A NOTE ON GALOIS EMBEDDING AND ITS APPLICATION TO \mathbb{P}^{n}

HISAO YOSHIHARA

Abstract

We show a condition that a Galois covering $\pi: V \longrightarrow \mathbb{P}^{n}$ is induced by a Galois embedding. Then we consider the Galois embedding for \mathbb{P}^{n}. If the Galois group G is abelian, then $G \cong \bigoplus^{n} Z_{d}$ and the projection π can be expressed as $\pi\left(X_{0}: X_{1}: \cdots: X_{n}\right)=\left(X_{0}{ }^{d}: X_{1}{ }^{d}: \cdots: X_{n}{ }^{d}\right)$.

1. Introduction

This is a continuation of our previous paper [5]. First we recall the definition and some results of Galois embeddings. Let k be the ground field of our discussion, we assume it to be the field of complex numbers, however most results hold also for an algebraically closed field of characteristic zero. Let V be a nonsingular projective algebraic variety of dimension n with a very ample divisor D; we denote this by a pair (V, D). Let $f=f_{D}: V \hookrightarrow \mathbb{P}^{N}$ be the embedding of V associated with the complete linear system $|D|$, where $N+1=\operatorname{dim} H^{0}(V, \mathcal{O}(D))$. Suppose that W is a linear subvariety of \mathbb{P}^{N} satisfying $\operatorname{dim} W=N-n-1$ and $W \cap f(V)=\emptyset$. Consider the projection π_{W} with the center $W, \pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}$, where W_{0} is an n-dimensional linear subvariety not meeting W. The composition $\pi=\pi_{W} \circ f$ is a surjective morphism from V to $W_{0} \cong \mathbb{P}^{n}$.

Let $K=k(V)$ and $K_{0}=k\left(W_{0}\right)$ be the function fields of V and W_{0} respectively. The covering map π induces a finite extension of fields $\pi^{*}: K_{0} \hookrightarrow K$, the degree of which is $\operatorname{deg} f(V)=D^{n}$: the self-intersection number of D. It is easy to see that the structure of this extension does not depend on the choice of W_{0} but only on W, hence we denote by K_{W} the Galois closure of this extension and by $G_{W}=\operatorname{Gal}\left(K_{W} / K_{0}\right)$ the Galois group of K_{W} / K_{0}. Note that G_{W} is isomorphic to the monodromy group of the covering $\pi: V \longrightarrow W_{0}$, see [2].

[^0]Definition 1.1. In the above situation we call G_{W} the Galois group at W. If the extension K / K_{0} is Galois, then we call f and W a Galois embedding and a Galois subspace for the embedding respectively.

Definition 1.2. A nonsingular projective algebraic variety V is said to have a Galois embedding if there exist a very ample divisor D satisfying that the embedding associated with $|D|$ has a Galois subspace. In this case the pair (V, D) is said to define a Galois embedding.

Hereafter we use the following notation and convention:

- $\operatorname{Aut}(V)$: the automorphism group of a variety V
$\cdot\left\langle a_{1}, \cdots, a_{m}\right\rangle$: the subgroup generated by a_{1}, \cdots, a_{m}
- Z_{m} : the cyclic group of order m
- $D_{2 m}$: the dihedral group of order $2 m$
- $|G|$: the order of a group G

By definition, if W is the Galois subspace, then each element σ of G_{W} is an automorphism of $K=K_{W}$ over K_{0}. Therefore it induces a birational transformation of V over V_{0}. This implies that G_{W} can be viewed as a subgroup of $\operatorname{Bir}\left(V / W_{0}\right)$: the group of birational transformations of V over W_{0}. Further we can say the following:

Representation 1. ([5]) Each element of G_{W} turns out to be regular on V, hence we have the representation

$$
\alpha: G_{W} \hookrightarrow \operatorname{Aut}(V) .
$$

Therefore, if the order of $\operatorname{Aut}(V)$ is small, then V cannot have a Galois embedding. On the other hand, we have examples such that there exist infinitely many distinct Galois embeddings, see Example 4.1 in [5].

When (V, D) defines a Galois embedding, we identify $f(V)$ with V. Let H be a hyperplane of \mathbb{P}^{N} containing W and D^{\prime} the intersection divisor of V and H. Since D^{\prime} is linearly equivalent to D and $\sigma^{*}\left(D^{\prime}\right)=D^{\prime}$ for any $\sigma \in G_{W}$, we see that σ induces an automorphism of $H^{0}(V, \mathcal{O}(D))$.

Representation 2. ([5]) We have the second representation

$$
\beta: G_{W} \hookrightarrow \operatorname{PGL}(N, \mathbb{C})
$$

In the case where W is a Galois subspace we identify $\sigma \in G_{W}$ with $\beta(\sigma) \in$ $\operatorname{PGL}(N, \mathbb{C})$ hereafter. Since G_{W} is a finite subgroup of $\operatorname{Aut}(V)$, we can consider the quotient V / G_{W} and let π_{G} be the quotient morphism, $\pi_{G}: V \longrightarrow V / G_{W}$.

Proposition 1.1. ([5]) If (V, D) defines a Galois embedding with the Galois subspace W such that the projection is $\pi_{W}: \mathbb{P}^{N} \rightarrow W_{0}$, then there exists an isomorphism $g: V / G_{W} \longrightarrow W_{0}$ satisfying $g \circ \pi_{G}=\pi$. Hence the projection π is a finite morphism and the fixed loci of G_{W} consists of only divisors.

Therefore, π turns out to be a Galois covering in the sense of Namba [3], the definition is as follows:

Definition 1.3. A branched covering $\pi: X \longrightarrow M$ is called a Galois covering if the covering transformation group acts transitively on every fiber of π.

Now we present the criterion that (V, D) defines a Galois embedding.
Theorem 1.1. ([5]) The pair (V, D) defines a Galois embedding if and only if the following conditions hold:
(1) There exists a subgroup G of $\operatorname{Aut}(V)$ satisfying that $|G|=D^{n}$.
(2) There exists a G-invariant linear subspace \mathcal{L} of $H^{0}(V, \mathcal{O}(D))$ of dimension $n+1$ such that, for any $\sigma \in G$, the restriction $\left.\sigma^{*}\right|_{\mathcal{L}}$ is a multiple of the identity.
(3) The linear system \mathcal{L} has no base points.

We have several results and problems for the Galois embedding, see the website; http://hyoshihara.web.fc2.com/

In this article we consider the condition that Galois covering is induced by Galois embedding. Next we consider the Galois embedding for \mathbb{P}^{n}. In the case where $n=1$, each group of the Galois covering $\mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ can appear as the group of Galois embedding, see [4]. It is well-known that the Galois group is isomorphic to $Z_{d}, D_{2 m}, A_{4}, S_{4}$ or A_{5}.

Here we notice that there exist Galois subspaces with distinct Galois groups for some Galois embedding.

Remark 1.1. The 12 -uple embedding of $\mathbb{P}^{1}: f\left(X_{0}, X_{1}\right)=\left(X_{0}{ }^{12}: X_{0}{ }^{11} X_{1}: \cdots: X_{1}{ }^{12}\right)$ has three Galois subspaces such that the Galois groups are Z_{12}, D_{12} and A_{4}. Indeed, let $\left(Y_{0}: Y_{1}: \cdots: Y_{12}\right)$ be coordinates on \mathbb{P}^{12}. Since the Galois covering corresponding to the Galois groups are given by $\left(X_{0}{ }^{12}: X_{1}{ }^{12}\right),\left(X_{0}{ }^{6} X_{1}{ }^{6}:\left(X_{0}{ }^{6}-X_{1}{ }^{6}\right)^{2}\right)$ and $\left(\left(X_{0}{ }^{4}-2 \sqrt{3} X_{0}{ }^{2} X_{1}{ }^{2}-X_{1}{ }^{4}\right)^{3}:\left(X_{0}{ }^{4}+2 \sqrt{3} X_{0}{ }^{2} X_{1}{ }^{2}-X_{1}{ }^{4}\right)^{3}\right)$ respectively $([4])$, the Galois subspaces are given by $Y_{0}=Y_{12}=0, Y_{6}=Y_{0}-2 Y_{6}+Y_{12}=0$ and $Y_{12}+$ $33 Y_{8}-33 Y_{4}-Y_{0}=Y_{10}+2 Y_{6}+Y_{2}=0$, respectivelly.

2. Statement of results

Galois embedding $f: V \hookrightarrow \mathbb{P}^{N}$ induces the Galois covering $\pi: V \longrightarrow \mathbb{P}^{n}$ by definition, but the converse assertion does not hold true. The simplest case is the
double covering $\pi: C \longrightarrow \mathbb{P}^{1}$, where C is a hyperelliptic curve. However, for some case the converse holds true.

Theorem 2.1. For a Galois covering $\pi: V \longrightarrow \mathbb{P}^{n}$ if $D=\pi^{*}(H)$ is a very ample divisor, where H is a hyperplane of \mathbb{P}^{n}, then (V, D) defines a Galois embedding $f: V \hookrightarrow \mathbb{P}^{N}$ such that $\pi=\pi_{W} \circ f$, where W is a linear subspace of \mathbb{P}^{N} and $f(V) \cap W=\emptyset$.

The following is clear from Theorem 2.1.
Corollary 2.1. Each Galois covering $\pi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}$ is induced by a Galois embedding by $\left(\mathbb{P}^{n}, \pi^{*}(H)\right)$, where H is a hyperplane of \mathbb{P}^{n}.

Theorem 2.2. If f is a Galois embedding of \mathbb{P}^{n} by a divisor of degree d and the Galois group G is abelian, then G is isomorphic to $\bigoplus Z_{d}$ and the projection $\pi=$ $\pi_{W} \circ f: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}$ can be expressed as

$$
\pi\left(X_{0}: X_{1}: \cdots: X_{n}\right)=\left(X_{0}{ }^{d}: X_{1}{ }^{d}: \cdots: X_{n}{ }^{d}\right)
$$

by taking a suitable coordinates $\left(X_{0}: X_{1}: \cdots: X_{n}\right)$ on \mathbb{P}^{n}.
Corollary 2.2. If f is a Galois embedding of \mathbb{P}^{2} by a divisor of degree d such that d is a prime number p, then $G \cong Z_{p} \oplus Z_{p}$ and $\pi\left(X_{0}: X_{1}: X_{2}\right)=\left(X_{0}{ }^{p}: X_{1}{ }^{p}: X_{2}{ }^{p}\right)$.

3. Proof

First we prove Theorem 2.1. Let $\pi: V \longrightarrow \mathbb{P}^{n}$ be the Galois covering with the Galois group G. Then we have $|G|=D^{n}$. Let $f=f_{D}: V \longrightarrow \mathbb{P}^{N}$ be the embedding associated with $|D|$ and take $\mathcal{L}=H^{0}\left(V, \pi^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)\right)$. Then \mathcal{L} satisfies the conditions (2) and (3) of Theorem 1.1.

The proof of Corollary 2.1 is clear, because $\pi^{*}(H)$ is a very ample divisor of \mathbb{P}^{n}.
The proof of Theorem 2.2 is as follows. Let D be the divisor and $f=f_{D}: \mathbb{P}^{n} \longrightarrow$ $X \subset \mathbb{P}^{N}$ be the embedding associated with the complete linear systme $|D|$, i.e., it is the d-uple embedding of \mathbb{P}^{n} in \mathbb{P}^{N}. Suppose this is a Galois embedding. Then, by definition $p=\left.\pi_{W}\right|_{X}$ is a Galois covering of degree $D^{n}=d^{n}$. Hence $|D|=d^{n}$.

Since $\sigma \in G$ induces a projective transformation of \mathbb{P}^{N} and $\sigma(X)=X, \sigma$ can be regarded as a projective transformation of $X \cong \mathbb{P}^{n}$ and hence $G \subset \operatorname{PGL}(n, k)$. Since X and \mathbb{P}^{n} are smooth, each ramification locus of p has codimension one. Denote by H an irreducible component of the ramification divisor of p.

Lemma 3.1. The H is a hyperplane of \mathbb{P}^{n} and $\sigma(H)=H$ for each $\sigma \in G$.
Proof. By Proposition 1.1 we can regard π as the quotient map $\mathbb{P}^{n} \longrightarrow \mathbb{P}^{n} / G$. If $P \in$ \mathbb{P}^{n} is a ramification point, then there exists $\tau \in G$ such that $\tau(P)=P$. Therefore, if H is the ramification divisor, then it is an eigen space for some $\tau \in G$, i.e., $\left.\tau\right|_{H}=\mathrm{id}$ and $\tau \neq \mathrm{id}$. For each $x \in \sigma(H)$, there exists $a \in H$ such that $x=\sigma(a)$. Since G is assumed to be commutative, we have $\tau(x)=\tau(\sigma(a))=\sigma(\tau(a))=\sigma(a)=x$, i.e., $\left.\tau\right|_{\sigma(H)}=$ id. Suppose there exists another ramification divisor H^{\prime} of τ. Then, $\left.\tau\right|_{H}=\mathrm{id}$ and $\left.\tau\right|_{H^{\prime}}=\mathrm{id}$. This implies $\tau=\mathrm{id}$, which is a contradiction. Hence the ramification divisor of τ is unique, so we have $\sigma(H)=H$.

Fix the ramification divisor H. By Lemma 3.1, G acts on $\mathbb{P}^{n} \backslash H \cong \mathbb{C}^{n}$. Hence we can regard as $G \subset G L(n, k)$. Since G is a finite abelian group, every element of G can be diagonalized simultaneously.

Lemma 3.2. ([1]) For a vector space V a finite subgroup G of $\mathrm{GL}(V)$ of order prime to char (K) is a reflection group if and only if the algebra $S(V)^{G}$ of invariants in the symmetric algebra of V is isomorphic to a polynomial algebra.

By definition we have $p(X \backslash H)=(X \backslash H) / G \cong \mathbb{C}^{n}$, hence by Lemma 3.2, we see G is generated by reflections. Taking the projective coordinates $\left(X_{0}: X_{1}: \cdots: X_{n}\right)$ such that H is defined by $X_{0}=0$ and put $x_{i}=X_{i} / X_{0}(i=1, \ldots, n)$. From the above consideration we infer that $G \subset \mathrm{GL}(n, k), G=\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle$ and σ_{i} is a diagonal matrix such that (i, i)-component is α_{i} and the others are 1 , where α_{i} is a root of 1 . Thus each ramification divisor of $\mathbb{P}^{n} \backslash\left\{X_{0}=0\right\} \cong \mathbb{C}^{n}$ is contained in $x_{i}=0$ for some $i(1 \leq i \leq n)$. Let \mathcal{V} be the vector space consisting of the polynomial of $k\left[x_{1}, \ldots, x_{n}\right]$ with degree $\leq d$. Put

$$
\mathcal{V}_{0}=\left\{P \in \mathcal{V} \mid P^{\sigma}=P \text { for each } \sigma \in G\right\} .
$$

The $P^{\sigma_{r}}$ can be expressed as

$$
P^{\sigma_{r}}=\sum_{i_{1}+\cdots+i_{n} \leq d} \alpha_{r}^{i_{r}} c_{i_{1}, \ldots i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

where

$$
P=\sum_{i_{1}+\cdots+i_{n} \leq d} c_{i_{1}, \ldots i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

We make use of (2) and (3) of Theorem 1.1. Then the basis of \mathcal{V}_{0} defines a surjective morphism $\mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$. Since $P^{\sigma_{r}}=P$, we have $\operatorname{ord}\left(\alpha_{r}\right) \leq d$ for each
$1 \leq r \leq n$. Since $|G|=d^{n}$, we infer that ord $\left(\alpha_{r}\right)=d$ for all $1 \leq r \leq n$. Consequently we see \mathcal{V}_{0} is generated by $\left\{x_{1}{ }^{d}, \ldots, x_{n}{ }^{d}\right\}$, this proves the theorem.

The proof of Corollary is easy. Since $|G|=p^{2}$, we have $G \cong Z_{p^{2}}$ or $Z_{p} \oplus Z_{p}$. Then G is abelian, hence only the latter case takes place by the theorem.

References

[1] I. Dolgachev, Reflection group in algebraic geometry, Bull. Amer. Math. Soc. 45 (2008), 1-60.
[2] J. Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), 685-724.
[3] M. Namba, Branched coverings and algebraic functions, Pitman Research Notes in Mathematics Series 161.
[4] H. Yoshihara, Galois points for plane rational curves, Far East J. Math. Sci. 25 (2007), 273-284.
[5] H. Yoshihara, Galois embedding of algebraic variety and its application to abelian surface, Rend. Semin. Mat. Univ. Padova 117 (2007), 69-85.

Faculty of Science, Niigata University, Niigata 950-2181, Japan
E-mail address: yosihara@math.sc.niigata-u.ac.jp

Received September 22, 2016
Revised May 13, 2017

[^0]: 2010 Mathematics Subject Classification. Primary 14N05, 14N10; Secondary 14J99.
 Key words and phrases. Galois embedding, Galois group, projective space.
 This work is based on research 15K04813 supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science.

