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A NOTE ON GALOIS EMBEDDING AND ITS
APPLICATION TO Pn

HISAO YOSHIHARA

Abstract. We show a condition that a Galois covering π : V −→ Pn is induced

by a Galois embedding. Then we consider the Galois embedding for Pn. If the

Galois group G is abelian, then G ∼=
n⊕

Zd and the projection π can be expressed

as π(X0 : X1 : · · · : Xn) = (X0
d : X1

d : · · · : Xn
d).

1. Introduction

This is a continuation of our previous paper [5]. First we recall the definition and

some results of Galois embeddings. Let k be the ground field of our discussion, we

assume it to be the field of complex numbers, however most results hold also for an

algebraically closed field of characteristic zero. Let V be a nonsingular projective

algebraic variety of dimension n with a very ample divisor D; we denote this by a

pair (V,D). Let f = fD : V ↪→ PN be the embedding of V associated with the

complete linear system |D|, where N + 1 = dimH0(V,O(D)). Suppose that W

is a linear subvariety of PN satisfying dimW = N − n − 1 and W ∩ f(V ) = ∅.
Consider the projection πW with the center W , πW : PN 99K W0, where W0 is an

n-dimensional linear subvariety not meeting W . The composition π = πW ◦ f is a

surjective morphism from V to W0
∼= Pn.

Let K = k(V ) and K0 = k(W0) be the function fields of V and W0 respectively.

The covering map π induces a finite extension of fields π∗ : K0 ↪→ K, the degree of

which is deg f(V ) = Dn: the self-intersection number of D. It is easy to see that the

structure of this extension does not depend on the choice ofW0 but only onW , hence

we denote by KW the Galois closure of this extension and by GW = Gal(KW/K0)

the Galois group of KW/K0. Note that GW is isomorphic to the monodromy group

of the covering π : V −→ W0, see [2].
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Definition 1.1. In the above situation we call GW the Galois group at W . If the

extension K/K0 is Galois, then we call f and W a Galois embedding and a Galois

subspace for the embedding respectively.

Definition 1.2. A nonsingular projective algebraic variety V is said to have a

Galois embedding if there exist a very ample divisorD satisfying that the embedding

associated with |D| has a Galois subspace. In this case the pair (V,D) is said to

define a Galois embedding.

Hereafter we use the following notation and convention:

· Aut(V ) : the automorphism group of a variety V

· ⟨a1, · · · , am⟩ : the subgroup generated by a1, · · · , am
· Zm : the cyclic group of order m

· D2m : the dihedral group of order 2m

· |G| : the order of a group G

By definition, if W is the Galois subspace, then each element σ of GW is an

automorphism ofK = KW overK0. Therefore it induces a birational transformation

of V over V0. This implies that GW can be viewed as a subgroup of Bir(V/W0): the

group of birational transformations of V over W0. Further we can say the following:

Representation 1. ([5]) Each element of GW turns out to be regular on V , hence

we have the representation

α : GW ↪→ Aut(V ).

Therefore, if the order of Aut(V ) is small, then V cannot have a Galois embedding.

On the other hand, we have examples such that there exist infinitely many distinct

Galois embeddings, see Example 4.1 in [5].

When (V,D) defines a Galois embedding, we identify f(V ) with V . Let H be a

hyperplane of PN containing W and D′ the intersection divisor of V and H. Since

D′ is linearly equivalent to D and σ∗(D′) = D′ for any σ ∈ GW , we see that σ

induces an automorphism of H0(V,O(D)).

Representation 2. ([5]) We have the second representation

β : GW ↪→ PGL(N,C).

In the case where W is a Galois subspace we identify σ ∈ GW with β(σ) ∈
PGL(N,C) hereafter. Since GW is a finite subgroup of Aut(V ), we can consider the

quotient V/GW and let πG be the quotient morphism, πG : V −→ V/GW .
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Proposition 1.1. ([5]) If (V,D) defines a Galois embedding with the Galois subspace

W such that the projection is πW : PN 99K W0, then there exists an isomorphism

g : V/GW −→ W0 satisfying g ◦πG = π. Hence the projection π is a finite morphism

and the fixed loci of GW consists of only divisors.

Therefore, π turns out to be a Galois covering in the sense of Namba [3], the

definition is as follows:

Definition 1.3. A branched covering π : X −→ M is called a Galois covering if the

covering transformation group acts transitively on every fiber of π.

Now we present the criterion that (V,D) defines a Galois embedding.

Theorem 1.1. ([5]) The pair (V,D) defines a Galois embedding if and only if the

following conditions hold:

(1) There exists a subgroup G of Aut(V ) satisfying that |G| = Dn.

(2) There exists a G-invariant linear subspace L of H0(V,O(D)) of dimension n+1

such that, for any σ ∈ G, the restriction σ∗|L is a multiple of the identity.

(3) The linear system L has no base points.

We have several results and problems for the Galois embedding, see the website;

http://hyoshihara.web.fc2.com/

In this article we consider the condition that Galois covering is induced by Galois

embedding. Next we consider the Galois embedding for Pn. In the case where

n = 1, each group of the Galois covering P1 −→ P1 can appear as the group of

Galois embedding, see [4]. It is well-known that the Galois group is isomorphic to

Zd, D2m, A4, S4 or A5.

Here we notice that there exist Galois subspaces with distinct Galois groups for

some Galois embedding.

Remark 1.1. The 12-uple embedding of P1: f(X0, X1) = (X0
12 : X0

11X1 : · · · : X1
12)

has three Galois subspaces such that the Galois groups are Z12, D12 and A4. Indeed,

let (Y0 : Y1 : · · · : Y12) be coordinates on P12. Since the Galois covering corresponding

to the Galois groups are given by (X0
12 : X1

12), (X0
6X1

6 : (X0
6 − X1

6)2) and

((X0
4 − 2

√
3X0

2X1
2 − X1

4)3 : (X0
4 + 2

√
3X0

2X1
2 − X1

4)3) respectively ([4]), the

Galois subspaces are given by Y0 = Y12 = 0, Y6 = Y0 − 2Y6 + Y12 = 0 and Y12 +

33Y8 − 33Y4 − Y0 = Y10 + 2Y6 + Y2 = 0, respectivelly.

2. Statement of results

Galois embedding f : V ↪→ PN induces the Galois covering π : V −→ Pn by

definition, but the converse assertion does not hold true. The simplest case is the
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double covering π : C −→ P1, where C is a hyperelliptic curve. However, for some

case the converse holds true.

Theorem 2.1. For a Galois covering π : V −→ Pn if D = π∗(H) is a very ample

divisor, where H is a hyperplane of Pn, then (V,D) defines a Galois embedding

f : V ↪→ PN such that π = πW ◦ f , where W is a linear subspace of PN and

f(V ) ∩W = ∅.

The following is clear from Theorem 2.1.

Corollary 2.1. Each Galois covering π : Pn −→ Pn is induced by a Galois embed-

ding by (Pn, π∗(H)), where H is a hyperplane of Pn.

Theorem 2.2. If f is a Galois embedding of Pn by a divisor of degree d and the

Galois group G is abelian, then G is isomorphic to
n⊕

Zd and the projection π =

πW ◦ f : Pn −→ Pn can be expressed as

π (X0 : X1 : · · · : Xn) = (X0
d : X1

d : · · · : Xn
d)

by taking a suitable coordinates (X0 : X1 : · · · : Xn) on Pn.

Corollary 2.2. If f is a Galois embedding of P2 by a divisor of degree d such that

d is a prime number p, then G ∼= Zp⊕Zp and π (X0 : X1 : X2) = (X0
p : X1

p : X2
p).

3. Proof

First we prove Theorem 2.1. Let π : V −→ Pn be the Galois covering with the

Galois group G. Then we have |G| = Dn. Let f = fD : V −→ PN be the embedding

associated with |D| and take L = H0(V, π∗OPn(1)). Then L satisfies the conditions

(2) and (3) of Theorem 1.1.

The proof of Corollary 2.1 is clear, because π∗(H) is a very ample divisor of Pn.

The proof of Theorem 2.2 is as follows. Let D be the divisor and f = fD : Pn −→
X ⊂ PN be the embedding associated with the complete linear systme |D|, i.e., it is
the d-uple embedding of Pn in PN . Suppose this is a Galois embedding. Then, by

definition p = πW |X is a Galois covering of degree Dn = dn. Hence |D| = dn.

Pn X

π πWp

Pn

·
·

f

?

�
��

-

@
@
@

@@R

PN⊂
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Since σ ∈ G induces a projective transformation of PN and σ(X) = X, σ can be

regarded as a projective transformation of X ∼= Pn and hence G ⊂ PGL(n, k). Since

X and Pn are smooth, each ramification locus of p has codimension one. Denote by

H an irreducible component of the ramification divisor of p.

Lemma 3.1. The H is a hyperplane of Pn and σ(H) = H for each σ ∈ G.

Proof. By Proposition 1.1 we can regard π as the quotient map Pn −→ Pn/G. If P ∈
Pn is a ramification point, then there exists τ ∈ G such that τ(P ) = P . Therefore, if

H is the ramification divisor, then it is an eigen space for some τ ∈ G, i.e., τ |H = id

and τ ̸= id. For each x ∈ σ(H), there exists a ∈ H such that x = σ(a). Since

G is assumed to be commutative, we have τ(x) = τ(σ(a)) = σ(τ(a)) = σ(a) = x,

i.e., τ |σ(H) = id. Suppose there exists another ramification divisor H ′ of τ . Then,

τ |H = id and τ |H′ = id. This implies τ = id, which is a contradiction. Hence the

ramification divisor of τ is unique, so we have σ(H) = H. �

Fix the ramification divisor H. By Lemma 3.1, G acts on Pn \ H ∼= Cn. Hence

we can regard as G ⊂ GL(n, k). Since G is a finite abelian group, every element of

G can be diagonalized simultaneously.

Lemma 3.2. ([1]) For a vector space V a finite subgroup G of GL(V ) of order prime

to char(K) is a reflection group if and only if the algebra S(V )G of invariants in the

symmetric algebra of V is isomorphic to a polynomial algebra.

By definition we have p(X \H) = (X \H)/G ∼= Cn, hence by Lemma 3.2, we see

G is generated by reflections. Taking the projective coordinates (X0 : X1 : · · · : Xn)

such that H is defined by X0 = 0 and put xi = Xi/X0 (i = 1, . . . , n). From

the above consideration we infer that G ⊂ GL(n, k), G = ⟨σ1, . . . , σn⟩ and σi is a

diagonal matrix such that (i, i)-component is αi and the others are 1, where αi is

a root of 1. Thus each ramification divisor of Pn \ {X0 = 0} ∼= Cn is contained in

xi = 0 for some i (1 ≤ i ≤ n). Let V be the vector space consisting of the polynomial

of k[x1, . . . , xn] with degree ≤ d. Put

V0 = { P ∈ V | P σ = P for each σ ∈ G}.

The P σr can be expressed as

P σr =
∑

i1+···+in≤d

αr
irci1,...inx1

i1 · · · xn
in ,

where

P =
∑

i1+···+in≤d

ci1,...inx1
i1 · · · xn

in .

We make use of (2) and (3) of Theorem 1.1. Then the basis of V0 defines a

surjective morphism Cn −→ Cn. Since P σr = P , we have ord(αr) ≤ d for each
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1 ≤ r ≤ n. Since |G| = dn, we infer that ord(αr) = d for all 1 ≤ r ≤ n. Consequently

we see V0 is generated by {x1
d, . . . , xn

d}, this proves the theorem.

The proof of Corollary is easy. Since |G| = p2, we have G ∼= Zp2 or Zp⊕Zp. Then

G is abelian, hence only the latter case takes place by the theorem.
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