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THE QUADRATIC QUANTUM f-DIVERGENCE OF
CONVEX FUNCTIONS AND MATRICES

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we introduce the concept of quadratic quantum f -

divergence measure for a continuos function f defined on the positive semi-axis of

real numbers, the invertible matrix T and matrix V by

Sf (V, T ) := tr
[
|T ∗|2 f

(∣∣V T−1
∣∣2)] .

Some fundamental inequalities for this quantum f -divergence in the case of con-

vex functions are established. Applications for particular quantum divergence

measures of interest are also provided.

1. Introduction

Let M denote the algebra of all n×n matrices with complex entries and M+ the

subclass of all positive matrices.

Consider the complex Hilbert space (M, ⟨·, ·⟩2) , where the Hilbert-Schmidt inner

product is defined by

⟨U, V ⟩2 := tr (V ∗U) , U, V ∈ M.

We denote by S2 (M) the set of all matrices A ∈ M with ∥A∥2 = 1. In terms of

trace, this is equivalent to tr
(
|A|2

)
= tr

(
|A∗|2

)
= 1.

Let f : [0,∞) → R be a continuous function on [0,∞). By utilising the contin-

uous functional calculus for selfadjoint operators in Hilbert spaces, we can define

the following quadratic quantum f -divergence for matrices T, V ∈ S2 (M) with T

invertible, by

Sf (V, T ) := tr
[
T ∗f

(
(T ∗)−1 V ∗V T−1

)
T
]

(S)

= tr
[
T ∗f

(∣∣V T−1
∣∣2)T] = tr

[
|T ∗|2 f

(∣∣V T−1
∣∣2)] .
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If we take V = Q1/2, T = P 1/2 with tr (P ) = tr (Q) = 1, P invertible, then we have

Sf (V, T ) := tr
[
P 1/2f

(
P− 1

2QP− 1
2

)
P 1/2

]
= tr

[
Pf
(∣∣Q1/2P−1/2

∣∣2)] =: Df (Q,P )

that shows that the quadratic quantum divergence Sf is an extension of the quantum

divergence Df defined above.

If we take the convex function f (t) = t2 − 1, t ≥ 0, then we get

Sf (V, T ) = tr
[
T ∗ ((T ∗)−1 V ∗V T−1

)2
T − |T ∗|2

]
= tr

(
|T ∗|2

∣∣V T−1
∣∣4)− 1

= tr
(
|V |4 |T |−2)− 1 =: χ2

2 (V, T ) ,

for T, V ∈ S2 (M) with T invertible, which, we call, the quadratic χ2-divergence for

matrices (V, T ).

More general, if we take the convex function f (t) = tn − 1, t ≥ 0 and n a natural

number with n ≥ 2, then we get

Sf (V, T ) = tr
(
|T ∗|2

∣∣V T−1
∣∣2n)− 1 =: Dχ̃n

2
(V, T )

for T, V ∈ S2 (M) with T invertible.

If we take the convex function f (t) = t ln t for t > 0 and f (0) := 0, then we get

Sf (V, T ) = tr
[
|T ∗|2

∣∣V T−1
∣∣2 ln(∣∣V T−1

∣∣2)] =: DKL (V, T )

for T, V ∈ S2 (M) with T invertible.

If we take the convex function f (t) = − ln t for t > 0, then we get

Sf (V, T ) = − tr
[
|T ∗|2 ln

(∣∣V T−1
∣∣2)] = tr

[
|T ∗|2 ln

(∣∣(V ∗)−1 T ∗∣∣2)]
=: D̃KL (V, T )

for T, V ∈ S2 (M) with T, V invertible.

If we take the convex function f (t) = |t− 1| , t ≥ 0, then we get

Sf (V, T ) = tr
(
|T ∗|2

∣∣∣∣∣V T−1
∣∣2 − 1H

∣∣∣)
= tr

[
|T ∗|2

∣∣(T ∗)−1 (|V |2 − |T |2
)
T−1

∣∣] =: DV (V, T )

for T, V ∈ S2 (M) with T invertible.

If we consider the convex function f (t) = 1
t
− 1, t > 0, then

Sf (V, T ) = tr
(
|T ∗|2

∣∣V T−1
∣∣−2
)
− 1 = tr

(
|T |2 |V |−2 |T |2

)
− 1

= tr
(
|T |4 |V |−2)− 1 = χ2

2 (T, V )

for T, V ∈ S2 (M) with T, V invertible.
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If we take the convex function f (t) = fq (t) =
1−tq

1−q
, q ∈ (0, 1) , then we get

Sfq (V, T ) =
1

1− q

[
1− tr

(
|T ∗|2

∣∣V T−1
∣∣2q)]

=
1

1− q

[
1− tr

(
T ∗ ∣∣V T−1

∣∣2q T)] = 1

1− q

[
1− tr

(
T S⃝qV

)]
,

with

T S⃝qV := T ∗ ∣∣V T−1
∣∣2q T =

∣∣∣∣V T−1
∣∣q T ∣∣2

is the quadratic weighted operator geometric mean of (T, V ) introduced in [25], where

several properties were established.

For the classical concept of quantum f -divergence and its properties, see the recent

papers [24], [27], [28], [36], [37] and the references therein.

For inequalities for classical f -divergence measures, see [5], [12]–[22].

For some classical trace inequalities see [7], [9], [34] and [45], which are continu-

ations of the work of Bellman [3]. For related works the reader can refer to [1], [4],

[7], [26], [30], [32], [33], [39] and [42].

In this paper we introduce the concept of quadratic quantum f -divergence mea-

sure for a continuos function f defined on the positive semi-axis of real numbers, the

invertible matrix T and matrix V on a Hilbert space. Some fundamental inequali-

ties for this quantum f -divergence in the case of convex functions are established.

Applications for particular quadratic quantum divergence measures of interest are

also provided.

2. Inequalities for quadratic f-divergence measure

Suppose that I is an interval of real numbers with interior I̊ and f : I → R
is a convex function on I. Then f is continuous on I̊ and has finite left and

right derivatives at each point of I̊. Moreover, if x, y ∈ I̊ and x < y, then

f ′
− (x) ≤ f ′

+ (x) ≤ f ′
− (y) ≤ f ′

+ (y) which shows that both f ′
− and f ′

+ are nondecreas-

ing function on I̊. It is also known that a convex function must be differentiable

except for at most countably many points.

For a convex function f : I → R, the subdifferential of f denoted by ∂f is the set

of all functions φ : I → [−∞,∞] such that φ
(
I̊
)
⊂ R and

f (x) ≥ f (a) + (x− a)φ (a) for any x, a ∈ I. (1)

It is also well known that if f is convex on I, then ∂f is nonempty, f ′
−, f

′
+ ∈ ∂f

and if φ ∈ ∂f , then

f ′
− (x) ≤ φ (x) ≤ f ′

+ (x) for any x ∈ I̊.

In particular, φ is a nondecreasing function.
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If f is differentiable and convex on I̊, then ∂f = {f ′} .
The following fundamental result holds:

Theorem 2.1. Let f be a continuous convex function on [0,∞) with f (1) = 0.

Then we have

0 ≤ Sf (V, T ) (2)

for any T, V ∈ S2 (M) with T invertible.

If, in addition, f is continuously differentiable on (0,∞) , then we also have

(0 ≤)Sf (V, T ) ≤ Sℓf ′ (V, T )− Sf ′ (V, T ) , (3)

where ℓ is the identity function.

Proof. For any x ≥ 0 we have from the gradient inequality (1) that

f (x) ≥ f (1) + (x− 1) f ′
+ (1)

and since f is normalized, then

f (x) ≥ (x− 1) f ′
+ (1) . (4)

Utilising the continuous functional calculus for the positive matrix X we have by

(4) that

f (X) ≥ f ′
+ (1) (X − 1H) (5)

in the operator order of M.

Let T, V ∈ S2 (M) with T invertible, then by taking X = |V T−1|2 ≥ 0 in (5) we

have

f
(∣∣V T−1

∣∣2) ≥ f ′
+ (1)

(∣∣V T−1
∣∣2 − 1H

)
. (6)

So, if we multiply (6) at left with T ∗ and at right with T, then we get

T ∗f
(∣∣V T−1

∣∣2)T ≥ f ′
+ (1)T ∗

(∣∣V T−1
∣∣2 − 1H

)
T

= f ′
+ (1)

(
|V |2 − |T |2

)
and by taking the trace in this inequality, we get

tr
(
T ∗f

(∣∣V T−1
∣∣2)T) ≥ f ′

+ (1) tr
(
|V |2 − |T |2

)
= f ′

+ (1)
[
tr
(
|V |2

)
− tr

(
|T |2

)]
= 0,

since T, V ∈ S2 (M) , namely tr
(
|V |2

)
= tr

(
|T |2

)
= 1. This proves (2).

From the gradient inequality we also have for any x ≥ 0 that

(x− 1) f ′ (x) + f (1) ≥ f (x)

and since f is normalized, then

(x− 1) f ′ (x) ≥ f (x)

— 4 —



which, as above, implies that∣∣V T−1
∣∣2 f ′

(∣∣V T−1
∣∣2)− f ′

(∣∣V T−1
∣∣2) ≥ f

(∣∣V T−1
∣∣2) (7)

for T, V ∈ S2 (M) with T invertible.

If we multiply (7) at left with T ∗ and at right with T, then we get the desired

result (3). □

Remark 2.1. If we take f (t) = − ln t, t > 0 in Theorem 2.1 then we get

0 ≤ D̃KL (V, T ) ≤ χ2
2 (V, T ) (8)

for any T, V ∈ S2 (M) with T invertible.

The following lemma is of interest in itself since it provides a reverse of Schwarz

inequality for trace:

Lemma 2.1. Let S be a selfadjoint operator such that γ1H ≤ S ≤ Γ1H for some

real constants Γ ≥ γ. Then for any P > 0 and tr (P ) < ∞ we have

0 ≤ tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2

(9)

≤ 1

2
(Γ− γ)

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣)

≤ 1

2
(Γ− γ)

[
tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2
]1/2

≤ 1

4
(Γ− γ)2 .

Proof. For the sake of completeness, we give here a simple proof.

Observe that

1

tr (P )
tr

(
P

(
S − Γ + γ

2
1H

)(
S − tr (PS)

tr (P )
1H

))
(10)

=
1

tr (P )
tr

(
PS

(
S − tr (PS)

tr (P )
1H

))
− Γ + γ

2

1

tr (P )
tr

(
P

(
S − tr (PS)

tr (P )
1H

))
=

tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2

since, obviously

tr

(
P

(
S − tr (PS)

tr (P )
1H

))
= 0.

Now, since γ1H ≤ S ≤ Γ1H then∣∣∣∣S − Γ + γ

2
1H

∣∣∣∣ ≤ 1

2
(Γ− γ) 1H .
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Taking the modulus in (10) and using the properties of trace, we have

tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2

(11)

=
1

tr (P )

∣∣∣∣tr(P (S − Γ + γ

2
1H

)(
S − tr (PS)

tr (P )
1H

))∣∣∣∣
≤ 1

tr (P )
tr

(
P

∣∣∣∣(S − Γ + γ

2
1H

)(
S − tr (PS)

tr (P )
1H

)∣∣∣∣)
≤ 1

2
(Γ− γ)

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣) ,

which proves the first part of (9).

By Schwarz inequality for trace we also have

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣) (12)

≤

[
1

tr (P )
tr

(
P

(
S − tr (PS)

tr (P )
1H

)2
)]1/2

=

[
tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2
]1/2

.

From (11) and (12) we get

tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2

≤ 1

2
(Γ− γ)

[
tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2
]1/2

,

which implies that [
tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2
]1/2

≤ 1

2
(Γ− γ) .

By (12) we then obtain

1

tr (P )
tr

(
P

∣∣∣∣S − tr (PS)

tr (P )
1H

∣∣∣∣)

≤

[
tr (PS2)

tr (P )
−
(
tr (PS)

tr (P )

)2
]1/2

≤ 1

2
(Γ− γ)

that proves the last part of (9). □
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We denote by M−1 the class of all invertible matrices n×n with complex entries.

The following simple fact also holds, see [25]:

Lemma 2.2. Let T, V ∈ M−1 and 0 < m < M < ∞. Then the following statements

are equivalent:

(i) The inequality

m ∥Tx∥ ≤ ∥V x∥ ≤ M ∥Tx∥ (13)

holds for any x ∈ Cn;

(ii) We have the operator inequality

m1H ≤
∣∣V T−1

∣∣ ≤ M1H . (14)

Corollary 2.2. Let T, V ∈ M−1∩S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either

(13), or, equivalently (14) is valid. Then

0 ≤ χ2
2 (V, T ) (15)

≤ 1

2

(
M2 −m2

)
DV (V, T )

≤ 1

2

(
M2 −m2

)
χ2 (V, T )

≤ 1

4

(
M2 −m2

)2
.

Proof. We write the inequality (9) for P = |T ∗|2 , S = |V T−1|2 , γ = m2 and Γ = M2

to get

0 ≤ tr
(
|T ∗|2

∣∣V T−1
∣∣4)− (tr(|T ∗|2

∣∣V T−1
∣∣2))2 (16)

≤ 1

2

(
M2 −m2

)
tr
(
|T ∗|2

∣∣∣∣∣V T−1
∣∣2 − tr

(
|T ∗|2

∣∣V T−1
∣∣2) 1H∣∣∣)

≤ 1

2

(
M2 −m2

) [
tr
(
|T ∗|2

∣∣V T−1
∣∣4)− (tr(|T ∗|2

∣∣V T−1
∣∣2))2]1/2

≤ 1

4

(
M2 −m2

)2
.

Since

tr
(
|T ∗|2

∣∣V T−1
∣∣2) = tr

(
TV ∗V T−1

)
= tr (V ∗V ) = 1,
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hence (16) can be written as

0 ≤ tr
(
|T ∗|2

∣∣V T−1
∣∣4)− 1

≤ 1

2

(
M2 −m2

)
tr
(
|T ∗|2

∣∣∣∣∣V T−1
∣∣2 − 1H

∣∣∣)
≤ 1

2

(
M2 −m2

) [
tr
(
|T ∗|2

∣∣V T−1
∣∣4)− 1

]1/2
≤ 1

4

(
M2 −m2

)2
,

which is equivalent to the desired result (15). □

The following result provides a simple upper bound for the quantum f -divergence

Sf (V, T ) .

Theorem 2.3. Let f be a continuous convex function on [0,∞) with f (1) = 0. If T,

V ∈ M−1∩S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either (13), or, equivalently

(14) is valid, then we have

0 ≤ Sf (V, T )

≤ 1

2

[
f ′
−
(
M2
)
− f ′

+

(
m2
)]

DV (V, T ) (17)

≤ 1

2

[
f ′
−
(
M2
)
− f ′

+

(
m2
)]

χ2 (V, T )

≤ 1

4

(
M2 −m2

) [
f ′
−
(
M2
)
− f ′

+

(
m2
)]

.

Proof. Without loosing the generality, we prove the inequality in the case when f is

continuously differentiable on (0,∞) .

We have

tr
[
|T ∗|2

(∣∣V T−1
∣∣2 − 1H

) [
f ′
(∣∣V T−1

∣∣2)− λ1H

]]
(18)

= tr
[
|T ∗|2

(∣∣V T−1
∣∣2 − 1H

)
f ′
(∣∣V T−1

∣∣2)]
for any λ ∈ R and for any T, V ∈ M−1 ∩ S2 (M).

Since f ′ is monotonic nondecreasing on [m2,M2] , then

f ′
+

(
m2
)
≤ f ′ (x) ≤ f ′

−
(
M2
)
for any x ∈

[
m2,M2

]
.

This implies that∣∣∣∣f ′ (x)−
f ′
− (M2) + f ′

+ (m2)

2

∣∣∣∣ ≤ 1

2

[
f ′
−
(
M2
)
− f ′

+

(
m2
)]
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for any x ∈ [m2,M2] , therefore by using the continuous functional calculus for the

selfadjoint matrix |V T−1|2 with m21H ≤ |V T−1|2 ≤ M21H , we have

∣∣∣∣f ′
(∣∣V T−1

∣∣2)− f ′
− (M2) + f ′

+ (m2)

2
1H

∣∣∣∣ ≤ 1

2

[
f ′
−
(
M2
)
− f ′

+

(
m2
)]

1H . (19)

From (3), (18), (19) and properties of trace, we have

0 ≤ tr
[
|T ∗|2 f

(∣∣V T−1
∣∣2)] ≤ tr

[
|T ∗|2

(∣∣V T−1
∣∣2 − 1H

)
f ′
(∣∣V T−1

∣∣2)]
= tr

[
|T ∗|2

(∣∣V T−1
∣∣2 − 1H

)[
f ′
(∣∣V T−1

∣∣2)− f ′
− (M2) + f ′

+ (m2)

2
1H

]]
=

∣∣∣∣tr [|T ∗|2
(∣∣V T−1

∣∣2 − 1H

)[
f ′
(∣∣V T−1

∣∣2)− f ′
− (M2) + f ′

+ (m2)

2
1H

]]∣∣∣∣
≤ tr

[
|T ∗|2

∣∣∣∣(∣∣V T−1
∣∣2 − 1H

)[
f ′
(∣∣V T−1

∣∣2)− f ′
− (M2) + f ′

+ (m2)

2
1H

]∣∣∣∣]
≤ 1

2

[
f ′
−
(
M2
)
− f ′

+

(
m2
)]

tr
[
|T ∗|2

∣∣∣∣∣V T−1
∣∣2 − 1H

∣∣∣]
=

1

2

[
f ′
−
(
M2
)
− f ′

+

(
m2
)]

DV (V, T ) ,

which proves the first inequality in (17).

The rest follows by (15). □

Example 1. Let T, V ∈ M−1 ∩ S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either

(13), or, equivalently (14) is valid.

1) If we take f (t) = − ln t, t > 0 in Theorem 2.3, then we get

0 ≤ D̃KL (V, T ) ≤
M2 −m2

2m2M2
DV (V, T ) (20)

≤ M2 −m2

2m2M2
χ2 (V, T ) ≤

(M2 −m2)
2

4m2M2
.

2) If we take f (t) = t ln t, t > 0 in Theorem 2.3, then we get

0 ≤ DKL (V, T ) ≤ ln

(
M

m

)
DV (V, T ) (21)

≤ ln

(
M

m

)
χ2 (V, T ) ≤

1

2

(
M2 −m2

)
ln

(
M

m

)
.
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3) If we take in (17) f (t) = fq (t) =
1−tq

1−q
, then we get

0 ≤ Dfq (V, T ) ≤
q

2 (1− q)

(
M2(1−q) −m2(1−q)

M2(1−q)m2(1−q)

)
DV (V, T ) (22)

≤ q

2 (1− q)

(
M2(1−q) −m2(1−q)

M2(1−q)m2(1−q)

)
χ2 (V, T )

≤ q

4 (1− q)

(
M2(1−q) −m2(1−q)

M2(1−q)m2(1−q)

)(
M2 −m2

)
.

3. Some related inequalities

We have the following upper bound as well:

Theorem 3.1. Let f be a continuous convex function on [0,∞) with f (1) = 0. If T,

V ∈ M−1∩S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either (13), or, equivalently

(14) is valid, then we have

0 ≤ Sf (V, T ) ≤
(M2 − 1) f (m2) + (1−m2) f (M2)

M2 −m2
. (1)

Proof. By the convexity of f we have

f (t) = f

(
(M2 − t)m2 + (t−m2)M2

M2 −m2

)
≤ (M2 − t) f (m2) + (t−m2) f (M2)

M2 −m2

for any t ∈ [m2,M2] .

This inequality implies the following inequality in the operator order of B (H)

f
(∣∣V T−1

∣∣2) ≤

(
M2 − |V T−1|2

)
f (m2) +

(
|V T−1|2 −m2

)
f (M2)

M2 −m2
, (2)

for any T, V ∈ M−1 ∩ S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that the condition

(13) is satisfied.
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Utilising the property of trace we get from (2) that

tr
[
|T ∗|2 f

(∣∣V T−1
∣∣2)] ≤ f (m2)

M2 −m2
tr
[
|T ∗|2

(
M21H −

∣∣V T−1
∣∣2)] (3)

+
f (M2)

M2 −m2
tr
[
|T ∗|2

(∣∣V T−1
∣∣2 −m21H

)]
=

f (m2)

M2 −m2

(
M2 tr

(
|T ∗|2

)
− tr

(
|T ∗|2

∣∣V T−1
∣∣2))

+
f (M2)

M2 −m2

(
tr
(
|T ∗|2

∣∣V T−1
∣∣2)−m2 tr

(
|T ∗|2

))
=

(M2 − 1) f (m2) + (1−m2) f (M2)

M2 −m2
,

and the inequality (1) is thus proved. □

Example 2. Let T, V ∈ M−1 ∩ S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either

(13), or, equivalently (14) is valid.

1) If we take in (1) f (t) = t2 − 1, then we get

0 ≤ χ2
2 (V, T ) ≤

(
M2 − 1

) (
1−m2

)M2 +m2 + 2

M2 −m2
. (4)

2) If we take in (1) f (t) = t ln t, then we get the inequality

0 ≤ DKL (V, T ) ≤ 2 ln

[
m
(M2−1)m2

M2−m2 M
M2(1−m2)

M2−m2

]
. (5)

3) If we take in (1) f (t) = − ln t, then we get the inequality

0 ≤ D̃KL (V, T ) ≤ 2 ln

[
m

1−M2

M2−m2M
m2−1

M2−m2

]
. (6)

We have the following upper bounds as well:

Theorem 3.2. With the assumptions of Theorem 3.1, the following inequalities

hold:

(0 ≤)Sf (V, T ) ≤
(M2 − 1) (1−m2)

M2 −m2
Ψf

(
1;m2,M2

)
(7)

≤ (M2 − 1) (1−m2)

M2 −m2
sup

t∈(m2,M2)

Ψf

(
t;m2,M2

)
≤
(
M2 − 1

) (
1−m2

) f ′
− (M2)− f ′

+ (m2)

M2 −m2

≤ 1

4

(
M2 −m2

) [
f ′
−
(
M2
)
− f ′

+

(
m2
)]

,
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where Ψf (·;m2,M2) : (m2,M2) → R is defined by

Ψf

(
t;m2,M2

)
=

f (M2)− f (t)

M2 − t
− f (t)− f (m2)

t−m2
. (8)

We also have

(0 ≤)Sf (V, T ) ≤
(M2 − 1) (1−m2)

M2 −m2
Ψf

(
1;m2,M2

)
(9)

≤ 1

4

(
M2 −m2

)
Ψf

(
1;m2,M2

)
≤ 1

4

(
M2 −m2

)
sup

t∈(m2,M2)

Ψf

(
t;m2,M2

)
≤ 1

4

(
M2 −m2

) [
f ′
−
(
M2
)
− f ′

+

(
m2
)]

.

Proof. By denoting

∆f

(
t;m2,M2

)
:=

(t−m2) f (M2) + (M2 − t) f (m2)

M2 −m2
− f (t) , t ∈

[
m2,M2

]
we have

∆f

(
t;m2,M2

)
(10)

=
(t−m2) f (M2) + (M2 − t) f (m2)− (M2 −m2) f (t)

M2 −m2

=
(t−m2) [f (M2)− f (t)]− (M2 − t) [f (t)− f (m2)]

M2 −m2

=
(M2 − t) (t−m2)

M2 −m2
Ψf

(
t;m2,M2

)
for any t ∈ (m2,M2) .

From the proof of Theorem 3.1 and since f (1) = 0, we have

tr
[
|T ∗|2 f

(∣∣V T−1
∣∣2)] ≤ (M2 − 1) f (m2) + (1−m2) f (M2)

M2 −m2
− f (1)

=
(M2 − 1) (1−m2)

M2 −m2
Ψf

(
1;m2,M2

)
for any T, V ∈ M−1 ∩ S2 (M), such that (13) is valid.
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Since

Ψf

(
1;m2,M2

)
(11)

≤ sup
t∈(m2,M2)

Ψf

(
t;m2,M2

)
= sup

t∈(m2,M2)

[
f (M2)− f (t)

M2 − t
− f (t)− f (m2)

t−m2

]
≤ sup

t∈(m2,M2)

[
f (M2)− f (t)

M2 − t

]
+ sup

t∈(m2,M2)

[
−f (t)− f (m2)

t−m2

]
= sup

t∈(m2,M2)

[
f (M2)− f (t)

M2 − t

]
− inf

t∈(m2,M2)

[
f (t)− f (m2)

t−m2

]
= f ′

−
(
M2
)
− f ′

+

(
m2
)
,

and, obviously

1

M2 −m2

(
M2 − 1

) (
1−m2

)
≤ 1

4

(
M2 −m2

)
, (12)

then by (10)–(12) we have the desired result (7).

The rest is obvious. □

Example 3. Let T, V ∈ M−1 ∩ S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either

(13), or, equivalently (14) is valid.

1) If we consider the convex normalized function f (t) = t2 − 1, then

Ψf

(
t;m2,M2

)
=

M4 − t2

M2 − t
− t2 −m4

t−m2
= M2 −m2, t ∈

(
m2,M2

)
and we get from (7) the simple inequality

0 ≤ χ2
2 (V, T ) ≤

(
M2 − 1

) (
1−m2

)
. (13)

This inequality is better than (4).

2) If we take the convex normalized function f (t) = t−1 − 1, then we have

Ψf

(
t;m2,M2

)
=

M−2 − t−1

M2 − t
− t−1 −m−2

t−m2
=

M2 −m2

m2M2t
, t ∈

[
m2,M2

]
.

Also

Sf (V, T ) = χ2
2 (T, V ) .

Using (7) we get

(0 ≤)χ2
2 (T, V ) ≤ (M2 − 1) (1−m2)

M2m2
. (14)
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3) If we consider the convex function f (t) = − ln t defined on [m2,M2] ⊂ (0,∞) ,

then

Ψf

(
t;m2,M2

)
=

− lnM2 + ln t

M2 − t
− − ln t+ lnm2

t−m2

= ln

(
tM

2−m2

m2(M2−t)M2(t−m2)

) 1

(M2−t)(t−m2)

, t ∈
(
m2,M2

)
.

Then by (7) we have

(0 ≤) D̃KL (V, T ) ≤ 2 ln

[
m

1−M2

M2−m2M
m2−1

M2−m2

]
≤ (M2 − 1) (1−m2)

m2M2
. (15)

4) If we consider the convex function f (t) = t ln t defined on [m2,M2] ⊂ (0,∞) ,

then

Ψf

(
t;m2,M2

)
=

M2 lnM2 − t ln t

M2 − t
− t ln t−m2 lnm2

t−m2
, t ∈

(
m2,M2

)
,

which gives that

Ψf

(
1;m2,M2

)
=

ln
[
(M2)

M2(1−m2) (m2)
m2(M2−1)

]
(M2 − 1) (1−m2)

.

Using (7) we get

(0 ≤)DKL (V, T ) ≤
ln
[
(M2)

M2(1−m2) (m2)
m2(M2−1)

]
M2 −m2

(16)

≤ 2
(
M2 − 1

) (
1−m2

)
ln

[(
M

m

) 1
M2−m2

]
.

Finally, we have:

Theorem 3.3. Let f be a continuous convex function on [0,∞) with f (1) = 0. If T,

V ∈ M−1∩S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either (13), or, equivalently

(14) is valid, then we have

0 ≤ Sf (V, T ) (17)

≤ 2max

{
M2 − 1

M2 −m2
,

1−m2

M2 −m2

}[
f (m2) + f (M2)

2
− f

(
m2 +M2

2

)]
≤ 2

[
f (m2) + f (M2)

2
− f

(
m2 +M2

2

)]
.
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Proof. We recall the following result (see for instance [11]) that provides a refinement

and a reverse for the weighted Jensen’s discrete inequality:

n min
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
(18)

≤ 1

Pn

n∑
i=1

pif (xi)− f

(
1

Pn

n∑
i=1

pixi

)

≤ n max
i∈{1,...,n}

{pi}

[
1

n

n∑
i=1

f (xi)− f

(
1

n

n∑
i=1

xi

)]
,

where f : C → R is a convex function defined on the convex subset C of the linear

space X, {xi}i∈{1,...,n} ⊂ C are vectors and {pi}i∈{1,...,n} are nonnegative numbers

with Pn :=
∑n

i=1 pi > 0.

For n = 2 we deduce from (18) that

2min {s, 1− s}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]
(19)

≤ sf (x) + (1− s) f (y)− f (sx+ (1− s) y)

≤ 2max {s, 1− s}
[
f (x) + f (y)

2
− f

(
x+ y

2

)]

for any x, y ∈ C and s ∈ [0, 1] .

Now, if we use the second inequality in (19) for x = m2, y = M2, s = M2−t
M2−m2 with

t ∈ [m2,M2] , then we have

(M2 − t) f (m2) + (t−m2) f (M2)

M2 −m2
− f (t) (20)

≤ 2max

{
M2 − t

M2 −m2
,

t−m2

M2 −m2

}
×
[
f (m2) + f (M2)

2
− f

(
m2 +M2

2

)]
≤ 2

[
f (m2) + f (M2)

2
− f

(
m2 +M2

2

)]

for any t ∈ [m2,M2] .

— 15 —



This implies that

tr
[
|T ∗|2 f

(∣∣V T−1
∣∣2)]

≤ (M2 − 1) f (m2) + (1−m2) f (M2)

M2 −m2

≤ 2max

{
M2 − 1

M2 −m2
,

1−m2

M2 −m2

}[
f (m2) + f (M2)

2
− f

(
m2 +M2

2

)]
≤ 2

[
f (m2) + f (M2)

2
− f

(
m2 +M2

2

)]
and the proof is completed. □

Example 4. Let T, V ∈ M−1 ∩ S2 (M) and 0 < m ≤ 1 ≤ M < ∞ such that either

(13), or, equivalently (14) is valid.

1) If we take in (17) f (t) = t−1 − 1, then we have

0 ≤ χ2
2 (T, V ) ≤ max

{
M2 − 1, 1−m2

} M2 −m2

m2M2 (m2 +M2)
. (21)

2) If we take in (17) f (t) = − ln t, then we have

0 ≤ D̃KL (V, T ) ≤ max

{
M2 − 1

M2 −m2
,

1−m2

M2 −m2

}
ln

(
(M2 +m2)

2

4m2M2

)
(22)

≤ ln

(
(M2 +m2)

2

4m2M2

)
.

3) From (20) we have the following upper bound

0 ≤ D̃KL (V, T ) ≤
(M2 −m2)

2

4m2M2
. (23)

Utilising the elementary inequality ln x ≤ x− 1, x > 0, we have that

ln

(
(M2 +m2)

2

4m2M2

)
≤ (M2 −m2)

2

4m2M2
,

which shows that (22) is better than (23).
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