CALABI-YAU HYPERSURFACES IN THE DIRECT PRODUCT OF \mathbb{P}^{1} AND INERTIA GROUPS

MASAKATSU HAYASHI AND TARO HAYASHI

Abstract

We produce the family of Calabi-Yau hypersurfaces X_{n} of $\left(\mathbb{P}^{1}\right)^{n+1}$ in higher dimension whose inertia group contains non commutative free groups. This is completely different from Takahashi's result [4] for Calabi-Yau hypersurfaces M_{n} of \mathbb{P}^{n+1}.

1. Introduction

Throughout this paper, we work over \mathbb{C}. Given an algebraic variety X, it is natural to consider its birational automorphisms $\varphi: X \rightarrow X$. The set of these birational automorphisms forms a group $\operatorname{Bir}(X)$ with respect to the composition. Let V be an ($n+1$)-dimensional smooth projective rational manifold and $X \subset V$ a projective variety. The decomposition group of X is the group

$$
\operatorname{Dec}(V, X):=\left\{f \in \operatorname{Bir}(V) \mid f(X)=X \text { and }\left.f\right|_{X} \in \operatorname{Bir}(X)\right\} .
$$

The inertia group of X is the group

$$
\begin{equation*}
\operatorname{Ine}(V, X):=\left\{f \in \operatorname{Dec}(V, X)|f|_{X}=\operatorname{id}_{X}\right\} \tag{1.1}
\end{equation*}
$$

In this paper, we treat $\operatorname{Ine}(V, X)$ of some hypersurface $X \subset V$ originated in [2].
In Section 2, we mention the result (Theorem 2.1) of Takahashi [4] about the smooth Calabi-Yau hypersurfaces M_{n} of \mathbb{P}^{n+1} of degree $n+2$. It turns out that the inertia group of M_{n} is trivial (Theorem 1.1). Theorem 1.1 is a direct consequence of Takahashi's result:

Theorem 1.1. Suppose $n \geq 3$. Let $M_{n}=(n+2) \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree $n+2$. Then

$$
\operatorname{Ine}\left(\mathbb{P}^{n+1}, M_{n}\right)=\left\{\operatorname{id}_{\mathbb{P}^{n+1}}\right\}
$$

In Section 3, we consider Calabi-Yau hypersurfaces

$$
X_{n}=(2,2, \ldots, 2) \subset\left(\mathbb{P}^{1}\right)^{n+1}
$$

[^0]Let

$$
\mathrm{UC}(N):=\overbrace{\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z} * \cdots * \mathbb{Z} / 2 \mathbb{Z}}^{N}={\underset{i=1}{N}\left\langle t_{i}\right\rangle}_{N}^{N}
$$

be the universal Coxeter group of rank N where $\mathbb{Z} / 2 \mathbb{Z}$ is the cyclic group of order 2. There is no non-trivial relation between its N natural generators t_{i}. Let

$$
p_{i}: X_{n} \rightarrow\left(\mathbb{P}^{1}\right)^{n} \quad(i=1, \ldots, n+1)
$$

be the natural projections which are obtained by forgetting the i-th factor of $\left(\mathbb{P}^{1}\right)^{n+1}$. Then, the $n+1$ projections p_{i} are generically finite morphism of degree 2 . Thus, for each index i, there is a birational transformation

$$
\iota_{i}: X_{n} \rightarrow X_{n}
$$

that permutes the two points of general fibers of p_{i} and this provides a group homomorphism

$$
\Phi: \mathrm{UC}(n+1) \rightarrow \operatorname{Bir}\left(X_{n}\right) .
$$

From now, we set $P(n+1):=\left(\mathbb{P}^{1}\right)^{n+1}$. Cantat-Oguiso proved the following theorem in [1].

Theorem 1.2. ([1, Theorem 1.3 (2)]) Let X_{n} be a generic hypersurface of multidegree $(2,2, \ldots, 2)$ in $P(n+1)$ with $n \geq 3$. Then the morphism Φ that maps each generator t_{j} of $\mathrm{UC}(n+1)$ to the involution ι_{j} of X_{n} is an isomorphism from $\mathrm{UC}(n+1)$ to $\operatorname{Bir}\left(X_{n}\right)$.

Here "generic" means X_{n} belongs to the complement of some countable union of proper closed subvarieties of the complete linear system $|(2,2, \ldots, 2)|$.

Ludmil Katzarkov asked that how many do the lifts of ι_{j} exist? Our main result is following theorem, answering a question asked by Ludmil Katzarkov:

Theorem 1.3. Let $X_{n} \subset P(n+1)$ be an irreducible hypersurface of multidegree $(2,2, \ldots, 2)$ and $n \geq 3$. Then there are $n+1$ elements $\rho_{i}(1 \leq i \leq n+1)$ of Ine $\left(P(n+1), X_{n}\right)$ such that

$$
\left\langle\rho_{1}, \rho_{2}, \ldots, \rho_{n+1}\right\rangle \simeq \underbrace{\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}}_{n+1} \subset \operatorname{Ine}\left(P(n+1), X_{n}\right) .
$$

In particular, $\operatorname{Ine}\left(P(n+1), X_{n}\right)$ is an infinite non-commutative group, i.e. the lifts of ι_{j} are infinitely.

Our proof of Theorem 1.3 is based on an explicit computation of elementary flavour.

It is interesting that the inertia groups of $X_{n} \subset P(n+1)=\left(\mathbb{P}^{1}\right)^{n+1}$ and $M_{n} \subset$ \mathbb{P}^{n+1} have completely different structures though both X_{n} and M_{n} are Calabi-Yau hypersurfaces in rational Fano manifolds.

2. Calabi-Yau hypersurfaces in \mathbb{P}^{n+1}

Our goal, in this section, is to prove Theorem 1.1 (i.e. Theorem 2.2). Before that, we introduce the result of Takahashi [4].

Theorem 2.1. ([4, Theorem 2.3]) Let X be a Fano manifold (i.e. a manifold whose anti-canonical divisor $-K_{X}$ is ample, with $\operatorname{dim} X \geq 3$ and $\operatorname{dim}_{\mathbb{Q}} \operatorname{Pic}(X)=1, S \in$ $\left|-K_{X}\right|$ a smooth hypersurface with $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}(S)$ surjective. Let $\Phi: X \rightarrow X^{\prime}$ be a birational map to $a \mathbb{Q}$-factorial terminal variety X^{\prime} with $\operatorname{dim}_{\mathbb{Q}} \operatorname{Pic}\left(X^{\prime}\right)=1$ which is not an isomorphism, and $S^{\prime}=\Phi_{*} S$. Then $K_{X^{\prime}}+S^{\prime}$ is ample.

After that, we consider n-dimensional Calabi-Yau manifold X in this paper. It is a projective manifold which is simply connected,

$$
H^{0}\left(X, \Omega_{X}^{i}\right)=0 \quad(0<i<\operatorname{dim} X=n) \quad \text { and } H^{0}\left(X, \Omega_{X}^{n}\right)=\mathbb{C} \omega_{X}
$$

where ω_{X} is a nowhere vanishing holomorphic n-form.
The following theorem is a consequence of Theorem 2.1, which is same as Theorem 1.1. This provides an example of the Calabi-Yau hypersurface M_{n} whose inertia group consists of only identity transformation.

Theorem 2.2. Suppose $n \geq 3$. Let $M_{n}=(n+2) \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree $n+2$, which is a Calabi-Yau manifold of dimension n. Then
(1) $\operatorname{Dec}\left(\mathbb{P}^{n+1}, M_{n}\right)=\left\{f \in \operatorname{PGL}(n+2, \mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{n+1}\right) \mid f\left(M_{n}\right)=M_{n}\right\}$.
(2) Ine $\left(\mathbb{P}^{n+1}, M_{n}\right)=\left\{\operatorname{id}_{\mathbb{P}^{n+1}}\right\}$.
(3) $\operatorname{Dec}\left(\mathbb{P}^{n+1}, M_{n}\right) \cong \operatorname{Bir}\left(M_{n}\right)=\operatorname{Aut}\left(M_{n}\right)$.

Proof. It is obvious that the set on the left side of (1) contains the set on the right of (1). We will show the converse. Assume that $f \in \operatorname{Dec}\left(\mathbb{P}^{n+1}, M_{n}\right)$. Then $f_{*}\left(M_{n}\right)=$ M_{n} and $K_{\mathbb{P}^{n+1}}+M_{n}=0$. Thus by Theorem 2.1, $f \in \operatorname{Aut}\left(\mathbb{P}^{n+1}\right)=\operatorname{PGL}(n+2, \mathbb{C})$. This proves (1).

From here, we will show (2). For two points $x, y \in \mathbb{P}^{n+1}$, we denote the linear subspace on \mathbb{P}^{n+1} of dimenion 1 , which is defined by x and y by $C_{x, y}$. Then $C_{x, y} \cong \mathbb{P}^{1}$. Since the degree of M_{n} is $n+2$ and M_{n} is smooth, for a general point $x \in \mathbb{P}^{n+1}$, there is a point $y \in M_{n}$ such that $C_{x, y} \cap M_{n}$ is a set of $n+2$ points. Let $f \in \operatorname{Ine}\left(\mathbb{P}^{n+1}, M_{n}\right)$. Since $f \in \operatorname{PGL}(n+2, \mathbb{C})$ by (1), we have that $f\left(C_{x, y}\right)=C_{f(x), f(y)}$, i.e. $f\left(C_{x, y}\right)$ is the linear subspace on \mathbb{P}^{n+1} of dimenion 1 , which is defined by $f(x)$ and $f(y)$. Since $\left.f\right|_{M_{n}}=\operatorname{id}_{M_{n}}$, we get that $C_{x, y} \cap f\left(C_{x, y}\right)$ contains at least $n+2$ points. Since $C_{x, y}$ and $f\left(C_{x, y}\right)$ are linear subspaces on \mathbb{P}^{n+1} of dimension 1 , we obtain $C_{x, y}=f\left(C_{x, y}\right)$. Thus f induces an automorphim $\left.f\right|_{C_{x, y}}$ of $C_{x, y}$. If $\left.f\right|_{C_{x, y}} \neq \mathrm{id}_{C_{x, y}}$, then the fixed points of $\left.f\right|_{C_{x, y}}$ are at most 2 points since $C_{x, y} \cong \mathbb{P}^{1}$. Therefore, since $C_{x, y} \cap f\left(C_{x, y}\right)$ contains at least $n+2$ points, and $n \geq 3$, we have $\left.f\right|_{C_{x, y}}=\mathrm{id}_{C_{x, y}}$. Thus we obtain $f=\operatorname{id}_{\mathbb{P}^{n+1}}$, i.e. $\operatorname{Ine}\left(\mathbb{P}^{n+1}, M_{n}\right)=\left\{\operatorname{id}_{\mathbb{P}^{n+1}}\right\}$.

We will show (3). By Lefschetz hyperplane section theorem for $n \geq 3$, we have that $\pi_{1}\left(M_{n}\right) \simeq \pi_{1}\left(\mathbb{P}^{n+1}\right)=\{\mathrm{id}\}$, and $\operatorname{Pic}\left(M_{n}\right)=\mathbb{Z} h$ where h is the hyperplane class. $\operatorname{By} \operatorname{Pic}\left(M_{n}\right)=\mathbb{Z} h$, there is no small projective contraction of M_{n}, in particular, M_{n} has no flop. Thus by Kawamata [3], we get $\operatorname{Bir}\left(M_{n}\right)=\operatorname{Aut}\left(M_{n}\right) . \operatorname{By} \operatorname{Pic}\left(M_{n}\right)=\mathbb{Z} h$, for $g \in \operatorname{Aut}\left(M_{n}\right)$ we have $g=\left.\tilde{g}\right|_{M_{n}}$ for some $\tilde{g} \in \operatorname{PGL}(n+2, \mathbb{C})$. Therefore, from (2) we get $\operatorname{Dec}\left(\mathbb{P}^{n+1}, M_{n}\right) \cong \operatorname{Bir}\left(M_{n}\right)=\operatorname{Aut}\left(M_{n}\right)$.

3. Calabi-Yau hypersurfaces in $\left(\mathbb{P}^{1}\right)^{n+1}$

As in above section, the Calabi-Yau hypersurface M_{n} of \mathbb{P}^{n+1} with $n \geq 3$ has only identical transformation as the element of its inertia group. However, there exist some Calabi-Yau hypersurfaces in the product of \mathbb{P}^{1} which does not satisfy this property; as result (Theorem 3.2) shows.

To simplify, we denote

$$
\begin{aligned}
P(n+1) & :=\left(\mathbb{P}^{1}\right)^{n+1}=\mathbb{P}_{1}^{1} \times \mathbb{P}_{2}^{1} \times \cdots \times \mathbb{P}_{n+1}^{1} \\
P(n+1)_{i} & :=\mathbb{P}_{1}^{1} \times \cdots \times \mathbb{P}_{i-1}^{1} \times \mathbb{P}_{i+1}^{1} \times \cdots \times \mathbb{P}_{n+1}^{1} \simeq P(n),
\end{aligned}
$$

and

$$
\begin{aligned}
& p^{i}: P(n+1) \rightarrow \mathbb{P}_{i}^{1} \simeq \mathbb{P}^{1} \\
& p_{i}: P(n+1) \rightarrow P(n+1)_{i}
\end{aligned}
$$

as the natural projections. Let H_{i} be the divisor class of $\left(p^{i}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$, then $P(n+1)$ is a Fano manifold of dimension $n+1$ and its anti canonical divisor has the form $-K_{P(n+1)}=\sum_{i=1}^{n+1} 2 H_{i}$. Therefore, by the adjunction formula, the smooth hypersurface $X_{n} \subset P(n+1)$ has trivial canonical divisor if and only if it has multidegree $(2,2, \ldots, 2)$. More strongly, for $n \geq 3, X_{n}=(2,2, \ldots, 2)$ becomes a Calabi-Yau manifold of dimension n and, for $n=2$, a $K 3$ surface (i.e. 2-dimensional CalabiYau manifold).

From now, X_{n} is an irreducible hypersurface of $P(n+1)$ of multidegree $(2,2, \ldots, 2)$ with $n \geq 3$. Let us write $P(n+1)=\mathbb{P}_{i}^{1} \times P(n+1)_{i}$. Let $\left[x_{i 1}: x_{i 2}\right]$ be the homogeneous coordinates of \mathbb{P}_{i}^{1}. Hereafter, we consider the affine locus and denote by $x_{i}=\frac{x_{i 2}}{x_{i 1}}$ the affine coordinates of \mathbb{P}_{i}^{1} and by \mathbf{z}_{i} that of $P(n+1)_{i}$. When we pay attention to x_{i}, X_{n} can be written by following equation

$$
\begin{equation*}
X_{n}=\left\{F_{i, 0}\left(\mathbf{z}_{i}\right) x_{i}^{2}+F_{i, 1}\left(\mathbf{z}_{i}\right) x_{i}+F_{i, 2}\left(\mathbf{z}_{i}\right)=0\right\} \tag{3.1}
\end{equation*}
$$

where each $F_{i, j}\left(\mathbf{z}_{i}\right)(j=0,1,2)$ is a quadratic polynomial of \mathbf{z}_{i}. Now, we consider the two involutions of $P(n+1)$:

$$
\begin{align*}
& \tau_{i}:\left(x_{i}, \mathbf{z}_{i}\right) \rightarrow\left(-x_{i}-\frac{F_{i, 1}\left(\mathbf{z}_{i}\right)}{F_{i, 0}\left(\mathbf{z}_{i}\right)}, \mathbf{z}_{i}\right), \tag{3.2}\\
& \sigma_{i}:\left(x_{i}, \mathbf{z}_{i}\right) \rightarrow\left(\frac{F_{i, 2}\left(\mathbf{z}_{i}\right)}{x_{i} \cdot F_{i, 0}\left(\mathbf{z}_{i}\right)}, \mathbf{z}_{i}\right) . \tag{3.3}
\end{align*}
$$

We get two birational automorphisms of X_{n} :

$$
\begin{aligned}
& \rho_{i}=\sigma_{i} \circ \tau_{i}:\left(x_{i}, \mathbf{z}_{i}\right) \rightarrow\left(\frac{F_{i, 2}\left(\mathbf{z}_{i}\right)}{-x_{i} \cdot F_{i, 0}\left(\mathbf{z}_{i}\right)-F_{i, 1}\left(\mathbf{z}_{i}\right)}, \mathbf{z}_{i}\right), \\
& \rho_{i}^{\prime}=\tau_{i} \circ \sigma_{i}:\left(x_{i}, \mathbf{z}_{i}\right) \rightarrow\left(-\frac{x_{i} \cdot F_{i, 1}\left(\mathbf{z}_{i}\right)+F_{i, 2}\left(\mathbf{z}_{i}\right)}{x_{i} \cdot F_{i, 0}\left(\mathbf{z}_{i}\right)}, \mathbf{z}_{i}\right) .
\end{aligned}
$$

The involution $\left.\tau_{i}\right|_{X_{n}}=\left.\sigma_{i}\right|_{X_{n}}$ is ι_{i} which is mentioned in the introduction, and the birational automorphism ρ_{i} satisfies $\left.\rho_{i}\right|_{X_{n}}=i d_{X n}$, i.e. $\rho_{i} \in \operatorname{Ine}\left(P(n+1), X_{n}\right)$.

Lemma 3.1. Each ρ_{i} has infinite order.
Proof. We consider a matrix

$$
M:=\left(\begin{array}{cc}
0 & F_{i, 2} \\
-F_{i, 0} & -F_{i, 1}
\end{array}\right) \in \mathbf{M}_{2}\left(\overline{\mathbb{C}\left(\mathbf{z}_{i}\right)}\right),
$$

where $\overline{\mathbb{C}\left(\mathbf{z}_{i}\right)}$ is the algebraic closure of the field $\mathbb{C}\left(\mathbf{z}_{i}\right)$. If there is an integer $k \in \mathbb{Z}$ such that $\rho_{i}^{k}=\operatorname{id}_{\mathbb{P}^{n+1}}$, then $M^{k}=\alpha I$, where I is the identity matrix and $\alpha \in \mathbb{C}^{\times}$. Since their eigenvalues of M are

$$
\frac{-F_{i, 1} \pm \sqrt{F_{i, 1}^{2}-4 F_{i, 0} F_{i, 2}}}{2}
$$

by $M^{k}=\alpha I$, we have

$$
\left(\frac{-F_{i, 1} \pm \sqrt{F_{i, 1}^{2}-4 F_{i, 0} F_{i, 2}}}{2}\right)^{k}=\alpha \in \mathbb{C}
$$

Since \mathbb{C} is an algebraically closed field, we have

$$
\beta:=\frac{-F_{i, 1} \pm \sqrt{F_{i, 1}^{2}-4 F_{i, 0} F_{i, 2}}}{2} \in \mathbb{C} .
$$

Then we obtain that $F_{i, 1}^{2}-4 F_{i, 0} F_{i, 2}=4 \beta^{2}+4 \beta F_{i, 1}+F_{i, 1}^{2}$. Since each $F_{i, j}\left(\mathbf{z}_{i}\right)(j=$ $0,1,2)$ is a quadratic polynomial of \mathbf{z}_{i}, we get $F_{i, 1}=0$, and hence $F_{i, 0} F_{i, 2}=0$. Since $X_{n} \subset P(n+1)$ is an irreducible hypersurface of multidegree $(2,2, \ldots, 2)$, this is a contradiction. Thus the order of ρ_{i} is infinity.

Our main result is the following (which is same as Theorem 1.3):

Theorem 3.2. Let $X_{n} \subset P(n+1)$ be an irreducible hypersurface of multidegree $(2,2, \ldots, 2)$ and $n \geq 3$. Then $n+1$ elements $\rho_{i} \in \operatorname{Ine}\left(P(n+1), X_{n}\right)(1 \leq i \leq n+1)$ satisfy

$$
\left\langle\rho_{1}, \rho_{2}, \ldots, \rho_{n+1}\right\rangle \simeq \underbrace{\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}}_{n+1} \subset \operatorname{Ine}\left(P(n+1), X_{n}\right) .
$$

In particular, $\operatorname{Ine}\left(P(n+1), X_{n}\right)$ is an infinite non-commutative group.
Proof. By Lemma 3.1, it is sufficient to show that there is no non-trivial relation between its $n+1$ elements ρ_{i}. We show by arguing by contradiction.

Suppose to the contrary that there is a non-trivial relation between $n+1$ elements ρ_{i}, that is,

$$
\begin{equation*}
\rho_{i_{1}}^{n_{1}} \circ \rho_{i_{2}}^{n_{2}} \circ \cdots \circ \rho_{i_{l}}^{n_{l}}=\operatorname{id}_{P(n+1)} \tag{3.4}
\end{equation*}
$$

where l is a positive integer, $n_{k} \in \mathbb{Z} \backslash\{0\}(1 \leq k \leq l)$, and each $\rho_{i_{k}}$ denotes one of the $n+1$ elements $\rho_{i}(1 \leq i \leq n+1)$ and satisfies $\rho_{i_{k}} \neq \rho_{i_{k+1}}(0 \leq k \leq l-1)$. Put $N=\left|n_{1}\right|+\cdots+\left|n_{l}\right|$.

In the affine coordinates $\left(x_{i}, \mathbf{z}_{i}\right)$ where x_{i} is the affine coordinates of i-th factor \mathbb{P}_{i}^{1}, we can choose a point $\left(\alpha, \mathbf{z}_{i}\right)$, which is not included in $X_{n} \cup \operatorname{Ind}\left(\rho_{i_{1}}^{n_{1}-1} \circ \rho_{i_{2}}^{n_{2}} \circ \cdots \circ\right.$ $\left.\rho_{i_{l}}^{n_{l}}\right) \cup \overline{\left(\rho_{i_{1}}^{n_{1}-1} \circ \rho_{i_{2}}^{n_{2}} \circ \cdots \circ \rho_{i_{l}}^{n_{l}}\right)^{-1}\left(\operatorname{Ind}\left(\rho_{i_{1}}\right)\right)}$.

We put $\left(\beta, \mathbf{w}_{i}\right)$ by $\rho_{i_{1}}^{n_{1}-1} \circ \rho_{i_{2}}^{n_{2}} \circ \cdots \circ \rho_{i_{l}}^{n_{l}}\left(\alpha, \mathbf{z}_{i}\right)$. By a suitable projective linear coordinate change of \mathbb{P}_{i}^{1}, we can set $\alpha=0$ and $\beta \neq \infty$. When we pay attention to the i-th element x_{i} of the new coordinates, we put same letters $F_{i, j}\left(\mathbf{z}_{i}\right)$ for the definitional equation of X_{n}, that is, X_{n} can be written by

$$
X_{n}=\left\{F_{i, 0}\left(\mathbf{z}_{i}\right) x_{i}^{2}+F_{i, 1}\left(\mathbf{z}_{i}\right) x_{i}+F_{i, 2}\left(\mathbf{z}_{i}\right)=0\right\} .
$$

From the assumption, the following equality holds:

$$
\rho_{i_{1}}\left(\beta, \mathbf{w}_{i}\right)=\left(0, \mathbf{z}_{i}\right) .
$$

Then, by the definition of ρ_{i}, it maps β to 0 . That is, the equation $F_{i, 2}\left(\mathbf{w}_{i}\right)=0$ is satisfied. On the other hand, the intersection of X_{n} and the hyperplane $\left(x_{i}=0\right)$ is written by

$$
X_{n} \cap\left(x_{i}=0\right)=\left\{F_{i, 2}\left(\mathbf{z}_{i}\right)=0\right\}
$$

This implies $\left(0, \mathbf{w}_{i}\right)=\rho_{i_{1}}\left(\beta, \mathbf{w}_{i}\right)=\left(0, \mathbf{z}_{i}\right)$ is a point on X_{n}, a contradiction to the fact that $\left(0, \mathbf{z}_{i}\right) \notin X_{n}$. Therefore, we can conclude that there does not exist such N. This completes the proof of Theorem 3.2.

Acknowledgements. This paper froms a part of the first author's master's thesis. The authors would like to express their sincere gratitude to their supervisor Professor Keiji Oguiso who suggested this subject and has given much encouragement and invaluable and helpful advices.

References

[1] S. Cantat and K. Oguiso, Birational automorphism group and the movable cone theorem for Calabi-Yau manifolds of Wehler type via universal Coxeter groups, Amer. J. Math. 137 (2015), 1013-1044.
[2] M. H. Gizatullin, The decomposition, inertia and ramification groups in birational geometry, Algebraic Geometry and its Applications, Aspects of Math. E25 (1994), 39-45.
[3] Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), 419-423.
[4] N. Takahashi, An application of Noether-Fano inequalities, Math. Z. 228 (1998), 1-9.
(M. Hayashi) Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyamacho 1-1, Toyonaka, Osaka 560-0043, Japan.
E-mail address: dfb.1003@gmail.com
(T. Hayashi) Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyamacho 1-1, Toyonaka, Osaka 560-0043, Japan.
E-mail address: haya4taro@gmail.com

Received October 10, 2017
Revised February 23, 2018

[^0]: 2010 Mathematics Subject Classification. Primary 14J32; Secondary 14E05.
 Key words and phrases. Calabi-Yau manifold, birational automorphism.

