SURJECTIVE ISOMETRIES ON A BANACH SPACE OF ANALYTIC FUNCTIONS ON THE OPEN UNIT DISC

TAKESHI MIURA AND NORIO NIWA

Abstract

Let \mathcal{S}_{A} be the complex linear space of all analytic functions on the open unit disc \mathbb{D}, whose derivative can be extended to the closed unit disc $\overline{\mathbb{D}}$. We give the characterization of surjective, not necessarily linear, isometries on \mathcal{S}_{A} with respect to the norm $\|f\|_{\sigma}=|f(0)|+\sup \left\{\left|f^{\prime}(z)\right|: z \in \mathbb{D}\right\}$ for $f \in \mathcal{S}_{A}$.

1. Introduction and main result

A mapping $T: M \rightarrow N$ between two normed linear spaces $\left(M,\|\cdot\|_{M}\right)$ and $\left(N,\|\cdot\|_{N}\right)$ is an isometry if and only if it preserves the distance of two points in M, that is,

$$
\|T(a)-T(b)\|_{N}=\|a-b\|_{M} \quad(a, b \in M)
$$

The Mazur-Ulam theorem [16] states that every surjective isometry T between two normed linear spaces is real linear provided $T(0)=0$.

We mention the characterization of isometries on several normed linear spaces. Isometries were studied on various spaces by many researchers, as for example in $[3,12,13,20,21]$. In 1932, isometries are studied by Banach [1, Theorem 3 in Chapter XI] (see also [23, Theorem 83]). There have been numerous papers on isometries defined on Banach spaces of analytic functions; see [2, 4, 5, 8, 11, 14].

Among the basic problems in analytic function spaces, Novinger and Oberlin, in [19], characterized complex linear isometries on a normed space \mathcal{S}^{p}. The underlying space \mathcal{S}^{p} is a normed space consisting of analytic functions f on the open unit disc \mathbb{D} whose derivative f^{\prime} belongs to the classical Hardy space $\left(H^{p}(\mathbb{D}),\|\cdot\|_{p}\right)$ for $1 \leq p<\infty$. They introduced the norm $|f(0)|+\left\|f^{\prime}\right\|_{p}$ on the normed space \mathcal{S}^{p}.

In this paper we study surjective isometries on the Banach space \mathcal{S}_{A} of analytic functions f defined on \mathbb{D} whose derivative can be extended to the closed unit disc $\overline{\mathbb{D}}$, and endowed with the norm $\|f\|_{\sigma}=|f(0)|+\sup _{z \in \mathbb{D}}\left|f^{\prime}(z)\right|$. We denote by $A(\overline{\mathbb{D}})$

[^0]the disc algebra, that is, the algebra of all analytic functions on \mathbb{D} which can be extended to continuous functions on $\overline{\mathbb{D}}$.

In Section 2, we start by defining an embedding of \mathcal{S}_{A} into a subspace B consisting of complex valued continuous functions. Then using the Arens-Kelley theorem (see [10, Corollary 2.3.6 and Theorem 2.3.8]), we give a characterization of extreme points of the unit ball B_{1}^{*} of the dual space B^{*} of B. Then we construct some maps to describe extreme points of B_{1}^{*} in Section 3.

We used an idea by Ellis for the characterization of surjective real linear isometries on uniform algebras (see [9]). An adjoint operator of a surjective real linear isometry on the dual space B^{*} preserves extreme points. The action of such adjoint operator on the set of extreme points gives a representation for the isometries on B. We show in Section 4 that the isometries of \mathcal{S}_{A} are integral operators of weighted differential operators. The main result of this paper is as follows.

Theorem 1. If $T: \mathcal{S}_{A} \rightarrow \mathcal{S}_{A}$ is a surjective, not necessarily linear, isometry with respect to the norm $\|f\|_{\sigma}=|f(0)|+\sup _{z \in \mathbb{D}}\left|f^{\prime}(z)\right|$ for $f \in \mathcal{S}_{A}$, then there exist constants $c_{0}, c_{1}, \lambda \in \mathbb{T}$ and $a \in \mathbb{D}$ such that

$$
\begin{aligned}
& T(f)(z)=T(0)(z)+c_{0} f(0)+\int_{[0, z]} c_{1} f^{\prime}(\rho(\zeta)) d \zeta, \\
& \left(\forall f \in \mathcal{S}_{A}, \forall z \in \mathbb{D}\right), \quad \text { or } \\
& T(f)(z)=T(0)(z)+\overline{c_{0} f(0)}+\int_{[0, z]} c_{1} f^{\prime}(\rho(\zeta)) d \zeta, \\
& \left(\forall f \in \mathcal{S}_{A}, \forall z \in \mathbb{D}\right), \quad \text { or } \\
& T(f)(z)=T(0)(z)+c_{0} f(0)+\int_{[0, z]} \overline{c_{1} f^{\prime}(\rho(\bar{\zeta}))} d \zeta, \\
& \left(\forall f \in \mathcal{S}_{A}, \forall z \in \mathbb{D}\right), \quad \text { or } \\
& T(f)(z)=T(0)(z)+\overline{c_{0} f(0)}+\int_{[0, z]} \overline{c_{1} f^{\prime}(\rho(\bar{\zeta}))} d \zeta \\
& \left(\forall f \in \mathcal{S}_{A}, \forall z \in \mathbb{D}\right),
\end{aligned}
$$

where $\rho(z)=\lambda \frac{z-a}{\bar{a} z-1}$ for all $z \in \overline{\mathbb{D}}$.
Conversely, each of the above forms is a surjective isometry on \mathcal{S}_{A} with the norm $\|\cdot\|_{\sigma}$, where $T(0)$ is an arbitrary element of \mathcal{S}_{A}.

2. Preliminaries and extreme points

Let $A(\overline{\mathbb{D}})$ be the Banach space of all analytic functions on the open unit disc \mathbb{D} that can be continuously extended to the closed unit disk $\overline{\mathbb{D}}$ with the supremum norm
on \mathbb{D}. For each $v \in A(\overline{\mathbb{D}}), v^{\prime}$ means the derivative of v on \mathbb{D}, that is,

$$
v^{\prime}(z)=\lim _{h \rightarrow 0} \frac{v(z+h)-v(z)}{h} \quad(z \in \mathbb{D}) .
$$

We define \mathcal{S}_{A} by the linear space of all analytic functions f on \mathbb{D} whose derivative f^{\prime} belongs to $A(\overline{\mathbb{D}})$. By [4, Theorem 3.11], we see that $\mathcal{S}_{A} \subset A(\overline{\mathbb{D}})$. By the definition of $\mathcal{S}_{A}, f^{\prime}$ is an analytic function on \mathbb{D} which can be extended to a continuous function on $\overline{\mathbb{D}}$. Let \widehat{v} be the unique continuous extension of $v \in A(\overline{\mathbb{D}})$ to $\overline{\mathbb{D}}$; in fact, such an extension is unique since \mathbb{D} is dense in $\overline{\mathbb{D}}$. We define the norm $\|f\|_{\sigma}$ of $f \in \mathcal{S}_{A}$ by

$$
\begin{equation*}
\|f\|_{\sigma}=|f(0)|+\left\|\widehat{f^{\prime}}\right\|_{\infty} \quad\left(f \in \mathcal{S}_{A}\right) \tag{2.1}
\end{equation*}
$$

where $\left\|\widehat{f^{\prime}}\right\|_{\infty}=\sup \left\{\left|\widehat{f^{\prime}}(z)\right|: z \in \overline{\mathbb{D}}\right\}=\sup \left\{\left|f^{\prime}(z)\right|: z \in \mathbb{D}\right\}$. It is routine to check that $\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right)$ is a complex Banach space. In the rest of this paper, \mathbb{T} denotes the unit circle in the complex number field. We define

$$
\begin{equation*}
\tilde{f}(z, w)=f(0)+\widehat{f}^{\prime}(z) w \tag{2.2}
\end{equation*}
$$

for $f \in \mathcal{S}_{A}$ and $(z, w) \in \mathbb{T}^{2}$. Then the function \tilde{f} is continuous on \mathbb{T}^{2} with the product topology. Let $C\left(\mathbb{T}^{2}\right)$ be the Banach space of all continuous complex valued functions on \mathbb{T}^{2} with respect to the supremum norm $\|\cdot\|_{\infty}$ on \mathbb{T}^{2}. We set

$$
B=\left\{\tilde{f} \in C\left(\mathbb{T}^{2}\right): f \in \mathcal{S}_{A}\right\}
$$

Then B is a normed linear subspace of $C\left(\mathbb{T}^{2}\right)$. Let $\mathbf{1} \in \mathcal{S}_{A}$ be the constant function with $\mathbf{1}(z)=1$ for $z \in \mathbb{D}$. By (2.2), we see that B has the constant function $\widetilde{1}$. Notice that B separates points of \mathbb{T}^{2} in the following sense: for each pair of distinct points $x_{1}, x_{2} \in \mathbb{T}^{2}$ there exists $\tilde{f} \in B$ such that $\tilde{f}\left(x_{1}\right) \neq \tilde{f}\left(x_{2}\right)$. In fact, let $x_{j}=\left(z_{j}, w_{j}\right) \in \mathbb{T}^{2}$ for $j=1,2$ with $x_{1} \neq x_{2}$. Let id be the identity function in \mathcal{S}_{A}. If $w_{1} \neq w_{2}$, then by (2.2), id $\in \mathcal{S}_{A}$ satisfies $\widetilde{\operatorname{id}}\left(x_{1}\right)=w_{1} \neq w_{2}=\widetilde{\operatorname{id}}\left(x_{2}\right)$. If $w_{1}=w_{2}$, then we have $z_{1} \neq z_{2}$. Let $f \in \mathcal{S}_{A}$ be such that $f(z)=z^{2}$ for all $z \in \mathbb{D}$. Then $\tilde{f}\left(x_{1}\right)=2 z_{1} w_{1} \neq 2 z_{2} w_{2}=\widetilde{f}\left(x_{2}\right)$ by the assumption. Consequently, $\widetilde{f}\left(x_{1}\right) \neq \widetilde{f}\left(x_{2}\right)$ for some $\tilde{f} \in B$ as is claimed.

We denote by B^{*} the complex dual space of $\left(B,\|\cdot\|_{\infty}\right)$. Let $\delta_{x}: B \rightarrow \mathbb{C}$ be the point evaluation defined by $\delta_{x}(\tilde{f})=\tilde{f}(x)$ for $\tilde{f} \in B$ and $x \in \mathbb{T}^{2}$. Now we characterize extreme points of the unit ball of the dual space of B.

Proposition 2.1. The set of all extreme points $\operatorname{ext}\left(B_{1}^{*}\right)$ of the closed unit ball B_{1}^{*} of the dual space of B is $\left\{\lambda \delta_{x} \in B_{1}^{*}: \lambda \in \mathbb{T}, x \in \mathbb{T}^{2}\right\}$.

Proof. Let $\operatorname{Ch}(B)$ be the Choquet boundary for $B \subset C\left(\mathbb{T}^{2}\right)$, that is, the set of all $x \in \mathbb{T}^{2}$ such that δ_{x} is an extreme point of B_{1}^{*}. By the Arens-Kelly theorem (see [10, Corollary 2.3.6 and Theorem 2.3.8]), $\operatorname{ext}\left(B_{1}^{*}\right)=\left\{\lambda \delta_{x} \in B_{1}^{*}: \lambda \in \mathbb{T}, x \in \operatorname{Ch}(B)\right\}$. We need to show that $\operatorname{Ch}(B)=\mathbb{T}^{2}$. To this end, we will prove that $\mathbb{T}^{2} \subset \operatorname{Ch}(B)$. Let $x_{0}=\left(z_{0}, w_{0}\right) \in \mathbb{T}^{2}$, and we set $f_{0}(z)=\overline{z_{0} w_{0}} z^{2}+\overline{w_{0}} z+1$ for $z \in \mathbb{D}$. Then $f_{0} \in \mathcal{S}_{A}$
with $\widetilde{f_{0}}(z, w)=1+2 \overline{z_{0} w_{0}} z w+\overline{w_{0}} w$ for $(z, w) \in \mathbb{T}^{2}$. We thus obtain $\left|\widetilde{f_{0}}\right| \leq 4$ on \mathbb{T}^{2}. By the equality condition for the triangle inequality, we see that $\left|\widetilde{f_{0}}(z, w)\right|=4$ if and only if $(z, w)=\left(z_{0}, w_{0}\right)$. Since $\operatorname{Ch}(B)$ is a boundary for B, the function $\widetilde{f_{0}}$ attains its maximum modulus on $\operatorname{Ch}(B)$ (see [10, Theorem 2.3.8]). Hence $\left(z_{0}, w_{0}\right) \in \operatorname{Ch}(B)$, and therefore, $\mathbb{T}^{2} \subset \operatorname{Ch}(B)$. Consequently $\operatorname{Ch}(B)=\mathbb{T}^{2}$ has been proven.

Let $T:\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right) \rightarrow\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right)$ be a surjective isometry. Define $T_{0}:\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right) \rightarrow$ $\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right)$ by $T_{0}=T-T(0)$. By the Mazur-Ulam theorem, T_{0} is a surjective, real linear isometry from $\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right)$ onto itself.

The mapping $U:\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right) \rightarrow\left(B,\|\cdot\|_{\infty}\right)$ defined by $U(f)=\tilde{f}$ for $f \in \mathcal{S}_{A}$ is a complex linear isometry. Here, \tilde{f} is defined as in (2.2). In particular, $\widetilde{i f}=i \widetilde{f}$ for $f \in \mathcal{S}_{A}$. We define a mapping $S:\left(B,\|\cdot\|_{\infty}\right) \rightarrow\left(B,\|\cdot\|_{\infty}\right)$ by $S=U T_{0} U^{-1}$. Since U is a surjective complex linear isometry from $\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right)$ onto $\left(B,\|\cdot\|_{\infty}\right)$, it is a bijection, and thus S is a well-defined, surjective real linear isometry on $\left(B,\|\cdot\|_{\infty}\right)$. The equality $S U=U T_{0}$ is rewritten as follows.

$$
\begin{array}{cl}
S(\tilde{f})=\widetilde{T_{0}(f)} & \left(f \in \mathcal{S}_{A}\right) . \tag{2.3}\\
\mathcal{S}_{A} \xrightarrow{T_{0}} & \mathcal{S}_{A} \\
U \\
& \\
B \xrightarrow[S]{ } & \left.\right|_{U}
\end{array}
$$

Let B^{*} be the complex dual space of B with the operator norm. We define a mapping $S_{*}: B^{*} \rightarrow B^{*}$ by

$$
\begin{equation*}
S_{*}(\eta)(\tilde{f})=\operatorname{Re} \eta(S(\tilde{f}))-i \operatorname{Re} \eta(S(i \tilde{f})) \tag{2.4}
\end{equation*}
$$

for $\eta \in B^{*}$ and $\tilde{f} \in B$, where $\operatorname{Re} z$ denotes the real part of a complex number z. Here we notice that the mapping S_{*} was used for the characterization of real linear isometries on uniform algebras by Ellis in [9]. Such techniques are introduced in [22, Proposition 5.17]. The mapping S_{*} is a surjective real linear isometry with respect to the operator norm on B^{*} (cf. [17, Proposition 1]). We observe that S_{*} preserves extreme points of B_{1}^{*}.

3. Construction of mappings

In the remainder of this paper, we assume that $S: B \rightarrow B$ is a surjective real linear isometry defined by (2.3), and $S_{*}: B^{*} \rightarrow B^{*}$ is a surjective real linear isometry given as in (2.4).

Proposition 3.1. The set of all extreme points $\operatorname{ext}\left(B_{1}^{*}\right)$ of B_{1}^{*} with the relative weak*-topology is homeomorphic to \mathbb{T}^{3} with the product topology.

Proof. We define $V: \mathbb{T} \times \mathbb{T}^{2} \rightarrow \operatorname{ext}\left(B_{1}^{*}\right)$ by

$$
\begin{equation*}
V(\lambda, x)=\lambda \delta_{x} \quad\left((\lambda, x) \in \mathbb{T} \times \mathbb{T}^{2}\right) \tag{3.1}
\end{equation*}
$$

We see that V is a well-defined surjective map by Proposition 2.1. We show that V is a homeomorphism.

If $V(\lambda, x)=V(\mu, y)$, then $\lambda \delta_{x}=\mu \delta_{y}$ by the definition of V. By evaluating this equality at $\widetilde{\mathbf{1}} \in B$, we see $\lambda=\lambda \delta_{x}(\widetilde{\mathbf{1}})=\mu \delta_{y}(\widetilde{\mathbf{1}})=\mu$, and hence $\lambda=\mu$. As $\lambda \in \mathbb{T}$, we obtain $\delta_{x}=\delta_{y}$. Since B separates points of \mathbb{T}^{2}, we have $x=y$ and thus $(\lambda, x)=(\mu, y)$. Consequently, V is injective.

Let $\left\{\left(\lambda_{n}, x_{n}\right)\right\}_{n}$ be a sequence in $\mathbb{T} \times \mathbb{T}^{2}$ converging to $\left(\lambda_{0}, x_{0}\right) \in \mathbb{T} \times \mathbb{T}^{2}$. For each $\tilde{f} \in B, \tilde{f}$ is continuous on \mathbb{T}^{2}, and then

$$
V\left(\lambda_{n}, x_{n}\right)(\widetilde{f})=\lambda_{n} \widetilde{f}\left(x_{n}\right) \rightarrow \lambda_{0} \tilde{f}\left(x_{0}\right)=V\left(\lambda_{0}, x_{0}\right)(\tilde{f})
$$

as $n \rightarrow \infty$. Therefore $\left\{V\left(\lambda_{n}, x_{n}\right)\right\}_{n}$ converges to $V\left(\lambda_{0}, x_{0}\right)$ with respect to the relative weak*-topology on $\operatorname{ext}\left(B_{1}^{*}\right)$. Hence V is continuous.

The weak*-topology of B^{*} is a Hausdorff topology, and thus ext $\left(B_{1}^{*}\right)$ is a Hausdorff space with the relative weak*-topology. By the compactness of $\mathbb{T} \times \mathbb{T}^{2}$, we see that V is a homeomorphism. Consequently, $\operatorname{ext}\left(B_{1}^{*}\right)$ is homeomorphic to \mathbb{T}^{3}, as is claimed.

Definition 1. Let V be the map defined as in (3.1), and let p_{j} be the projection from $\mathbb{T} \times \mathbb{T}^{2}$ onto the j-th coordinate of $\mathbb{T} \times \mathbb{T}^{2}$ for $j=1,2$. We define maps $\alpha: \mathbb{T} \times \mathbb{T}^{2} \rightarrow \mathbb{T}$ and $\Phi: \mathbb{T} \times \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ by $\alpha=p_{1} \circ V^{-1} \circ S_{*} \circ V$ and $\Phi=p_{2} \circ V^{-1} \circ S_{*} \circ V$.

Recall that V is a homeomorphism and S_{*} is a surjective real linear isometry, and thus $S_{*}\left(\operatorname{ext}\left(B_{1}^{*}\right)\right)=\operatorname{ext}\left(B_{1}^{*}\right)$. Hence α and Φ are both well-defined, surjective continuous functions.

By the definitions of α and $\Phi,\left(V^{-1} \circ S_{*} \circ V\right)(\lambda, x)=(\alpha(\lambda, x), \Phi(\lambda, x))$ for $(\lambda, x) \in$ $\mathbb{T} \times \mathbb{T}^{2}$. Hence $\left(S_{*} \circ V\right)(\lambda, x)=V(\alpha(\lambda, x), \Phi(\lambda, x))$, which shows

$$
\begin{equation*}
S_{*}\left(\lambda \delta_{x}\right)=\alpha(\lambda, x) \delta_{\Phi(\lambda, x)} \tag{3.2}
\end{equation*}
$$

for every $\lambda \in \mathbb{T}$ and $x \in \mathbb{T}^{2}$. For the sake of simplicity of notation, we denote $\alpha(\lambda, x)$ by $\alpha_{\lambda}(x)$ for $\lambda \in \mathbb{T}$ and $x \in \mathbb{T}^{2}$.

Lemma 3.2. For each $x \in \mathbb{T}^{2}, \alpha_{i}(x)=i \alpha_{1}(x)$ or $\alpha_{i}(x)=-i \alpha_{1}(x)$.

Proof. Let $x \in \mathbb{T}^{2}$ and $\lambda_{0}=(1+i) / \sqrt{2} \in \mathbb{T}$. By the definitions of α and Φ, $S_{*}\left(\lambda_{0} \delta_{x}\right)=\alpha_{\lambda_{0}}(x) \delta_{\Phi\left(\lambda_{0}, x\right)}$. Since S_{*} is real linear,

$$
\begin{aligned}
\sqrt{2} \alpha_{\lambda_{0}}(x) \delta_{\Phi\left(\lambda_{0}, x\right)} & =S_{*}\left((1+i) \delta_{x}\right)=S_{*}\left(\delta_{x}\right)+S_{*}\left(i \delta_{x}\right) \\
& =\alpha_{1}(x) \delta_{\Phi(1, x)}+\alpha_{i}(x) \delta_{\Phi(i, x)}
\end{aligned}
$$

and hence $\sqrt{2} \alpha_{\lambda_{0}}(x) \delta_{\Phi\left(\lambda_{0}, x\right)}=\alpha_{1}(x) \delta_{\Phi(1, x)}+\alpha_{i}(x) \delta_{\Phi(i, x)}$. By the evaluation of the last equality at $\widetilde{\mathbf{1}} \in B, \sqrt{2} \alpha_{\lambda_{0}}(x)=\alpha_{1}(x)+\alpha_{i}(x)$. Since $\alpha_{\lambda}(x) \in \mathbb{T}$ for $\lambda \in \mathbb{T}$, we have $\sqrt{2}=\left|\alpha_{1}(x)+\alpha_{i}(x)\right|=\left|1+\alpha_{i}(x) \overline{\alpha_{1}(x)}\right|$, and thus $\alpha_{i}(x) \overline{\alpha_{1}(x)}$ is i or $-i$. Consequently $\alpha_{i}(x)=i \alpha_{1}(x)$ or $\alpha_{i}(x)=-i \alpha_{1}(x)$ as is claimed.

Lemma 3.3. There exists $\varepsilon_{0} \in\{ \pm 1\}$ such that $S_{*}\left(i \delta_{x}\right)=i \varepsilon_{0} \alpha_{1}(x) \delta_{\Phi(i, x)}$ for every $x \in \mathbb{T}^{2}$.

Proof. We need to prove that $\alpha_{i}(x)=i \alpha_{1}(x)$ for all $x \in \mathbb{T}^{2}$, or $\alpha_{i}(x)=-i \alpha_{1}(x)$ for all $x \in \mathbb{T}^{2}$. Define two subsets E_{+}and E_{-}of \mathbb{T}^{2} by

$$
E_{+}=\left\{x \in \mathbb{T}^{2}: \alpha_{i}(x)=i \alpha_{1}(x)\right\} \quad \text { and } \quad E_{-}=\left\{x \in \mathbb{T}^{2}: \alpha_{i}(x)=-i \alpha_{1}(x)\right\} .
$$

According to Lemma 3.2, $\mathbb{T}^{2}=E_{+} \cup E_{-}$. As $\left|\alpha_{1}(x)\right|=1$ for $x \in \mathbb{T}^{2}, E_{+} \cap E_{-}=\emptyset$. As noticed in Definition 1, the function α is continuous on \mathbb{T}^{3}. Hence $\alpha_{1}=\alpha(1, \cdot)$ and $\alpha_{i}=\alpha(i, \cdot)$ are continuous on \mathbb{T}^{2}, and thus E_{+}and E_{-}are closed subsets of \mathbb{T}^{2}. Since \mathbb{T}^{2} is connected, $\mathbb{T}^{2}=E_{+}$or $\mathbb{T}^{2}=E_{-}$. In other words, $\alpha_{i}(x)=i \alpha_{1}(x)$ for every $x \in \mathbb{T}^{2}$, or $\alpha_{i}(x)=-i \alpha_{1}(x)$ for every $x \in \mathbb{T}^{2}$ as is claimed.

Lemma 3.4. For each $\lambda=a+i b \in \mathbb{T}, a, b \in \mathbb{R}$, and $x \in \mathbb{T}^{2}$,

$$
\begin{equation*}
\lambda^{\varepsilon_{0}} \widetilde{f}(\Phi(\lambda, x))=a \tilde{f}(\Phi(1, x))+i b \varepsilon_{0} \widetilde{f}(\Phi(i, x)) \tag{3.3}
\end{equation*}
$$

for all $\tilde{f} \in B$.
Proof. Let $\lambda=a+i b \in \mathbb{T}$ and $x \in \mathbb{T}^{2}$. Recall that $S_{*}\left(\delta_{x}\right)=\alpha_{1}(x) \delta_{\Phi(1, x)}$, and $S_{*}\left(i \delta_{x}\right)=i \varepsilon_{0} \alpha_{1}(x) \delta_{\Phi(i, x)}$ for some $\varepsilon_{0} \in\{ \pm 1\}$ by Lemma 3.3. Since S_{*} is real linear,

$$
\begin{aligned}
\alpha_{\lambda}(x) \delta_{\Phi(\lambda, x)} & =S_{*}\left(\lambda \delta_{x}\right)=a S_{*}\left(\delta_{x}\right)+b S_{*}\left(i \delta_{x}\right) \\
& =a \alpha_{1}(x) \delta_{\Phi(1, x)}+i b \varepsilon_{0} \alpha_{1}(x) \delta_{\Phi(i, x)}
\end{aligned}
$$

and therefore,

$$
\begin{equation*}
\alpha_{\lambda}(x) \delta_{\Phi(\lambda, x)}=\alpha_{1}(x)\left(a \delta_{\Phi(1, x)}+i b \varepsilon_{0} \delta_{\Phi(i, x)}\right) . \tag{3.4}
\end{equation*}
$$

Evaluating the above equality at $\widetilde{\mathbf{1}} \in B, \alpha_{\lambda}(x)=\left(a+i b \varepsilon_{0}\right) \alpha_{1}(x)$. As $\lambda=a+i b \in \mathbb{T}$ and $\varepsilon_{0}=1$ or -1 , we can write $a+i b \varepsilon_{0}=(a+i b)^{\varepsilon_{0}}=\lambda^{\varepsilon_{0}}$, and hence $\alpha_{\lambda}(x)=$ $\lambda^{\varepsilon_{0}} \alpha_{1}(x)$. Note that $\alpha_{1}(x) \in \mathbb{T}$, and we thus obtain, by (3.4), $\lambda^{\varepsilon_{0}} \tilde{f}(\Phi(\lambda, x))=$ $a \tilde{f}(\Phi(1, x))+i b \varepsilon_{0} \tilde{f}(\Phi(i, x))$ for all $\tilde{f} \in B$.

Definition 2. We define $\phi, \psi: \mathbb{T}^{2} \rightarrow \mathbb{T}$ by $\phi=\pi_{1} \circ \Phi$ and $\psi=\pi_{2} \circ \Phi$, where $\pi_{j}: \mathbb{T}^{2} \rightarrow \mathbb{T}$ is the projection to the j-th coordinate of \mathbb{T}^{2} for $j=1,2$. Then $\Phi(\lambda, x)=(\phi(\lambda, x), \psi(\lambda, x))$ for every $\lambda \in \mathbb{T}$ and $x \in \mathbb{T}^{2}$. For each $\lambda \in \mathbb{T}$, we also denote $\phi_{\lambda}(x)=\phi(\lambda, x)$ and $\psi_{\lambda}(x)=\psi(\lambda, x)$ for all $x \in \mathbb{T}^{2}$. Since Φ is surjective and continuous, we see that both ϕ and ψ are surjective and continuous functions.

Lemma 3.5. For each $\lambda \in \mathbb{T}$ and $x \in \mathbb{T}^{2}, \phi_{\lambda}(x)=\phi_{1}(x)$.
Proof. Let $x \in \mathbb{T}^{2}$. First, we show that $\phi_{\lambda}(x) \in\left\{\phi_{1}(x), \phi_{i}(x)\right\}$ for all $\lambda \in \mathbb{T} \backslash\{1, i\}$. Suppose, on the contrary, that $\phi_{\lambda}(x) \notin\left\{\phi_{1}(x), \phi_{i}(x)\right\}$ for some $\lambda \in \mathbb{T} \backslash\{1, i\}$. Then there exists a polynomial $f \in \mathcal{S}_{A}$ such that

$$
f(0)=0 \quad \text { and } \quad \widehat{f^{\prime}}\left(\phi_{\lambda}(x)\right)=1, \quad \widehat{f^{\prime}}\left(\phi_{1}(x)\right)=0=\widehat{f^{\prime}}\left(\phi_{i}(x)\right) ;
$$

for example, let $z_{\mu}=\phi_{\mu}(x)$ for each $\mu \in \mathbb{T}$ and $k=\left(z_{\lambda}-z_{1}\right)\left(z_{\lambda}-z_{i}\right)$. Then $k \neq 0$ by our hypothesis. If we define $g(z)=k^{-1}\left(z-z_{1}\right)\left(z-z_{i}\right)$, then $g\left(z_{\lambda}\right)=1$ and $g\left(z_{1}\right)=0=g\left(z_{i}\right)$. Choose a polynomial f so that $f^{\prime}=g$ and $f(0)=0$, and then $f \in \mathcal{S}_{A}$ is a desired function. By Definition 2 with (2.2),

$$
\tilde{f}(\Phi(\mu, x))=f(0)+\widehat{f}^{\prime}\left(\phi_{\mu}(x)\right) \psi_{\mu}(x)
$$

for $\mu \in \mathbb{T}$. Thus $\tilde{f}(\Phi(\lambda, x))=\psi_{\lambda}(x)$ and $\tilde{f}(\Phi(1, x))=0=\tilde{f}(\Phi(i, x))$, which implies $\lambda^{\varepsilon_{0}} \psi_{\lambda}(x)=0$ by (3.3). This leads to a contradiction since $\lambda, \psi_{\lambda}(x) \in \mathbb{T}$. Consequently, $\phi_{\lambda}(x) \in\left\{\phi_{1}(x), \phi_{i}(x)\right\}$ for all $\lambda \in \mathbb{T} \backslash\{1, i\}$, as is claimed. By the liberty of the choice of $x \in \mathbb{T}^{2}$, we have proven $\phi_{\lambda}(x) \in\left\{\phi_{1}(x), \phi_{i}(x)\right\}$ for all $\lambda \in \mathbb{T} \backslash\{1, i\}$ and $x \in \mathbb{T}^{2}$.

We next prove that $\phi_{1}(x)=\phi_{i}(x)$ for all $x \in \mathbb{T}^{2}$. Let $\lambda \in \mathbb{T} \backslash\{1, i\}$. The mapping $\phi_{\lambda}: \mathbb{T}^{2} \rightarrow \mathbb{T}$ is continuous as remarked in Definition 2 , and thus $\phi_{\lambda}\left(\mathbb{T}^{2}\right)$ is a connected subset of \mathbb{T}. Since $\phi_{\lambda}(x) \in\left\{\phi_{1}(x), \phi_{i}(x)\right\}$ for all $x \in \mathbb{T}^{2}$, we have $\phi_{1}(x)=\phi_{i}(x)$ for all $x \in \mathbb{T}^{2}$, as is claimed. Consequently, we obtain $\phi_{\lambda}(x)=\phi_{1}(x)$ for all $\lambda \in \mathbb{T}$ and $x \in \mathbb{T}^{2}$.

Lemma 3.6. Let ψ_{1} and ψ_{i} be functions from Definition 2. There exists $\varepsilon_{1} \in\{ \pm 1\}$ such that $\psi_{i}(x)=\varepsilon_{1} \psi_{1}(x)$ for all $x \in \mathbb{T}^{2}$.

Proof. Let $x \in \mathbb{T}^{2}$ and $\lambda_{0}=(1+i) / \sqrt{2} \in \mathbb{T}$. According to (3.3)

$$
\begin{equation*}
\sqrt{2} \lambda_{0}^{\varepsilon_{0}} \tilde{f}\left(\Phi\left(\lambda_{0}, x\right)\right)=\tilde{f}(\Phi(1, x))+i \varepsilon_{0} \tilde{f}(\Phi(i, x)) \tag{3.5}
\end{equation*}
$$

for all $f \in \mathcal{S}_{A}$. By Lemma 3.5, $\Phi(\lambda, x)=\left(\phi_{1}(x), \psi_{\lambda}(x)\right)$ for every $\lambda \in \mathbb{T}$. Therefore, equality (2.2) becomes

$$
\begin{equation*}
\widetilde{f}(\Phi(\lambda, x))=f(0)+\widehat{f}^{\prime}\left(\phi_{1}(x)\right) \psi_{\lambda}(x) \tag{3.6}
\end{equation*}
$$

for all $f \in \mathcal{S}_{A}$ and $\lambda \in \mathbb{T}$. Substitute $f=\operatorname{id} \in \mathcal{S}_{A}$ into (3.6) to get $\widetilde{\mathrm{id}}(\Phi(\lambda, x))=$ $\psi_{\lambda}(x)$ for all $\lambda \in \mathbb{T}$. For $f=\mathrm{id}$, the equality (3.5) reduces to

$$
\sqrt{2} \lambda_{0}^{\varepsilon_{0}} \psi_{\lambda_{0}}(x)=\psi_{1}(x)+i \varepsilon_{0} \psi_{i}(x)
$$

As $\psi_{\lambda}(x) \in \mathbb{T}$ for $\lambda \in \mathbb{T}, \sqrt{2}=\left|\psi_{1}(x)+i \varepsilon_{0} \psi_{i}(x)\right|=\left|1+i \varepsilon_{0} \psi_{i}(x) \overline{\psi_{1}(x)}\right|$. Then we have that $i \varepsilon_{0} \psi_{i}(x) \overline{\psi_{1}(x)}$ is i or $-i$. Thus, for each $x \in \mathbb{T}^{2}, \psi_{i}(x)=\varepsilon_{0} \psi_{1}(x)$ or $\psi_{i}(x)=-\varepsilon_{0} \psi_{1}(x)$. As we remarked in Definition 2, ψ_{1} and ψ_{i} are continuous on the connected set \mathbb{T}^{2}. Hence $\psi_{i}(x)=\varepsilon_{0} \psi_{1}(x)$ for all $x \in \mathbb{T}^{2}$, or $\psi_{i}(x)=-\varepsilon_{0} \psi_{1}(x)$ for all $x \in \mathbb{T}^{2}$.

In the rest of this paper, we denote $a+i b \varepsilon$ by $[a+i b]^{\varepsilon}$ for $a, b \in \mathbb{R}$ and $\varepsilon \in\{ \pm 1\}$. Thus, for each $\lambda \in \mathbb{C},[\lambda]^{\varepsilon}=\lambda$ if $\varepsilon=1$ and $[\lambda]^{\varepsilon}=\bar{\lambda}$ if $\varepsilon=-1$. Therefore, $[\lambda \mu]^{\varepsilon}=[\lambda]^{\varepsilon}[\mu]^{\varepsilon}$ for all $\lambda, \mu \in \mathbb{C}$. If, in addition, $\lambda \in \mathbb{T}$, then $[\lambda]^{\varepsilon}=\lambda^{\varepsilon}$.

Lemma 3.7. For each $f \in \mathcal{S}_{A}$ and $x \in \mathbb{T}^{2}$,

$$
\begin{equation*}
S(\widetilde{f})(x)=\left[\alpha_{1}(x) f(0)\right]^{\varepsilon_{0}}+\left[\alpha_{1}(x) \widehat{f}^{\prime}\left(\phi_{1}(x)\right) \psi_{1}(x)\right]^{\varepsilon_{0} \varepsilon_{1}} . \tag{3.7}
\end{equation*}
$$

Proof. Let $f \in \mathcal{S}_{A}$ and $x \in \mathbb{T}^{2}$. On one hand, by the definition (2.4) of S_{*}, $\operatorname{Re} S_{*}(\eta)(\tilde{f})=\operatorname{Re} \eta(S(\tilde{f}))$ for every $\eta \in B^{*}$. Taking $\eta=\delta_{x}$ and $\eta=i \delta_{x}$ into the last equality, we have

$$
\operatorname{Re} S_{*}\left(\delta_{x}\right)(\tilde{f})=\operatorname{Re} S(\tilde{f})(x) \quad \text { and } \quad \operatorname{Re} S_{*}\left(i \delta_{x}\right)(\tilde{f})=-\operatorname{Im} S(\tilde{f})(x)
$$

respectively, and therefore,

$$
\begin{equation*}
S(\tilde{f})(x)=\operatorname{Re} S_{*}\left(\delta_{x}\right)(\tilde{f})-i \operatorname{Re} S_{*}\left(i \delta_{x}\right)(\tilde{f}) \tag{3.8}
\end{equation*}
$$

On the other hand, $S_{*}\left(\delta_{x}\right)=\alpha_{1}(x) \delta_{\Phi(1, x)}$ and $S_{*}\left(i \delta_{x}\right)=i \varepsilon_{0} \alpha_{1}(x) \delta_{\Phi(i, x)}$ by (3.2) and Lemma 3.3. Substitute these two equalities into (3.8) to obtain

$$
S(\tilde{f})(x)=\operatorname{Re}\left[\alpha_{1}(x) \widetilde{f}(\Phi(1, x))\right]+i \operatorname{Im}\left[\varepsilon_{0} \alpha_{1}(x) \widetilde{f}(\Phi(i, x))\right] .
$$

Lemmas 3.5 and 3.6 imply that $\Phi(1, x)=\left(\phi_{1}(x), \psi_{1}(x)\right)$ and $\Phi(i, x)=\left(\phi_{1}(x), \varepsilon_{1} \psi_{1}(x)\right)$. It follows from (2.2) that

$$
\begin{aligned}
S(\tilde{f})(x)= & \operatorname{Re}\left[\alpha_{1}(x) \tilde{f}\left(\phi_{1}(x), \psi_{1}(x)\right)\right]+i \operatorname{Im}\left[\varepsilon_{0} \alpha_{1}(x) \tilde{f}\left(\phi_{1}(x), \varepsilon_{1} \psi_{1}(x)\right)\right] \\
= & \operatorname{Re}\left[\alpha_{1}(x)\left\{f(0)+\widehat{f^{\prime}}\left(\phi_{1}(x)\right) \psi_{1}(x)\right\}\right] \\
& +i \varepsilon_{0} \operatorname{Im}\left[\alpha_{1}(x)\left\{f(0)+\widehat{f}^{\prime}\left(\phi_{1}(x)\right) \varepsilon_{1} \psi_{1}(x)\right\}\right] \\
= & {\left[\alpha_{1}(x) f(0)\right]^{\varepsilon_{0}}+\left[\alpha_{1}(x) \widehat{f}^{\prime}\left(\phi_{1}(x)\right) \psi_{1}(x)\right]^{\varepsilon_{0} \varepsilon_{1}} . }
\end{aligned}
$$

Hence (3.7) holds for all $f \in \mathcal{S}_{A}$ and $x \in \mathbb{T}^{2}$.

4. Characterization of the surjective isometries on \mathcal{S}_{A}

Lemma 4.1. For each $z, w \in \mathbb{T}, \phi_{1}(z, w)=\phi_{1}(z, 1)$.
Proof. To show that $\phi_{1}(z, w)=\phi_{1}(z, 1)$ for all $z, w \in \mathbb{T}$, suppose not, and then there exist $z_{0}, w_{0} \in \mathbb{T}$ such that $\phi_{1}\left(z_{0}, w_{0}\right) \neq \phi_{1}\left(z_{0}, 1\right)$. We set $w_{1}=1$ and $x_{j}=\left(z_{0}, w_{j}\right)$ for $j=0,1$, and then $\phi_{1}\left(x_{0}\right) \neq \phi_{1}\left(x_{1}\right)$. Since the function $\phi_{1}\left(z_{0}, \cdot\right): \mathbb{T} \rightarrow \mathbb{T}$, which maps $w \in \mathbb{T}$ to $\phi_{1}\left(z_{0}, w\right)$, is continuous, the image $\phi_{1}\left(z_{0}, \mathbb{T}\right)$ is a connected subset of \mathbb{T}. Thus, $\phi_{1}\left(z_{0}, \mathbb{T}\right) \backslash\left\{\phi_{1}\left(x_{0}\right), \phi_{1}\left(x_{1}\right)\right\}$ is a non-empty set. Then there exists $w_{2} \in \mathbb{T}$ such that $\phi_{1}\left(z_{0}, w_{2}\right) \notin\left\{\phi_{1}\left(x_{0}\right), \phi_{1}\left(x_{1}\right)\right\}$. We see that w_{0}, w_{1} and w_{2} are mutually distinct. Set $x_{2}=\left(z_{0}, w_{2}\right)$, and then $\phi_{1}\left(x_{0}\right), \phi_{1}\left(x_{1}\right)$ and $\phi_{1}\left(x_{2}\right)$ are mutually distinct. Then we can choose $f_{0} \in \mathcal{S}_{A}$ such that

$$
f_{0}(0)=0 \quad \text { and } \quad \widehat{f_{0}^{\prime}}\left(\phi_{1}\left(x_{0}\right)\right)=1, \widehat{f_{0}^{\prime}}\left(\phi_{1}\left(x_{1}\right)\right)=0=\widehat{f_{0}^{\prime}}\left(\phi_{1}\left(x_{2}\right)\right) .
$$

Recall $S(\tilde{f})=\widetilde{T_{0}(f)}$ by (2.3), and then equality (3.7) implies

$$
T_{0}\left(f_{0}\right)(0)+\widehat{T_{0}\left(f_{0}\right)^{\prime}}\left(z_{0}\right) w_{j}=\left[\alpha_{1}\left(x_{j}\right) f_{0}(0)\right]^{\varepsilon_{0}}+\left[\alpha_{1}\left(x_{j}\right) \widehat{f_{0}^{\prime}}\left(\phi_{1}\left(x_{j}\right)\right) \psi_{1}\left(x_{j}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}
$$

for $j=0,1,2$. By the choice of f_{0}, we get

$$
\begin{aligned}
& T_{0}\left(f_{0}\right)(0)+\widehat{T_{0}\left(f_{0}\right)^{\prime}}\left(z_{0}\right) w_{0}=\left[\alpha_{1}\left(x_{0}\right) \psi_{1}\left(x_{0}\right)\right]^{\varepsilon_{0} \varepsilon_{1}} \\
& T_{0}\left(f_{0}\right)(0)+\widehat{T_{0}\left(f_{0}\right)^{\prime}}\left(z_{0}\right) w_{1}=0=T_{0}\left(f_{0}\right)(0)+\widehat{T_{0}\left(f_{0}\right)^{\prime}}\left(z_{0}\right) w_{2} .
\end{aligned}
$$

Since $w_{1} \neq w_{2}$, we deduce $\widehat{T_{0}\left(f_{0}\right)^{\prime}}\left(z_{0}\right)=0$, and thus $T_{0}\left(f_{0}\right)(0)=0$. It follows that $\left[\alpha_{1}\left(x_{0}\right) \psi_{1}\left(x_{0}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}=0$, which contradicts $\alpha_{1}\left(x_{0}\right), \psi_{1}\left(x_{0}\right) \in \mathbb{T}$. We thus conclude that $\phi_{1}(z, w)=\phi_{1}(z, 1)$ for all $z, w \in \mathbb{T}$.

Lemma 4.2. There exists a surjective continuous function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\begin{equation*}
T_{0}(f)(0)+\widehat{T_{0}(f)^{\prime}}(z) w=\left[\alpha_{1}(x) f(0)\right]^{\varepsilon_{0}}+\left[\alpha_{1}(x){\widehat{f^{\prime}}}^{\prime}(\varphi(z)) \psi_{1}(x)\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.1}
\end{equation*}
$$

for all $f \in \mathcal{S}_{A}$ and $x=(z, w) \in \mathbb{T}^{2}$.
Proof. We define the mapping $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ by

$$
\varphi(z)=\phi_{1}(z, 1) \quad(\forall z \in \mathbb{T}) .
$$

Since ϕ is continuous, φ is continuous on \mathbb{T}. Equality (3.7) yields (4.1) for all $f \in \mathcal{S}_{A}$ and $x=(z, w) \in \mathbb{T}^{2}$. We prove that $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ is surjective. Recall, by Definition 2 , that ϕ is surjective. Thus, for each $\zeta \in \mathbb{T}$ there exist $\lambda_{1} \in \mathbb{T}$ and $x_{1}=\left(z_{1}, w_{1}\right) \in$ \mathbb{T}^{2} such that $\zeta=\phi\left(\lambda_{1}, x_{1}\right)=\phi_{\lambda_{1}}\left(z_{1}, w_{1}\right)$. Note that $\phi_{\lambda_{1}}\left(z_{1}, w_{1}\right)=\phi_{1}\left(z_{1}, w_{1}\right)$ by Lemma 3.5. In addition, Lemma 4.1 shows that $\phi_{1}\left(z_{1}, w_{1}\right)=\phi_{1}\left(z_{1}, 1\right)=\varphi\left(z_{1}\right)$, and thus $\zeta=\varphi\left(z_{1}\right)$. This yields that φ is surjective as is claimed.

Proposition 4.3. Let $p, q \in \mathbb{C}$. If $|p+\lambda q|=1$ for all $\lambda \in \mathbb{T}$, then $p q=0$ and $|p|+|q|=1$.

Proof. We show $p q=0$. Suppose, on the contrary, $p \neq 0$ and $q \neq 0$. Choose $\lambda_{1} \in \mathbb{T}$ so that $\lambda_{1} q=p|q||p|^{-1}$, and set $\lambda_{2}=-\lambda_{1}$. By hypothesis, $\left|p+\lambda_{1} q\right|=1=\left|p+\lambda_{2} q\right|$, that is,

$$
\left|p+\frac{p|q|}{|p|}\right|=1=\left|p-\frac{p|q|}{|p|}\right| .
$$

These equalities yield $|p|+|q|=1=||p|-|q||$. We may assume $|p|>|q|$, and then we have $|q|=0$, a contradiction. This implies $p q=0$, as is claimed. Then $|p|+|q|=1$ by the initial assumption.

Lemma 4.4. There exists $c_{0} \in \mathbb{T}$ such that $\left[\widehat{T_{0}(\mathbf{1})}(z)\right]^{\varepsilon_{0}}=\alpha_{1}(x)=c_{0}$ for all $x=$ $(z, w) \in \mathbb{T}^{2}$.

Proof. Apply $f=1$, id to (4.1) to get

$$
\begin{align*}
T_{0}(\mathbf{1})(0)+\widehat{T_{0}(\mathbf{1})^{\prime}}(z) w & =\left[\alpha_{1}(x)\right]^{\varepsilon_{0}} \tag{4.2}\\
T_{0}(\mathrm{id})(0)+\widehat{T_{0}(\mathrm{id})^{\prime}}(z) w & =\left[\alpha_{1}(x) \psi_{1}(x)\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.3}
\end{align*}
$$

for every $x=(z, w) \in \mathbb{T}^{2}$. We show that $T_{0}(\mathbf{1})(0) \neq 0$. Assume that $T_{0}(\mathbf{1})(0)=0$, and then $\widehat{T_{0}(\mathbf{1})^{\prime}}(z) w=\left[\alpha_{1}(x)\right]^{\varepsilon_{0}}$. Substitute this equality and (4.3) into (4.1) to have

$$
\begin{aligned}
T_{0}(f)(0)+\widehat{T_{0}(f)^{\prime}} & (z) w \\
& =\widehat{T_{0}(\mathbf{1})^{\prime}}(z) w[f(0)]^{\varepsilon_{0}}+\left\{T_{0}(\mathrm{id})(0)+\widehat{T_{0}(\mathrm{id})^{\prime}}(z) w\right\}\left[\widehat{f^{\prime}}(\varphi(z))\right]^{\varepsilon_{0} \varepsilon_{1}}
\end{aligned}
$$

where we have used $[\lambda \mu]^{\varepsilon}=[\lambda]^{\varepsilon}[\mu]^{\varepsilon}$ for $\lambda, \mu \in \mathbb{C}$ and $\varepsilon=1$ or -1 . Since the above equality holds for all $w \in \mathbb{T}$, we obtain

$$
\begin{equation*}
T_{0}(f)(0)=T_{0}(\mathrm{id})(0)\left[\widehat{f}^{\prime}(\varphi(z))\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.4}
\end{equation*}
$$

for all $f \in \mathcal{S}_{A}$ and $z \in \mathbb{T}$. Taking $f=\operatorname{id}^{2} \in \mathcal{S}_{A}$ in (4.4), we get $T_{0}\left(\mathrm{id}^{2}\right)(0)=$ $2 T_{0}(\mathrm{id})(0)[\varphi(z)]^{\varepsilon_{0} \varepsilon_{1}}$ for all $z \in \mathbb{T}$. By Lemma $4.2, \varphi: \mathbb{T} \rightarrow \mathbb{T}$ is surjective, and then we deduce $T_{0}(\mathrm{id})(0)=0$. Equality (4.4) implies $T_{0}(f)(0)=0$ for all $f \in \mathcal{S}_{A}$. This is impossible since T_{0} is surjective, which shows $T_{0}(\mathbf{1})(0) \neq 0$, as is claimed.

By equality (4.2) with Proposition 4.3, we see that $\widehat{T_{0}(\mathbf{1})^{\prime}}(z)=0$ for all $z \in \mathbb{T}$. Since \mathbb{T} is a boundary for $A(\overline{\mathbb{D}})$, we have $\widehat{T_{0}(\mathbf{1})^{\prime}}=0$ on $\overline{\mathbb{D}}$. Then there exists a constant $c \in \mathbb{C}$ such that $\widehat{T_{0}(\mathbf{1})}=c$ on $\overline{\mathbb{D}}$. Substitute $\widehat{T_{0}\left(\mathbf{1}^{\prime}\right.}(z)=0$ into (4.2) to obtain $c=\left[\alpha_{1}(x)\right]^{\varepsilon_{0}}$ for all $x \in \mathbb{T}^{2}$. Thus $c \in \mathbb{T}$, and $\alpha_{1}(x)=[c]^{\varepsilon_{0}}=\left[\widehat{T_{0}(\mathbf{1})}(z)\right]^{\varepsilon_{0}}$ for all $x=(z, w) \in \mathbb{T}^{2}$.

By Lemma 4.4, equality (4.1) reduces to

$$
\begin{equation*}
T_{0}(f)(0)+\widehat{T_{0}(f)^{\prime}}(z) w=\left[c_{0} f(0)\right]^{\varepsilon_{0}}+\left[c_{0}{\widehat{f^{\prime}}}^{\prime}(\varphi(z)) \psi_{1}(z, w)\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.5}
\end{equation*}
$$

for every $f \in \mathcal{S}_{A}$ and $(z, w) \in \mathbb{T}^{2}$.

Lemma 4.5. Let $c_{0} \in \mathbb{T}$ be the constant from Lemma 4.4. Then $\widehat{T_{0}(\mathrm{id})^{\prime}}(z)=$ $\left[c_{0} \psi_{1}(z, 1)\right]^{\varepsilon_{0} \varepsilon_{1}}$ and $\psi_{1}(z, w)=\psi_{1}(z, 1) w^{\varepsilon_{0} \varepsilon_{1}}$ for all $z, w \in \mathbb{T}$.

Proof. Let $z_{0} \in \mathbb{T}$. It follows from (4.5) that

$$
\begin{equation*}
T_{0}(\mathrm{id})(0)+\widehat{T_{0}(\mathrm{id})^{\prime}}\left(z_{0}\right) w=\left[c_{0} \psi_{1}\left(z_{0}, w\right)\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.6}
\end{equation*}
$$

for every $w \in \mathbb{T}$. Taking the modulus in (4.6), we have $\left|T_{0}(\mathrm{id})(0)+\widehat{T_{0}(\mathrm{id})^{\prime}}\left(z_{0}\right) w\right|=$ 1 for all $w \in \mathbb{T}$. Proposition 4.3 asserts that $T_{0}(\mathrm{id})(0)=0$ or $\widehat{T_{0}(\mathrm{id})^{\prime}}\left(z_{0}\right)=0$. Suppose, on the contrary, that $\widehat{T_{0}(\mathrm{id})^{\prime}}\left(z_{0}\right)=0$. Equality (4.6) shows $T_{0}(\mathrm{id})(0)=$ $\left[c_{0} \psi_{1}\left(z_{0}, w\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for all $w \in \mathbb{T}$. Since T_{0} is surjective, there exists $g \in \mathcal{S}_{A}$ such that $T_{0}(g)(0)=0$ and $\widehat{T_{0}(g)^{\prime}}\left(z_{0}\right)=1$. Substitute these two equalities and $T_{0}(\mathrm{id})(0)=$ $\left[c_{0} \psi_{1}\left(z_{0}, w\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$ into (4.5) to obtain

$$
w=T_{0}(g)(0)+\widehat{T_{0}(g)^{\prime}}\left(z_{0}\right) w=\left[c_{0} g(0)\right]^{\varepsilon_{0}}+T_{0}(\mathrm{id})(0)\left[\widehat{g^{\prime}}\left(\varphi\left(z_{0}\right)\right)\right]^{\varepsilon_{0} \varepsilon_{1}}
$$

for every $w \in \mathbb{T}$. This is impossible since the rightmost hand side of the above equalities is independent of $w \in \mathbb{T}$. Consequently, we have $\widehat{T_{0}(\mathrm{id})^{\prime}}\left(z_{0}\right) \neq 0$, and hence $T_{0}(\mathrm{id})(0)=0$. By equality (4.6), $\widehat{T_{0}(\mathrm{id})^{\prime}}\left(z_{0}\right) w=\left[c_{0} \psi_{1}\left(z_{0}, w\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for all $w \in \mathbb{T}$. By the liberty of the choice of $z_{0} \in \mathbb{T}$, we get $\widehat{T_{0}(\mathrm{id})^{\prime}}(z) w=\left[c_{0} \psi_{1}(z, w)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for all $z, w \in \mathbb{T}$. Taking $w=1$ in this equality, we obtain $\overline{T_{0}(\mathrm{id})^{\prime}}(z)=\left[c_{0} \psi_{1}(z, 1)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for $z \in \mathbb{T}$. It follows that

$$
w=\frac{\widehat{T_{0}(\mathrm{id})^{\prime}}(z) w}{\widehat{T_{0}(\mathrm{id})^{\prime}}(z)}=\frac{\left[c_{0} \psi_{1}(z, w)\right]^{\varepsilon_{0} \varepsilon_{1}}}{\left[c_{0} \psi_{1}(z, 1)\right]^{\varepsilon_{0} \varepsilon_{1}}}=\frac{\left[\psi_{1}(z, w)\right]^{\varepsilon_{0} \varepsilon_{1}}}{\left[\psi_{1}(z, 1)\right]^{\varepsilon_{0} \varepsilon_{1}}},
$$

and consequently, $\psi_{1}(z, w)=\psi_{1}(z, 1) w^{\varepsilon_{0} \varepsilon_{1}}$ for all $z, w \in \mathbb{T}$.
Proof of Theorem 1. Let $f \in \mathcal{S}_{A}$ and $z_{0} \in \mathbb{T}$. By Lemma 4.5, $\psi_{1}\left(z_{0}, w\right)=$ $\psi_{1}\left(z_{0}, 1\right) w^{\varepsilon_{0} \varepsilon_{1}}$ for all $w \in \mathbb{T}$. Substitute this equality into (4.5) to have

$$
T_{0}(f)(0)+\widehat{T_{0}(f)^{\prime}}\left(z_{0}\right) w=\left[c_{0} f(0)\right]^{\varepsilon_{0}}+\left[c_{0} \widehat{f^{\prime}}\left(\varphi\left(z_{0}\right)\right) \psi_{1}\left(z_{0}, 1\right)\right]^{\varepsilon_{0} \varepsilon_{1}} w
$$

for all $w \in \mathbb{T}$. The above equality holds for every $w \in \mathbb{T}$, and then

$$
\begin{equation*}
T_{0}(f)(0)=\left[c_{0} f(0)\right]^{\varepsilon_{0}} \tag{4.7}
\end{equation*}
$$

and $\widehat{T_{0}(f)^{\prime}}\left(z_{0}\right)=\left[c_{0} \widehat{f^{\prime}}\left(\varphi\left(z_{0}\right)\right) \psi_{1}\left(z_{0}, 1\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$. By the liberty of the choice of $f \in \mathcal{S}_{A}$ and $z_{0} \in \mathbb{T}$, we deduce

$$
\begin{equation*}
\widehat{T_{0}(f)^{\prime}}(z)=\left[c_{0} \widehat{f^{\prime}}(\varphi(z)) \psi_{1}(z, 1)\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.8}
\end{equation*}
$$

for all $f \in \mathcal{S}_{A}$ and $z \in \mathbb{T}$.
For each $v \in A(\overline{\mathbb{D}})$, we define $I(v)$ by

$$
I(v)(z)=\int_{[0, z]} v(\zeta) d \zeta \quad(z \in \mathbb{D})
$$

where $[0, z]$ denotes the straight line interval from 0 to z in \mathbb{D}. Then $I(v) \in A(\overline{\mathbb{D}})$ satisfying

$$
\begin{equation*}
I(v)^{\prime}=v \quad \text { on } \quad \mathbb{D}, \tag{4.9}
\end{equation*}
$$

and hence $I(v) \in \mathcal{S}_{A}$. We set $\widehat{A}(\overline{\mathbb{D}})=\{\widehat{v}: v \in A(\overline{\mathbb{D}})\}$ and define $W: \widehat{A}(\overline{\mathbb{D}}) \rightarrow \widehat{A}(\overline{\mathbb{D}})$ by

$$
\begin{equation*}
W(\widehat{v})(z)=\left[\widehat{T_{0}(I(v))^{\prime}}\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}} \quad(v \in A(\overline{\mathbb{D}}), z \in \overline{\mathbb{D}}) \tag{4.10}
\end{equation*}
$$

More precisely

$$
W(\widehat{v})(z)= \begin{cases}\overline{T_{0}(I(v))^{\prime}}(z) & \text { if } \varepsilon_{0} \varepsilon_{1}=1 \\ \overline{\overline{T_{0}(I(v))^{\prime}}(\bar{z})} & \text { if } \varepsilon_{0} \varepsilon_{1}=-1\end{cases}
$$

for $\widehat{v} \in \widehat{A}(\overline{\mathbb{D}})$ and $z \in \overline{\mathbb{D}}$. We see that the mapping W is well-defined. Equality (4.8) with $I(v)^{\prime}=v$ shows that

$$
W(\widehat{v})(z)=c_{0} \widehat{I(v)^{\prime}}\left(\varphi\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right) \psi_{1}\left([z]^{\varepsilon_{0} \varepsilon_{1}}, 1\right)=c_{0} \widehat{v}\left(\varphi\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right) \psi_{1}\left([z]^{\varepsilon_{0} \varepsilon_{1}}, 1\right)
$$

for $\widehat{v} \in \widehat{A}(\overline{\mathbb{D}})$ and $z \in \mathbb{T}$. Since \mathbb{T} is a boundary for $\widehat{A}(\overline{\mathbb{D}})$ and $\varphi(\mathbb{T})=\mathbb{T}$, we have $\|W(\widehat{v})\|_{\infty}=\|\widehat{v}\|_{\infty}$, where $\|\cdot\|_{\infty}$ denotes the supremum norm on $\overline{\mathbb{D}}$. Thus W is a complex linear isometry on $\left(\widehat{A}(\overline{\mathbb{D}}),\|\cdot\|_{\infty}\right)$.

We show that W is surjective. By the surjectivity of $T_{0}: \mathcal{S}_{A} \rightarrow \mathcal{S}_{A}$, for each $v_{0} \in A(\overline{\mathbb{D}})$ there exists $g \in \mathcal{S}_{A}$ such that $T_{0}(g)(z)=\left[I\left(v_{0}\right)\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for all $z \in \mathbb{D}$, and hence

$$
\begin{equation*}
T_{0}(g)^{\prime}(z)=\left[I\left(v_{0}\right)^{\prime}\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}=\left[v_{0}\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}} \tag{4.11}
\end{equation*}
$$

for every $z \in \mathbb{D}$. Since $I\left(g^{\prime}\right)^{\prime}=g^{\prime}$ on \mathbb{D} by (4.9), we see that $I\left(g^{\prime}\right)-g$ is constant on \mathbb{D}, say $d \in \mathbb{C}$. Equality (4.8) shows $\widehat{T_{0}(d)^{\prime}}=0$ on \mathbb{T}. Since \mathbb{T} is a boundary for $\widehat{A}(\overline{\mathbb{D}})$, we see that $\widehat{T_{0}(d)^{\prime}}=0$ on $\overline{\mathbb{D}}$, and hence $T_{0}(d)^{\prime}=0$ on \mathbb{D}. Therefore, $T_{0}\left(I\left(g^{\prime}\right)-g\right)^{\prime}=T_{0}(d)^{\prime}=0$ on \mathbb{D}. By the real linearity of $T_{0}, T_{0}\left(I\left(g^{\prime}\right)\right)^{\prime}=T_{0}(g)^{\prime}$ on \mathbb{D}. Substitute this equality into (4.11) to get $T_{0}\left(I(g)^{\prime}\right)^{\prime}(z)=\left[v_{0}\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for all $z \in \mathbb{D}$. Thus $\widehat{T_{0}\left(I\left(g^{\prime}\right)\right)^{\prime}}(z)=\left[\widehat{v_{0}}\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}$ for all $z \in \overline{\mathbb{D}}$. Therefore, (4.10) shows that $W\left(\widehat{g^{\prime}}\right)(z)=\left[\widehat{T_{0}\left(I\left(g^{\prime}\right)\right)^{\prime}}\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}}=\widehat{v_{0}}(z)$ for all $z \in \overline{\mathbb{D}}$, which yields the surjectivity of $W: \widehat{A}(\overline{\mathbb{D}}) \rightarrow \widehat{A}(\overline{\mathbb{D}})$. Hence W is a surjective complex linear isometry on the uniform algebra $\left(\widehat{A}(\overline{\mathbb{D}}),\|\cdot\|_{\infty}\right)$. By a theorem of deLeeuw, Rudin and Wermer [5, Theorem 3] (see also Nagasawa [18]), there exist an invertible element u of $\widehat{A}(\overline{\mathbb{D}})$ and an algebra automorphism $W_{1}: \widehat{A}(\overline{\mathbb{D}}) \rightarrow \widehat{A}(\overline{\mathbb{D}})$ such that $|u|=1$ on the maximal ideal space $\overline{\mathbb{D}}$ of $\widehat{A}(\overline{\mathbb{D}})$ and that $W(\widehat{v})=u \cdot W_{1}(\widehat{v})$ for all $v \in A(\overline{\mathbb{D}})$. The maximum modulus principle asserts that u is a constant function c_{1} of modulus 1 . It is wellknown that every automorphism on $\widehat{A}(\overline{\mathbb{D}})$ is represented by a composition operator; more explicitly, there exists a homeomorphism $\rho: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ such that $W_{1}(\widehat{v})=\widehat{v} \circ \rho$ for all $v \in A(\overline{\mathbb{D}})$. Letting $v=\mathrm{id}$ in the last equality, we have $\rho=W_{1}(\widehat{\mathrm{id}})$, and hence
ρ is analytic on \mathbb{D}. Since ρ is a homeomorphism on $\overline{\mathbb{D}}$, which is also analytic on \mathbb{D}, there exist $\lambda \in \mathbb{T}$ and $a \in \mathbb{D}$ such that

$$
\rho(z)=\lambda \frac{z-a}{\bar{a} z-1} \quad(z \in \overline{\mathbb{D}})
$$

(see. [22, Theorem 12.6]). We obtain

$$
\begin{equation*}
W(\widehat{v})(z)=c_{1} \widehat{v}(\rho(z)) \quad(v \in A(\overline{\mathbb{D}}), z \in \overline{\mathbb{D}}) . \tag{4.12}
\end{equation*}
$$

For each $f \in \mathcal{S}_{A}, I\left(f^{\prime}\right)^{\prime}=f^{\prime}$ on \mathbb{D} by (4.9), and thus $I\left(f^{\prime}\right)-f$ is constant on \mathbb{D}. By the definition of $I, I\left(f^{\prime}\right)(0)=0$, and we obtain

$$
\begin{equation*}
I\left(f^{\prime}\right)=f-f(0) \quad \text { on } \quad \mathbb{D} \tag{4.13}
\end{equation*}
$$

for all $f \in \mathcal{S}_{A}$. Applying T_{0} to (4.13), we have $T_{0}\left(I\left(f^{\prime}\right)\right)=T_{0}(f)-T_{0}(f(0))$ on \mathbb{D}, where we have used the real linearity of T_{0}. Therefore, $\widehat{T_{0}\left(I\left(f^{\prime}\right)\right)^{\prime}}=\widehat{T_{0}(f)^{\prime}}-\widehat{T_{0}(f(0))^{\prime}}$ on $\overline{\mathbb{D}}$. Equality (4.8) shows $\widehat{T_{0}(f(0))^{\prime}}=0$ on \mathbb{T}, and thus $\widehat{T_{0}(f(0))^{\prime}}=0$ on $\overline{\mathbb{D}}$ since \mathbb{T} is a boundary for $A(\overline{\mathbb{D}})$. We deduce $\widehat{T_{0}\left(I\left(f^{\prime}\right)\right)^{\prime}}=\widehat{T_{0}(f)^{\prime}}$ on $\overline{\mathbb{D}}$. By using (4.10) and (4.12), we have

$$
\begin{aligned}
\widehat{T_{0}(f)^{\prime}}(z) & =\widehat{T_{0}\left(I\left(f^{\prime}\right)\right)^{\prime}}(z)=\left[W\left(\widehat{f^{\prime}}\right)\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right]^{\varepsilon_{0} \varepsilon_{1}} \\
& =\left[c_{1} \widehat{f^{\prime}}\left(\rho\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right)\right]^{\varepsilon_{0} \varepsilon_{1}}
\end{aligned}
$$

for every $z \in \overline{\mathbb{D}}$. In particular,

$$
T_{0}(f)^{\prime}(z)=\left[c_{1} f^{\prime}\left(\rho\left([z]^{\varepsilon_{0} \varepsilon_{1}}\right)\right)\right]^{\varepsilon_{0} \varepsilon_{1}} \quad(z \in \mathbb{D}) .
$$

Equality (4.13), applied to $T_{0}(f)$ instead of f, shows that $I\left(T_{0}(f)^{\prime}\right)=T_{0}(f)-$ $T_{0}(f)(0)$ on \mathbb{D}. Recall that $T_{0}(f)(0)=\left[c_{0} f(0)\right]^{\varepsilon_{0}}$ by (4.7), and consequently

$$
\begin{aligned}
T_{0}(f)(z) & =T_{0}(f)(0)+I\left(T_{0}(f)^{\prime}\right)(z) \\
& =\left[c_{0} f(0)\right]^{\varepsilon_{0}}+\int_{[0, z]}\left[c_{1} f^{\prime}\left(\rho\left([\zeta]^{\varepsilon_{0} \varepsilon_{1}}\right)\right)\right]^{\varepsilon_{0} \varepsilon_{1}} d \zeta
\end{aligned}
$$

for all $f \in \mathcal{S}_{A}$ and $z \in \mathbb{D}$.
Conversely, let $T(0) \in \mathcal{S}_{A}$, and suppose that

$$
T(f)(z)-T(0)(z)=\left[c_{0} f(0)\right]^{\varepsilon_{0}}+\int_{[0, z]}\left[c_{1} f^{\prime}\left(\rho\left([\zeta]^{\varepsilon_{0} \varepsilon_{1}}\right)\right)\right]^{\varepsilon_{0} \varepsilon_{1}} d \zeta
$$

for all $f \in \mathcal{S}_{A}$ and $z \in \mathbb{D}$, where $c_{0}, c_{1} \in \mathbb{T}, \varepsilon_{0}, \varepsilon_{1} \in\{ \pm 1\}$ and $\rho \in \widehat{A}(\overline{\mathbb{D}})$ is a homeomorphism with the above properties. Then we observe that the map $T-T(0)$ is a surjective real linear isometry on $\left(\mathcal{S}_{A},\|\cdot\|_{\sigma}\right)$. This completes the proof.

Acknowledgement. The authors are thankful to an anonymous referee for suggestions that improved our results.

References

[1] S. Banach, Theory of linear operations, Translated by F. Jellett, Dover Publications, Inc. Mineola, New York, 2009.
[2] F. Botelho, Isometries and Hermitian operators on Zygmund spaces, Canad. Math. Bull. 58 (2015), 241-249.
[3] M. Cambern, Isometries of certain Banach algebras, Studia Math. 25 (19641965), 217-225.
[4] J. A. Cima and W. R. Wogen, On isometries of the Bloch space, Illinois J. Math. 24 (1980), 313-316.
[5] K. deLeeuw, W. Rudin and J. Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694-698.
[6] P. L. Duren, The theory of H^{p} spaces, Academic Press, New York, 1970.
[7] F. Forelli, The isometries of H^{p}, Canad. J. Math. 16 (1964), 721-728.
[8] F. Forelli, A theorem on isometreis and the application of it to the isometries of $H^{p}(S)$ for $2<p<\infty$, Canad. J. Math. 25 (1973), 284-289.
[9] A. J. Ellis, Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc. 22 (1990), 381-385.
[10] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman \& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 129. Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[11] W. Hornor and J. E. Jamison, Isometreis of some Banach spaces of analytic functions, Integral Equations Operator Theory 41 (2001), 410-425.
[12] K. Jarosz and V. D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 305 (1988), 193-205.
[13] K. Kawamura, H. Koshimizu and T. Miura, Norms on $C^{1}([0,1])$ and their isometries, Acta Sci. Math. (Szeged) 84 (2018), 239-261.
[14] C. J. Kolaski, Isometries of Bergman spaces over bounded Runge domains, Canad. J. Math. 33 (1981), 1157-1164.
[15] H. Koshimizu, Linear isometries on spaces of continuously differentiable and Lipschitz continuous functions, Nihonkai Math. J. 22 (2011), 73-90.
[16] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
[17] T. Miura, Surjective isometries between function spaces, Contemp. Math. 645 (2015), 231-239.
[18] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep. 11 (1959), 182-188.
[19] W. P. Novinger and D. M. Oberlin, Linear isometries of some normed spaces of analytic functions, Canad. J. Math. 37 (1985), 62-74.
[20] V. D. Pathak, Isometries of $C^{(n)}[0,1]$, Pacific J. Math. 94 (1981), 211-222.
[21] N. V. Rao and A. K. Roy, Linear isometries of some function spaces, Pacific J. Math. 38 (1971), 177-192.
[22] W. Rudin, Real and complex analysis. Third edition, McGraw-Hill Book Co., New York, 1987.
[23] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
(Takeshi Miura) Department of Mathematics, Faculty of Science, Niigata University, Niigata 9502181 Japan
E-mail address: miura@math.sc.niigata-u.ac.jp
(Norio Niwa) Research Office of Mathematics, School of Pharmacy, Nihon University, Chiba 2748555 Japan
E-mail address: niwa.norio@nihon-u.ac.jp

Received May 22, 2018
Revised June 14, 2018

[^0]: 2010 Mathematics Subject Classification. 46J10.
 Key words and phrases. Disc algebra, extreme point, isometry.
 The first author is supported by JSPS KAKENHI Grant Number 15K04921 and 16K05172.

