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Abstract. Let π : Z → Y be a Hermitian submersion. We study when the
pull-back of an eigenform of the complex Laplacian on Y is an eigenform of the
complex Laplacian on Z.

§1. Introduction

1.1. The real Laplacian

We introduce the following notational conventions. We assume that all

manifolds are compact, connected, smooth, without boundary, and Rie-

mannian. Let ∆p
M := dMδM + δMdM be the Laplace-Beltrami operator

on the space of smooth p forms C∞(ΛpM). Let E(λ,∆p
M ) ⊂ C∞(ΛpM)

be the eigenspaces of ∆p
M ; the eigenvalues λ of ∆p

M are non-negative. We

may decompose L2ΛpM as a direct sum ⊕λ≥0E(λ,∆p
M ). Let π : Z → Y

be a submersion. This means that π is a smooth surjective map and that

π∗ : TzZ → TπzY is surjective for all z. Let m := dimR Y and n := dimR Z;

we assume n > m. Let V := ker(π∗) and H := V⊥ be the vertical and

horizontal distributions of π. We say π is a Riemannian submersion if π∗
is an isometry from Hz to TπzY for all z. We shall use capital letters for

tensors on Y and lower case letters for tensors on Z. We shall use indices

i, j, and k to index local orthonormal frames {ei}, and {ei} for the vertical

distributions and co-distributions V and V∗ of π; we shall use indices a, b,

and c to index local orthonormal frames {fa}, {fa}, {Fa}, and {F a} for the

horizontal distributions and codistributions H and H∗ of π as well as for the

tangent and cotangent bundles TY and T ∗Y of Y . We shall adopt the Ein-
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stein convention and sum over repeated indices. Let ext(ξ) and int(ξ) be

exterior and interior multiplication by a covector ξ. Let Γ be the Christoffel

symbols of the Levi-Civita connection. Let

θ := −gZ([ei, fa], ei)f
a = ZΓiiaf

a,

ωabi := gZ(ei, [fa, fb])/2 = (ZΓabi − ZΓbai)/2,

E := ωabi extZ(ei) intZ(fa) intZ(f b)

Ξ := intZ(θ) + E ;

(1.2)

θ is the unnormalized mean curvature co-vector of the fibers of π, ω is

the curvature of the horizontal distribution, and E is an endomorphism of

the exterior algebra. The anti-symmetric V∗ valued 2-tensor ω(fa, fb) is the

metric dual of the projection πV of [fa, fb]/2 on the vertical distribution V.

The fibers of π are minimal ⇐⇒ θ = 0 ⇐⇒ π is a harmonic map. Let

1 ≤ p ≤ dimR Y . The horizontal distribution H is integrable ⇐⇒ ω = 0;

this implies E = 0 on ΛpH∗. Pullback π∗ defines a natural map from C∞Y
to C∞Z.

Theorem 1.3. Let π : Z → Y be a Riemannian submersion.

(1) δZπ
∗−π∗δY = Ξπ∗ and ∆Zπ

∗−π∗∆Y = (dZΞ+ΞdZ)π∗ on C∞(ΛpY ).

(2) If 0 6= Φ ∈ E(λ,∆p
Y ) and if π∗Φ ∈ E(µ,∆p

Z), then λ ≤ µ.

(3) Fix p with 0 ≤ p ≤ dimR Y . The following conditions are equivalent:

i) ∆p
Zπ

∗ = π∗∆p
Y .

ii) ∀λ ≥ 0,∃µ(λ) ≥ 0 so π∗E(λ,∆p
Y ) ⊂ E(µ(λ),∆p

Z).

iii) The fibers of π are minimal and:

a) if p = 0, there is no condition on ω.

b) if p > 0, ω = 0 so H is integrable.

(4) If 0 6= Φ ∈ E(λ,∆0
Y ) and if π∗Φ ∈ E(µ,∆0

Z), then λ = µ.

Theorem 1.4. Let 0 ≤ λ < µ < ∞ and let p ≥ 2. There exists a

Riemannian submersion π : V → U and there exists 0 6= Φ ∈ E(λ,∆p
U ) so

that π∗Φ ∈ E(µ,∆p
V ).
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For a generic Riemannian submersion, the pullback of an eigenform on

Y will no longer be an eigenform on Z. We say that an eigenvalue changes

if there exists 0 6= Φ ∈ E(λ,∆p
Y ) so π∗Φ ∈ E(µ,∆p

Z) with λ 6= µ; this is a

comparatively rare phenomena. Theorems 1.3 and 1.4 show that eigenvalues

can change if p ≥ 2 and that eigenvalues cannot change if p = 0; we do not

know if eigenvalues can change if p = 1. Furthermore, if π∗ preserves all the

eigen p forms, then eigenvalues can not change.

Theorem 1.3 (1) for p = 0 and Theorem 1.3 (3) for p = 0 was proved

by Watson [14]; Theorem 1.3 (1) for p > 0 and the equivalence of (i) and

(iii) in Theorem 1.3 (3) for p > 0 was proved by Goldberg and Ishihara [8].

The remaining assertions of Theorem 1.3 and 1.4 were proved by Gilkey,

Leahy, and Park [4], [5] and by Gilkey and Park [7]; see [6] for a similar

discussion in the context of spinors. Bergery and Bourguignon [1] gave a

careful discussion of the relationship between the complete spectrum of ∆0
Y

and ∆0
Z if the fibers of π are totally geodesic. We also refer to Burstall

[2] for related work on this subject; Gudmundsson [9] has compiled an

excellent bibliography of harmonic morphisms which contains additional

related references. We also refer to related work of Park [13].

1.5. The complex Laplacian

In this paper, we generalize Theorems 1.3 and 1.4 to the complex set-

ting. Some of this generalization is straightforward, but many of the argu-

ments given in the real case either need substantial modification or must

be replaced entirely when passing to the complex case. We introduce some

notational conventions. Let w = (w1, ..., wm̄) for wi := ui +
√
−1vi be

local holomorphic coordinates on a complex manifold M of complex di-

mension m̄. The almost complex structure J is given by J(∂u
i ) := ∂v

i and

J(∂v
i ) := −∂u

i . We say that a Riemannian metric gM on M is Hermi-

tian if gM (X,Y ) = gM (JX, JY ) for all real tangent vectors; we restrict to

such metrics henceforth. We complexify the exterior algebra to decompose

ΛM = ⊕p,qΛ
p,q(M) into forms of bidegree (p, q). Let πp,q

M be the corre-

sponding orthogonal projections. We decompose d = ∂+ ∂̄ and δ = δ1 + δ2;

δ2 is the formal adjoint of ∂̄. The complex or Dolbeault Laplacian is then

defined on C∞(Λp,qM) by ∆p,q
M := ∂̄δ2 + δ2∂̄. This is a self-adjoint elliptic

non-negative partial differential operator; 2∆p,q
M is of Laplace type. If M is

Kaehler, then we have ∆n
M = 2 ⊕p+q=n ∆p,q

M .

We say that π : Z → Y is a Hermitian submersion if Z and Y are

complex manifolds, if π is a complex analytic, if the metrics on Z and on
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Y are Hermitian, and if π is a Riemannian submersion. We refer to work of

Johnson [10] and Watson [15] for a discussion of some of the geometry which

is involved; these authors also consider the almost complex and the Kaehler

categories. We complexify π∗ to define π∗ : C∞(Λp,qY ) → C∞(Λp,qZ). We

then have the relations π∗πp,q
Y = πp,q

Z π∗ and π∗∂̄Y = ∂̄Zπ
∗. We extend in-

terior multiplication, exterior multiplication, and ω to be complex linear.

Note that JH ⊂ H. We define J∗ω(ξ1, ξ2) := ω(Jξ1, Jξ2). This paper is de-

voted to the proof of the following two theorems which generalize Theorems

1.3 and 1.4 to the complex setting.

Theorem 1.6. Let π : Z → Y be a Hermitian submersion.

(1) δ2,Zπ
∗−π∗δ2,Y = πp,q−1

Z Ξπ∗ and ∆p,q
Z π∗−π∗∆p,q

Y = πp,q
Z (Ξ∂̄Z + ∂̄ZΞ)π∗

on C∞(Λp,qY ).

(2) If 0 6= Φ ∈ E(λ,∆p,q
Y ) and if π∗Φ ∈ E(µ,∆p,q

Z ), then λ ≤ µ.

(3) Fix (p, q) with 0 ≤ p, q ≤ dimC Y . The following conditions are equiv-

alent:

i) ∆p,q
Z π∗ = π∗∆p,q

Y .

ii) ∀λ ≥ 0,∃µ(λ) ≥ 0 so π∗E(λ,∆p,q
Y ) ⊂ E(µ(λ),∆p,q

Z ).

iii) The fibers of π are minimal and:

a) if p = 0 and if q = 0, there is no condition on ω.

b) if p > 0 and if q = 0, then J∗ω = −ω.

c) if p = 0 and if q > 0, then J∗ω = ω i.e. H1,0 is integrable.

d) if p > 0 and if q > 0, then ω = 0 i.e. H is integrable.

(4) If 0 6= Φ ∈ E(λ,∆p,0
Y ) and if π∗Φ ∈ E(µ,∆p,0

Z ), then λ = µ.

Theorem 1.7. Let 0 ≤ λ < µ < ∞, let q ≥ 1 and let p + q ≥ 2.

There exists a Hermitian submersion π : V → U and there exists 0 6= Φ ∈
E(λ,∆p,q

U ) so that π∗Φ ∈ E(µ,∆p,q
V ).

In Theorem 1.4, we showed eigenvalues could change if the degree was

at least 2; in Theorem 1.7, we deal with forms of total degree at least 2

and anti-holomorphic degree at least 1. In the real case, we do not know if

a single eigenvalue on 1 forms can change; in the complex case, we do not

know if a single eigenvalue on (0, 1) forms can change. Both theorems are

incomplete in this respect.
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Here is a brief outline to the paper:

§2 Equations of structure (proof of Thm. 1.6 (1)).

§3 Fiber products (proof of Thm. 1.6 (2)).

§4 Rigidity of eigenvalues (proof of Thm. 1.6 (3)).

§5 Forms of type (p, 0) (proof of Thm. 1.6 (4)).

§6 Hermitian submersions where eigenvalues change (proof of Thm. 1.7).

§7 Examples where J∗ω = ±ω.

The material of §2 and §3 is a fairly straightforward extension of the

corresponding results in the real case. Although Theorem 1.6 (3,4) looks

quite similar to Theorem 1.3 (3,4), the proofs given in §4 and §5 are quite

different as certain techniques do not generalize from the real to the complex

setting. The examples given in §6 to prove Theorem 1.7 are, of course, quite

different from those chosen in the real context. In §7, we give examples

of Hermitian submersions where J∗ω = ±ω for ω non-trivial; this gives

examples where eigen (p, 0) forms are preserved and where eigen (0, q) forms

are not preserved and similarly where eigen (p, 0) forms are not preserved

but eigen (0, q) forms are preserved for p > 0 and q > 0.

§2. Equations of structure

Proof of Theorem 1.6 (1). This is a straightforward application of

Theorem 1.3 (1). Let ip,q
M denote the natural inclusion of Λp,q(M) in Λ(M).

Dually let πp,q
M := (ip,q

M )∗ denote orthogonal projection from Λ(M) to Λp,q(M).

We have

∂̄M := πp,q
M ◦ dM ◦ ip,q−1

M on C∞(Λp,q−1M)

δ2,M := (∂̄M )∗ = πp,q−1
M ◦ δM ◦ ip,q

M on C∞(Λp,qM).

Since pullback commutes with both ip,q and πp,q, we compute that

δ2,Zπ
∗ − π∗δ2,Y = πp,q−1

Z δZi
p,q
Z π∗ − π∗πp,q−1

Y δY i
p,q
Y(2.1)

= πp,q−1
Z (δZπ

∗ − π∗δY )ip,q
Y = πp,q−1

Z Ξπ∗ip,q
Y

on C∞(Λp,qM). We suppress the role of ip,q to complete the proof of the

first identity; we use the identities ∂̄Zπ
∗ = π∗∂̄Y and πp,q

Z ∂̄Z = ∂̄Zπ
p,q−1
Z and
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equation (2.1) to complete the proof of Theorem 1.6 (1) by computing:

∆p,q
Z π∗ − π∗∆p,q

Y = ∂̄Z(δ2,Zπ
∗ − π∗δ2,Y ) + (δ2,Zπ

∗ − π∗δ2,Y )∂̄Y

= ∂̄Zπ
p,q−1
Z Ξπ∗ + πp,q

Z Ξπ∗∂̄Y = πp,q
Z (∂̄ZΞ + Ξ∂̄Z)π∗.

§3. Fiber products

We adopt the following notational conventions. For α = 1, 2, let

πα : Uα → Y be Riemannian submersions with horizontal and vertical

distributions Hα and Vα. Let W be the fiber product:

W := {w = (u1, u2) ∈ U1 × U2 : π1(u1) = π2(u2)}.(3.1)

Define a submersion πW from W to Y by πW (w) := π1(u1) = π2(u2).

The vertical space is VW (w) = V1(u1) ⊕ V2(u2) where we embed TW in

TU1 ⊕ TU2. Let

HW (w) := {(ξ1, ξ2) ∈ H1(u1) ⊕H2(u2) : (π1)∗ξ1 = (π2)∗ξ2}

define a complementary splitting; we define a new metric on W by requir-

ing that HW , V1, and V2 are orthogonal, that the metrics on V1 and V2

are induced from the metrics on U1 and U2, and that πW (w)∗ : HW (w) →
TY (π(w)) is an isometry. Let σα(u1, u2) := uα define Riemannian submer-

sions from W to Uα. If π1 and π2 are Hermitian submersions, then σ1, σ2,

and πW are Hermitian submersions.

Let {Fa} be a local orthonormal frame for TY . Let fα
a and fW

a be the

horizontal lift of Fa with respect to the submersions πα and πW . Note that

fW
a is also the horizontal lift of fα

a with respect to the submersion σα. Let

{ei} and {êj} be local orthonormal frames for the vertical distributions of

π1 and π2 and let {eWi } and {êWj } be horizontal lifts to W with respect to

the submersions σ1 and σ2. Then {eWi , êWj } is a local orthonormal frame for

V(πW ), {eWi } is a local orthonormal frame for V(σ2), and {êWj } is a local

orthonormal frame for V(σ1).

Lemma 3.2.

(1) Let π : Z → Y be a Riemannian submersion and let fν be the hori-

zontal lift of vector fields Fν from Y to Z. Then π∗[f1, f2] = [F1, F2]

and gZ([f1, f2], f3) = π∗{gY ([F1, F2], F3)}.
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(2) Let Ξα be defined by Riemannian submersions πα and let ΞW be defined

by the fiber product πW . Then ΞWπ∗W = σ∗1Ξ1π
∗
1 + σ∗2Ξ2π

∗
2.

(3) Let πα : Uα → Y be Hermitian submersions. If Φ ∈ E(λ,∆p,q
Y ) and if

π∗αΦ ∈ E(λ+ εα,∆
p,q
Uα

), then π∗W Φ ∈ E(λ+ ε1 + ε2,∆
p,q
W ).

Proof. Let ψi(t) and Ψi(t) be the flows of the vector fields fi, and Fi.

By assumption π∗fi = Fi so πψi(t) = Ψi(t)π. For z0 ∈ Z, let

h(t) := ψ1(−
√
t)ψ2(−

√
t)ψ1(

√
t)ψ2(

√
t)(z0), and

H(t) := πh(t) = Ψ1(−
√
t)Ψ2(−

√
t)Ψ1(

√
t)Ψ2(

√
t)(πz0).

Then ḣ(0) = [f1, f2](z0) and π∗ḣ(0) = Ḣ(0) = [F1, F2](πz0) so the first

identity of assertion (1) follows. Let ρH be orthogonal projection on the

horizontal space. Since f3 is horizontal and since π∗ is a Riemannian sub-

mersion,

gZ([f1, f2], f3)(z0) = gZ(ρH[f1, f2], f3)(z0) = gY (π∗ρH[f1, f2], F3)(πz0)

= gY (π∗[f1, f2], F3)(πz0) = gY ([F1, F2], F3)(πz0).

Note that fW
a is the horizontal lift of f1

a and eWi is the horizontal lift

of ei with respect to σ1. Similarly fW
a is the horizontal lift of f2

a and êWj is

the horizontal lift of êj with respect to σ2. Thus by assertion (1) and the

definition in equation (1.2) we have

θW = −{gW (eWi , [eWi , fW
a ]) + gW (êWj , [êWj , fW

a ])}π∗W (F a)

= −σ∗1{g1(ei, [ei, f1
a ])π∗1(F

a)} − σ∗2{g2(êj , [êj , f2
a ])π∗2(F

a)}
= σ∗1θ1 + σ∗2θ2.

Since fW
a and eWi are the horizontal lifts of f1

a and ei with respect to σ1

and fW
a and êWj are the horizontal lifts of f2

a and êj with respect to σ2,

assertion (1) and the definition in equation (1.2) implies

ωW
abi = gW (eWi , [fW

a , fW
b ])/2 = σ∗1{g1(ei, [f1

a , f
1
b ])}/2 = σ∗1ωabi,

ω̂W
abj = gW (êWj , [fW

a , fW
b ])/2 = σ∗2{g2(êj , [f2

a , f
2
b ])}/2 = σ∗2ω̂abj .

Since pullback commutes with ext and int, assertion (2) now follows from

equation (1.2).
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Pullback commutes with ∂̄. We use assertion (2) and Theorem 1.6 (1)

to prove assertion (3) by computing:

∆p,q
W π∗ − π∗∆p,q

Y = πp,q
W (∂̄W ΞW + ΞW ∂̄W )π∗

=Σασ
∗
απ

p,q
Uα

(∂̄Uα
Ξα + Ξα∂̄Uα

)π∗α = Σασ
∗
α(∆p,q

Uα
π∗α − π∗α∆p,q

Y ).

Proof of Theorem 1.6 (2). Let π : Z → Y be a Hermitian submersion.

Suppose given 0 6= Φ ∈ E(λ,∆p,q
Y ) so that π∗Φ ∈ E(λ+ε,∆p,q

Z ). Let Z0 = Z

and inductively let Zn = W (Zn−1, Zn−1) be the fiber product of Zn−1 with

itself as defined in equation (3.1). Let πn : Zn → Y be the associated

projection. By Lemma 3.2, π∗nΦ ∈ E(λ+ 2nε,∆p,q
Zn

). Since the Laplacian on

Zn is a non-negative operator, λ+ 2nε ≥ 0. Since this holds for all n, ε ≥ 0

as desired.

Remark 3.3. The proof of Theorem 1.6 (2) uses in an essential fashion

the compactness of Y and Z through the assertion that ∆p,q
Z is a non-

negative operator. In fact, Theorem 1.6 (2) fails if this hypothesis is omitted.

Let

Y := (0, π/2) × (0, π/2) ⊂ C

with the flat metric. Then 2∆0,0
Y = −∂2

1 − ∂2
2 . Let F (y1, y2) = cos(y1);

2∆0,0
Y F = F so F ∈ E(1/2,∆0,0

Y ). Let Z := C × Y with the metric ds2Z :=

eGds2
C

+ ds2Y where G = G(y1). It is then an easy exercise to compute

θ = −dYG; see, for example, [5]. Then

(∆0,0
Z π∗ − π∗∆0,0

Y )F = −π∗{ intY (dY G)∂̄1F} = ∂1G sin(y1)/2.

For any ε ∈ R, we may choose Gε(y1) so ∂1G(y1) = 2ε cot(y1). This gives a

metric so that π∗F ∈ E(1 + ε,∆0,0
Z ). Thus Theorem 1.6 (2) fails if Y is not

compact; there is no local proof of Theorem 1.6 (2).

§4. Rigidity of eigenvalues

This section is devoted to the proof of Theorem 1.6 (3). The techniques

used in [7] to prove Theorem 1.3 (3) do not generalize easily to the complex

setting so we must use a quite different approach.

Let π be a Hermitian submersion. Then H and V are invariant under

the almost complex structure J . The canonical decomposition of TZ⊗C =

TZ1,0 ⊕ TZ0,1 therefore induces a decomposition H⊗ C = H1,0 ⊕H0,1 and
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V ⊗ C = V1,0 ⊕ V0,1. Choose a local orthonormal frame field for H of the

form {f1, ..., fν , Jf1, ..., Jfν} where ν = dimC Y . The corresponding dual

coframe field for H∗ is then given by {f1, ..., f ν ,−Jf1, ...,−Jf ν}. Let ζα :=

(fα−
√
−1Jfα)/2 and dually ζα := (fα−

√
−1Jfα). The {ζα} and {ζ̄α} are

frames for H1,0 and H0,1 and the {ζα} and {ζ̄α} are the corresponding dual

frames for Λ1,0H∗ and Λ0,1H∗. Interior multiplication by ζα lowers the bi

degree by (0, 1); interior multiplication by ζ̄α lowers the bi degree by (1, 0).

We let indices α and β range from 1 to dimC Y and sum over repeated

indices.

Lemma 4.1. Let π : Z → Y be a Hermitian submersion.

(1) We have ω(ζα, ζβ) ∈ Λ0,1V∗.

(2) We have πp,q
Z Eπ∗ = extZ(ω(ζα, ζβ)) intZ(ζα) intZ(ζβ)

+2 extZ(π1,0
Z ω(ζα, ζ̄β)) intZ(ζα) intZ(ζ̄β) on Λp,q+1Y .

(3) We have ω(ζα, ζβ) = 0 for all α and β ⇐⇒ J∗ω = ω.

(4) We have ω(ζα, ζ̄β) = 0 for all α and β ⇐⇒ J∗ω = −ω.

Proof. Since Z is a complex manifold, the almost complex structure J

is integrable and [ζα, ζβ] ∈ TZ1,0. Since H and V are J invariant, ρV [ζα, ζβ] ∈
V1,0. Let g̃Z be the extension of gZ to be complex bilinear; ω is the dual

of ρV [·, ·] with respect to g̃Z . The first assertion now follows since the dual

of V1,0 with respect to g̃Z is Λ0,1V∗. To prove the second assertion, we

compute:

E = extZ(ω(ζα, ζβ)) intZ(ζα) intZ(ζβ)(4.2)

+ extZ(ω(ζ̄α, ζ̄β)) intZ(ζ̄α) intZ(ζ̄β)(4.3)

+ extZ(ω(ζα, ζ̄β)) intZ(ζα) intZ(ζ̄β)(4.4)

+ extZ(ω(ζ̄α, ζβ)) intZ(ζ̄α) intZ(ζβ).(4.5)

The terms in (4.2) lower the horizontal bi degree by (0,2), the terms in

(4.3) lower the horizontal bi degree by (2,0), and the terms in (4.4) and

(4.5) lower the horizontal bi degree by (1,1); the symmetries involved per-

mit us to combine these two terms. Thus in (4.2) we must use exterior

multiplication by π0,1
Z ω(ζα, ζβ); in (4.4) and in (4.5) we must use exterior

multiplication by π1,0
Z ω(ζαζ̄β); (4.3) plays no role. By the first assertion, we

may replace π0,1
Z ω(ζα, ζβ) by ω(ζα, ζβ); this proves the second assertion. The

final assertions are immediate consequences of the definition.
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Suppose that assertion (3-iii) of Theorem 1.6 holds. We apply assertion

(1) of Theorem 1.6. Since θ = 0, Ξ is determined by E . If p = 0 and if

q = 0, E acts trivially on Λ0,1Z so (3-i) follows. If p > 0 and if q > 0, we

assume ω = 0 and E = 0. If p > 0 and if q = 0, we need only consider the

action of πp,0
Z Eπ∗ on Λp,1Y . Thus only the terms in (4.4) and (4.5) above are

relevant and these vanish since we assumed J∗ω = −ω. If p = 0 and q > 0,

then we need only consider the action of π0,q
Z Eπ∗ on Λ0,q+1Y . Thus only the

terms in (4.2) are relevant. These vanish since we assumed J∗ω = ω. This

shows assertion (3-iii) implies assertion (3-i). It is immediate that assertion

(3-i) implies assertion (3-ii). The remainder of this section is devoted to the

proof that (3-ii) implies (3-iii); Theorem 1.6 (2) will play a crucial role in

the proof.

We begin with a technical Lemma in the theory of PDE’s.

Lemma 4.6.

(1) Let R be any linear operator on C∞(Λp,qY ) so that (RΦ,Φ)L2 = 0 for

all Φ in C∞(Λp,qY ). Then R = 0.

(2) Let P be a 1th order partial differential operator on C∞(Λp,qY ). Sup-

pose that P is non-negative, i.e. (PΦ,Φ)L2 ≥ 0 for all Φ ∈ C∞(Λp,qY ).

Then P is a 0th order operator, i.e. if Φ(y0) = 0, then PΦ(y0) = 0.

Proof. Let ε be a real parameter. Since (R(Φ1+εΦ2),Φ1+εΦ2) = 0 for

all ε, (RΦ1,Φ2) + (RΦ2,Φ1) = 0; replacing ε by
√
−1ε yields (RΦ1,Φ2) −

(RΦ2,Φ1) = 0. Thus (RΦ1,Φ2) = 0 for all Φi; we take Φ2 = RΦ1 to see

R = 0.

We use the method of stationary phase to prove the second asser-

tion. Decompose P = ΣaP
a∂y

a + Q. We must show P a = 0 for all a. Let

Ψ ∈ C∞(Y ) and let Φ0 ∈ C∞(Λp,qY ). Let Φ(t) := e
√
−1tΨΦ0. Let

R(Ψ) := Σa∂
y
a(Ψ)P a. Then

PΦ(t) = e
√
−1tΨPΦ0 + Σa

√
−1t∂y

a(Ψ)P ae
√
−1tΨΦ0 so

(PΦ(t),Φ(t))L2 = (PΦ0,Φ0)L2 + t
√
−1(R(Ψ)Φ0,Φ0)L2 ≥ 0.

This inequality holds for all t so (R(Ψ)Φ0,Φ0)L2 = 0 and thus R(Ψ) = 0

for all Ψ. This implies P a = 0 for all a.

Remark 4.7. This Lemma fails in the real setting. Let M = S1 and

let P = ∂θ. Then (Pf, f)L2 = 0 for any real smooth function f on S1.



COMPLEX LAPLACIAN FOR HERMITIAN SUBMERSION 11

4.8. Integration over the fiber and pushforward

We adopt the following notational conventions. Let X(y) := π−1y be

the fiber of π over a point y ∈ Y , let m := dimR Y , let n := dimR Z, let

X(y) := π−1(y), and let νX := e1 ∧ ... ∧ en−m. Then dvolZ = νX ∧ π∗dvolY
and the restriction of νX to X(y) is the Riemannian volume element of the

fiber. Let V (y) :=
∫
x∈X(y) νX(x) be the volume of X(y). We average over

the fibers to define push forward

π∗ : C∞(ΛpZ) → C∞(ΛpY )

as follows. Let φ ∈ C∞(ΛpZ) and let F1, ..., Fp be tangent vectors at y ∈ Y .

Let f1,..., fp be the corresponding horizontal lifts. We define

(π∗φ)(F1, ..., Fp) := V (y)−1
∫
x∈X(y) φ(f1, ..., fp)(x, y)νX(x).

Alternatively, let πH be orthogonal projection of ΛpZ on π∗ΛpY . Decompose

πHφ = Σ|A|=pcA(x, y)π∗dyA. Then

π∗φ = Σ|A|=p{V (y)−1
∫
x∈X(y) cA(x, y)νX(x)}dyA.

It is immediate from the definition that π∗π∗ is the identity on C∞(ΛpY ).

We may decompose any real covector ξ into complex covectors of de-

grees (1, 0) and (0, 1) to express ξ = ξ1,0 + ξ0,1; ξ̄1,0 = ξ0,1.

Lemma 4.9. Let π : Z → Y be a Hermitian submersion. Fix (p, q)

and assume that for all λ, π∗E(λ,∆p,q
Y ) ⊆ E(λ+ ε(λ),∆p,q

Z ). Then for any

ξ ∈ H∗ and for any Φ ∈ Λp,qY , we have

0 = πp,q
Z ( extZ(ξ0,1)E + E extZ(ξ0,1))π∗Φ, and

0 = πp,q
Z ( extZ(ξ0,1) intZ(θ) + intZ(θ) extZ(ξ0,1))π∗Φ.

Proof. We define a 1th order differential operator on C∞(Λp,qY ) by:

P := π∗π
p,q
Z {∂̄ZΞ + Ξ∂̄Z}π∗.

Let Φλ ∈ E(λ,∆p,q
Y ). By Theorem 1.6 (1),

ε(λ)π∗Φλ = πp,q
Z {∂̄ZΞ + Ξ∂̄Z}π∗Φλ.

Since π∗π∗ is the identity, we see PΦλ = ε(λ)Φλ. Thus {E(λ,∆p,q
Y )} are

eigenspaces of P . Since these eigenspaces are orthogonal and the eigenvalues
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are real, we see that P is self-adjoint. By Theorem 1.6 (2), ε(λ) ≥ 0 so P

is a non-negative first order self-adjoint differential operator. Thus P has

order 0. If Φ ∈ C∞(Λp,qY ), we may expand Φ = ΣλΦλ for Φλ ∈ E(λ,∆p,q
Y ).

This series converges in the C∞ topology; see Gilkey [3] for example. Then

PΦ = Σλε(λ)Φλ so

(∆p,q
Z π∗ − π∗∆p,q

Y )Φ = πp,q
Z (∂̄ZΞ + Ξ∂̄Z)π∗Φ = Σλπ

∗ε(λ)Φλ = π∗P (Φ).

Since P is a 0th order operator, P (FΦ) = FP (Φ) for any F ∈ C∞(Y ) so

the derivatives of F do not enter into this equation. This implies

πp,q
Z ( extZ(π∗∂̄Y F )Ξ + Ξ extZ(π∗∂̄Y F ))π∗Φ = 0.(4.10)

The definition given in equation (1.2) permits us to decompose Ξ= intZ(θ)+

E where intZ(θ) does not involve any vertical covectors and where E does

involve vertical covectors. Thus equation (4.10) decouples into two separate

equations involving intZ(θ) and E separately. If ξ is a horizontal covector

at z0, we can choose F so π∗dY F (z0) = ξ. Then π∗∂̄Y F (z0) = ξ0,1 and the

Lemma follows.

Proof of Theorem 1.6 (3). We must show (3-ii) implies (3-iii). Recall

that

intZ(ξ1) intZ(ξ2) + intZ(ξ2) intZ(ξ1) = 0,

extZ(ξ1) extZ(ξ2) + extZ(ξ2) extZ(ξ1) = 0, and

intZ(ξ1) extZ(ξ2) + extZ(ξ2) intZ(ξ1) = g(ξ1, ξ2).

Recall that g̃Z is the extension of gZ to be complex bilinear. Suppose the

hypothesis of Theorem 1.6 (3-ii) hold. To simplify notation, let η = ξ0,1, let

Eη := extZ(η), let Iθ := intZ(θ), let Ei := extZ(ei), and let Ia := intZ(fa).

By Lemma 4.9,

0 = πp,q
Z (EηIθ + IθEη) = πp,q

Z g̃Z(θ, η);

This implies θ = 0 since θ is horizontal. We also compute:

0 = ωabiπ
p,q
Z {EηEiIaIb + EiIaIbEη}π∗

= ωabiπ
p,q
Z {−EiEηIaIb + EiIaIbEη}π∗

= ωabiπ
p,q
Z {EiIaEηIb + EiIaIbEη − g̃Z(η, fa)EiIb}π∗

= ωabiπ
p,q
Z {−g̃Z(η, fa)EiIb + g̃Z(η, f b)EiIa}π∗

(4.11)
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on Λp,qY . We take η = ζ̄α. The dual of ζ̄α with respect to g̃Z is ζα. Thus

by equation (4.11),

0 = extZ(π0,1ω(ζα, ζβ)) intZ(ζβ) + extZ(π1,0ω(ζα, ζ̄β)) intZ(ζ̄β)

on Λp,qH∗ for all α and β. These equations decouple and we have:

0 = extZ(π0,1ω(ζα, ζβ)) intZ(ζβ)(4.12)

0 = extZ(π1,0ω(ζα, ζ̄β)) intZ(ζ̄β).(4.13)

If p = 0, we can draw no conclusion from equation (4.13); if q = 0, we can

draw no conclusion from equation (4.12). If p > 0, equation (4.13) shows

π1,0ω(ζα, ζ̄β) = 0 for all α and β; by Lemma 4.1, this implies J∗ω = −ω.

If q > 0, equation (4.12) shows π0,1ω(ζα, ζβ) = 0 and hence ω(ζα, ζβ) = 0

for all α and β; by Lemma 4.1, this implies J∗ω = ω. If p > 0 and q > 0,

we combine these two identities to see ω = 0. This shows the conditions of

(3-iii) are satisfied.

§5. Forms of type (p, 0)

Suppose that there exists 0 6= Φ ∈ E(λ,∆0
Y ) with π∗Φ ∈ E(λ+ ε,∆0

Z).

Since ∆0
Y is a real operator, we may assume that Φ is real. We apply The-

orem 1.3 (1) to see that επ∗Φ = intZ(θ)π∗dY Φ. Choose y0 so Φ(y0) is

maximum; by replacing Φ by −Φ if necessary, we may assume Φ(y0) > 0.

Then dY Φ(y0) = 0 so επ∗Φ(y0) = 0 implies ε = 0. This argument shows

that a single eigenvalue can not change in the real context for the scalar

Laplacian. In the complex case, we can not use this argument since the

operator in question is not real; instead, we use the push-forward defined

in §4.8 and apply Theorem 1.6 (2).

Give the fiber X(y) := π−1(y) of π over y the orientation induced from

the complex structures. Let νX := e1 ∧ ...∧ en−m. Then V (y) :=
∫
X(y) νX is

the volume of the fiber. We begin our discussion with the following technical

Lemma.

Lemma 5.1. Let π : Z → Y be a Riemannian submersion

(1) We have dνX = −θ ∧ νX − ωabiextZ(fa)extZ(f b)intZ(ei)νX .

(2) Let O be a neighborhood of y0 in Y . We can find a local diffeomorphism

T from X ×O to Z so that T (x, 0) = x, so that π(T (x, y)) = y, and

so that T∗(∂
y
a)(x, 0) = H(∂y

a).
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(3) We have Θ := π∗θ = −dY log(V ).

Proof. We compute:

dνX = Γijk extZ(ei) extZ(ek) intZ(ej)νX(5.2)

+(Γija − Γaji) extZ(ei) extZ(fa) intZ(ej)νX(5.3)

+Γajb extZ(fa) extZ(f b) intZ(ej)νX .(5.4)

The terms in (5.2) yield 0. In (5.3), we must set i = j. Since Γiia−Γaii = Γiia,

equation (5.3) yields −θ ∧ νX . The terms in (5.4) yield −(Γabj − Γbaj)/2 =

−ωabi. This proves the first identity.

We choose coordinates on a neighborhood O of y0 ∈ Y to identify O
with R

m and y0 with zero. If y ∈ R
m, y determines a vector field on O and

the horizontal lift H(y) determines a vector field on π−1O. Let φ(t, y, x) be

the corresponding flow from a point x ∈ X. There is a constant C so that

φ is a smooth map defined for |ty| ≤ C. Note that φ(ts, y, x) = φ(t, sy, x);

we set T (x, y) = φ(1, y, x) and restrict to |y| ≤ C−1 to prove the second

assertion.

We decompose ΛZ = ⊕p,qΛ
pH∗⊗ΛqV∗ and let ρp,q be the corresponding

orthogonal projections. Fix y0 ∈ Y . We use assertion (2) to assume that

Z = X × O and that H(x, y0) = span{∂y
a}. We choose local coordinates

xα = (xs
α) on X and let φα be a partition of unity subordinate to this

cover. Let

Xs
α := ρ0,1dx

s
α = dxs

α − Cs
α,ady

a, and

νX = gα(x, y)X1 ∧ ... ∧Xn−m.

We use assertion (1) to see that ρ1,n−mdνX = −θ∧νX We evaluate at a point

(x, 0) and use the fact Ci
a(x, 0) = 0 to compute ρ1,n−mdνX = (g−1

α ∂y
agα)dya∧

νX . Consequently −θ(∂y
a)(x, 0) = g−1

α ∂y
agα. We compute:

∂y
aV (Y ) = Σα

∫
X
φαg

−1
α (∂y

agα)νX = −Σα

∫
X
φαθ(∂

y
a)νX = −V (y)Θ(∂y

a).

Proof of Theorem 1.6 (4). Let 0 6= Φ ∈ E(λ,∆p,0
Y ) and let π∗Φ ∈

E(λ + ε,∆p,0
Z ). Since ∆p,0 = δ2∂̄, we use Theorem 1.6 (1) to see επ∗Φ =

πp,0
Z Ξπ∗∂̄Y Φ. Since E has a non-trivial vertical component, 0 = πp,0

Z Eπ∗∂̄Y Φ

so επ∗Φ = πp,0
Z intZ(θ)π∗∂̄Y Φ. We apply π∗ to see that

εΦ = πp,0
Y intY (Θ)∂̄Y Φ.(5.5)
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Let g(t)Z := V 2tds2V + ds2H define a conformal variation of the metric on

the vertical distribution and leave the metric on the horizontal distribution

unchanged. Then π : Z(t) → Y is a Hermitian submersion and E trans-

forms conformally. We use Lemma 5.1 to see θ(t) = (1 + t dim(X))θ and

π∗Φ ∈ E(λ + (1 + t dim(X))ε,∆p,0
Z(t)). Thus by Theorem 1.6 (2), λ +

(1 + t dim(X))ε ≥ 0 for all t ∈ R. This shows ε = 0.

§6. Hermitian submersions where eigenvalues change

We begin by reducing the proof of Theorem 1.7 to the special case λ = 0

and (p, q) = (1, 1) or (p, q) = (0, 2):

Lemma 6.1. Suppose there exists a Hermitian submersion π1 : Z1 →
Y1 and there exists 0 6= Φ1 ∈ E(0,∆r,s

Y1
) so that π∗1Φ1 ∈ E(σ,∆r,s

Z1
) for some

σ > 0. Let 0 ≤ λ < µ, let r ≤ p, and let s ≤ q be given. Then there

exists a Hermitian submersion π : Z → Y and 0 6= Φ ∈ E(λ,∆p,q
Y ) so that

π∗Φ ∈ E(µ,∆p,q
Z ).

Proof. If M is a complex manifold with a Hermitian metric, let M(c)

denote M with the scaled metric c−2ds2M . Since ∆p,q
M(c) = c2∆p,q

M ,

E(λ,∆p,q
M ) = E(c2λ,∆p,q

M(c)
).

Give M := M1×M2 the product metric and product holomorphic structure.

Then

E(λ1,∆
p1,q1

M1
) ∧E(λ2,∆

p2,q2

M2
) ⊂ E(λ1 + λ2,∆

(p1+p2,q1+q2)
M ).

Assume the conditions of the Lemma hold. Choose c > 0 so that µ =

c2σ + λ. Let W be a holomorphic flat torus of complex dimension at least

max(p − r, q − s). By rescaling the metric on W , we may choose 0 6= Φ2 ∈
E(λ,∆p−r,q−s

W ). Let Y := Y1(c)×W , let Z := Z1(c)×W , and let π(z1, w) =

(π1(z1), w). Then π is a Hermitian submersion. Let Φ := Φ1 ∧ Φ2. Then

0 6= Φ ∈ E(λ,∆p,q
Y ) and π∗Φ = (π∗1Φ1) ∧ Φ2 ∈ E(c2σ + λ = µ,∆p,q

Z ).

6.2. The geometry of principal S1 bundles

Let L be a complex line bundle over Y . We suppose that L is equipped

with a smooth fiber metric and a unitary connection L∇. Let π : S(L) → Y .

Then π defines a Riemannian principal S1 bundle; this is also the circle

bundle of the underlying real 2-plane bundle.
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Lemma 6.3. Let s be a local orthonormal section to L. Let L∇s =√
−1Ass define the normalized connection 1-form As. Let (t, y) 7→ e

√
−1ts(y)

give local coordinates (t, y) to S = S(L).

(1) The fibers of π are totally geodesic.

(2) We have ∂t is an invariantly defined unit tangent vector spanning V.

(3) If s̃ = e
√
−1Φs, then ∂t = ∂t̃, ∂

y
a = ∂ỹ

a − ∂y
aΦ∂t, and Ãs = As + dY Φ.

(4) The horizontal lift of a vector field Ψ on Y is given by HΨ := Ψ −
As(Ψ)∂t.

(5) We have e1 := dt+ π∗As is dual to ∂t and spans V∗.

(6) The normalized curvature F := dY As is invariantly defined.

(7) We have de1 = π∗F and E = − extS(e1)π∗ intY (F).

Proof. The flow v → e
√
−1tv for v ∈ S(L) and t ∈ R is invariantly

defined; ∂t is the associated unit vertical Killing vector field. Assertions

(1) and (2) now follow. Since L∇ is unitary, As is a real 1-form. If s̃ =

e
√
−1Φ(y)s, then (ỹ, t̃) = (y, t− Φ); assertion (3) now follows. We show that

H is invariantly defined by computing:

∂y
a −As(∂

y
a)∂t = ∂ỹ

a − ∂y
aΦ∂t −As(∂

y
a)∂t = ∂ỹ

a −As̃(∂
y
a)∂t.

Fix y0 ∈ Y and choose Φ so (As + dY Φ)(y0) = 0. Since As̃(y0) = 0, the ∂ỹ
a

are horizontal. Thus at y0, H∂y
a = ∂ỹ

a is horizontal. Since HΨ is invariantly

defined, HΨ is the horizontal lift. Since e1(HΨ) = 0 for all Ψ and since

e1(dt) = 1, e1 is the vertical projection of dt and is invariantly defined.

By (3), dY As̃ = dY As so the curvature F is invariantly defined. Clearly

de1 = π∗F . We compute:

E := extS(e1)gS(∂t, [H∂y
a ,H∂y

b ])π∗ intY (dya) intY (dyb)/2

= extS(e1)π∗{−∂y
aAb + ∂y

bAa} intY (dya) intY (dyb)/2

= − extS(e1)π∗ intY (F).

At this point, we shall digress briefly. Muto [11], [12] gave examples of

Riemannian principal S1 bundles where eigenvalues change. The following

Lemma follows from his calculations and forms the basis for the proof of

Theorem 1.4.
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Lemma 6.4. Let L∇ be a unitary connection on a complex line bundle

over Y with associated curvature 2-form F = F(L∇) and associated princi-

pal circle bundle S = S(L). Let Φ ∈ E(λ,∆p
Y ). Assume that dY Φ = 0, that

dY intY (F)Φ = 0, and that − extY (F) intY (F)Φ = εΦ for ε constant. Then

π∗Φ ∈ E(λ+ ε,∆p
S).

Proof. We apply Theorem 1.3 (1) and Lemma 6.3. Since θ = 0 and

since dY Φ = 0,

∆p
Sπ

∗Φ − π∗∆p
Y Φ = dSEπ∗Φ = −dS(e1 ∧ π∗ intY (F)Φ)

= −π∗ extY (F) intY (F)Φ = επ∗Φ.

In the following Lemma, we construct line bundles with non-trivial

curvature over the flat k dimensional torus.

Lemma 6.5. Let (x1, ..., xk) for 0 ≤ xi ≤ 2π be the usual periodic

parameters on the flat k dimensional torus Yk := S1 × ...× S1. Let 1 ≤ i <

j ≤ k be given. Then there exists a unitary connection L∇ on a complex

line bundle L over Yk so that F(L) = (dxi ∧ dxj)/2π.

Proof. To simplify the notation, we may assume i = 1 and j = 2. Let

W = Yk−1 and let w := (x2, ..., xk). We decompose Yk = [0, 2π] ×W/ ∼=
where the identification is given by (0, w) ∼= (2π,w). Let L := [0, 2π] ×
W ×C/ ∼= where the identification is given by (0, w, z) ∼= (2π,w, e−

√
−1x2

z).

Then L is a complex line bundle over Yk which has a natural fiber metric

since the clutching function e−
√
−1x2

is unitary. Let A(x) = (x1dx2)/2π be

the connection 1-form. The clutching or transition function, which describes

how fiber at x1 = 0 is glued to the fiber at x1 = 2π, is defined by Φ = −x2.

Since A(0, w) = A(2π,w) + dΦ, equation (3) in Lemma 6.3 is satisfied so

A defines a Riemannian connection ∇ on L with associated normalized

curvature (dx1 ∧ dx2)/2π.

Remark 6.6. Let Y = Y2 and choose L so F = (dx ∧ dy)/2π. We use

Lemma 6.3 to see that de1 = π∗(dx ∧ dy)/2π and thus E = − extS(e1)π∗ ·
intY (dx ∧ dy)/2π. It then follows dx ∧ dy ∈ E(0,∆2

Y ) and π∗(dx ∧ dy) ∈
E(1/4π2,∆2

S) so this provides an example where an eigenvalue of the real

Laplacian on 2-forms changes.
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6.7. Forms of type (1, 1)

Over Y = Y2, let S0 = Y × S1 be the trivial circle bundle and with

F0 = 0. Let S1 be a circle bundle with F1 = (dx∧dy)/2π. Let Z = W (S0, S1)

be the fiber product discussed in §3. Let e0 and e1 be the corresponding

dual vertical covectors; dZe
0 = 0 and dZe

1 = π∗(dx ∧ dy)/2π. Define an

almost complex structure J on Z by requiring that gZ is Hermitian, that

π∗ preserves J , that J(e0) = −e1, and that J(e1) = e0. Let ξ1 := e0−
√
−1e1

and ξ2 := π∗(dx−
√
−1dy) be a frame for Λ0,1Z. Then

dZξ
1 = −

√
−1π∗(dx ∧ dy)/2π ∈ C∞(Λ1,1Z) and dZξ

2 = 0

so the Nirenberg-Neulander theorem shows J is an integrable almost com-

plex structure. As the metric gY is flat, dx∧dy ∈ E(0,∆1,1
Y ). Note δ2,Y (dx∧

dy) = 0. We use Theorem 1.6 (1), Lemma 3.2 (2), and Lemma 6.3 (7) to

see

δ2,Zπ
∗(dx ∧ dy) = −π1,0

Z extZ(e1)π∗ intY (F1)dx ∧ dy
= π1,0

Z e1/2π = −
√
−1(e0 +

√
−1e1)/4π

∆1,1
Z π∗(dx ∧ dy) = ∂̄Zδ2,Zπ

∗(dx ∧ dy) = π1,1
Z dZe

1/4π

= π∗(dx ∧ dy)/8π2.

This shows dx ∧ dy ∈ E(0,∆1,1
Y ) and π∗(dx ∧ dy) ∈ E(1/8π2,∆1,1

Z ). This

provides an example where a harmonic form of type (1,1) pulls back to an

eigen form corresponding to a non-zero eigenvalue.

6.8. Forms of type (0, 2)

Let z = (z1, z2) for zi = xi+
√
−1yi be complex coordinates on Y = Y4.

Let

Φ := (dx1 −
√
−1dy1) ∧ (dx2 −

√
−1dy2).

Then Φ ∈ E(0,∆0,2
Y ) and Φ generates the line bundle Λ0,2(Y ). Use Lemma

6.5 to construct line bundles Li over Y so F1 = (dx1 ∧ dx2)/2π and F2 =

(dx1∧dy2)/2π. These are not holomorphic line bundles since the curvatures

are not (1,1) forms. Let Z := W (S(L1), S(L2)) be the fiber product of the

associated unit circle bundles. Let ei be the associated vertical covectors.

We define an almost complex structure J on Z by requiring gZ is Hermitian,

that π∗ preserves J , and that J(e1) = −e2 and J(e2) = e1. Let ξi span Λ0,1Z

for ξ1 := π∗dz̄1, for ξ2 := π∗dz̄2, and for ξ3 := e1 −
√
−1e2. Then dξ1 = 0,
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dξ2 = 0, and

dZξ
3 = π∗(dx1 ∧ (dx2 −

√
−1dy2))/2π

= π∗{(dx1 +
√
−1dy1) ∧ (dx2 −

√
−1dy2)

+(dx1 −
√
−1dy1) ∧ (dx2 −

√
−1dy2)}/4π

(6.9)

This decomposes dZξ
3 as the sum of forms of type (1,1) and (0,2) so dZξ

3

has no (2,0) component. Thus the almost complex structure J is integrable

and by the Nirenberg Neulander theorem defines a complex structure on Z.

We compute Eπ∗Φ = (e1 −
√
−1e2)/2π. This is of type (0, 1) and

dZEπ∗Φ = π∗(dx1 ∧ dx2 −
√
−1dx1 ∧ dy2)/4π2.

We use equation (6.9) to see π0,2
Z dZEπ∗Φ=π∗Φ/8π2 so π∗Φ∈E(1/8π2,∆0,2

Z ).

This provides an example where a harmonic form of type (0,2) pulls back

to an eigen form corresponding to a non-zero eigenvalue.

Proof of Theorem 1.7. By Lemma 6.1, it suffices to prove Theorem 1.7

in the special cases (p, q) = (1, 1) and (p, q) = (0, 2) with λ = 0. The first

case is handled in §6.7 and the second case is handled in §6.8.

6.10. Forms of type (0, 1)

If we suppose that θ = 0, that Φ ∈ E(λ,∆0,1
Y ), and that π∗Φ ∈ E(λ +

ε,∆0,1
Z ), we see that επ∗Φ = π0,1Eπ∗∂̄Y Φ. The left hand side is a horizontal

(0, 1) form; the right hand side is a vertical (0, 1) form. Consequently ε = 0.

Thus to construct an example where an eigenvalue changes for a (0, 1) form,

we must consider Hermitian submersions where the fibers are not minimal.

We know of no examples where eigenvalues can change but are unable to

prove that they can not.

6.11. Holomorphic line bundles

The examples of §6.7 and §6.8 involved manifolds Y with flat metrics.

We conclude this section by constructing other families of examples where

eigenvalues change where the metric on the base is not flat. We restrict to

the case p = q ≥ 1 for the sake of simplicity. Let L be a holomorphic line

bundle over Y . Let 〈, 〉 be a fiber metric on L. If sh is a local non-vanishing

holomorphic section to L, let ∇Lsh := ∂Y log〈sh, sh〉 · sh. Let s̃h = eF sh be

another local non-vanishing holomorphic section to L where F is a locally
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defined holomorphic function on Y . Since ∂̄Y F = 0, we have

∇Ls̃h = (dF + ∂Y log〈sh, sh〉)eF sh = (∂Y F + ∂Y log〈sh, sh〉)s̃h

= ∂Y log〈s̃h, s̃h〉 · s̃h.

Thus ∇L is invariantly defined and F = −
√
−1∂̄Y ∂Y log〈sh, sh〉. We see

that ∇L is Riemannian since 〈∇Lsh, sh〉 + 〈sh,∇Lsh〉 = d〈sh, sh〉.
6.12. Hodge manifolds

We say that L is a positive line bundle over Y if the curvature F(L) is

the Kaehler form of a Hermitian metric on Y ; there is a possible sign con-

vention which plays no role in our development. If Y admits a positive line

bundle, then Y is said to be Hodge. For example, the hyperplane bundleH is

a positive line bundle over complex projective space CP
ν and the associated

metric is the Fubini-Study metric. More generally, if Y is any holomorphic

submanifold of CP
ν , then the restriction of the hyperplane bundle to Y is

a positive line bundle over Y and the metric on Y is the restriction of the

Fubini-Study metric to Y . Conversely, if Y admits a positive line bundle L,

then there exists a holomorphic embedding α : Y → CP
ν for some ν and

a positive integer k so that L⊗k = α∗(H). Thus we may identify the set of

Hodge manifolds with the set of smooth algebraic varieties.

6.13. Other examples where eigenvalues change

Other examples where eigenvalues change Let L be a positive line bun-

dle over Y and let Z := Z(j, k) := W (S(L⊗j), S(L⊗k)) be the fiber product

of the circle bundles defined by the circle bundles of the tensor powers of

L. Let ej be the corresponding vertical covectors. We extend the almost

complex structure from Y to Z by defining J(ej) = −ek and J(ek) := ej .

We use the Nirenberg-Neulander theorem to see that J is integrable; the

integrability condition on horizontal covectors is immediate so we must only

check the vertical component;

d(ej −
√
−1ek) = (j −

√
−1k)π∗F .

Theorem 6.14. Let 1 ≤ p ≤ m̄ and let µ := (j2 + k2)p(m̄ + 1 − p).

Then Fp ∈ E(0,∆2p
Y )∩E(0,∆p,p

Y ) and π∗(FP ) ∈ E(µ,∆2p
Z )∩E(µ/2,∆p,p

Z ).

Proof. We have Fp is a harmonic form of type (p, p). Since Y is Kaehler,

we have that E(0,∆2p
Y ) ∩ C∞(Λp,pY ) = E(0,∆p,p

Y ). so Fp ∈ E(0,∆p,p
Y ). We

compute

πp,p−1
Z Eπ∗Fp = (j −

√
−1k)p(m̄+ 1 − p)(ej +

√
−1ek) ∧ π∗Fp−1/2
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so dπp,p−1
Z Eπ∗Fp = µπ∗Fp/2. Thus π∗Fp ∈ E(µ/2,∆p,p

Z ); the proof of the

corresponding assertion in the real case is similar.

Remark 6.15. Note that the manifold Z constructed in Theorem 6.14

is in general not Kaehler. For example, if L is the Hopf line bundle over

the Riemann sphere S2 and if (j, k) = (0, 1), then Z = S1 × S3 is the Hopf

manifold and π : S1 × S3 → S2 is essentially just the Hopf fibration where

we normalize the metrics suitably.

§7. Manifolds where J∗ω = ±ω
Let π : Z → Y be a Hermitian submersion with minimal fibers. Let

p > 0 and let q > 0. In Theorem 1.6 (3), we saw that π∗ preserves the

eigenspaces on forms of type (p, 0) if and only if J∗ω = −ω and that π∗

preserves the eigenspaces of forms of type (0, q) if and only if J∗ω = ω.

In this section, we give examples to illustrate these two cases. The case

J∗ω = ω is relatively easy; the case J∗ω = −ω requires more work.

7.1. Hermitian submersions with J∗ω = ω

Let Y be a Riemann surface so dimC Y = 1. Then H1,0 is a 1 di-

mensional complex foliation and hence H1,0 is necessarily integrable. Thus

J∗ω = ω. The submersion constructed in §6.7 gives an example π :W (S0, S1)

→ S1 × S1 with non-trivial curvature tensor ω satisfying J∗ω = ω.

7.2. Hermitian submersions with J∗ω = −ω
We have J = −1 on Λ2,0 ⊕ Λ0,2 and J = +1 on Λ1,1. Let Si be circle

bundles over a torus Yk with curvatures F i and corresponding dual vertical

covectors ei. We assume that J∗F i = −F i or equivalently that we may

decompose F i = ξi+ ξ̄i for ξi ∈ Λ2,0. We define an almost complex structure

on Z = W (S0, S1) by requiring that gZ is Hermitian, that π∗ preserves J ,

that J(e0) = −e1, and that J(e1) = e0. We compute

d(e0 −
√
−1e1) = π∗(F0 −

√
−1F1)

=π∗(ξ0 −
√
−1ξ1) + π∗(ξ̄0 −

√
−1ξ̄1).

The Nirenberg-Neulander integrability condition is satisfied if and only if

ξ0 =
√
−1ξ1.(7.3)

Define horizontal 2-forms ωi by the evaluation: ωi(fa, fb)= gZ(ei, [fa, fb])/2;

−ωi(fa, fb) = −ei([fa, fb])/2 = dei(fa, fb)/2 = π∗F i(fa, fb)/2.
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Thus ωi = −π∗F i/2 and J∗ωi = −ωi. Thus it suffices to give an example

where equation (7.3) is satisfied.

Let ξ0 := (dx1 +
√
−1dy1) ∧ (dx2 +

√
−1dy2)/4π. Then

F0 = (dx1 ∧ dx2 − dy1 ∧ dy2)/2π, and

F1 = (−dx1 ∧ dy2 + dx2 ∧ dy1)/2π.

We use Lemma 6.5 to construct bundles Li over the torus with

F2 = (dx1 ∧ dx2)/2π, F3 = (dy1 ∧ dy2)/2π,

F4 = (dx1 ∧ dy2)/2π, F5 = (dx2 ∧ dy1)/2π.

Since F(L∗
i ) = −F(Li) and F(Li ⊗ Lj) = F(Li) + F(Lj), L0 := L2 ⊗ L∗

3

and L1 := L∗
4 ⊗ L5 define circle bundles over the torus with the desired

curvatures.
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