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GRAM MATRICES OF REPRODUCING KERNEL
HILBERT SPACES OVER GRAPHS II
(GRAPH HOMOMORPHISMS AND DE

BRANGES-ROVNYAK SPACES)

MICHIO SETO, SHO SUDA, AND TETSUJI TANIGUCHI

Abstract. We study graph homomorphisms over finite graphs from a viewpoint

of reproducing kernel Hilbert space theory. In particular, introducing de Branges-

Rovnyak theory into graph theory, the relation between injective graph homomor-

phisms and de Branges-Rovnyak spaces is discussed in detail.

1. Introduction

The purpose of this paper is to give a reproducing kernel Hilbert space framework

dealing with graph homomorphisms as a sequel of [4]. First of all, we shall introduce

our idea. Let G be a graph. All graphs appearing in this paper are assumed to be

finite, non-directed and have neither loops nor multi-edges. The vertex set of G will

be denoted by V = V (G), the edge set by E = E(G) and the adjacency matrix by

A = (AGxy)x,y∈V .

Definition 1.1. Let G1 and G2 be graphs. A map φ from V1 = V (G1) into V2 =

V (G2) is called a homomorphism of G1 into G2 if AG1
x1y1

≤ AG2

φ(x1)φ(y1)
for any x1, y1

in V1. Further, G1 and G2 are said to be isomorphic if there exists a bijective

map φ between V1 and V2 which preserves adjacency, that is, both φ and φ−1 are

homomorphisms.

We shall explain correspondences between some problems on complex analysis

and analysis on graphs. Let φ be a homomorphism from G1 into G2. Graphs

will be identified with open sets in the complex plane. Then the inequality AG1
x1y1

≤
AG2

φ(x1)φ(y1)
(x1, y1 ∈ V1) can be seen as a discrete analogue of a fundamental principal

in complex analysis that holomorphic maps preserve regions. Now, in complex
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analysis, there was once a famous problem called the Bieberbach conjecture. It

was solved completely by L. de Branges in 19841. Some of ingredients of his original

proof are composition operators induced by injective holomorphic maps, generalized

Dirichlet integrals and the theory developed by him and his collaborator J. Rovnyak

in [2]. In graph theory, composition operators induced by graph homomorphisms

can be defined easily, and Dirichlet integrals on graphs have already been introduced

by many researchers. Therefore, under our identification, it is reasonable to expect

that there would exist some interplay between graph theory and de Branges-Rovnyak

theory. This is our basic idea.

This paper is divided into four sections. Section 1 is the introduction. In Section

2, we deal with Hilbert spaces constructed from adjacency matrices of graphs, which

will be denoted by HG, and give some general properties of the composition operator

Cφ induced by a homomorphism φ : G1 → G2. In Section 3, we introduce de

Branges-Rovnyak space M induced by the adjoint of Cφ. M is a Hilbert space

consisting of vectors in the range of that operator with the inner product defined

by the pullback operation. A certain condition that two graphs are isomorphic is

given with the language of de Branges-Rovnyak theory. In Section 4, we study

relations between those spaces and the growth of vertices and edges by an injective

homomorphism.

2. Dirichlet spaces over graphs

Let G be a graph. Then E(·, ·) will denote the discrete Dirichlet form on V defined

as follows:

E(u, v) = 1

2

∑
x,y∈V (G)

AGxy(u(x)− u(y))(v(x)− v(y)),

where u and v are real valued functions on V . Let δx denote the delta function at

x, deg(x) denote the number of edges connected at x.

Lemma 2.1. For any x and y in V ,

(i) E(δx, δy) =

{
deg(x) (x = y)

−Axy (x ̸= y).

(ii) Let φ be a map from V1 to V2. Then

E(δx ◦ φ, δx ◦ φ) = |{(w, z) ∈ (φ−1(x)× (φ−1(x))c) : {w, z} ∈ E}|.

Proof. It is easy to see (i). We shall show (ii). Setting

I = {(w, z) ∈ φ−1(x)× (φ−1(x))c : {w, z} ∈ E},
1For its interesting history, see “The Bieberbach Conjecture-Proceedings of the Symposium on

the Occasion of the Proof”, Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986.
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we have that

E(δx ◦ φ, δx ◦ φ) =
1

2

∑
w,z∈V

Awz{δx(φ(w))− δx(φ(z))}2

=
∑

{w,z}∈E

{δx(φ(w))− δx(φ(z))}2

=
∑

(w,z)∈I

{δx(φ(w))− δx(φ(z))}2

= |I|.

This concludes the proof. □

Let HG denote the Hilbert space consisting of real valued functions on V with the

following Sobolev norm:

∥u∥2HG
= ∥u∥2ℓ2 + E(u, u),

where ∥u∥ℓ2 = (
∑

x∈V |u(x)|2)1/2. Then, since HG is of finite dimension, HG is

a reproducing kernel Hilbert space. For every x in V , the reproducing kernel of

HG at x will be denoted by kGx , that is, kGx is the unique vector in HG such that

⟨f, kGx ⟩HG
= f(x) for any f in HG. Let G1 and G2 be graphs, and let φ be a

homomorphism from G1 into G2. For each function u in HG2 , Cφu = u ◦ φ defines

a linear operator Cφ from HG2 into HG1 . We set Nφ = maxx2∈V2 |φ−1(x2)|.

Theorem 2.1. ∥Cφu∥HG1
≤ Nφ∥u∥HG2

.

Proof. For any u in HG2 , we have that

E1(Cφu,Cφu) = E1(u ◦ φ, u ◦ φ)

=
1

2

∑
x1,y1∈V1

Ax1y1 |u ◦ φ(x1)− u ◦ φ(y1)|2

≤ 1

2

∑
x1,y1∈V1

Aφ(x1)φ(y1)|u ◦ φ(x1)− u ◦ φ(y1)|2

=
1

2

∑
x2,y2∈φ(V1)

Ax2y2 |u(x2)− u(y2)|2|φ−1(x2)||φ−1(y2)|

≤
N2
φ

2

∑
x2,y2∈V2

Ax2y2 |u(x2)− u(y2)|2

= N2
φE2(u, u)

and ∑
x1∈V1

|u ◦ φ(x1)|2 =
∑

x2∈φ(V1)

|u(x2)|2|φ−1(x2)| ≤ Nφ

∑
x2∈V2

|u(x2)|2.

These inequalities conclude the proof. □
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We set T = C∗
φ/Nφ, where we deal with Cφ as an operator from HG2 into HG1

Then T is a linear operator from HG1 into HG2 , ∥T∥ ≤ 1 by Theorem 2.1, and it is

easy to see that TkG1
x1

= kG2

φ(x1)
/Nφ for every x1 in V1.

Theorem 2.2. T is an onto isometry if and only if φ is an isomorphism.

Proof. The if part is trivial. We shall show the only if part. First, by (ii) in Lemma

2.1, we have the following:

∥T ∗δx2∥2HG1
=

|φ−1(x2)|+ | (w, z) ∈ φ−1(x2)× (φ−1(x2))
c : {w, z} ∈ E1}|

N2
φ

≤
|φ−1(x2)|(1 + degG2

(x2))

N2
φ

. (2.1)

Suppose that T is an onto isometry. Then we have that |V1| = |V2| and ∥T ∗δx2∥2HG1
=

∥δx2∥2HG2
. It follows from (2.1) that

1 + degG2
(x2) = ∥δx2∥2HG2

= ∥T ∗δx2∥2HG1
≤ |φ−1(x2)|

N2
φ

(1 + degG2
(x2)),

and which implies that |φ−1(x2)| = 1 for any x2 in V2, that is, φ is injective. Since

|V1| = |V2|, φ is bijective. Furthermore, by (i) in Lemma 2.1, if x2 ̸= y2 then we

have that

−AG2
x2y2

= ⟨δx2 , δy2⟩HG2

= ⟨T ∗δx2 , T
∗δy2⟩HG1

= ⟨δφ−1(x2), δφ−1(y2)⟩HG1

= −AG1

φ−1(x2)φ−1(y2)
,

that is, φ is an isomorphism. This concludes the proof. □

3. de Branges-Rovnyak spaces over graphs

In this section, we shall introduce the theory developed by de Branges and

Rovnyak. This theory is well known to experts in Hilbert space operator the-

ory. Standard references will be Ando [1], de Branges-Rovnyak [2], Sarason [3]

and Vasyunin-Nikol’skĭı [5]. We will refer to [3] for several results which we need in

this paper.

Let P(kerT )⊥ and P(kerT ∗)⊥ denote the orthogonal projections onto the orthogonal

complements of kerT and kerT ∗ in HG1 and HG2 , respectively. Now, we introduce

new inner products on linear spaces THG1 and T ∗HG2 defined as follows:

⟨Tu1, T v1⟩T = ⟨P(kerT )⊥u1, P(kerT )⊥v1⟩HG1
(u1, v1 ∈ HG1),

⟨T ∗u2, T
∗v2⟩T ∗ = ⟨P(kerT ∗)⊥u2, P(kerT ∗)⊥v2⟩HG2

(u2, v2 ∈ HG2).
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We are interested in Hilbert spaces M(T ) = (THG1 , ∥·∥T ) and M(T ∗) = (T ∗HG2 , ∥·
∥T ∗) rather than THG1 and T ∗HG2 as usual Hilbert subspaces.

It is easy to see that M(T ) = HG2 as Hilbert spaces if and only if T is an onto

isometry, that is, φ is an isomorphism by Theorem 2.2. Since ∥T∥ ≤ 1, we have the

following quasi-orthogonal decomposition of HG1 and HG2 by (I-12) in [3]:

HG2 = M(T ) +H(T ), (3.1)

HG1 = M(T ∗) +H(T ∗), (3.2)

where H(T ) = M(
√
IHG2

− TT ∗) (resp. H(T ∗) = M(
√
IHG1

− T ∗T )), and will be

called the de Branges-Rovnyak complement of M(T ) (resp. M(T ∗)).

Remark 3.1. In our framework, injective homomorphisms will be essential. Because,

first, by the construction of M(T ), when φ is injective, the inner product of M(T )

is inherited from that of HG1 , secondly, the structure of HG is equivalent to that

of G in general. Hence, it can be expected that the data of φ : G1 → G2 will be

encoded into the contractive embedding M(T ) ↪→ HG2 . Then de Branges-Rovnyak

complements will replace not only as orthogonal complements but also as quotient

spaces.

We note that M(T ) = M(|T ∗|) and M(T ∗) = M(|T |) by (ii) of (I-5) in [3]. In

general, the intersection of M(T ) and H(T ), which is called the overlapping space

with respect to T , is non-trivial. In fact, by (I-9) in [3], TT ∗ (resp. T ∗T ) is an

orthogonal projection if and only if (3.1) (resp. (3.2)) is the usual orthogonal direct

sum. By the formula in (I-3) in [3], M(T ), H(T ), M(T ∗) andH(T ∗) are reproducing

kernel Hilbert spaces, and their reproducing kernels are

TT ∗kG2
x2
, (IHG2

− TT ∗)kG2
x2
, T ∗TkG1

x1
and (IHG1

− T ∗T )kG1
x1
,

respectively. Then, it is easy to see that

⟨TT ∗kG2
x2
, TT ∗kG2

y2
⟩M(T ) = ⟨T ∗kG2

x2
, T ∗kG2

y2
⟩HG1

=
1

N2
φ

⟨kG2
x2

◦ φ, kG2
y2

◦ φ⟩HG1

and

⟨T ∗TkG1
x1
, T ∗TkG1

y1
⟩M(T ∗) = ⟨TkG1

x1
, TkG1

y1
⟩HG2

=
1

N2
φ

⟨kG2

φ(x1)
, kG2

φ(y1)
⟩HG2

.

In general, those reproducing kernels might not be linearly independent. Two ma-

trices

K(M(T )) = (⟨TT ∗kG2
x2
, TT ∗kG2

y2
⟩M(T ))x2,y2∈V2

and

K(H(T )) = (⟨(I − TT ∗)kG2
x2
, (I − TT ∗)kG2

y2
⟩H(T ))x2,y2∈V2

will be called Gram matrices of M(T ) and H(T ), respectively. Since entries of

those matrices are values of corresponding reproducing kernels, Gram matrices are
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essentially equal to reproducing kernels. Similarly, Gram matrices K(M(T ∗)) and

K(H(T ∗)) are defined.

Let H1 and H2 be graphs, and let ψ be a homomorphism from H1 into H2. We

set S = C∗
ψ/Nψ.

Definition 3.1. T is said to be compatible with S if there exists a bijective map Ψ

from V (G2) onto V (H2) such that the following three conditions hold:

(i) ⟨TT ∗kG2
x2
, TT ∗kG2

y2
⟩M(T ) = ⟨SS∗kH2

Ψ(x2)
, SS∗kH2

Ψ(y2)
⟩M(S),

(ii) ⟨(I − TT ∗)kG2
x2
, (I − TT ∗)kG2

y2
⟩H(T ) = ⟨(I − SS∗)kH2

Ψ(x2)
, (I − SS∗)kH2

Ψ(y2)
⟩H(S),

(iii) the following two linear relations are mutually equivalent:∑
x2∈V2

ax2TT
∗kG2
x2

=
∑
x2∈V2

bx2(I − TT ∗)kG2
x2
,

∑
x2∈V2

ax2SS
∗kH2

Ψ(x2)
=

∑
x2∈V2

bx2(I − SS∗)kH2

Ψ(x2)
.

In other words, T and S are said to be compatible if there exists a bijective map Ψ

from V (G2) onto V (H2) such that the following three conditions hold:

(i) K(M(T )) ∼= K(M(S)) up to the permutation induced by Ψ,

(ii) K(H(T )) ∼= K(H(S)) up to the permutation induced by Ψ,

(iii) K(M(T ))a = K(H(T ))b if and only if K(M(S))a = K(H(S))b under the

identification in (i) and (ii), where a and b denote vectors in R|V (G2)|.

Similarly, the compatibility of T ∗ and S∗ is defined.

Theorem 3.1. If there exist isomorphisms Φ and Ψ such that the following diagram

commutes:
G1

φ−−−→ G2

Φ

y yΨ

H1 −−−→
ψ

H2,

then T and T ∗ are compatible with S and S∗, respectively.

Proof. We set U1 = C∗
Φ and U2 = C∗

Ψ. Since the Sobolev norm is invariant un-

der isomorphisms, U1 and U2 are onto isometries such that the following diagram

commutes:
HG1

T−−−→ HG2

U1

y yU2

HH1 −−−→
S

HH2 .

Then, trivially, we have that SS∗ = U2TT
∗U∗

2 and S∗S = U1T
∗TU∗

1 . Further, by

(ii) of (I-5) in [3], it suffices to show the statement for M(|T ∗|) and M(|S∗|). We

shall see that
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(i) C∗
Ψ ⊕ C∗

Ψ is an isometry from M(|T ∗|)⊕H(|T ∗|) onto M(|S∗|)⊕H(|S∗|),
(ii) C∗

ΨTT
∗kG2
x = SS∗kH2

Ψ(x),

(iii) C∗
Ψ(I − TT ∗)kG2

x = (I − SS∗)kH2

Ψ(x),

(iv) the following two linear relations are mutually equivalent:∑
x2∈V2

ax2TT
∗kG2
x2

=
∑
x2∈V2

bx2(I − TT ∗)kG2
x2
,

∑
x2∈V2

ax2SS
∗kH2

Ψ(x2)
=

∑
x2∈V2

bx2(I − SS∗)kH2

Ψ(x2)
.

First, it is trivial that U2M(|T ∗|) = M(|S∗|) as linear spaces by SS∗ = U2TT
∗U∗

2 .

Furthermore, for any u2 in HG2 , we have that

∥U2|T ∗|u2∥M(|S∗|) = ∥|S∗|U2u2∥M(|S∗|)

= ∥P(ker |S∗|)⊥U2u2∥HH2

= ∥P(kerU2|T ∗|U∗
2 )

⊥U2u2∥HH2

= ∥U2P(ker |T ∗|)⊥U
∗
2U2u2∥HH2

= ∥P(ker |T ∗|)⊥u2∥HG2

= ∥|T ∗|u2∥M(|T ∗|).

Hence M(|T ∗|) is isomorphic to M(|S∗|). Similarly, it is shown that H(|T ∗|) is

isomorphic to H(|S∗|) by U2. Thus we have (i). Since U2TT
∗ = SS∗U2, we have

that

U2TT
∗kG2
x = SS∗U2k

G2
x = SS∗kH2

Ψ(x).

This concludes (ii) and (iii). It is easy to see that (iv) follows from (ii) and (iii). □

Next, we shall show the following:

Theorem 3.2. Let φ : G1 → G2 and ψ : H1 → H2 be homomorphisms. Then

(i) G2 and H2 are isomorphic if T and S are compatible,

(ii) G1 and H1 are isomorphic if T ∗ and S∗ are compatible.

In order to prove this theorem, we need some lemmas.

Lemma 3.1. If T is compatible with S then

U1 : M(T ) → M(S), TT ∗kG2
x 7→ SS∗kH2

Ψ(x)

and

U2 : H(T ) → H(S), (I − TT ∗)kG2
x 7→ (I − SS∗)kH2

Ψ(x)

are isometries.
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Proof. Since

∥
∑
x2∈V2

cx2TT
∗kG2
x2
∥2M(T ) = ∥

∑
x2∈V2

cx2SS
∗kG2

Ψ(x2)
∥2M(S)

by (i) in Definitoin 3.1, U1 is well defined and isometric. □

We set U = U1⊕U2 for U1 and U2 in Lemma 3.1. Then U is an onto isometry from

M(|T ∗|) ⊕ H(|T ∗|) onto M(|S∗|) ⊕ H(|S∗|) if T is compatible with S by Lemma

3.1. Further, we set

T : M(|T ∗|)⊕H(|T ∗|) → HG2 , u⊕ v 7→ u+ v,

S : M(|S∗|)⊕H(|S∗|) → HH2 , u⊕ v 7→ u+ v.

Lemma 3.2. M(T) = HG2 as Hilbert spaces.

Proof. This proof is taken from Ando [1]. Since x = TT ∗x + (I − TT ∗)x, we have

that M(T) = HG2 as linear spaces. We shall show that ∥x∥M(T) = ∥x∥HG2
for any

x in HG2 . First, since

∥x∥2M(T) = ∥T(TT ∗x, (I−TT ∗)x)∥M(T) ≤ ∥TT ∗x∥2M(T )+∥(I−TT ∗)x∥2H(T ) = ∥x∥2HG2
,

we have that ∥x∥M(T) ≤ ∥x∥HG2
. Next, let x = T(Ta1, (I − TT ∗)1/2a2) where

(Ta1, (I−TT ∗)1/2a2) be in (kerT)⊥, a1 be in (kerT )⊥ and a2 be in ker((I−TT ∗)1/2)⊥.

Then we have that

∥x∥2M(T) = ∥T(Ta1, (I − TT ∗)1/2a2)∥2

= ∥Ta1∥2M(T ) + ∥(I − TT ∗)1/2a2∥2H(T )

= ∥a1∥2HG1
+ ∥a2∥2HG2

.

It follows from this identity that

∥x∥4HG2
= |⟨x, x⟩HG2

|2

= |⟨x, Ta1 + (I − TT ∗)1/2a2⟩HG2
|2

= |⟨(T ∗x, (I − TT ∗)1/2x), (a1, a2)⟩HG1
⊕HG2

|2

≤ (∥T ∗x∥2HG1
+ ∥(I − TT ∗)1/2x∥2HG2

)(∥a1∥2HG1
+ ∥a2∥2HG2

)

= ∥x∥2HG2
∥x∥2M(T).

Therefore we have that ∥x∥M(T) ≥ ∥x∥HG2
. This concludes the proof. □

Lemma 3.3. If T is compatible with S then U kerT = kerS.

Proof. Let (u, v) be in kerT. Then we have that (u, v) = (u,−u) where u belongs

to M(|T ∗|) ∩H(|T ∗|). Hence u can be represented as follows:

u =
∑
x2∈V2

ax2TT
∗kG2
x2

=
∑
x2∈V2

bx2(I − TT ∗)kG2
x2
.
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Since T is compatible with S, we have that∑
x2∈V2

ax2SS
∗kH2

Ψ(x2)
=

∑
x2∈V2

bx2(I − SS∗)kH2

Ψ(x2)
.

Further, by Lemma 3.1, we have that

U(
∑
x2∈V2

ax2TT
∗kG2
x2
,−

∑
x2∈V2

bx2(I − TT ∗)kG2
x2
)

= (
∑
x2∈V2

ax2SS
∗kH2

Ψ(x2)
,−

∑
x2∈V2

bx2(I − SS∗)kH2

Ψ(x2)
).

This concludes the inclusion U kerT ⊆ kerS. Since U is an onto isometry, it is

similar to see the converse inclusion. □

Proof of Theorem 3.2. It suffices to show (i) because Lemmas 3.1, 3.2 and 3.3 hold

for T ∗ and S∗. We set U = SUT−1. Then U is a well-defined linear operator by

Lemma 3.3, and the following diagram commutes:

M(|T ∗|)⊕H(|T ∗|) U−−−→ M(|S∗|)⊕H(|S∗|)

T

y yS

HG2 −−−→
U

HH2 .

Since {kG2
x2
}x2∈V (G2) and {kH2

Ψ(x2)
}x2∈V (G2) are linearly independent and Uk

G2
x2

= kH2

Ψ(x2)
,

we have that U = C∗
Ψ, and which is an invertible linear operator from HG2 onto

HH2 satisfying UT = SU. We shall show that U is an isometry. Let w be a

function in HG2 , and let w = u + v be its unique decomposition with respect to

M(|T ∗|) and H(|T ∗|). Then (u, v) belongs to the orthogonal complement of kerT
in M(|T ∗|)⊕H(|T ∗|), and ∥w∥2HG2

= ∥u∥2M(|T ∗|) + ∥v∥2H(|T ∗|) by Lemma 3.2. Setting

U(u, v) = (u′, v′), (u′, v′) belongs to the orthogonal complement of kerS inM(|S∗|)⊕
H(|S∗|) by Lemma 3.3 and U(u+ v) = SUT−1(u+ v) = u′ + v′. Hence we have that

∥Uw∥HH2
= ∥u′ + v′∥2HH2

= ∥u′∥2M(|S∗|) + ∥v′∥2H(|S∗|)

= ∥u∥2M(|T ∗|) + ∥v∥2H(|T ∗|)

= ∥w∥2HG2
.

Next, we shall show that Ψ is an isomorphism. Since

⟨δx2 , δy2⟩HG2
= ⟨U∗δΨ(x2), U

∗δΨ(y2)⟩HG2
= ⟨δΨ(x2), δΨ(y2)⟩HH2

,

we have that (Ψ(x2),Ψ(y2)) belongs to E(H2) if and only if (x2, y2) belongs to E(G2)

by (i) in Lemma 2.1. Therefore G2 and H2 are isomorphic. □

Corollary 3.1. Let G1 and G2 be graphs.
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(i) If there exist a graph H, homomorphisms φ : H → G1 and ψ : H → G2

such that T and S are compatible, then G1 and G2 are isomorphic.

(ii) If there exist a graph H, homomorphisms φ : G1 → H and ψ : G2 → H

such that T ∗ and S∗ are compatible, then G1 and G2 are isomorphic.

In general de Branges-Rovnyak theory, analysis of H(T ) and H(T ∗) is not easy.

Next, we shall give a general property on H(T ) and H(T ∗) in our setting.

Lemma 3.4. Let φ be a homomorphism from G1 to G2. Then

dimM(T ) = dimM(T ∗) = |φ(V1)|.

Proof. First, it is trivial that dimM(T ) = |φ(V1)|, because TkG1
x1

= kG2

φ(x1)
/Nφ and

{kG1
x1
}x∈V1 is linearly independent. Moreover, since M(T ∗) = ranT ∗ = (kerT )⊥ as

linear spaces in HG1 , we have

dimM(T ∗) = |V1| − dimkerT = |V1| − (|V1| − |φ(V1)|) = |φ(V1)|.

Thus we have the conclusion. □

We set

indT = dimH(T ∗)− dimH(T ).

It is easy to see that this quantity is invariant under isomorphisms in the sense of

Theorem 3.1.

Theorem 3.3. Let φ be a homomorphism from G1 to G2. Then

|φ(V1)| − |V2| ≤ indT ≤ |V1| − |φ(V1)|.

Proof. By the decomposition (3.2) and (I-9) in [3], we have that

|V1| = dimHG1

= dimM(T ∗) + dimH(T ∗)− dim(M(T ∗) ∩H(T ∗))

= dimM(T ∗) + dimH(T ∗)− dimT ∗H(T )

≥ dimM(T ∗) + dimH(T ∗)− dimH(T ).

Similarly, by (3.1), we have that

|V2| ≥ dimM(T ) + dimH(T )− dimH(T ∗).

These inequalities concludes the following inequality:

dimM(T )− |V2| ≤ dimH(T ∗)− dimH(T ) ≤ |V1| − dimM(T ∗).

By Lemma 3.4, we have the conclusion. □
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4. Injective homomorphisms

In this section, we deal with injective homomorphisms. First, we shall give a

partial converse of Theorem 3.1:

Theorem 4.1. Let φ : G1 → G2 and ψ : H1 → H2 be injective homomorphisms.

If T and T ∗ are compatible S and S∗, respectively, then there exists isomorphisms

Φ : G1 → H1, Ψ : G2 → H2 and a unitary operator U on HH2 such that UC∗
ΨC

∗
φ =

C∗
ψC

∗
Φ on HG1.

Proof. By Theorem 3.2, there exist isomorphisms Φ : G1 → H1 and Ψ : G2 → H2.

Then we have that

⟨kH2

Ψ◦φ(x1), k
H2

Ψ◦φ(y1)⟩HH2
= ⟨C∗

ΨTk
G1
x1
, C∗

ΨTk
G1
y1
⟩HH2

= ⟨TkG1
x1
, TkG1

y1
⟩HG2

= ⟨T ∗TkG1
x1
, T ∗TkG1

y1
⟩M(T ∗)

= ⟨S∗SkH1

Φ(x1)
, S∗SkH1

Φ(y1)
⟩M(S∗)

= ⟨SkH1

Φ(x1)
, SkH1

Φ(y1)
⟩HH2

= ⟨kH2

ψ◦Φ(x1)
, kH2

ψ◦Φ(y1)
⟩HH2

.

Hence there exists a unitary operator U on HH2 such that U : kH2

Ψ◦φ(x1) 7→ kH2

ψ◦Φ(x1)
,

and which is equivalent to that UC∗
ΨC

∗
φ = C∗

ψC
∗
Φ on HG1 . This concludes the

proof. □

Furthermore, indT can be obtained explicitly for injective homomorphisms.

Theorem 4.2. Let φ be an injective homomorphism from G1 to G2. Then

indT = |V1| − |V2|.

Proof. If φ is injective, then so is T . Hence we have that dimM(T ) = dimHG1 =

|V1|. Moreover, from M(T ) ∩H(T ) = TH(T ∗) by (I-9) in [3], it follows that

dim(M(T ) ∩H(T )) = dimH(T ∗).

By the identity which follows from (3.1), we have that

|V2| = dimHG2

= dimM(T ) + dimH(T )− dim(M(T ) ∩H(T ))

= |V1|+ dimH(T )− dimH(T ∗).

This concludes the proof. □
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Remark 4.1. indT is an integer valued function invariant under isomorphisms. It

would be worth mentioning the following observation which is a consequence of

Theorem 4.2. Let φ1 : G1 → G2 and φ2 : G2 → G3 be injective homomorphisms.

Then since T2T1 = C∗
φ2◦φ1

, we have that

indT2T1 = |V1| − |V3| = |V1| − |V2|+ |V2| − |V3| = indT1 + indT2,

that is, indT is additive for injective homomorphisms. We should note that Fred-

holm index in a finite dimensional case is just a difference between dimensions of

underlying spaces.

Next, we shall see that the growth of numbers of edges by an injective homomor-

phism is encoded in the Hilbert space structure of H(T ).

We will write φ−1(x), instead of φ−1({x}), for every x in V2 if no confusion occurs,

and set Aφ−1(x)φ−1(y) = 0 if φ−1(x) is empty.

Lemma 4.1. Let φ be an injective homomorphism from G1 to G2. Then

(i) ∥(I − TT ∗)δx∥2H(T ) =

{
degG2

(x)− degG1
(φ−1(x)) (φ−1(x) ̸= ∅),

1 + degG2
(x) (φ−1(x) = ∅),

(ii) ⟨(I − TT ∗)δx, (I − TT ∗)δy⟩H(T ) = −AG2
xy + AG1

φ−1(x)φ−1(y) if x ̸= y.

Proof. First, since T ∗δx = δx ◦φ, we note that T ∗δx = 0 if φ−1(x) is empty. For any

x in V2, we have that

∥(I − TT ∗)δx∥2H(T ) = ⟨(I − TT ∗)δx, (I − TT ∗)δx⟩H(T )

= ⟨(I − TT ∗)δx, δx⟩HG2

= ∥δx∥2HG2
− ∥T ∗δx∥2HG1

= degG2
(x)− degG1

(φ−1(x)).

Hence we have (i). Next, we shall show (ii). For any x, y in V2 such that x ̸= y, we

have that

⟨(I − TT ∗)δx, (I − TT ∗)δy⟩H(T ) = ⟨(I − TT ∗)δx, δy⟩HG2

= ⟨δx, δy⟩HG2
− ⟨T ∗δx, T

∗δy⟩HG1

= −AG2
xy + AG1

φ−1(x)φ−1(y).

Thus we have (ii). This concludes the proof. □

Remark 4.2. Suppose that G2 = φ(G1) and V2 = {x1, . . . , xn}. Then, by (i) and (ii)

in Lemma 4.1, we have that

∥(I − TT ∗)
n∑
j=1

cjδxj∥2H(T ) = ⟨(LG2 − U∗LG1U)
t(c1, . . . , cn),

t(c1, . . . , cn)⟩Rn ,
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where LG denotes the Laplacian matrix of G and U denotes the unitary matrix

induced by φ as a permutation.

In general de Branges-Rovnyak theory, calculation of dimH(T ) is important, but

not easy. However, in our case, it is possible under some conditions. We shall see

how to calculate it with several examples.

Example 4.1. If G2 = φ(G1) and |E(φ(G1))| − |E(G1)| = 1 then dimH(T ) = 1.

Indeed, we assume that x1 and x2 are in V2 = φ(V1) and Ax1x2 > Aφ−1(x1)φ−1(x2). By

Lemma 4.1, for any function u =
∑

x∈V2 cxδx in HG2 , we have that

⟨(IHG2
− TT ∗)u, u⟩HG2

= ∥(IHG2
− TT ∗)u∥2H(T )

=
∑
x∈V2

c2x(deg(x)− deg(φ−1(x))) +
∑
x,y∈V2

cxcy(−Axy + Aφ−1(x)φ−1(y))

= (cx1 − cx2)
2.

Hence we have that dimker(IHG2
− TT ∗) = |V2| − 1,

dimH(T ) = dim ran(IHG2
− TT ∗) = dim(ker(IHG2

− TT ∗))⊥ = 1

and H(T ) is generated by (IHG2
− TT ∗)1/2(δx1 − δx2).

Example 4.2. If G2 = φ(G1) and |E(φ(G1))| − |E(G1)| = 2 then dimH(T ) = 2. We

assume that xi is in V2 = φ(V1) (i = 1, 2, 3, 4) such that Axixi+1
> Aφ−1(xi)φ−1(xi+1)

for i = 1, 3.

(Case 1) If {x1, x2} is not connected with {x3, y4}, for any function u =
∑

x∈V2 cxδx
in HG2 , we have that

⟨(IHG2
− TT ∗)u, u⟩HG2

= (cx1 − cx2)
2 + (cx3 − cx4)

2.

Hence we have that dimker(IHG2
− TT ∗) = |V2| − 4 + 2 = |V2| − 2. This concludes

that dimH(T ) = 2.

(Case 2) If {x1, x2} is connected with {x3, x4}, then we may assume that x2 = x4.

For any function u =
∑

x∈V2 cxδx in HG2 , we have that

⟨(IHG2
− TT ∗)u, u⟩HG2

= (cx1 − cx2)
2 + (cx2 − cx3)

2.

Hence we have that dimker(IHG2
− TT ∗) = |V2| − 3 + 1 = |V2| − 2. This concludes

that dimH(T ) = 2.

Example 4.3. Suppose that G2 = φ(G1) and |E(φ(G1))| − |E(G1)| = 3. Then

dimH(T ) = 3 does not always hold. Indeed, we assume that x1, x2 and x3 are in

V2 = φ(V1) and {x1, x2}, {x2, x3} and {x3, x1} are in |E(φ(G1))|, however neither
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{φ−1(x1), φ
−1(x2)}, {φ−1(x2), φ

−1(x3)} nor {φ−1(x3), φ
−1(x1)} is in |E(G1)|. Then

for any function u =
∑

x∈V2 cxδx in HG2 , we have that

⟨(IHG2
− TT ∗)u, u⟩HG2

= (cx1 − cx2)
2 + (cx2 − cx3)

2 + (cx3 − cx1)
2.

Hence we have that dimker(IHG2
− TT ∗) = |V2| − 3 + 1 = |V2| − 2. This concludes

that dimH(T ) = 2.

Example 4.4. Let On denote the graph having no edge with n vertices, and Kn

denote the complete graph with n vertices. We consider an injective homomorphisms

φ : On → Kn such that φ(On) = Kn. For any function u =
∑
cxδx in HKn , we have

that

⟨(IHKn
− TT ∗)u, u⟩HKn

= (n− 1)
∑
j

c2xj − 2
∑
i>j

cxicxj =
∑
i̸=j

(cxi − cxj)
2.

Hence ker(I − TT ∗) is generated by u =
∑

x∈V δx = 1. Therefore we have that

dimH(T ) = n− 1.

Let φ : G1 → G2 be an injective homomorphism such that G2 = φ(G1). We set

∆φE = {{xi, xj} ∈ E(φ(G1)) : {φ−1(xi), φ
−1(xj)} ̸∈ E(G1)}.

Then, in Examples 4.1, 4.2, 4.3 and 4.4, it is essentially shown that

∥(IHG2
− TT ∗)

∑
x∈V2

cxδx∥2H(T ) =
∑

{xi,xj}∈∆φE

(cxi − cxj)
2,

and which implies that dimH(T ) ≤ |∆φE|.

Theorem 4.3. Let φ : G→ H be an injective homomorphism such that H = φ(G).

We set n = |∆φE|. Then H(T ) can be decomposed into n one-dimensional subspaces

in the sense of quasi-orthogonal decomposition.

Proof. Let φ : G→ H be decomposed as follows:

G = Gn
φn−1,n−→ Gn−1

φn−2,n−1−→ · · · φ1,2−→ G1
φ0,1−→ G0 = H, φ = φ0,1 ◦ · · · ◦ φn−1,n,

|E(φj,j+1(Gj+1))| − |E(Gj)| = 1 and φj,j+1(Gj+1) = Gj for j = 0, 1, . . . , n − 1.

Setting φj = φ0,1 ◦ · · · ◦ φj−1,j, φj : Gj → G0 = H is an injective homomorphism.

Furthermore we set Tj−1,j = C∗
φj−1,j

: HGj
→ HGj−1

and Tj = C∗
φj

: HGj
→ HG0 .

Then trivially, we have that Tj+1 = TjTj,j+1. and we note that dimH(Tj,j+1) = 1

by Example 4.1. Using (I-10) in [3] inductively or by Theorem A140 in Vasyunin-

Nikol’skĭı [5], H(T ) can be decomposed as follows:

H(T ) = H(Tn) =
n−1∑
j=0

H(Tj, Tj+1).
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Since H(Tj, Tj+1) = M(Tj(I − Tj,j+1T
∗
j,j+1)

1/2) and Tj is injective, we have that

dimH(Tj, Tj+1) = dimH(Tj,j+1) = 1.

This concludes the proof. □
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