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COMPONENTWISE LINEAR IDEALS

JÜRGEN HERZOG and TAKAYUKI HIBI

Abstract. A componentwise linear ideal is a graded ideal I of a polynomial ring
such that, for each degree q, the ideal generated by all homogeneous polynomials
of degree q belonging to I has a linear resolution. Examples of componentwise
linear ideals include stable monomial ideals and Gotzmann ideals. The graded
Betti numbers of a componentwise linear ideal can be determined by the graded
Betti numbers of its components. Combinatorics on squarefree componentwise
linear ideals will be especially studied. It turns out that the Stanley–Reisner
ideal I∆ arising from a simplicial complex ∆ is componentwise linear if and
only if the Alexander dual of ∆ is sequentially Cohen–Macaulay. This result
generalizes the theorem by Eagon and Reiner which says that the Stanley–
Reisner ideal of a simplicial complex has a linear resolution if and only if its
Alexander dual is Cohen–Macaulay.

Introduction

Let A = K[x1, x2, . . . , xn] denote the polynomial ring in n variables

over a field K with each deg xi = 1 and I a graded ideal of A. The topic

of the present paper is computation of graded Betti numbers βi,j = βi,j(I)

which appear in a graded minimal free resolution

0 −→
⊕

j∈Z

A(−j)βh,j −→ · · · −→
⊕

j∈Z

A(−j)β0,j −→ I −→ 0

of I over A. Let βi = βi(I) :=
∑

j∈Z
βi,j and call βi the i-th graded

Betti number of I. Some fundamental works have been achieved, from view

points of both commutative algebra and combinatorics, for ideals generated

by monomials. Eliahou and Kervaire [11] constructed an explicit minimal

free resolution and computed Betti numbers of stable monomial ideals (see

also [1] and [8]). Their computational result is indispensable for Bigatti [5]

and Hullet [17], where upper bounds of Betti numbers of graded ideals with

a given Hilbert function are discussed. Moreover, the squarefree analogues

of [11], [5] and [17] are studied in [2] and [3]. On the other hand, in [21] and
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[22], Betti numbers of squarefree monomial ideals associated with boundary

complexes of cyclic polytopes and stacked polytopes are computed.

More attention has been paid to graded ideals with linear resolutions.

We say that I has a linear resolution if there exists an integer m ≥ 1

such that βi,i+j = 0 for all i and j with j 6= m. Thus, in particular, if I

has a linear resolution, then I is generated by homogeneous polynomials

of the same degree. When I = I∆ is the squarefree monomial ideal (e.g.,

[6], [15] and [19]) arising from a simplicial complex ∆ on the vertex set

[n] = {1, 2, . . . , n}, we know an effective formula (Hochster [16]) to compute

Betti numbers of I. By virtue of the formula together with Alexander

duality theorem, recently, Eagon and Reiner [9] proved the result that I∆

has a linear resolution if and only if the dual complex ∆∗ is Cohen–Macaulay

([9, Theorem 3]). (See also [7] and [23] for some applications of Alexander

duality theorem.) Moreover, when I∆ has a linear resolution, an explicit

formula to compute the Betti numbers of I∆ in terms of the h-vector of ∆∗

is obtained ([9, Theorem 4]).

In this paper we introduce the notion of componentwise linear ideals.

A graded ideal I ⊂ A is called componentwise linear if, for each degree q,

the ideal generated by all homogeneous polynomials of degree q belonging

to I has a linear resolution. For example, every stable monomial ideal is

componentwise linear. We show that graded Betti numbers of a compo-

nentwise linear ideal can be determined by the graded Betti numbers of its

component (Proposition 1.3). This computational fact enables us to obtain

a criterion for a componentwise linear ideal to be a Gotzmann ideal in terms

of its graded Betti numbers (Corollary 1.4). We are especially interested in

combinatorics on componentwise linear ideals arising from simplicial com-

plexes. Some results on squarefree monomial ideals with linear resolutions

obtained by Eagon and Reiner [9] can be generalized to componentwise

linear ideals generated by squarefree monomials (Theorem 2.1).

We also apply [9, Theorem 3] to squarefree Gotzmann ideals and con-

clude this paper with the following combinatorial result: If ∆ is a “pure”

simplicial complex of dimension d − 1 with f -vector (f0, f1, · · · , fd−1) and

if ∂d−1(fd−1) = fd−2, then ∆ is Cohen–Macaulay (cf. Theorem 2.3).

§1. Algebraic properties of componentwise linear ideals

Let A = K[x1, x2, . . . , xn] denote the polynomial ring in n variables

over a field K with each deg xi = 1 and m = (x1, x2, . . . , xn) the graded

maximal ideal of A. If I is a graded ideal of A, then we write I〈j〉 for
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the ideal generated by all homogeneous polynomials of degree j belonging

to I. Moreover, we write I≤k for the ideal generated by all homogeneous

polynomials of I whose degree is less than or equal to k.

We say that a graded ideal I ⊂ A is componentwise linear if I〈j〉 has a

linear resolution for all j.

Examples 1.1. (a) In the theory of monomial ideal, there is the fol-

lowing hierarchy of ideals: lexsegment monomial ideals ⇒ strongly stable

monomial ideals ⇒ stable monomial ideals. We refer the reader to [5], [11]

and [17] for the definitions and the detailed information about these mono-

mial ideals. See also [2]. The reason why lexsegment ideals are important

is that, given a graded ideal I ⊂ A, there exists a unique lexsegment ideal

I lex such that I and I lex have the same Hilbert function. If I ⊂ A is a

stable (resp. strongly stable, lexsegment) ideal, then each I〈j〉 is also stable

(resp. strongly stable, lexsegment). It follows from [11] that a stable ideal

generated by monomials of the same degree has a linear resolution. Hence,

a stable monomial ideal is componentwise linear.

(b) A graded ideal I generated in degree q is called a Gotzmann ideal

if the number of generators of mI is the smallest possible, namely equal

to the number of generators of mI lex. By Gotzmann’s persistence theorem

[12] (also see [13]), a graded ideal I generated in degree q is a Gotzmann

ideal if and only if I and (I lex)〈q〉 have the same Hilbert function. Thus,

in particular, a Gotzmann ideal has a linear resolution with the same Betti

numbers as the corresponding lexsegment ideal. In fact, if I is a Gotzmann

ideal generated in degree q, then I lex is also generated in degree q. It follows

from the Eliahou–Kervaire resolution [11] (see also [1]) yields that I lex has

a linear resolution. By the theorem of Bigatti [5], Hullet [17] as well as

Pardue [18], we have βi,i+j(I) ≤ βi,i+j(I
lex). Thus, we conclude that I

has a linear resolution, too. Furthermore, since I and I lex have the same

Hilbert function and both their resolutions are linear, their Betti numbers

must coincide.

More general, we call a graded ideal I ⊂ A a Gotzmann ideal if all

component ideals I〈j〉 are Gotzmann ideals. Thus, Gotzmann ideals in this

new sense are componentwise linear.

The following Lemma 1.2 shows that the part I≤k of the ideal I deter-

mines already a certain range of its graded Betti numbers.



144 J. HERZOG AND T. HIBI

Lemma 1.2. Let I ⊂ A be a graded ideal. Then, for all k and for all

j ≤ k, we have

βi,i+j(I) = βi,i+j(I≤k).

Proof. There is an isomorphism of graded K-vector spaces TorR
i (K, I)

∼= Hi(x; I), where Hi(x; I) denotes the Koszul homology of I with respect

to the sequence x = x1, x2, . . . , xn of the variables. Thus, we have

βi,i+j(I) = dimK Hi(x; I)i+j .

A homogeneous cycle c of degree i + j representing a homology class in

Hi(x; I)i+j is a linear combination
∑

σ aσeσ of the canonical basis elements

eσ = ek1
∧ . . . ∧ eki

with coefficients aσ ∈ Ij . Thus, we see that c also

represents a cycle in Hi(x; I≤k)i+j , provided j ≤ k. In the same way we

see that the i-boundaries of the Koszul complex for I and I≤k coincide

whenever j ≤ k. Hence, we have

Hi(x; I)i+j
∼= Hi(x; I≤k)i+j

for j ≤ k. This proves the assertion as required.

We now prove that graded Betti numbers of a componentwise linear

ideal can be determined by the graded Betti numbers of its components.

Proposition 1.3. Suppose that a graded ideal I ⊂ A is component-

wise linear. Then

βi,i+j(I) = βi(I〈j〉) − βi(mI〈j−1〉)

for all j.

Proof. We proceed by induction on the highest degree t of a generator

in a minimal set of generators of I. If t = 1, then I is generated by linear

forms, and hence has a linear resolution. Thus, in this case the assertion is

obvious.

Suppose that t > 1, and consider the short exact sequence

0 −→ I≤t−1 −→ I −→ I〈t〉/mI〈t−1〉 −→ 0

which for each j yields the long exact sequence

Tori(K, I≤t−1)i+j −→ Tori(K, I)i+j −→ Tori(K, I〈t〉/mI〈t−1〉)i+j .(1)
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Since I≤t−1 is generated in degree ≤ t − 1 we may apply our induction

hypothesis, and conclude in particular that βi,i+j(I≤t−1) = 0 for j ≥ t.

Hence, the sequence (1) entails

Tori(K, I)i+j = Tori(K, I〈t〉/mI〈t−1〉)i+j for j ≥ t.(2)

Now, we want to check our formula for βi,i+j(I). By Lemma 1.2, we have

βi,i+j(I) = βi,i+j(I≤t−1) for j ≤ t − 1. Therefore, by induction hypothesis,

our formula is true for j ≤ t− 1. In order to prove it for j ≥ t, we consider

the exact sequence

0 −→ mI〈t−1〉 −→ I〈t〉 −→ I〈t〉/mI〈t−1〉 −→ 0

which for each j yields the long exact sequence

Tori+1(K, I〈t〉/mI〈t−1〉)i+j −→ Tori(K,mI〈t−1〉)i+j −→ Tori(K, I〈t〉)i+j

−→ Tori(K, I〈t〉/mI〈t−1〉)i+j −→ Tori−1(K, I〈t〉)i+j .

The Tor-group at the right end of this sequence vanishes for j ≥ t since the

corresponding module has a t-linear resolution. Also the module on the left

end of this sequence vanishes for j = t. This proves the desired formula for

j = t, and also shows that the sequence

Tori(K, I〈t〉)i+j −→ Tori(K, I〈t〉/mI〈t−1〉)i+j −→ 0

is exact for j ≥ t. However, Tori(K,mI〈t−1〉)i+j = 0 for j > t. Here

we used the well-known and easy to prove fact that, if an ideal I has a

linear resolution, then mI has again a linear resolution. Therefore, we

have Tori(K, I〈t〉/mI〈t−1〉)i+j = 0 for j > t. In view of (2) this implies

βi,i+j(I) = 0 for j > t. This concludes our proof since mI〈j−1〉 = I〈j〉 for

j > t.

Corollary 1.4. Let I ⊂ A be a graded ideal. Then, the following

conditions are equivalent:

(i) I is a Gotzmann ideal;

(ii) βi,i+j(I) = βi,i+j(I
lex) for all i and j;

(iii) βi(I) = βi(I
lex) for all i.
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Proof. The equivalence of (ii) and (iii) is obvious since by Bigatti [5],

Hulett [17] and Pardue [18] we always have βi,i+j(I) ≤ βi,i+j(I
lex) for any

graded ideal I of A.

As we already remarked in Example 1.1, any Gotzmann ideal which is

generated in one degree has the same graded Betti numbers as the corre-

sponding lexsegment ideal. Thus, the implication (i) ⇒ (ii) follows from

Proposition 1.3 if we observe that not only all I〈j〉, but also all mI〈j〉 are

Gotzmann ideals, as follows from the persistence theorem.

Now assume (ii) is satisfied. In order to prove (i) we show that each

I〈j〉 is a Gotzmann ideal. It is clear that dim(I〈j〉)j = dim(I lex
〈j〉 )j . On the

other hand, by assumption we have

dim Ij+1/(I〈j〉)j+1 = β0,j+1(I) = β0,j+1(I
lex) = dim I lex

j+1/(I lex
〈j〉 )j+1.

This implies that dim(I〈j〉)j+1 = dim(I lex
〈j〉 )j+1. Therefore, by the persis-

tence theorem, I〈j〉 is a Gotzmann ideal.

Let I ⊂ A be an ideal generated by squarefree monomials. Then, for

each degree j, we write I[j] for the ideal generated by the squarefree mono-

mials of degree j belonging to I. We say that I is squarefree componentwise

linear if I[j] has a linear resolution for all j.

For example, a weakly stable ideal discussed in [4] is squarefree com-

ponentwise linear.

The following result says that a squarefree monomial ideal I ⊂ A is

componentwise linear if and only if I is squarefree componentwise linear.

Proposition 1.5. Suppose that I ⊂ A is an ideal generated by square-

free monomials. Then I is componentwise linear if and only if I is square-

free componentwise linear.

Proof. (“only if”) Suppose that I is componentwise linear. Fix j > 0;

then by assumption, I〈j〉 has a linear resolution.

The exact sequence

0 −→ I[j] −→ I〈j〉 −→ I〈j〉/I[j] −→ 0

gives rise to the long exact sequence

−→ Tori+1(K, I〈j〉/I[j])
αi−→ Tori(K, I[j]) −→ Tori(K, I〈j〉) −→ .
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Since the ideals considered are generated by monomials, it follows that all

the Tor-groups in the exact sequence are multigraded K-vector spaces. It

follows from Hochster’s formulas ([16, Theorem 5.1]) that Tori(K, I[j]) has

only squarefree components, that is, Tori(K, I[j])a = 0 if one entry of the

vector a is > 1. On the other hand, since all generators of I〈j〉/I[j] have

non-squarefree degrees, it follows that Tori+1(K, I〈j〉/I[j]) has only non-

squarefree components. Therefore, since αi is multihomogeneous, αi must

be the zero map. But then for each i the map Tori(K, I[j]) → Tori(K, I〈j〉)

is injective. Since I〈j〉 has a linear resolution, the graded K-vector space

Tori(K, I〈j〉) is concentrated in degree i + j. It follows that Tori(K, I[j]) is

concentrated in degree i + j. Hence I[j] has a linear resolution.

(“if”) Suppose that I[j] has a linear resolution for all j. We will show

by induction on j that I〈j〉 has a linear resolution for all j.

For the lowest degree t for which It 6= 0, there is nothing to show since

I〈t〉 = I[t]. We now assume that the assertion is true for some j ≥ t. Then

I〈j〉 has a linear resolution. This implies that mI〈j〉 has a linear resolution,

too. Therefore, we know from the “only if” part that the squarefree part of

mI〈j〉, we call it L, has a linear resolution. It is clear that L is also contained

in I[j+1]. Hence, we get the exact sequence

0 −→ L −→ mI〈j〉 ⊕ I[j+1] −→ I〈j+1〉 −→ 0,(3)

where u ∈ L is mapped to (u,−u) ∈ mI〈j〉 ⊕ I[j+1].

We noted already that L and mI〈j〉 have linear resolutions. Further-

more, I[j+1] has a linear resolution by assumption.

From the long exact Tor-sequence which is derived from (3) we deduce

that I〈j+1〉 has a linear resolution once it is shown that

Tori(K,L) −→ Tori(K,mI〈j〉) ⊕ Tori(K, I[j+1])

is injective for all i. But this is clear since already the first component of

this map is injective because L is the squarefree part of mI〈j〉; cf. the proof

“only if”.

Corollary 1.6. Let I ⊂ A be an ideal which is generated by square-

free monomials and suppose that I is componentwise linear. Then, for each

j, (mI)[j] has a linear resolution and

βi,i+j(I) = βi(I[j]) − βi((mI)[j]).
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Proof. Since I is componentwise linear, the ideal (mI)〈j〉 = mI〈j−1〉 has

a linear resolution. Moreover, since (mI)[j] is the squarefree part of (mI)〈j〉,

the ideal (mI)[j] also has a linear resolution. Now, it follows from the proof

of Proposition 1.3 that

βi(I〈j〉) − βi(mI〈j−1〉) = βi(I〈j〉/mI〈j−1〉).

By the similar technique, we easily obtain the equality

βi(I[j]) − βi((mI)[j]) = βi(I[j]/(mI)[j])

for every j. Since I is generated by squarefree monomials, we have

I〈j〉/mI〈j−1〉
∼= I[j]/(mI)[j].

Hence, the desired formula follows immediately from Proposition 1.3.

§2. Combinatorics on componentwise linear ideals

We now discuss combinatorial application of Corollary 1.6 and, based on

[9], present a formula to compute graded Betti numbers of componentwise

linear ideals generated by squarefree monomials.

Let ∆ be a simplicial complex on the vertex set [n] = {1, 2, . . . , n}, i.e.,

∆ is a collection of subsets of [n] such that (i) {i} ∈ ∆ for each 1 ≤ i ≤ n

and (ii) F ∈ ∆, G ⊂ F ⇒ G ∈ ∆. A subset F ⊂ [n] is called a q-face

of ∆ if F ∈ ∆ with ](F ) = q + 1. Here, ](F ) is the cardinality of a

finite set F ⊂ [n]. A maximal face of ∆ is also called a facet of ∆. The

dimension of ∆ is dim∆ := max{](F ) ; F ∈ ∆}− 1. Let fq be the number

of q-faces of ∆ and call f(∆) = (f0, f1, f2, . . .) the f -vector of ∆. Let

h(∆) = (h0, h1, h2, . . .) denote the h-vector of ∆ defined in, e.g., [6], [15]

and [19]. We say that a simplicial complex ∆ is pure if all facets of ∆ have

the same cardinality.

Let ∆∗ denote the dual simplicial complex of ∆, that is to say,

∆∗ = {[n] − F ; F 6∈ ∆}

and, for each q, write ∆∗(q) for the (pure) subcomplex of ∆∗ whose facets

are the q-faces of ∆∗. Moreover, we define ∆∗(q)′ to be the subcomplex of

∆∗(q) whose facets are those q-faces F of ∆∗ such that F is not a facet of

∆∗. In other words, ∆∗(q)′ is the q-skeleton of ∆∗(q + 1). In particular,
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if ∆∗ 6= {∅} then ∆∗(−1) = ∆∗(−1)′ = {∅}. Moreover, if ∆∗ = {∅} then

∆∗(−1) = {∅} and ∆∗(−1)′ = ∅.
Let A = K[x1, x2, . . . , xn] denote the polynomial ring in n variables

over a field K with each deg xi = 1 and I∆ the ideal of A generated by

all squarefree monomials xi1xi2 · · · xir , 1 ≤ i1 < i2 < · · · < ir ≤ n, with

{i1, i2, . . . , ir} 6∈ ∆. We say that the quotient algebra K[∆] := A/I∆ is the

Stanley–Reisner ring of ∆ over K. A simplicial complex ∆ is called Cohen–

Macaulay over K if the Stanley–Reisner ring K[∆] is Cohen–Macaulay. We

refer the reader to [6], [15], [16] and [19] for the detailed information about

Cohen–Macaulay complexes.

Suppose now that ∆∗(q) is Cohen–Macaulay for every q. Let d =

dim ∆∗. Thus ∆∗(d)′ = ∅. If q < d, then ∆∗(q)′ is Cohen–Macaulay

(in fact, level [14]). Since ∆∗(q)′ is a Cohen–Macaulay subcomplex of the

Cohen–Macaulay complex ∆∗(q) with dim ∆∗(q)′ = dim ∆∗(q), it follows

from, e.g., [20] that h(∆∗(q)′) ≤ h(∆∗(q)), i.e., hi(∆
∗(q)′) ≤ hi(∆

∗(q)) for

each i. (Here, hi(∆) is the i-th component of h(∆).) Let h(∆∗(d)) =

(h0(d), h1(d), h2(d), . . .) and, for each q < d,

h(∆∗(q)) − h(∆∗(q)′) = (h0(q), h1(q), h2(q), . . .).

Thus, in particular, h0(d) = 1 and h0(q) = 0 for each q < d.

We are now in the position to state the main results of the present

paper.

Theorem 2.1. (a) The ideal I∆ ⊂ A associated with a simplicial

complex ∆ is componentwise linear if and only if ∆∗(q) is Cohen–Macaulay

for every q.

(b) Suppose that I∆ is componentwise linear. Then

∑

i≥0

βi,i+j(I∆)λi =
∑

i≥0

hi(n − j − 1)(λ + 1)i

for every j ≥ 1.

Proof. (a) Let I = I∆. Then, by Proposition 1.5, I is componentwise

linear if and only if I is squarefree componentwise linear. Let ∆j denote

the simplicial complex on [n] with I[j] = I∆j
. If F ⊂ [n], then F 6∈ ∆j if

and only if there exists a subset G ⊂ [n] such that G ⊂ F , ](G) = j and

G 6∈ ∆. In other words, [n] − F ∈ (∆j)
∗ if and only if there exists a subset

G ⊂ [n] such that [n] − F ⊂ [n] − G, ]([n] − G) = n − j and [n] − G ∈ ∆∗.
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Hence, (∆j)
∗ = ∆∗(n − j − 1). Thus, by [9, Theorem 3], I[j] has a linear

resolution if and only if ∆∗(n − j − 1) is Cohen–Macaulay. Hence, I∆ is

componentwise linear if and only if ∆∗(q) is Cohen–Macaulay for every q.

(b) Suppose that I = I∆ is componentwise linear. Choose the simplicial

complexes ∆j and ∆′
j with I[j] = I∆j

and (mI)[j] = I∆′

j
. We know (∆j)

∗ =

∆∗(n− j − 1). Moreover, if F ⊂ [n], then F 6∈ ∆′
j if and only if there exists

a subset G ⊂ [n] with G ⊂ F and ](G) = j such that G − {k} 6∈ ∆ for

some k ∈ G. In other words, [n] − F ∈ (∆′
j)

∗ if and only if there exists a

subset G ⊂ [n] with [n] − F ⊂ [n] − G and ]([n] − G) = n − j such that

([n] − G)
⋃

{k} ∈ ∆∗ for some k 6∈ [n] − G. Hence, (∆′
j)

∗ = ∆∗(n − j − 1)′.

Now, [9, Theorem 4] together with Corollary 1.6 guarantees that

∑

i≥0

βi,i+j(I)λi =
∑

i≥0

βi(I[j])λ
i −

∑

i≥0

βi((mI)[j])λ
i

=
∑

i≥0

hi(∆
∗(n − j − 1))(λ + 1)i

−
∑

i≥0

hi(∆
∗(n − j − 1)′)(λ + 1)i

=
∑

i≥0

hi(n − j − 1)(λ + 1)i

as desired.

We should remark that if I = I∆ is weakly stable then ∆∗(q) is shellable

(e.g., [6, p. 206]) for every q. Note that, by Duval [24], ∆∗(q) is Cohen-

Macaulay for every q if and only if ∆∗ is sequentially Cohen-Macaulay

([19]).

Example 2.2. Let n = 6 and I = I∆ the weakly stable ideal generated

by x1x2x4, x1x3x4, x1x2x3x5, x2x3x4x5, and x2x3x4x6. Then d = 2 and the

facets of ∆∗ are {1, 5}, {1, 6}, {4, 6}, {2, 5, 6} and {3, 5, 6}. The f -vector

of ∆∗(2) is f(∆∗(2)) = (4, 5, 2) and h(∆∗(2)) = (1, 1, 0, 0). Moreover, since

f(∆∗(1)) = (6, 8), f(∆∗(1)′) = (4, 5), h(∆∗(1)) = (1, 4, 3) and h(∆∗(1)′) =

(1, 2, 2), we have h(∆∗(1)) − h(∆∗(1)′) = (0, 2, 1). Hence, if j = 3 then

β03 + β14λ + β25λ
2 + · · · = 1 + (1 + λ) = 2 + λ, and if j = 4 then β04 +

β15λ + β26λ
2 + · · · = 2(1 + λ) + (1 + λ)2 = 3 + 4λ + λ2.
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We conclude this paper with a somewhat surprising combinatorial ap-

plication of [9, Theorem 3]. If a and i are positive integers and if

a =

(

ai

i

)

+

(

ai−1

i − 1

)

+ · · · +

(

aj

j

)

is the i-th Macaulay expansion (e.g., [15, p. 15]) of a, then we define

∂i−1(a) :=

(

ai

i − 1

)

+

(

ai−1

i − 2

)

+ · · · +

(

aj

j − 1

)

.

Recall that the Kruskal–Katona theorem says that, given a finite sequence

f = (f0, f1, · · · , fd−1) of positive integers, there exists a simplicial complex

∆ of dimension d − 1 with f(∆) = f if and only if ∂i(fi) ≤ fi−1 for every

1 ≤ i ≤ d − 1.

Theorem 2.3. Let ∆ be a pure simplicial complex of dimension d−1

with f -vector (f0, f1, · · · , fd−1) and suppose that ∂d−1(fd−1) = fd−2. Then

∆ is Cohen–Macaulay over an arbitrary field.

Proof. Let E denote the exterior algebra of the vector space over K

with basis e1, e2, . . . , en. If F = {i1, i2, . . . , iq} is a subset of [n] with 1 ≤
i1 < i2 · · · < iq ≤ n, then eF := ei1 ∧ ei2 ∧ . . .∧ eiq is called a monomial of E

of degree q. We may associate each monomial eF of E with the squarefree

monomial
∏

i∈F xi of A. Given a simplicial complex ∆ on [n], we write J∆

for the ideal of E generated by all monomials eF with F 6∈ ∆.

Now, let ∆ be a pure simplicial complex on [n] of dimension d − 1

with f -vector (f0, f1, · · · , fd−1) and suppose that ∂d−1(fd−1) = fd−2. Let

∆∗ be the dual complex of ∆. Since ∆ is pure of dimension d − 1, the

ideal J∆∗ ⊂ E is generated by monomials of degree n − d. By virtue of

the squarefree Gotzmann theorem [3, Theorem 4.6] and “higher” Kruskal–

Katona theorem [3, Theorem 4.4], the similar technique as in Example 1.1

(b) enables us to show that the ideal J∆∗ ⊂ E has a linear resolution. By

[16, Theorem 5.1] and [3, Theorem 6.4], it follows that J∆∗ ⊂ E has a linear

resolution if and only if I∆∗ ⊂ A has a linear resolution. Hence, again by

[9, Theorem 3], (∆∗)∗(= ∆) is Cohen–Macaulay as required.

It might be of interest to give a combinatorial proof of the above The-

orem 2.3.
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