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RATIONAL UNICUSPIDAL CURVES ON
Q-HOMOLOGY PROJECTIVE PLANES WHOSE

COMPLEMENTS HAVE LOGARITHMIC KODAIRA
DIMENSION −∞

HIDEO KOJIMA

Abstract. Let S be a Q-homology projective plane, C a rational unicuspidal

curve on S0 = S − SingS and C ′ the proper transform of C with respect to the

minimal embedded resolution of C. We prove that S0−C is affine ruled if and only

if C ′2 ≥ −1 and determine the pairs (S,C) when κ(S0 − C) = −∞ and C ′2 ≤ −2.

1. Introduction

We work over the complex number field C. In this paper, a cuspidal curve means

a projective curve whose singular points are locally irreducible. A Q-homology

projective plane is, by definition, a normal projective surface with at worst quotient

singular points having the same rational homology as P2. For a normal algebraic

surface S, let π : S̃ → S be a resolution of the singularities on S. Then we denote

by κ(S) the logarithmic Kodaira dimension of S̃ (see [17] for the definition), here

we note that κ(S) does not depend on the choise of π.

Many mathematicians have been interested in rational cuspidal projective plane

curves and we have many results on the subject. Recently, M. Koras, K. Palka and

T. Pe lka obtained significant results on rational cuspidal projective plane curves

whose complements have logarithmic Kodaira dimension two. See, e.g., [23], [24] and

[14]. In particular, Koras and Palka [14] proved that any rational cuspial projective

plane curve can be mapped onto a line by some birational transformation of P2.

Furthermore, they announce that every rational cuspidal plane curve has at most

four singular points. For other results, see, e.g., [2] and its references.

Recently, the study of rational cuspidal curves on Q-homology projective planes

have been motivated by the problem posed by Kollár [12, Problem 33] asking the

classification of pairs (S,C) such that S is a Q-homology projective plane and C
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is a rational cuspidal curve on S. Let S be a Q-homology projective plane and set

S0 = S − SingS. Let C be a rational cuspidal curve in S0. Here we note that

the surface S − C is then a Q-homology plane, i.e., a normal affine surface with at

worst quotient singular points having the same rational homology as C2. Then S is

a rational surface by [25], [7] and [6].

In [5], Gurjar, Hwang and Kolte proved the following results.

(I) If κ(S − C) = −∞, then κ(S0 − C) = −∞ and # SingC ≤ 1.

(II) If κ(S0 − C) ≤ 1, then # SingC ≤ 2.

(III) κ(S0 − C) ̸= 0.

The results (I) and (II) generalize results of Wakabayashi [27, Theorem], and the

result (III) generalizes Orevkov [21, Theorem B(c)]. (See also Yoshihara [28] and

the author [11] for results related to them.)

In [13], Kolte studied the case where κ(S0 − C) = 1 and κ(S − C) ̸= −∞ more

precisely and proved that there exists a smooth rational curve θ ⊂ S0 passing

through the cusps of C. As a consequence of this result, we know that S − θ is a

Z-homology plane (a normal affine surface with at worst quotient singular points

having the same homology as C2) and # SingS ≤ 1. Here, we note that if a

projective curve T in S0 satisfies κ(S − T ) = −∞, then S is a rational surface and

T is a rational cuspidal curve with # Sing T ≤ 1. (See Proposition 4.1.)

Let S and C be the same as above. In this paper, we study the case where

κ(S0 − C) = −∞. Let π : V → S be a resolution of singularities of both S and C

such that ∆ = π−1(C) is a simple normal crossing divisor. Here ∆′ = π−1(SingS) is

a simple normal crossing divisor since S has at worst quotient singular points ([1]).

Set D = ∆ + ∆′. We assume further that the map π is minimal, that is, the Picard

number of V is the least possible. Then such a map π is determined uniquely. We

call the map π the minimal SNC-map for (S,C). The main result of this article is

the following.

Theorem 1.1. Let S be a Q-homology projective plane and C a rational cuspidal

curve with # SingC ≤ 1 in S0 = S − SingS. Let π : V → S be the minimal SNC-

map for the pair (S,C) and set ∆ = π−1(C), ∆′ = π−1(SingS) and D = ∆ + ∆′.

Let C ′ be the proper transform of C on V . Then the following assertions hold.

(1) S0 − C is affine ruled (see Proposition 2.1 for the definition) if and only if

C ′2 ≥ −1.

(2) Assume that C ′2 ≤ −2 and κ(S0 − C) = −∞. Then −5 ≤ C ′2 ≤ −2 and

the weighted dual graph of D = ∆ + ∆′ is one of (a)–(g), where we omit the

weight corresponding to a (−2)-curve. All the cases (a)–(g) can be realized.
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Let C be a cuspidal rational projective plane curve with # SingC ≤ 1 and let C ′

be the proper transform of C with respect to the minimal embedded resolution of

C, which is the same as the miminal SNC-map for (P2, C). Yoshihara [29] proved

that κ(P2 − C) = −∞ if and only if C ′2 ≥ −1. So our Theorem 1.1 generalizes

this result of Yoshihara. Tono [26] determined the curves C with C ′2 = −2 and

κ(P2 − C) = 2.

2. Preliminary results

We employ the following notations.

KV : the canonical divisor on V .

ρ(V ): the Picard number of V .

#D: the number of irreducible components of a reduced effective divisor D.

D1 ≡ D2: D1 and D2 are numerically equivalent.

µ∗(D): the total transform of D by µ.

µ′(D): the proper transform of D by µ.

We give some notions on weighted graphs. As for the notions on weighted graphs,

the reader may consult [4].

Definition 2.1. Let A be a graph and v1, . . . , vr the vertices of A. Then A is a twig

if A is a connected linear graph together with a total ordering v1 > v2 > · · · > vr
among its vertices such that vj and vj−1 are connected by a segment for each j

(2 ≤ j ≤ r). Such a twig is denoted by [a1, . . . , ar], where aj is the weight of vj.

A twig A = [a1, . . . , ar] is said to be admissible if aj ≤ −2 for every j. For an
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admissible twig A, we denoted the determinant of A by d(A) (cf. [4, (3.3)]). For an

integer a and a positive integer s, we use the abbreviation [as] = [a, a, . . . , a] that is

a twig consisting of s vertices of weight a.

Definition 2.2. For an admissible twig A = [a1, . . . , ar], the twig [ar, ar−1, . . . , a1]

is called the transposal of A and denoted by tA. We define also A = [a2, . . . , ar]. If

r = 1, we put A = ∅ (the empty set). We call e(A) = d(A)/d(A) the inductance of

A. By [4, Corollary (3.8)], e defines a one-to-one correspondence from the set of all

admissible twigs to the set of rational numbers in the interval (0, 1). Hence there

exists uniquely an admissible twig A∗ whose inductance equals 1 − e(tA). We call

the admissible twig A∗ the adjoint of A.

We recall some basic notions in the theory of peeling. For more details, see [17,

Chapter 2] or [19, Chapter 1]. A reduced effective divisor D on an algebraic variety

is called an SNC-divisor if it has only simple normal crossings. Let X be a smooth

projective surface and B an SNC-divisor on X. We call such a pair (X,B) an SNC-

pair. A connected curve consisting only of irreducible components of B is called a

connected curve in B for shortness. A connected curve T in B is admissible (resp.

rational) if there are no (−1)-curves in SuppT and the intersection matrix of T is

negative definite (resp. it consists only of rational curves). A connected curve T

in B is a twig if its dual graph is a twig (see Definition 2.1) and T meets B − T

in a single point at one of the end components of T . An admissible rational twig

T in B is maximal if it is not extended to an admissible rational twig with more

irreducible components of B. A connected curve R (resp. F ) in B is a rational rod

(resp. rational fork) if it is a connected component of B and its weighted dual graph

is the dual graph of the exceptional divisor of the minimal resolution of a cyclic

quotient singular point (resp. a non-cyclic quotient singular point).

Let {Tλ} (resp. {Rµ}, {Fν}) be the set of all admissible rational maximal twigs

(resp. all admissible rational rods, all admissible rational forks) in B, where no

irreducible components of Tλ’s belong to Rµ’s or Fν ’s. Then there exists a unique

decomposition of B as a sum of effective Q-divisors B = B# + BkB such that the

following conditions are satisfied:

(a) Supp(BkB) = (∪λTλ) ∪ (∪µRµ) ∪ (∪νFν).

(b) (B# + KX)Z = 0 for every irreducible component Z of Supp(BkB).

Definition 2.3. An SNC-pair (X,B) is said to be almost minimal if, for every

irreducible curve C on X, either (B# + KX)C ≥ 0 or (B# + KX)C < 0 and the

intersection matrix of C + BkB is not negative definite.

For an SNC-pair (X,B), we set r(X,B) = ρ(X)−#B. We note that, if f : X →
X ′ is a birational morphism from X onto a smooth projective surface X ′ such that
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B′ = f∗(B) is an SNC-divisor, then r(X,B) ≥ r(X ′, B′) and the equality holds if

and only if f contracts only curves in SuppB. Here we give the following elementary

result on open algebraic surfaces of κ = −∞.

Proposition 2.1. Let (X,B) be an SNC-pair. If κ(X −B) = −∞ and r(X,B) ≤
−1, then X −B is affine ruled, i.e., it contains a Zariski open subset U isomorphic

to A1 × U0, where U0 is a smooth curve.

Proof. By [17, Theorem 2.3.11.1 (p. 107)] (that is the same as [19, Theorem 1.11]),

there exists a birational morphism f : X → V onto a smooth projective surface V

such that D = f∗(B) is an SNC-divisor, that the SNC-pair (V,D) is almost minimal

and that κ(V −D) = κ(X −B) = −∞. Since r(X,B) ≥ r(V,D), it suffices to

show that V −D is affine ruled.

We use the structure theorem for open algebraic surfaces of κ = −∞. For more

details, see [17, Chapter 2] or [19]. Note that D − BkD ≥ 0 and each connected

component of Supp(BkD) can be contracted to a quotient singular point. Let

p : V → V be the contraction of Supp(BkD) to quotient singular points and set

D = p∗(D). It then follows from [17, Lemmas 2.3.14.3 and 2.3.14.4 (pp. 113–114)]

that one of the following cases takes place.

(A) There exists a P1-fibration h : V → T onto a smooth projective curve T such

that every fiber of h is irreducible and DF ≤ 1 for a general fiber F of h.

(B) ρ(V ) = 1 and −(D + KV ) is an ample Q-Cartier divisor.

It is clear that, in Case (A), the surface V − D is affine ruled; so is X − B. We

consider Case (B). We set as Supp(BkD) = ∪r
i=1Di and D′ = D −

∑r
i=1Di. Each

irreducible component of D′ has coefficient one in D# and D# − D′ =
∑r

i=1 αiDi,

where 0 ≤ αi < 1 for i = 1, . . . , r.

Since −(D + KV ) is an ample Q-Cartier divisor and p∗(D + KV ) ≡ D# + KV ,

we see that −(D# + KV ) is nef and big and that, for an irreducible curve E on

V , −(D# + KV )E = 0 if and only if E ⊂ Supp(BkD), i.e., E = Di for some

i ∈ {1, . . . , r}. We note that if D′ ̸= 0 then it is connected since ρ(V ) = 1. Since

r(V,D) ≤ r(X,B) ≤ −1, #D′ ≥ 2. If #D′ ≥ 3, then D′ has an irreducible

component Y such that (D′ − Y )Y ≥ 2. Then we have

0 > (D# + KV )Y = (Y + KV )Y + (D′ − Y )Y +
r∑

i=1

αiDiY ≥ 0,

which is a contradiction. Thus, #D′ = 2.

Let D′ = Y1 + Y2 be the decomposition of D′ into irreducible components. Then

0 > (D# + KV )Y1 = (Y1 + KV )Y1 + Y2Y1 +
r∑

i=1

αiDiY1.
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Since Y1Y2 = 1, we know that Y1 is a smooth rational curve and
∑r

i=1 αiDiY1 < 1.

Similarly, Y2 is a smooth rational curve and
∑r

i=1 αiDiY2 < 1.

Here we note that any connected component T of Supp(BkD) meeting Y1 (or Y2)

is an admissible maximal rational twig in D and the irreducible component of T

meeting Y1 (or Y2) has the coefficient 1 − 1
d(T )

in D#, where d(T ) is the absolute

value of the determinant of the intersection matrix of T . Since d(T ) ≥ 2 and∑r
i=1 αiDiYj < 1 for j = 1, 2, we see that there exists at most one twig meeting

Yi (i = 1, 2). So the dual graph of the connected component of D containing

D′ = Y1 + Y2 is linear. If Y 2
i ≤ −2 (i = 1 or 2), then Yi becomes a component of

Supp(BkD), which is a contradiction. Hence Y 2
1 , Y

2
2 ≥ −1. It then follows from [17,

Corollary 2.2.11.1 (p.82)] that V −D is affine ruled. □

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Let S, C, π : V → S, ∆, ∆′, D and C ′ be the same as in Theorem 1.1. Since S has

only quotient singular points, ∆′ is an SNC-divisor. If C is smooth, then C ′ = D has

positive self-intersection number since C is ample. So, V −D is affine ruled by [17,

Corollary 2.2.11.1 (p.82)]. From now on, we assume that C is not smooth. Then

C is a rational unicuspidal curve (a rational cuspidal curve with unique singular

point).

Since C is unicuspidal, there exists a unique (−1)-curve H in Supp(D−C ′). Then

H(∆ − H) = 3. Moreover, ∆ − H consists of three connected components and C ′

becomes one of the connected components. Let T1 and T2 be the other connected

components of ∆ −H. Since H + T1 + T2 is contracted to a smooth point, we may

assume that T1 is linear and H meets one of the terminal components of T1. Then

T1 is an admissible maximal rational twig in D.

Lemma 3.1. With the same notations and assumptions as above, C ′2 ≥ −1 if and

only if V −D is affine ruled.

Proof. The “only if” part follows from [17, Corollary 2.2.11.1 (p. 82)]. We prove the

“if” part.

Suppose that C ′2 ≤ −2 and V −D is affine ruled. Then H is a unique irreducible

component of D with self-intersection number ≥ −1. Since V − D is affine ruled,

it contains a smooth surface U ∼= C× U0, where U0 is a smooth curve, as a Zariski

open subset. Here we note that κ(V −D) = −∞ and S is a rational surface (see

Section 1). We may assume that U0 ⊂ C as a Zariski open subset. Since V − D

contains no complete algebraic curves, we know that the second projection U ∼=
C× U0 → U0 gives rise to an irreducible pencil Λ of rational curves on V such that
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Bs Λ∩(V −D) = ∅ and ΦΛ|V−D is an C-fibration from V −D onto a smooth rational

curve containing U0. We consider the following cases separately.

Case 1: Bs Λ ̸= ∅. Since ΦΛ|V−D is a C-fibration, # Bs Λ = 1. We set P = Bs Λ.

Let ν : Ṽ → V be the minimal resolution of the base points of Λ and let Λ̃ be the

proper transform of Λ on Ṽ . Then Λ̃ defines a P1-fibration Φ̃ := ΦΛ̃ : Ṽ → P1 from Ṽ

onto P1 and the last exceptional curve, say Ẽ, in the process of ν becomes a section

of Φ̃. We note that µ−1(∆) is a big divisor because so is ∆. If P ̸∈ Supp ∆, then

µ−1(∆) is contained in a fiber of Φ̃. This contradicts the bigness of µ−1(∆). Hence

P ∈ Supp ∆. Then ν−1(∆′) is contained in fibers of Φ̃ and f := Φ̃ ◦ ν−1 ◦ π−1|S−C

gives a C-fibration from S − C onto a smooth rational curve T ′. Since S − C is a

Q-homology plane with only quotient singular points, we infer from [18, Theorems

2.7 and 2.8] that T ′ ∼= C. Then Φ̃−1(P1 − T ′) ⊂ Supp ν−1(D).

Suppose that P ̸∈ H. Then ν ′(H) is a fiber component of Φ̃. Let F̃ be the fiber of

Φ̃ containing ν ′(H). Since ν ′(H) is a (−1)-curve and ν ′(H)(ν∗(D)red − ν ′(H)) = 3,

at least one of the three adjacent components of ν ′(H) in ν∗(D)red must be Ẽ. So

the multiplicity of ν ′(H) in F̃ equals one since Ẽ is a section of Φ̃ and Ẽν ′(H) = 1.

However, the two other adjacent components of ν ′(H) in ν∗(D)red are components

of F̃ . This contradicts the fact that the multiplicity of ν ′(H) in F̃ equals one.

Hence P ∈ H. This implies that Ẽ is the unique curve in Supp ν∗(D)red with self-

intersection number ≥ −1. So Supp ν∗(D)red contains no full fibers of Φ̃. This is a

contradiction because Φ̃−1(P1 − T ′) ⊂ Supp ν−1(D). Therefore, this case does not

take place.

Case 2. Bs Λ = ∅. In this case, Φ := ΦΛ : V → P1 is a P1-fibration and

f := Φ ◦ π−1|S−C gives a C-fibration onto T ′ = C by [18, Theorems 2.7 and 2.8].

In particular, Φ−1(P1 − T ′) ⊂ SuppD. Since Φ|V−D is a C-fibration, there exists a

unique component H ′ of D such that H ′ is a section of Φ. By using the same argu-

ment as in the previous paragraph, we know that H ′ = H and derive a contradiction.

Therefore, this case does not take place, neither.

Therefore, we know that C ′2 ≤ −1 if V −D is affine ruled. □

In the following two lemmas, we consider the case C ′2 ≤ −2.

Lemma 3.2. If C ′2 ≤ −2 and κ(V −D) = −∞, then (V,D) is almost minimal.

Proof. Suppose that (V,D) is not almost minimal. Then there exists an irreducible

curve E on V such that E(D# +KV ) < 0 and the intersection matrix of E+BkD is

negative definite. Then E is a (−1)-curve, E+D is an SNC-divisor and E ̸⊂ SuppD.

Moreover, κ(V − (E + D)) = κ(V −D) = −∞. Since ρ(V ) = #D, r(V,E + D) =

ρ(V ) − #(E + D) = −1. It then follows from Proposition 2.1 that V − (E + D) is

affine ruled; so is V −D. This contradicts Lemma 3.1. □
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Lemma 3.3. Assume that C ′2 ≤ −2 and κ(V −D) = −∞. Then the weighted dual

graph of D = ∆ + ∆′ is one of (a)–(h) in Theorem 1.1. All the cases (a)–(h) can

take place.

Proof. Lemmas 3.1 and 3.2 imply that the pair (V,D) is almost minimal and V −D

is not affine ruled. Set U = V −D (= S0−C). Since ∆ = π−1(C) is a big divisor, we

infer from [17, Theorem 2.5.1.2 (p. 143)] (that is the same as [20, Main Theorem])

that U has a structure of Platonic C∗-fiber space over P1, where C∗ = C−{0}. More

precisely, there exists a surjective morphism f : U → P1 from U onto P1 such that

the following conditions are satisfied:

(i) f has no singular fibers except for three multiple fibers Γi = µi∆i, i = 1, 2, 3,

such that ∆i
∼= C∗ and that {µ1, µ2, µ3} = {2, 2,m} (m ≥ 2), {2, 3, 3},

{2, 3, 4} or {2, 3, 5}.

(ii) There exist an SNC-pair (X,B) and a P1-fibration f : X → P1 from X onto

P1 such that:

(a) X −B = U .

(b) B contains two irreducible components B1 and B2 that are sections of

f with B1 ∩ B2 = ∅, and the other irreducible components of B are

contaned in fibers of f .

(c) Every fiber of f has linear chain as its weighted dual graph and contains

a unique (−1)-curve if the fiber is reducible.

Recalling [16, Section 2], we give a description of the dual graph of B. B consists

of two connected components, say B̃1 and B̃2, containing B1 and B2, respectively.

We may assume that B2
1 = −b ≤ −2. Then B̃1 has the weighted dual graph in Figure

1, where the subgraph A(i) = [−a
(i)
1 ,−a

(i)
2 , . . . ,−a

(i)
ri ] (i = 1, 2, 3) is an admissible

twig and {d(A(1)), d(A(2)), d(A(3))} = {µ1, µ2, µ3} in (i). Since −b ≤ −2, B̃1 is

contracted to a non-cyclic quotient singular point. It follows from the arguments in

[16, pp. 40–41] that the weighted dual graph of B̃2 is given as in Figure 2, where

the subgraph B(i) = [−b
(i)
1 ,−b

(i)
2 , . . . ,−b

(i)
si ] (i = 1, 2, 3) is the adjoint of tA(i) (see

Definition 2.2).

Figure 1
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Figure 2
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It follows that B contains no irreducible components B′ such that B′2 ≥ −1 and

B′(B−B′) ≤ 2. Hence the pair (X,B) is isomorphic to (V,D). Namely, there exists

an isomorphism f : X → V whose restriction on B gives rise to an isomorphism

between B and D. Since ∆ is a big divisor and ∆′ can be contracted to quotient

singular points, the weighted dual graph of ∆ (resp. ∆′) is the same as that of B̃2

(resp. B̃1). Since H is a branch component of ∆ and is a (−1)-curve, b = 2. Since

one of B(1), B(2) and B(3) must be the dual graph of C ′, we may assume that the

dual graph of C ′ (resp. T1, T2) is B(1) (resp. B(2), B(3)). Then s1 = 1 and T2 is

linear.

Therefore, the weighted dual graph of T1 + H + T2 is linear and {d(T1), d(T2)} =

{2,m} (m ≥ 2), {3, 3}, {3, 4} or {3, 5}. Since T1 +H +T2 is contracted to a smooth

point, we can determine the weighted dual graph of D = ∆ + ∆′. For example,

we consider the case d(T1) = 3 and d(T2) = 5 (i.e., µ2 = 3 and µ3 = 5); the other

cases can be treated similarly. Since µ1 = 2, C ′2 = −2. Since d(T1) = d(B(2)) = 3

(resp. d(T2) = d(B(3)) = 5), B(2) = [−3] or [(−2)2] (resp. B(3) = [−5], [−2,−3],

[−3,−2] or [(−2)4]). Since T1 + H + T2 is linear and contracted to a smooth point,

we know that B(2) = [−3] and B(3) = [−2,−3]. Then A(1) = [−2], A(2) = [(−2)2]

and A(3) = [−3,−2]. Hence the weighted dual graph of D is (g) in Theorem 1.1.

The last assertion can be verified easily. □

The proof of Theorem 1.1 is thus completed.

4. Some results on S

In this section, we remark several elementary results on some Q-homology pro-

jective planes.

Proposition 4.1. Let S be a Q-homology projective plane and C an irreducible

curve in S0 = S − SingS. Assume that κ(S − C) = −∞. Then the following

assertions hold true.

— 38 —



(1) κ(S0 − C) = −∞ and C is a rational cuspidal curve with # SingC ≤ 1.

(2) S is a log del Pezzo surface of rank one, namely, S is a normal projective

surface of Picard number one with only quotient singular points and with

ample anticanonical divisor.

Proof. (1) Since κ(S − C) = −∞, it follows from [10, Theorem 3] that C is a rational

cuspidal curve with # SingC ≤ 1. So κ(S0 − C) = −∞ by (I) in Introduction.

(2) Since κ(S0) = −∞, we infer from [30, Remark 1.2 (2)] that S is a log del

Pezzo surface of rank one. □
Proposition 4.2. Let S be a Q-homology projective plane. Assume that S0 =

S − SingS contains a rational cuspidal curve. Then # SingS ≤ 2. Moreover, if

# Sing S = 2, then the both singular points on S are cyclic quotient singular points.

Proof. Take a cuspidal rational curve C on S0, which exists by the assumption.

Then S − C is a Q-homology plane. If κ(S0 − C) ≥ 0, then the assertions follow

from [22, Proposition 1.3]. If κ(S0 − C) = −∞ and S0 −C is not affine ruled, then

# Sing S = 1 by Theorem 1.1 (2). So we assume further that S0 −C is affine ruled.

It is well known that every singular point on S is a cyclic quotient singular point

(see [15]). From now on, we use the same notations as in Theorem 1.1.

Case 1: C is smooth. We may set C = C ′. Then ∆ = C and m = C2 ≥ 1.

Let µ : Ṽ → V be the composite of blowing-ups over a point P ∈ C such that

µ′(C)2 = 0 and µ−1(P ) = E1 + · · · + Em is a linear chain of P1’s with E2
i = −2,

EiEi+1 = 1 (i = 1, . . . ,m − 1) and E2
m = −1. Here we identify µ−1(∆′) with ∆′

since ∆′ is not affected by µ.

The divisor µ′(C) defines a P1-fibration Φ := Φ|µ′(C)| : Ṽ → P1. Then Em becomes

a section of Φ and µ−1(D)−Em is contained in fibers of Φ. Since ρ(Ṽ ) = ρ(V )+m =

2 + #(µ−1(D) − (Em + µ′(C))) and each irreducible component of µ−1(D) − (Em +

µ′(C)) = ∆′+E1+· · ·+Em−1 has self-intersection number ≤ −2, we know that every

singular fiber of Φ consists only of a (−1)-curve and some (one or two) connected

components of Supp(∆′ + E1 + · · · + Em−1).

If Φ has no singular fibers, then Supp ∆′ = ∅ and so S is smooth. Assume that Φ

has a singular fiber F . If SuppF does not contain Supp(E1 + · · ·+Em−1), then the

component F ′ of F meeting Em is a (−1)-curve. Since Em is a section of Φ, SuppF

contains a (−1)-curve other than F ′. This is a contradiction. Hence we see that

m ≥ 2 and SuppF contains E1, . . . , Em−1. In particular, F is the unique singular

fiber of Φ. By the remark as in the previous paragraph, SuppF has a (−1)-curve,

say F0, and SuppF − F0 = Supp(∆′ + E1 + · · · + Em−1). So Supp ∆′ is conntected

if Sing S ̸= ∅ and hence # SingS ≤ 1.

Case 2: C is not smooth. We use the same notations as in the proof of Theorem

1.1. ∆ = π−1(C) can be expressed as ∆ = H +C ′ + T1 + T2, where H is the unique
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(−1)-curve in Supp(∆ − C ′) and we assume that T1 is linear. By Theorem 1.1 (1),

C ′2 ≥ −1. We consider the following subcases separately.

Subcase 1: C ′2 = 0. Then the divisor C ′ defines a P1-fibration Φ := Φ|C′| :

V → P1, H becomes a section of Φ and D − H is contained in fibers of Φ. Since

ρ(V ) = 2 + #(D− (C ′ +H)) and every irreducible component of D− (C ′ +H) has

self-intersection number ≤ −2, we see that every singular fiber of Φ consists only of

a (−1)-curve and some connected components of Supp(D − (C ′ + H)). Let F1 and

F2 be the fiber of Φ containing T1 and T2, respectively. Then F1 and F2 are singular

fibers of Φ and F1 ̸= F2. By using the same argument as in Case 1, we know that

F1 and F2 exhaust the singular fibers of Φ and that SuppFi (i = 1, 2) contains at

most one connected component of Supp ∆′. Therefore, # SingS ≤ 2.

Subcase 2: C ′2 > 0. Set P = C ′∩H and m = C ′2. Let µ : Ṽ → V be the composite

of blowing-ups over P such that µ′(C ′)2 = 0 and µ−1(P ) = E1 + · · ·+Em is a linear

chain of P1’s with E2
i = −2, EiEi+1 = 1 (i = 1, . . . ,m− 1) and E2

m = −1. We know

that ρ(Ṽ ) = ρ(V ) +m = 2 + #(µ−1(D)− (µ′(C ′) +Em)) and that every irreducible

component of Supp(µ−1(D) − (µ′(C ′) + Em)) has self-intersection number ≤ −2.

Since µ′(C ′)2 = 0, µ′(C) defines a P1-fibration Φ := Φ|µ′(C)| : Ṽ → P1. Then Em

becomes a section of Φ and Supp(µ−1(D)−(µ′(C ′)+Em)) is contained in fibers of Φ.

By using the same argument as in Case 1 (regarding E1+· · ·+Em−1+µ′(H+T2+T3)

as E1 + · · · + Em−1 in Case 1), we see that # SingS ≤ 1.

Subcase 3: C ′2 = −1. Set P := H ∩ T2, where we assume that T1 is linear.

(Of course, T2 may be linear.) Since C ′ and H are (−1)-curves and H + T1 is a

linear chain of P1’s, we infer from [17, Corollary 2.2.11.1 (p.82)] that there exists

a birational morphism µ : Ṽ → V that is a composite of blowing-ups over P such

that the following conditions are satisfied:

(i) µ−1(P ) ∪ Suppµ′(H + T1) is a linear chain.

(ii) There exists an effective divisor F such that SuppF ⊂ µ−1(P )∪Suppµ′(C ′+

H + T1) and F defines a P1-fibration Φ = Φ|F | : Ṽ → P1.

Let Em be the component of Suppµ∗(∆) \ SuppF meeting F . Then Em becomes

a section of Φ. Since ρ(Ṽ ) = 2 + #(µ−1(D) − (µ′(C ′) + Em)) and every irreducible

component of µ−1(D) − (µ′(C ′) + Em) has self-intersection number ≤ −2, we know

that Φ has at most one singular fiber other than F by using the same argument

as in Case 1 (see Subcase 2). Since SuppF ∩ Suppµ−1(∆′) = ∅ and every singular

fiber of Φ contains at most one connected component of Suppµ′(∆′), we know that

# Sing S ≤ 1. □

It is well-known that the fundamental group of smooth points of a log del Pezzo

surface is finite. See Gurjar–Zhang [8], [9] (see also [3] for another short proof of the

result). As a consequence of Theorem 1.1, we obtain the following result.
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Proposition 4.3. Let S be a Q-homology projective plane. Assume that there exists

an irreducible curve C in S0 = S − SingS such that κ(S0 − C) = −∞. Then S0 is

smply connected.

Proof. We use the same notations in Theorem 1.1, here we note that C is then a

rational cuspidal curve with # SingC ≤ 1.

Assume that S0 − C is affine ruled. Then, as seen in the proof of Proposition

4.2, we have a sequence of blowing-ups over a point of ∆, say µ : Ṽ → V , and

an effective divisor F with SuppF ⊂ Suppµ−1(∆) that defines a P1-fibration Φ =

Φ|F | : Ṽ → P1. Then µ−1(∆′) is contained in fibers of Φ. Moreover, every fiber G

of Φ contains an irreducible component not contained in Suppµ−1(∆′) such that its

coefficient in G equals one. Hence we know that π1(Ṽ − µ−1(∆′)) = (1). Therefore,

π1(S
0) = π1(V − Supp ∆′) = π1(Ṽ − µ−1(∆′)) = (1).

Assume next that S0 − C is not affine ruled. Then the weighted dual graph

of D = ∆ + ∆′ is one of (a)–(g) in Theorem 1.1. We consdier the case (g) only.

The other cases can be treated similarly. Let ∆ = C ′ + H + T11 + T12 + T2 and

∆′ = D0 + D1 + D2 + D3 + D4 + D5 be the irreducible decompositions of ∆ and ∆′

and we may assume that the weighted dual graph of ∆ + ∆′ is given in Figure 3,

where we omit the weight corresponding to a (−2)-curve.

Figure 3
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As seen from [16, pp. 40–41], we know that there exists a (−1)-curve E such

that ED = 2, E∆ = ET12 = 1 and E∆′ = ED2 = 1. Then the divisor F =

E+T2+T12+2T11+3H defines a P1-fibration Φ = Φ|F | : V → P1. Then D2 is a section

of Φ and Supp(∆′ −D2) is contained in a fiber of Φ. Then π1(V − Supp ∆′) = (1).

Hence π1(S
0) = π1(V − Supp ∆′) = (1). □
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