_3 + \cos(tp_3)e_7 \end{pmatrix}.$$

We can easily verify that

(4)
$$\begin{cases} \langle XR_p(t), YR_p(t) \rangle = \langle XR'_p(t), YR'_p(t) \rangle = \langle X, Y \rangle, \\ \langle XR_p(t), YR'_p(t) \rangle = 0. \end{cases}$$

hold for any $X, Y \in \mathbf{R}^3$. By a direct calculation, we have the following

LEMMA 8. The induced metric \tilde{g} on $S^2 \times \mathbf{R}$ is a warped product metric. Precisely

$$\widetilde{g} = {\pi_1}^* g_0 + \left(\sum_{i=1}^3 (x_i p_i)^2\right) {\pi_2}^* dt^2$$

where $\pi_1: S^2 \times \mathbf{R} \to S^2$ and $\pi_2: S^2 \times \mathbf{R} \to \mathbf{R}$ are natural projections and g_0 is the canonical Riemannian metric on S^2 .

From (4), we have the following orthogonal direct sum decomposition

$$\mathfrak{C}_0 = V \oplus V' \oplus \mathbf{R}e_4$$

where we put

$$V = \{XR_p(t) : X \in \mathbf{R}^3\}, \ V' = \{XR'_p(t) : X \in \mathbf{R}^3\}.$$

THEOREM 9. Let $p = (p_1, p_2, p_3)$ be a real triple with $p_1 + p_2 + p_3 = 0$ and $p_1 p_2 p_3 \neq 0$. The image of the mapping

$$\psi_p(x_1, x_2, x_3, t) : S^2 \times \mathbf{R} \to S^5 \subset S^6$$

is a 3-dimensional CR-submanifolds of S^6 .

Proof. Let $x = (x_1, x_2, x_3)$ be an element of S^2 and $v = (v_1, v_2, v_3)$ be a tangent vector of S^2 at x. By direct calculation, we have

$$J(d\psi_p((v, 0))) = (v_3x_2 - v_2x_3)\cos(p_1t)e_1 + (-v_3x_1 + v_1x_3)\cos(p_2t)e_2 + (v_2x_1 - v_1x_2)\cos(p_3t)e_3 - (-v_3x_2 + v_2x_3)\sin(p_1t)e_5 - (v_3x_1 - v_1x_3)\sin(p_2t)e_6 - (-v_2x_1 + v_1x_2)\sin(p_3t)e_7 = (x \times v)R_p(t).$$

Thus we have $d\psi_p(T_xS^2 \oplus \{0\})$ is a *J*-invariant subspace. Since the image of the mapping ψ_p is 3-dimensional, we obtain the theorem.

For a non zero constant k we can easily see

$$\psi_{(kp_1,kp_2,kp_3)}(x,t) = \psi_{(p_1,p_2,p_3)}(x,kt).$$

Thus we may assume that $p_3 = 1$.

Remark 10. (1) If p_1/p_2 is a rational number, then $\psi_{(p_1,p_2,p_3)}$ is an immersion but not injective, and its image is a compact manifold.

(2) If p_1/p_2 is an irrational number, then $\psi_{(p_1,p_2,p_3)}$ is an injective immersion but not an embedding.

(3) Let τ be a permutation of 3 characters and put $p' = \tau p$. There exists an element $g \in G_2$ such that $\psi_{p'} = g \circ \psi_p$.

Next we shall calculate the second fundamental form of the immersion $\psi_{(p_1,p_2,p_3)}$.

LEMMA 11. For any $v, w \in T_x S^2$, $D_t \in T_t \mathbf{R}$ we have

(1)
$$\sigma(v,w) = 0,$$

$$(2) \quad \sigma(D_t, D_t) = 0,$$

(3)

$$\sigma(v,\xi) = \frac{1}{\sqrt{f(x)}} \left(v - \frac{1}{2} v(\log(f(x)) \cdot x) \right) \begin{pmatrix} p_1(-\sin(tp_1)e_1 + \cos(tp_1)e_5) \\ p_2(-\sin(tp_2)e_2 + \cos(tp_2)e_6) \\ p_3(-\sin(tp_3)e_3 + \cos(tp_3)e_7) \end{pmatrix}$$

where
$$f(x) = \sum_{i=1}^{3} (x_i p_i)^2$$
 and $\xi = (1/\sqrt{f(x)})D_t$.

Proof. (1) is trivial, since the restriction of ψ_p to $S^2 \times \{t\}$ is a totally geodesic immersion for any $t \in \mathbf{R}$.

Let \tilde{D} be the canonical connection of \mathbb{R}^7 . From

$$\tilde{D}_{D_t}\left(d\psi_{(p_1,p_2,p_3)}(0,D_t)\right) = -(x_1p_1^2, x_2p_2^2, x_3p_3^2)R_p(t) \in V,$$

and $V = \mathbf{R}\psi(p,t) \oplus d\psi_p(T_xS^2 \oplus \{0\})$ we have (2). For any tangent vector v of S^2 , we have

$$\tilde{D}_{v}\left(d\psi_{(p_{1},p_{2},p_{3})}(0,D_{t})\right) = v \begin{pmatrix} p_{1}(-\sin(tp_{1})e_{1} + \cos(tp_{1})e_{5})\\ p_{2}(-\sin(tp_{2})e_{2} + \cos(tp_{2})e_{6})\\ p_{3}(-\sin(tp_{3})e_{3} + \cos(tp_{3})e_{7}) \end{pmatrix}.$$

Taking the normal component, we get

$$\sigma(v,\xi) = \left(\frac{1}{\sqrt{f(x)}}\right) \left\{ \tilde{D}_v \left(d\psi_{(p_1,p_2,p_3)}(0,D_t) \right) - \left(\frac{v(f(x))}{2f(x)}\right) d\psi_{(p_1,p_2,p_3)}(0,D_t) \right\}.$$

From this proposition, we can calculate the trace and the square of the length of the second fundamental form.

PROPOSITION 12.

- (1) Each immersion $\psi_{(p_1,p_2,p_3)}$ is a minimal immersion.
- (2)

$$|\sigma|^{2} = \frac{2}{\left(\sum_{i=1}^{3} (x_{i}p_{i})^{2}\right)^{2}} \left\{ \left(\sum_{i=1}^{3} (p_{i})^{2}\right) \cdot \left(\sum_{i=1}^{3} ((x_{i}p_{i})^{2}\right) - \left(\sum_{i=1}^{3} (x_{i})^{2} (p_{i})^{4}\right) \right\}$$

Since the scalar curvature $\tau \ (= 6 - |\sigma|^2)$ is not constant, we have the following

COROLLARY 13. The induced metric is neither homogeneous nor cyclic parallel.

References

- Bryant, R. L., Submanifolds and special structures on the octonians, J. Diff. Geometry, 17 (1982), 185–232.
- [2] Dadok, J., Polar coordinates induced by actions of compact Lie groups, Trans. A. M. S., 288 (1985), 125–137.
- [3] Dynkin, E.B., Semi-simple subalgebras of semi-simple Lie algebras, A.M.S.Transl. Ser. 2, 6 (1957), 111–244.
- [4] Ejiri, N., Totally real submanifolds in a 6-sphere, Proc. A. M. S., 83 (1981), 759-763.
- [5] _____, Equivariant minimal immersions of S² into S^{2m}(1), Trans. A. M. S., 297 (1986), 105–124.
- [6] Freudenthal, H., Oktaven, Ausnahmegruppen und Oktavengeometrie, Geometriae Dedicata, 19 (1985), 7–63.
- [7] Gray, A., Almost complex submanifolds of six sphere, Proc. A. M. S., 20 (1969), 277–279.
- [8] Harvey, R. and Lawson, H.B., Calibrated geometries, Acta Math., 148 (1982), 47–157.
- [9] Hsiung, W. Y. and Lawson, H. B., Minimal submanifolds of low cohomogenity, J. Diff. Geometry, 5 (1971), 1–38.
- [10] Mal'cev, A.I., On semi-simple subgroups of Lie groups, A.M.S. Transl, Ser. 1, 9 (1950), 172–213.
- [11] Mashimo, K., Homogeneous totally real submanifolds of S⁶, Tsukuba J. Math., 9 (1985), 185–202.
- [12] Mashimo, K., Homogeneous CR submanifolds of $P^3(\mathbf{C})$, (in preparation).
- [13] Sekigawa, K., Some CR-submanifolds in a 6-dimensioanl sphere, Tensor(N.S.), 6 (1984), 13–20.

Hideya Hashimoto Nippon Institute of Technology 4-1, Gakuendai, Miyashiro Minami-Saitama Gun, Saitama 345-8501 Japan hideya@nit.ac.jp

Katsuya Mashimo Department of Mathematics Tokyo University of Agriculture and Technology Fuchu, Tokyo 183-0054 Japan mashimo@cc.tuat.ac.jp