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CLASSIFICATION OF SEMISIMPLE COMMUTATIVE
BANACH ALGEBRAS OF TYPE I

JYUNJI INOUE, TAKESHI MIURA, HIROYUKI TAKAGI∗,

AND SIN-EI TAKAHASI

Abstract. In the first and fourth authors’ paper in 2017, it was shown that

there exists a BSE-algebra of type I isomorphic to no C*-algebras, which solved

negatively a question posed by the fourth author and O. Hatori. However, this

result suggests a further investigation of commutative Banach algebra of type I.

In the first part of the paper, we classify type I algebras into six families by means

of BSE, BED, and Tauberian. It is shown that a Banach algebra of type I is

isomorphic to a Segal algebra in some commutative C*-algebra if and only if it is

Tauberian. In the second part, we give concrete examples of type I algebras to

show that all of six families mentioned above are nonempty.

1. Introduction and overview of main results

Let A be a semisimple commutative Banach algebra with Gelfand space ΦA, and

Cb(ΦA) the Banach algebra of all bounded continuous complex-valued functions on

ΦA with supremum norm ∥ · ∥∞. Put Â = {x̂ : x ∈ A}, where x̂ is the Gelfand

transform of x ∈ A. Let M(A) be the multiplier algebra of A. It is well known

that for each T ∈ M(A) there exists a unique bounded complex-valued continuous

function T̂ on ΦA such that T̂ x = T̂ x̂ for all x ∈ A (cf. [5]). Put M̂(A) = {T̂ : T ∈
M(A)}. Then we have Â ⊆ M̂(A) ⊆ Cb(ΦA). We say that an algebra A is of type I

if M̂(A) = Cb(ΦA). Let Ac be the set of all x ∈ A such that x̂ has compact support.

We say that A is Tauberian if Ac is norm-dense in A. Any commutative C*-algebra

is a typical Tauberian Banach algebra of type I.
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In [3], the first and fourth authors have shown that there exists a BSE-algebra of

type I such that it is not isomorphic to any C*-algebra. This solves a question posed

by the fourth author and Hatori (see [9, p.153, Problem 1]) negatively. However,

this result suggests a further investigation of Banach algebras of type I.

The purpose of this paper is to study type I Banach algebras by classifying them

into six families by means of BSE, BED and Tauberian. We also construct a sub-

family of each of these six families. Tauberian algebras and Segal algebras will play

a crucial role in our arguments because, as stated in the section 3, a Banach algebra

of type I is Tauberian if and only if it is isomorphic to a Segal algebra in a certain

commutative C*-algebra. Also it will be clear that any unital Banach algebra of type

I is just isomorphic to a unital commutaitve C*-algebra, and hence the non-unital

case is essential in our arguments.

For the details of Segal algebras, BSE-algebras and BED-algebras, refer to the

next section.

Let BtypeI be the collection of all Banach algebras of type I. We define B1,1
typeI ,

B1,0
typeI , B

0,1
typeI and B0,0

typeI by

B1,1
typeI = {A ∈ BtypeI : A is of BSE and of BED},

B1,0
typeI = {A ∈ BtypeI : A is of BSE but not of BED},

B0,1
typeI = {A ∈ BtypeI : A is not of BSE but of BED},

B0,0
typeI = {A ∈ BtypeI : A is not of BSE nor of BED},

respectively. By using the Tauberian property, we divide Bi,j
typeI (i, j = 0, 1) into two

families:

Bi,j,1
typeI = {A ∈ Bi,j

typeI : A is Tauberian}
and

Bi,j,0
typeI = {A ∈ Bi,j

typeI : A is not Tauberian}.
Since any algebra in Bi,j

typeI is Tauberian for j = 1 (see Theorem 3.2), these divi-

sions are meaningful in the case j = 0. Thus we have the following disjoint union

representation of BtypeI :

BtypeI = B1,1
typeI ∪ B1,0,1

typeI ∪ B1,0,0
typeI ∪ B0,1

typeI ∪ B0,0,1
typeI ∪ B0,0,0

typeI .

We prove that B1,1
typeI consists of all commutative C*-algebras up to isomorphism

(see Corollary 4.2). We next give a concrete subfamily of B1,0,1
typeI which extends the

result obtained in [3]. This will be descreibed in Theorem 5.1. Then we construct

a subfamily of B1,0,0
typeI in Theorem 5.2. For B0,1

typeI , we give two subfamilies in Theo-

rems 6.1 and 6.2. Finally subfamilies of B0,0,1
typeI and B0,0,0

typeI are given in Theorems 7.1

and 7.3, respectively. We will give such subfamilies by constructing special Banach

function algebras on noncompact locally compact Hausdorff spaces.
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2. Segal algebras, BSE-algebras and BED-algebras

(I) Segal algebras.

H. Reiter investigated Segal algebras in commutative group algebras. For Reiter’s

Segal algebras we refer to [6] and [7]. In [2], the first and fourth authors introduced

the notion of Segel algebras in semisimple commutative Banach algebras A with the

following properties:

(α) A is regular.

(β) There is a bounded approximate identity of A composed of elements in Ac.

It is obvious that commutative C*-algebras and group algebras on LCA groups

satisfy the conditions (α) and (β).

An ideal S in A is called a Banach ideal in A if S itself constitutes a Banach

space under a norm ∥ · ∥S satisfying ∥a∥A ≤ ∥a∥S (a ∈ S) and ∥ax∥S ≤ ∥a∥S∥x∥A
(a ∈ S, x ∈ A). A dense Banach ideal in A is called a Segal algebra in A if it has

approximate units. When A is equal to a group algebra L1(G) of an LCA group G,

Segal algebras in A coincide with Reiter’s Segal algebras in L1(G). We here present

the following important lemma which asserts that Segal algebras preserve “type I”.

Lemma 2.1. Let A be a Banach algebra of type I satisfying the conditions (α) and

(β), and S be a Segal algebra in A. Then S is also of type I.

Proof. By [2, Theorem B′-(ii)], we identify ΦS with ΦA. Take σ ∈ Cb(ΦA) arbitrarily.

Since A is of type I, we can take T ∈ M(A) with σ = T̂ . For any x ∈ S, there are

y ∈ S and z ∈ A such that x = yz by [2, Theorem A′]. Then we have

σx̂ = T̂ ŷẑ = (̂Tz)y ∈ Ŝ,

hence σ yields a linear operator Tσ from S to itself such that Tσ(ab) = (Tσa)b for

all a, b ∈ S. Note that Tσ is continuous by the closed graph theorem, so Tσ is a

multiplier of S with T̂σ = σ. This observation implies that M̂(S) = Cb(ΦS), namely,

S is of type I. □

(II) BSE-algebras and BED-algebras.

Let A be a semisimple commutative Banach algebra with Gelfand space ΦA. We

denote by span(ΦA) the linear span of ΦA in the dual space A∗ of A. Therefore, an

arbitrary element p in span(ΦA) has the unique expression

p =
∑
φ∈ΦA

p̂(φ)φ,
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where p̂ is a complex-valued function on ΦA with finite support. A function σ ∈
Cb(ΦA) is said to be a BSE -function if there is a constant β > 0 such that∣∣∣∣∣∑

φ∈ΦA

p̂(φ)σ(φ)

∣∣∣∣∣ ≤ β∥p∥A∗

for all p ∈ span(ΦA). The BSE-norm of σ, denoted by ∥σ∥BSE(A), is the infimum

of all such β. The norm ∥ · ∥BSE(A) is written simply as ∥ · ∥BSE if it will cause no

confusion.

Let CBSE(ΦA) be the algebra of all BSE-functions, then it is a semisimple com-

mutative Banach algebra under the BSE-norm (see [9, Lemma 1]). An algebra A is

said to be a BSE -algebra if M̂(A) = CBSE(ΦA) (see [9, p.151, Definition]). If {eλ}
is a net in A satisfying the condition

lim
λ

φ(eλ) = 1 (φ ∈ ΦA),

then we call it a Φ-weak approximate identity of A. We note that M̂(A) ⊆ CBSE(ΦA)

if and only if A has a bounded Φ-weak approximate identity (see [9, Corollary 5]).

Therefore, any BSE-algebra has a bounded Φ-weak approximate identity. For more

details on BSE-algebras, we refer the reader to [1, 4].

Let K(ΦA) be the directed set consisting of all compact subsets in ΦA with respect

to the inclusion order. For σ ∈ CBSE(ΦA) and K ∈ K(ΦA), define

∥σ∥BSE,K = sup

{∣∣∣∣∣∑
φ∈ΦA

p̂(φ)σ(φ)

∣∣∣∣∣ : p ∈ span(ΦA), ∥p∥A∗ ≤ 1, p̂|K = 0

}
,

and so we have ∥σ∥BSE,K ≤ ∥σ∥BSE. We set

C0
BSE(ΦA) =

{
σ ∈ CBSE(ΦA) : lim

K∈K(ΦA)
∥σ∥BSE,K = 0

}
.

Then we see that C0
BSE(ΦA) is a closed ideal of CBSE(ΦA) (see [1, Corollary 3.9]). An

algebra A is said to be a BED-algebra if each function in C0
BSE(ΦA) is precisely the

Gelfand transform of some element of A, that is, Â = C0
BSE(ΦA) (see [1, Definition

4.13]).

We now give a basic result for Segal algebras in a Banach algebra of type I.

Lemma 2.2. Let A be a Banach algebra of type I satisfying the conditions (α) and

(β), and S be a Segal algebra in A. Then Ŝ is a dense subset of C0
BSE(ΦS).

Proof. Let {eλ}λ∈Λ be a bounded approximate identity of A bounded by β > 0

composed of elements in Ac. Then we see from [2, Theorem A′] that {eλ}λ∈Λ is an

approximate identity of S and ∥eλf∥S ≤ β∥f∥S holds for all λ ∈ Λ and f ∈ S. We

see from [2, Lemma 3.4] that S is regular. By Lemma 2.1, S is of type I, and then
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C0
BSE(ΦS) ⊆ Cb(ΦS) = M̂(S). We observe that Ŝ is dense in C0

BSE(ΦS) with the

help of [1, Proposition 4.4]. □

In the rest of this paper, we will identify ΦS with ΦA if S is a Segal algebra in

a semisimple commutative Banach algebra A satisfying the conditions (α) and (β).

In fact, [2, Theorem B′-(ii)] states that ΦS is homeomorphic to ΦA. Especially, in

the case where A is a commutative C*-algebra C0(X), consisting of all continuous

complex-valued functions on a locally compact Hausdorff space X vanishing at in-

finity, we will identify both ΦS and ΦA with X. In this case, the Gelfand transforms

on S and A are the identity mapping under this identification. Therefore, we may

and do write CBSE(S)(X) and C0
BSE(S)(X) instead of CBSE(ΦS) and C0

BSE(ΦS), re-

spectively. Moreover, we will say that S has a X-weak approximate identity if S

has a Φ-weak approximate identity. Also we define Cc(X) = (C0(X))c, that is, the

algebra of all continuous complex-valued functions on X with compact supports.

3. Tauberian Banach algebras of type I

In this section, we characterize a Tauberian Banach algebra of type I in terms of

Segal algebras. Moreover, we show that any BED-algebra of type I is Tauberian.

Theorem 3.1. Let A be a semisimple commutative Banach algebra. Then A is a

Tauberian Banach algebra of type I if and only if it is isomorphic to a Segal algebra

in a certain commutative C*-algebra.

Proof. First, assume that A is isomorphic to a Segal algebra in a commutative C*-

algebra. Then A is of type I by Lemma 2.1. Also we see from [2, Theorem A′] that

A is Tauberian.

Conversely, assume that A is a Tauberian Banach algebra of type I. Put S = Â

and ∥â∥S = ∥a∥A for each a ∈ A. Then S becomes a commutative Banach algebra

which is isomorphic to A. Put X = ΦA and so S becomes a Banach ideal in C0(X)

because A is of type I.

Now we assert that Cc(X) ⊆ S. To show this, let f ∈ Cc(X) and put K =

supp(f). Take x ∈ X arbitrarily and choose fx ∈ S with fx(x) ̸= 0. There exist a

neighborhood Ux of x and gx ∈ C0(X) such that gx(y) = 1/fx(y) for all y ∈ Ux. Put

ex = fxgx, and then ex ∈ S with ex = 1 on Ux. Since K is compact, we can find a

finite number of elements x1, · · · , xn ∈ K such that {Ux1 , · · · , Uxn} is a covering of

K. We now define

uK = 1− (1− ex1) · · · (1− exn),

and then uK ∈ S with uK = 1 on K. Thus f = fuK ∈ S as required.

The above assertion implies that S is a Segal algebra in C0(X). In fact, it is

sufficient to show that S has approximate units. To do this, let f ∈ S and ε > 0 be
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chosen arbitrarily. Then there is g ∈ S with compact support such that ∥f − g∥S <

ε/2 because S is Tauberian. Put K ′ = supp(g) and choose eK′ ∈ Cc(X) such that

0 ≤ eK′ ≤ 1 and eK′ = 1 on K ′. Then we have eK′ ∈ S by our assertion. We obtain

∥eK′(f − g)∥S ≤ ∥eK′∥∞∥f − g∥S < ε/2.

The above inequalities show that

∥eK′f − f∥S ≤ ∥eK′f − eK′g∥S + ∥eK′g − f∥S < ε/2 + ∥g − f∥S < ε,

and hence S has approximate units. □

The following theorem describes a relationship between “BED” and “Tauberian”

in a Banach algebra of type I.

Theorem 3.2. Any BED-algebra of type I is Tauberian.

Proof. Let A be a BED-algebra of type I and put X = ΦA. As observed in the proof

of Theorem 3.1, A is isomorphic to a certain Banach ideal S in C0(X). We will show

that S is Tauberian. To do this, let f ∈ S and ε > 0 be chosen arbitrarily. Since

S is of BED, we can find a compact subset K in X with ∥f∥BSE,K < ε. Choose

eK ∈ Cc(X) such that 0 ≤ eK ≤ 1 and eK = 1 on K. Also, take p ∈ span(X)

arbitrarily and define

q(g) =
∑
x∈X

(1− eK(x))p̂(x)g(x)

for each g ∈ S. Then q is an element of span(X) such that

q̂(x) = (1− eK(x))p̂(x)

for each x ∈ X. Hence we have

∥q∥S∗ = sup

{∣∣∣∣∣∑
x∈X

(1− eK(x))p̂(x)g(x)

∣∣∣∣∣ : g ∈ S, ∥g∥S ≤ 1

}

= sup

{∣∣∣∣∣∑
x∈X

p̂(x)(1− eK)g(x)

∣∣∣∣∣ : g ∈ S, ∥g∥S ≤ 1

}

≤ 2 sup

{∣∣∣∣∣∑
x∈X

p̂(x)h(x)

∣∣∣∣∣ : h ∈ S, ∥h∥S ≤ 1

}
≤ 2∥p∥S∗
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because ∥(1− eK)g∥S ≤ ∥g∥S + ∥eK∥∞∥g∥S ≤ 2∥g∥S for each g ∈ S. Therefore, we

obtain ∣∣∣∣∣∑
x∈X

p̂(x)(1− eK)f(x)

∣∣∣∣∣ =
∣∣∣∣∣∑
x∈X

q̂(x)f(x)

∣∣∣∣∣ =
∣∣∣∣∣∑
x/∈K

q̂(x)f(x)

∣∣∣∣∣
≤ ∥q∥S∗∥f∥BSE,K

≤ 2∥p∥S∗ × ε,

which implies ∥f − feK∥BSE(S) = ∥(1 − eK)f∥BSE(S) < 2ε. Since S is of BED, it

follows that ∥ · ∥S and ∥ · ∥BSE(S) are equivalent, and hence we conclude that S is

Tauberian. □

4. Algebras which belong to B1,1
typeI

We have the following result which gives a characterization of commutative C*-

algebras in terms of BSE and BED.

Theorem 4.1. Let A be a Banach algebra of type I. Then the following are equivalent

to each other :

(i) A has a bounded approximate identity.

(ii) A is isomorphic to a C*-algebra.

(iii) A is of BSE and of BED.

Proof. (i)⇔(ii). This is essentially shown in the proof of [9, Theorem 3].

(ii)⇒(iii). If A is isomorphic to a C*-algebra, then it is of BSE and of BED by

[9, Theorem 3] and [1, Theorem 5.10], respectively.

(iii)⇒(ii). Suppose that A is of BSE and of BED. Since A is a BSE-algebra of

type I, it follows that CBSE(ΦA) is isomorphic to the C*-algebra Cb(ΦA). Also, since

C0
BSE(ΦA) is a closed ideal of CBSE(ΦA), we see that C0

BSE(ΦA) is isomorphic to a

C*-algebra. By the initial assumption, A is of BED, and then we deduce that it

must be isomorphic to a C*-algebra. □

Recall that an arbitrary commutative C*-algebra is always of type I, and hence

we obtain the following from Theorem 4.1.

Corollary 4.2. The family B1,1
typeI consists of all commutative C*-algebras up to

isomorphism.
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5. Algebras which belong to B1,0,k
typeI (k = 0, 1)

The case of k = 1.

Let X be a noncompact locally compact Hausdorff space and µ a positive continuous

regular Borel measure on X with µ(X) = ∞. Let Lp(X,µ) be the Lp-space on X,

where 1 ≤ p < ∞, and define

C0,p(X,µ) = C0(X) ∩ Lp(X,µ).

Then C0,p(X,µ) becomes a semisimple commutative Banach algebra with l1-norm:

∥f∥∞,p = ∥f∥∞ + ∥f∥p (f ∈ C0,p(X,µ)).

As observed in the proof of [3, Lemma 2.1], C0,p(X,µ) is a Segal algebra in C0(X).

Theorem 3.1 shows that it is a Tauberian Banach algebra of type I. Moreover, we

see that this algebra has a bounded X-weak approximate identity as observed in the

proof of [3, Lemma 2.2]. Therefore, we see from [2, Theorem 9.10] that this Segal

algebra is of BSE.

Since X is noncompact and µ(X) = ∞, we can find a sequence {K1, K2, · · · }
of compact subsets of X and a sequence {V1, V2, · · · } of open subsets of X with

compact closure such that

Vi ∩ Vj = ∅ (i ̸= j), Kn ⊆ Vn and µ(Kn) ≥ 1 (n ∈ N).

For each n ∈ N, choose a continuous complex-valued function fn on X such that

fn(x) =
1

n1/p
(x ∈ Kn), 0 ≤ fn ≤ 1

n1/p
and supp(fn) ⊆ Vn.

Put

f =
∞∑
n=1

fn.

Then it is easy to see that f ∈ C0(X) and f /∈ Lp(X,µ), hence C0,p(X,µ) is proper

in C0(X). This yields that C0,p(X,µ) has no bounded approximate identity by [2,

Theorem C′-(ii)]. Therefore, we see from Theorem 4.1 that C0,p(X,µ) is not of BED.

By summarizing the above arguments, the following theorem is obtained.

Theorem 5.1. Let C0,p(X,µ) be as in the above. Then it is a Tauberian Banach

algebra of type I which is of BSE but is not of BED, that is, this algebra belongs to

B1,0,1
typeI .

Remark 1. A family of Segal algebras obtained in [3] is, of course, contained in

B1,0,1
typeI , but the family obtained in the above theorem is a wider one than this family.
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The case of k = 0.

Let X be a noncompact σ-compact locally compact Hausdorff space and µ a positive

Borel measure on X. Let τ be a continuous complex-valued function on X such that

τ(x) > 0 for all x ∈ X and 1/τ ∈ C0(X), where (1/τ)(x) = 1/τ(x) (x ∈ X). Note

that there do exist such a function τ because X is σ-compact. Furthermore, let

{Vx}x∈X be a family of open neighbourhoods Vx of x ∈ X with compact closure. We

define

S ≡ Sτ,{Vx}(X,µ)

=

{
f ∈ C0(X) : ∥f∥τ := sup

x∈X

∫
Vx

|f(t)|τ(t)dµ(t) < ∞
}

and

∥f∥S = ∥f∥∞ + ∥f∥τ
for each f ∈ S. Then (S, ∥·∥S) is a natural Banach function algebra on X. Actually,

it is apparent that Cc(X) ⊆ S, hence S separates strongly the points of X. By a

routine argument, we see that S is a Banach module over C0(X). We now prove

that S is natural. Let φ ∈ ΦS be chosen arbitrarily and take eφ ∈ S with φ(eφ) = 1.

For any f ∈ C0(X), we can find a sequence {fn} in S which converges uniformly to

f because S is uniformly dense in C0(X). Then we have

lim
n,m→∞

∥fneφ − fmeφ∥S ≤ lim
n,m→∞

∥fn − fm∥∞ ∥eφ∥S = 0,

and hence {φ(fn)}∞n=1 converges to a complex number. We define

φ̃(f) = lim
n→∞

φ(fn)

for each f ∈ C0(X). This is well-defined because we can easily see that φ̃(f) does

not depend on a choice of {fn}∞n=1. Apparently, φ̃ is an element of ΦC0(X)
∼= X with

φ̃|S = φ, hence S is natural. Therefore, ΦS can be identified with X by [8, Theorem

3.2.4].

We assume that (X,µ) and {Vx}x∈X have the following properties:

(a) There are two positive constants mµ and Mµ such that mµ ≤ µ(Vx) ≤ Mµ

for all x ∈ X.

(b) For any compact subset K in X, there is x ∈ X such that Vx ⊆ X \K.

(c) Given x ∈ X, a neighbourhood V of x and ε > 0, there is a neighbourhood

U of x such that U ⊆ V and µ(U) < ε.

Then we have the following

Theorem 5.2. Under the assumptions (a), (b) and (c), the Banach algebra S =

Sτ,{Vx}(X,µ) has the following properties:

(i) S is of type I.
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(ii) S is not Tauberian.

(iii) S is of BSE but is not of BED.

Namely, S belongs to B1,0,0
typeI .

Proof. (i) We can easily see that S is a Banach module over Cb(X), and hence

M(S) = Cb(X), namely S is of type I.

(ii) We have ∥1/τ∥τ ≤ Mµ < ∞ by (a), hence 1/τ ∈ S. Let h be an arbitrary

function in S with compact support. We can choose x0 ∈ X with Vx0 ⊆ X \ supp(h)

by (b). Then we have from (a) that∥∥∥∥1τ − h

∥∥∥∥
S

≥
∥∥∥∥1τ − h

∥∥∥∥
τ

≥
∫
Vx0

1

τ(t)
τ(t)dµ(t) = µ(Vx0) ≥ mµ > 0,

which implies that S is not Tauberian.

(iii) To see that S is of BSE, let Λ be the directed set consisting of all finite subsets

of X with inclusion order, and take λ = {x1, · · · , xn} ∈ Λ arbitrarily. By (c), we

can find a family {U1, · · · , Un} consisting of open subsets in X such that

xi ∈ Ui ⊆ Vxi
, µ(Ui) <

1

nMi

and Ui ∩ Uj = ∅ (i ̸= j)

for all i = 1, · · · , n, where Mi = sup{τ(x) : x ∈ Vxi
}. Next, we choose a finite set

{ex1 , · · · , exn} in Cc(X) such that

exi
(xi) = 1, 0 ≤ exi

≤ 1 and supp(exi
) ⊆ Ui

for all i = 1, · · · , n. We define eλ by

eλ =
n∑

i=1

exi
.

Then we have that eλ(xi) = 1 (1 ≤ i ≤ n) and

∥eλ∥S = ∥eλ∥∞ + ∥eλ∥τ = 1 + sup
x∈X

n∑
i=1

∫
Vx

exi
(t)τ(t)dµ(t)

≤ 1 +
n∑

i=1

∫
Ui

exi
(t)τ(t)dµ(t) ≤ 1 +

n∑
i=1

∫
Ui

Miµ(t) < 2.

Thus, {eλ}λ∈Λ is a bounded X-weak approximate identity of S. Therefore, we have

that M(S) ⊆ CBSE(S)(X) by [9, Corollary 5]. Hence S must be of BSE because S

is of type I by (i). S is not Tauberian by (ii), and then Theorem 3.2 shows that S

is not of BED. □

Remark 2. If X is a locally compact σ-compact Hausdorff space with a positive

continuous regular Borel measure µ, then (c) is automatically satisfied.
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Remark 3. Let G be a locally compact σ-compact noncompact group with contin-

uous left Harr measure µ. Then the conditions (a), (b) and (c) are automatically

satisfied. In fact, take an open neighbourhood Ve of the identity element e with com-

pact support and put Vx = xVe for each x ∈ G. Thenmµ = Mµ = µ(Ve) = µ(Vx) > 0

and hence (a) is satisfied. Let K be an arbitrary compact set in G. If K ∩ Vx ̸= ∅
for all x ∈ G \K, then G \K ⊆ KV −1

e , hence G must be compact because KV −1
e

has compact closure. This contradicts that G is noncompact. Thus, we see that (b)

is satisfied. Also, since µ is continuous and regular, it follows from Remark 2 that

(c) is satisfied.

6. Algebras which belong to B0,1
typeI

In this section, we will give two subfamilies of B0,1
typeI . To do this, let X be a non-

compact locally compact Hausdorff space.

(I)

Assume that X is σ-compact. Then we can choose a sequence {U1, U2, · · · } of open

subsets of X with compact closure such that U1 ⫋ U2 ⊆ U2 ⫋ U3 ⊆ · · · and

∪∞
n=1Un = X. For each n ∈ N, choose xn ∈ Un \ Un−1, where U0 = ∅, and define

C0, p,{xi}(X) =

{
f ∈ C0(X) :

∞∑
i=1

|f(xi)|p < ∞

}
,

for 1 ≤ p < ∞. Then it becomes a semisimple commutative Banach algebra under

l1-norm:

∥f∥∞,p,{xi} = ∥f∥∞ +

(
∞∑
i=1

|f(xi)|p
)1/p

(f ∈ C0,p,{xi}(X)).

In this case, we have the following

Theorem 6.1. The Banach algebra C0,p,{xi}(X) is a BED-algebra of type I but is

not a BSE-algebra, that is, this algebra belongs to B0,1
typeI .

Proof. We first show that C0,p,{xi}(X) is a Segal algebra in C0(X). Since each com-

pact subset of X is contained in some Un, it follows that Cc(X) ⊆ C0, p,{xi}(X),

hence C0, p,{xi}(X) is a dense Banach ideal in C0(X). Then it is sufficient to show

that C0, p,{xi}(X) has approximate units. To see this, take f ∈ C0, p,{xi}(X) and ε > 0

arbitrarily. Then there is Nε ∈ N such that

∞∑
i=Nε+1

|f(xi)|p < εp/2p.
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Put

K = {x ∈ X : |f(x)| ≥ ε/2} ∪ UNε ,

and let U be an open neighbourhood of K with compact closure. Choose a contin-

uous function e on X such that e|K = 1, e|X \U = 0 and 0 ≤ e ≤ 1. Then e is in

Cc(X) and

∥f − fe∥∞,p,{xi} = sup
x/∈K

|f(x)(1− e(x))|+

(
∞∑

i=Nε+1

|f(xi)(1− e(xi))|p
)1/p

< ε/2 + ε/2 = ε

holds. Then C0, p,{xi}(X) has approximate units as required.

By the above argument and Theorem 3.1, we see that C0, p,{xi}(X) is a Tauberian

Banach algebra of type I. Furthermore, we see that C0, p,{xi}(X) has no bounded X-

weak approximate identity. In fact, suppose on the contrary that it has a bounded

X-weak approximate identity {eλ}λ∈Λ bounded by β. Then for each n ∈ N, we can

find λn ∈ Λ such that

n
1
p/2 ≤ ∥eλn∥∞,p,{xi} ≤ β.

This is a contradiction because n is arbitrary. Thus we see that C0, p,{xi}(X) is not

of BSE by [9, Corollary 5].

Finally, we show that C0, p,{xi}(X) is of BED. In fact, since C0, p,{xi}(X) is Taube-

rian, it follows from [1, Proposition 4.1] that

C0, p,{xi}(X) ⊆ C0
BSE(C0, p,{xi}(X))(X).

To show the reverse inclusion, let f ∈ C0
BSE(C0, p,{xi}(X))(X). Take ε > 0 arbitrarily,

and hence there is K0 ∈ K(X) with ∥f∥BSE,K0 < ε. Let px(g) = g(x) for x ∈ X and

g ∈ C0, p,{xi}(X). Since ∥px∥C0, p,{xi}(X)∗ ≤ 1 and p̂x|K0 = 0 for all x /∈ K0, it follows

that

|f(x)| ≤ ∥f∥BSE,K0 < ε

for all x /∈ K0, and hence f ∈ C0(X). Next, we need to show
∑∞

i=1 |f(xi)|p < ∞.

To do this, take n ∈ N arbitrarily and consider the space lqn, where 1/p + 1/q = 1.

Then we can choose a = (a1, · · · , an) ∈ lqn such that

∥a∥lqn = 1 and

∣∣∣∣∣
n∑

i=1

aif(xi)

∣∣∣∣∣ =
(

n∑
i=1

|f(xi)|p
)1/p

. (6.1)

Moreover, let pa ∈ span(X) be a functional defined by p̂a(xi) = ai for i = 1, 2, · · · , n
and p̂a(x) = 0 otherwise. Then we have from Hörder-Rogers’ inequality and the first
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equation of (6.1) that

∥pa∥C0, p,{xi}(X)∗ = sup
g∈C0,p,{xi}(X)

∥g∥∞,p,{xi}≤1

∣∣∣∣∣
n∑

i=1

aig(xi)

∣∣∣∣∣
≤ sup

g∈C0,p,{xi}(X)

∥g∥∞,p,{xi}≤1

(
n∑

i=1

|ai|q
)1/q( n∑

i=1

|g(xi)|p
)1/p

≤ 1.

Hence,

n∑
i=1

|f(xi)|p =

∣∣∣∣∣
n∑

i=1

aif(xi)

∣∣∣∣∣
p

≤ sup
p∈span(X)

∥p∥C0,p,{xi}
(X)∗≤1

∣∣∣∣∣
n∑

i=1

p̂(xi)f(xi)

∣∣∣∣∣
p

= ∥f∥pBSE(C0,p,{xi}(X)) < ∞

holds by the second equation of (6.1). Since n is arbitrary, it follows that
∞∑
i=1

|f(xi)|p ≤ ∥f∥pBSE(C0,p,{xi}(X)) < ∞

as required, that is, f ∈ C0, p,{xi}(X). Consequently, we have

C0, p,{xi}(X) = C0
BSE(C0, p,{xi}(X))(X),

namely, C0, p,{xi}(X) is of BED. □

(II)

Let A = C0(X) and τ an unbounded complex-valued continuous function on X. For

n ∈ N, define

Aτ(n) = {f ∈ A : fτ k ∈ A (0 ≤ k ≤ n)}
and

∥f∥τ(n) =
n∑

k=0

∥fτ k∥∞ (f ∈ Aτ(n)).

Note that τ is a local A-function, that is, fτ ∈ A holds for all f ∈ Ac. Therefore,

it follows from [2, Theorem 5.4 (ii)] that Aτ(n) is a Segal algebra in A, hence it is of

type I from Lemma 2.1. Moreover, we see from [2, Remark 9.11 (b)] that Aτ(n) is of

BED but is not of BSE.

By summarizing the above arguments, the following theorem is obtained.

Theorem 6.2. Let Aτ(n) be as in the above. Then Aτ(n) is a BED-algebra of type I

but is not a BSE-algebra, that is, this algebra belongs to B0,1
typeI .
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In addition, we have from [2, Proposition 8.2 (ii)] that

A ⫌ Aτ(1) ⫌ Aτ(2) ⫌ · · · ⫌ Aτ(n) ⫌ · · · .

7. Algberas which belong to B0,0,k
typeI (k = 0, 1)

The case of k = 1.

Let X be a locally compact Hausdorff space. Let S1 and S2 be two Segal algebras

in C0(X). Then S1 ∩ S2 is a Segal algebra in C0(X) with norm ∥f∥S1 + ∥f∥S2 for

f ∈ S1 ∩ S2 (see [2, Theorem D′]). We denote by S1 ∧ S2 such a Segal algebra in

C0(X). Under this notation, we have the following

Theorem 7.1. Assume that S1 is not of BSE, S2 is of BSE and S1 ⊈ S2. Then

(i) S1 ∧ S2 is a Tauberian Banach algebra of type I.

(ii) S1 ∧ S2 is neither of BSE nor of BED.

Namely, S1 ∧ S2 belongs to B0,0,1
typeI .

Proof. (i) This follows directly from Theorem 3.1.

(ii) We first show that S1∧S2 is not of BSE. In fact, suppose on the contrary that

S1 ∧ S2 is of BSE, so it has a bounded X-weak approximate identity, say {eλ}λ∈Λ.
Since ∥eλ∥S1 ≤ ∥eλ∥S1∧S2 for all λ ∈ Λ, it follows that {eλ}λ∈Λ is also a bounded

X-weak approximate identity of S1. Therefore, S1 must be of BSE with the help of

[2, Theorem 9.10]. This contradicts that S1 is not of BSE.

We next show that S1 ∧ S2 is not of BED. We first assert that CBSE(S1∧S2)(X) =

CBSE(S1)(X) holds. Clearly CBSE(S1∧S2)(X) ⊆ CBSE(S1)(X) because ∥p∥(S1∧S2)∗ ≤
∥p∥S∗

1
for all p ∈ span(X). To show the reverse inclusion, take σ ∈ CBSE(S1)(X)

arbitrarily. Then by [9, Theorem 4], we can find a bounded net {σλ}λ∈Λ in S1 such

that limλ σλ(x) = σ(x) for all x ∈ X. Also, since S2 is of BSE, it has a bounded

X-weak approximate identity, say {ui}i∈I . Put σλ,i = σλui for each λ ∈ Λ and i ∈ I.

Since both S1 and S2 are ideals of C0(X), it follows that {σλ,i}(λ,i)∈Λ×I is a net in

S1 ∧ S2 such that limλ,i σλ,i(x) = σ(x) for all x ∈ X. Moreover,

∥σλ,i∥S1∧S2 = ∥σλui∥S1 + ∥σλui∥S2 ≤ ∥σλ∥S1∥ui∥∞ + ∥σλ∥∞∥ui∥S2

≤ ∥σλ∥S1∥ui∥S2 + ∥σλ∥S1∥ui∥S2

≤ 2 sup
λ∈Λ

∥σλ∥S1 × sup
i∈I

∥ui∥S2 < ∞

for all λ ∈ Λ and i ∈ I. Thus, we see that {σλ,i}(λ,i)∈Λ×I is a bounded net in S1∧S2.

Then it follows that σ ∈ CBSE(S1∧S2)(X) with the help of [9, Theorem 4] again.

Thus, we see that the reverse inclusion holds as required. Our assertion implies that

two BSE-norms ∥·∥BSE(S1∧S2) and ∥·∥BSE(S1) on CBSE(S1∧S2)(X) = CBSE(S1)(X) are

equivalent. Note also that S1 is the ∥ ·∥S1-norm closure of Cc(X) by [2, Theorem A′]
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and that the ∥·∥S1-norm closure of Cc(X) is contained in the ∥·∥BSE(S1)-norm closure

of S1∧S2 because Cc(X) ⊆ S1∧S2 and ∥f∥BSE(S1) ≤ ∥f∥S1 for all f ∈ S1. Moreover,

note that S1 ∧ S2
∥·∥BSE(S1∧S2) = C0

BSE(S1∧S2)
(X) holds by Lemma 2.2. Therefore, we

have

S1 ∧ S2 ⫋ S1 = Cc(X)
∥·∥S1 ⊆ S1 ∧ S2

∥·∥BSE(S1) = S1 ∧ S2
∥·∥BSE(S1∧S2)

= C0
BSE(S1∧S2)

(X),

which implies that S1 ∧ S2 is not of BED. □

The above theorem gives many Segal algebras belonging to B0,0,1
typeI . For example,

let S1 = C0(R
n)τ(1) and S2 = C0,p(R

n, dx), where n ∈ N, 1 ≤ p < 1/α and dx is the

Lebesgue measure on Rn with τ(x) = |x|α+1 (x ∈ Rn). Then S1 is a Segal algebra

of type I in C0(R
n) which is not of BSE by Theorem 6.2. Also S2 is a BSE Segal

algebra of type I in C0(R
n) by Theorem 5.1. Define

f(x) =

{
1/|x|1/p (|x| > 1)

1 (|x| ≤ 1).

Then we can easily see that f ∈ S1 \S2, and hence S1 ⊈ S2. Thus, by Theorem 7.1,

we obtain the following

Corollary 7.2. If τ(x) = |x|α + 1 (x ∈ Rn), 1 ≤ p < n/α and dx is the Lebesgue

measure on Rn, then C0(R
n)τ(1) ∧ C0,p(R

n, dx) belongs to B0,0,1
typeI .

The case of k = 0.

LetX be a noncompact locally compact Hausdorff space and τ a continuous complex-

valued function on X such that infx∈X τ(x) ≥ 1 and 1/τ ∈ C0(X). Define

C0(X; τ) = {f ∈ Cb(X) : sup
x∈X

|f(x)|τ(x) < ∞}

and

∥f∥∞,τ = sup
x∈X

|f(x)|τ(x)

for each f ∈ C0(X; τ). By a routine argument, we see that C0(X; τ) is a commutative

Banach algebra with norm ∥ · ∥∞,τ such that

Cc(X) ⊆ C0(X; τ) ⊆ C0(X).

Therefore, C0(X; τ) becomes a dense Banach ideal in C0(X). Also C0(X; τ) is

natural. In fact, let φ be an arbitrary element of ΦC0(X;τ). Choose h ∈ C0(X; τ)

with φ(h) ̸= 0 and define

φ̃(f) = φ(hf)/φ(h)
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for each f ∈ C0(X). This is well-defined because the right hand side of the above

equation is independent of a choice of h. By an easy calculation, we see that φ̃ is a

nonzero complex homomorphism on C0(X), and hence we can find x ∈ X such that

φ̃(f) = f(x) holds for all f ∈ C0(X). This implies that φ(f) = f(x) holds for all

f ∈ C0(X; τ), namely, C0(X; τ) is natural as required. Therefore, ΦC0(X;τ) can be

identified with X by [8, Theorem 3.2.4]. Then we have the following

Theorem 7.3. Let C0(X; τ) be as in the above. Then

(i) C0(X; τ) is not Tauberian.

(ii) C0(X; τ) is a Banach algebra of type I but is neither of BSE nor of BED.

Namely, C0(X; τ) belongs to B0,0,0
typeI .

Proof. (i) Suppose that C0(X; τ) is Tauberian. Put h = 1/τ , and then it must be

in C0(X; τ). Therefore, we can find f ∈ C0(X; τ) with compact support such that

∥h− f∥∞,τ < 1 by hypothesis. On the other hand, we have

∥h− f∥∞,τ = sup
x∈X

∣∣∣∣ 1

τ(x)
− f(x)

∣∣∣∣ τ(x) = sup
x∈X

|1− f(x)τ(x)| ≥ 1.

Thus, we reach to a contradiction.

(ii) Note that C0(X; τ) is an ideal of Cb(X), and hence Cb(X) ⊆ M(C0(X; τ))

holds. Also, since ΦC0(X;τ) can be identified with X, it follows that M(C0(X; τ)) ⊆
Cb(X). Thus we obtain M(C0(X; τ)) = Cb(X), that is, C0(X; τ) is of type I. Also,

since C0(X; τ) is a Banach algebra of type I but is not Tauberian, it follows from

Theorem 3.2 that C0(X; τ) is not of BED. Finally, we show that C0(X; τ) is not

of BSE. Suppose on the contrary that C0(X; τ) is of BSE, hence it has a bounded

X-weak approximate identity, say, {eλ}λ∈Λ bounded by β. Then we can choose

x0 ∈ X and λ0 ∈ Λ such that τ(x0) ≥ 2β + 1 and |eλ0(x0) − 1| ≤ 1/2 because

supx∈X τ(x) = ∞ by the assumption on τ . Then we have

β ≥ ∥eλ0∥∞,τ = sup
x∈X

|eλ0(x)|τ(x) ≥ |eλ0(x0)|τ(x0) ≥
2β + 1

2
= β +

1

2
,

which is a contradiction. □

References

1. J. Inoue and S.-E. Takahasi, On characterizations of the image of the Gelfand

transform of commutative Banach algebras, Math. Nachr., 280 (2007), 105–126.

2. J. Inoue and S.-E. Takahasi, Segal algebras in commutative Banach algebras,

Rocky Mountain J. Math., 44-2 (2014), 539–589.

3. J. Inoue and S.-E. Takahasi, A construction of a BSE-algebra of type I which is

isomorphic to no C*-algebras, Rocky Mountain J. Math., 47-8 (2017), 2693–

2697.

— 16 —
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